Sample records for earth modeling system

  1. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    NASA Technical Reports Server (NTRS)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  2. Modeling the Earth System, volume 3

    NASA Technical Reports Server (NTRS)

    Ojima, Dennis (Editor)

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  3. Integrated human-earth system modeling—state of the science and future directions

    NASA Astrophysics Data System (ADS)

    Calvin, Katherine; Bond-Lamberty, Ben

    2018-06-01

    Research on humans and the Earth system has historically occurred separately, with different teams and models devoted to each. Increasingly, however, these communities and models are becoming intricately linked. In this review, we survey the literature on integrated human-Earth system models, quantify the direction and strength of feedbacks in those models, and put them in context of other, more frequently considered, feedbacks in the Earth system. We find that such feedbacks have the potential to alter both human and Earth systems; however, there is significant uncertainty in these results, and the number of truly integrated studies remains small. More research, more models, and more studies are needed to robustly quantify the sign and magnitude of human-Earth system feedbacks. Integrating human and earth models entails significant complexity and cost, and researchers should carefully assess the costs and benefits of doing so with respect to the object of study.

  4. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  5. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  6. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  7. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Humanmore » System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  8. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE PAGES

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; ...

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  9. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  10. Understanding earth system models: how Global Sensitivity Analysis can help

    NASA Astrophysics Data System (ADS)

    Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Computer models are an essential element of earth system sciences, underpinning our understanding of systems functioning and influencing the planning and management of socio-economic-environmental systems. Even when these models represent a relatively low number of physical processes and variables, earth system models can exhibit a complicated behaviour because of the high level of interactions between their simulated variables. As the level of these interactions increases, we quickly lose the ability to anticipate and interpret the model's behaviour and hence the opportunity to check whether the model gives the right response for the right reasons. Moreover, even if internally consistent, an earth system model will always produce uncertain predictions because it is often forced by uncertain inputs (due to measurement errors, pre-processing uncertainties, scarcity of measurements, etc.). Lack of transparency about the scope of validity, limitations and the main sources of uncertainty of earth system models can be a strong limitation to their effective use for both scientific and decision-making purposes. Global Sensitivity Analysis (GSA) is a set of statistical analysis techniques to investigate the complex behaviour of earth system models in a structured, transparent and comprehensive way. In this presentation, we will use a range of examples across earth system sciences (with a focus on hydrology) to demonstrate how GSA is a fundamental element in advancing the construction and use of earth system models, including: verifying the consistency of the model's behaviour with our conceptual understanding of the system functioning; identifying the main sources of output uncertainty so to focus efforts for uncertainty reduction; finding tipping points in forcing inputs that, if crossed, would bring the system to specific conditions we want to avoid.

  11. Challenges to modeling the Sun-Earth System: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  12. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.

  13. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.« less

  14. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE PAGES

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...

    2016-08-22

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  15. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  16. Parallel Optimization of an Earth System Model (100 Gigaflops and Beyond?)

    NASA Technical Reports Server (NTRS)

    Drummond, L. A.; Farrara, J. D.; Mechoso, C. R.; Spahr, J. A.; Chao, Y.; Katz, S.; Lou, J. Z.; Wang, P.

    1997-01-01

    We are developing an Earth System Model (ESM) to be used in research aimed to better understand the interactions between the components of the Earth System and to eventually predict their variations. Currently, our ESM includes models of the atmosphere, oceans and the important chemical tracers therein.

  17. The UK Earth System Model project

    NASA Astrophysics Data System (ADS)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  18. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  19. Overview of past, ongoing and future efforts of the integrated modeling of global change for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David; Sokolov, Andrei; Zhuang, Qianlai; Melillo, Jerry; Reilly, John

    2016-04-01

    Northern Eurasia is both a major player in the global carbon budget (it includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost) and a region that has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts) over the past century. Northern Eurasia has also undergone significant land-use change, both driven by human activity (including deforestation, expansion of agricultural lands and urbanization) and natural disturbances (such as wildfires and insect outbreaks). These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from tundra to forests, with significant areas of croplands and pastures as well as deserts, with major urban areas. As such, it represents a complex system with substantial challenges for the modeling community. In this presentation, we provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. We review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system (through scale, teleconnections or processes), we point out that there are few systematic analyses of the various feedbacks within the Earth system (between components, regions or scale). As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how policy relevant current studies are that fail to account for these feedbacks. We review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce the human activity system (global trade, economic models, demographic model and so on), the need for coupled human/earth system models and Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we conclude the presentation with examples of emerging issues that require a representation of the coupled human/earth system models.

  20. Model Meets Data: Challenges and Opportunities to Implement Land Management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Dolman, A. J.; Don, A.; Erb, K. H.; Fuchs, R.; Herold, M.; Jones, C.; Luyssaert, S.; Kuemmerle, T.; Meyfroidt, P.

    2016-12-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  1. Model meets data: Challenges and opportunities to implement land management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Luyssaert, Sebastiaan; Kuemmerle, Tobias; Meyfroidt, Patrick; Naudts, Kim

    2017-04-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  2. An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo

    2007-01-01

    Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.

  3. Global change modeling for Northern Eurasia: a review and strategies to move forward

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Sokolov, A. P.; Zhuang, Q.; Sokolik, I. N.; Lawford, R. G.; Kappas, M.; Paltsev, S.; Groisman, P. Y.

    2017-12-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  4. A review of and perspectives on global change modeling for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina N.; Lawford, Richard; Kappas, Martin; Paltsev, Sergey V.; Groisman, Pavel Ya

    2017-08-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  5. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  6. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  7. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  8. A New Model of the Earth System Nitrogen Cycle: How Plates and Life Affect the Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-11-01

    We have developed an Earth system N cycle model, including biologic and geologic fluxes and key nutrients such as phosphorus. The atmosphere can change mass significantly over Earth history, and the solid Earth contains most of the planet's N.

  9. Modeling global change impacts on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Monier, E.; Sokolov, A. P.; Zhuang, Q.; Melillo, J. M.; Reilly, J. M.

    2016-12-01

    Northern Eurasia is a major player in the global carbon budget and includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost. The region has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts), natural disturbances (wildfires and insect outbreaks), and land-use change (timber harvest, urbanization, expansion and abandonment of agricultural lands) over the past century. These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from deserts to forests, with significant areas of croplands, pastures, and urban areas. As such, it represents a complex system with substantial challenges for the modeling community. We provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. First, we review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system through scale, teleconnections or processes, there are few systematic analyses of the various feedbacks among components within the Earth system. As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how relevant current studies, which do not account for these feedbacks, may be for policymaking. Next, we review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce human activity models (e.g., global trade, economic models, demographic models), and the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we examine emerging issues that require a representation of the coupled human/earth system models to address.

  10. Comprehensive system models: Strategies for evaluation

    NASA Technical Reports Server (NTRS)

    Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.

    1992-01-01

    The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.

  11. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  12. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  13. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    NASA Astrophysics Data System (ADS)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international cooperation.

  14. Program management model study

    NASA Technical Reports Server (NTRS)

    Connelly, J. J.; Russell, J. E.; Seline, J. R.; Sumner, N. R., Jr.

    1972-01-01

    Two models, a system performance model and a program assessment model, have been developed to assist NASA management in the evaluation of development alternatives for the Earth Observations Program. Two computer models were developed and demonstrated on the Goddard Space Flight Center Computer Facility. Procedures have been outlined to guide the user of the models through specific evaluation processes, and the preparation of inputs describing earth observation needs and earth observation technology. These models are intended to assist NASA in increasing the effectiveness of the overall Earth Observation Program by providing a broader view of system and program development alternatives.

  15. The Earth System (ES-DOC) Project

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien

    2014-05-01

    ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.

  16. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  17. Marine Aerosol Precursor Emissions for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltrud, Mathew Einar

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  18. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    ERIC Educational Resources Information Center

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  19. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  20. NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations

    NASA Astrophysics Data System (ADS)

    Frisbie, T. E.; Hall, C. M.

    2006-12-01

    Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.

  1. Energy Exascale Earth System Model (E3SM) Project Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, D.

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  2. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  3. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  4. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  5. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  6. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  7. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  8. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    ERIC Educational Resources Information Center

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  9. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  10. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  11. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    NASA Technical Reports Server (NTRS)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  12. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  13. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    ERIC Educational Resources Information Center

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  14. Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Projects Data and Services at the GES DISC

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.

    2011-01-01

    NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  15. Challenges in Modeling the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects of these phenomena across boundaries between regions and on data analysis that guides and constrains model results. Specific topics to be addressed are: Corotating interaction regions, Coronal mass ejections, Energetic particles, System preconditioning, Extreme events and super storms, End-to-End modeling efforts.

  16. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  17. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  18. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations

    NASA Technical Reports Server (NTRS)

    Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun

    2017-01-01

    The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust observation-based identification and understanding of mechanisms that determine the variability of weather and climate, (e) identify critical weaknesses in coupled models and the earth observing system, (f) generate full-field estimates of unobserved or sparsely observed variables, (g) improve the estimation of the external forcings causing changes to climate, (h) transition successes from idealized CDA experiments to real-world applications. Challenges: (a) Modeling at the interfaces between interacting components of coupled Earth system models may be inadequate for estimating uncertainty or error covariances between domains, (b) current data assimilation methods may be insufficient to simultaneously analyze domains containing multiple spatiotemporal scales of interest, (c) there is no standardization of observation data or their delivery systems across domains, (d) the size and complexity of many large-scale coupled Earth system models makes it is difficult to accurately represent uncertainty due to model parameters and coupling parameters, (e) model errors lead to local biases that can transfer between the different Earth system components and lead to coupled model biases and long-term model drift, (e) information propagation across model components with different spatiotemporal scales is extremely complicated, and must be improved in current coupled modeling frameworks, (h) there is insufficient knowledge on how to represent evolving errors in non-atmospheric model components (e.g. as sea ice, land and ocean) on the timescales of NWP.

  19. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  20. Modeling in the Classroom: An Evolving Learning Tool

    NASA Astrophysics Data System (ADS)

    Few, A. A.; Marlino, M. R.; Low, R.

    2006-12-01

    Among the early programs (early 1990s) focused on teaching Earth System Science were the Global Change Instruction Program (GCIP) funded by NSF through UCAR and the Earth System Science Education Program (ESSE) funded by NASA through USRA. These two programs introduced modeling as a learning tool from the beginning, and they provided workshops, demonstrations and lectures for their participating universities. These programs were aimed at university-level education. Recently, classroom modeling is experiencing a revival of interest. Drs John Snow and Arthur Few conducted two workshops on modeling at the ESSE21 meeting in Fairbanks, Alaska, in August 2005. The Digital Library for Earth System Education (DLESE) at http://www.dlese.org provides web access to STELLA models and tutorials, and UCAR's Education and Outreach (EO) program holds workshops that include training in modeling. An important innovation to the STELLA modeling software by isee systems, http://www.iseesystems.com, called "isee Player" is available as a free download. The Player allows users to view and run STELLA models, change model parameters, share models with colleagues and students, and make working models available on the web. This is important because the expert can create models, and the user can learn how the modeled system works. Another aspect of this innovation is that the educational benefits of modeling concepts can be extended throughout most of the curriculum. The procedure for building a working computer model of an Earth Science System follows this general format: (1) carefully define the question(s) for which you seek the answer(s); (2) identify the interacting system components and inputs contributing to the system's behavior; (3) collect the information and data that will be required to complete the conceptual model; (4) construct a system diagram (graphic) of the system that displays all of system's central questions, components, relationships and required inputs. At this stage in the process the conceptual model of the system is compete and a clear understanding of how the system works is achieved. When appropriate software is available the advanced classes can proceed to (5) creating a computer model of the system and testing the conceptual model. For classes lacking these advanced capabilities they may view and run models using the free isee Player and shared working models. In any event there is understanding to be gained in every step of the procedure outlined above. You can view some examples at http://www.ruf.rice.edu/~few/. We plan to populate this site with samples of Earth science systems for use in Earth system science education.

  1. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE PAGES

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; ...

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  2. GRAM Series of Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    The eight destinations in the Solar System with sufficient atmosphere for either aeroentry or aeroassist, including aerocapture, are: Venus, Earth, Mars, Jupiter, Saturn; Uranus. and Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for four of these (Earth, Mars, Titan, and Neptune) have been developed for use in NASA's systems analysis studies of aerocapture applications in potential future missions. Work has recently commenced on development of a similar atmospheric model for Venus. This series of MSFC-sponsored models is identified as the Global Reference Atmosphere Model (GRAM) series. An important capability of all of the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Example applications for Earth aeroentry and Mars aerocapture systems analysis studies are presented and illustrated. Current and planned updates to the Earth and Mars atmospheric models, in support of NASA's new exploration vision, are also presented.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foucar, James G.; Salinger, Andrew G.; Deakin, Michael

    CIME is the software infrastructure for configuring, building, running, and testing an Earth system model. It can be developed and tested as stand-alone software, but its main role is to be integrating into the CESM and ACME Earth system models.

  4. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a modeling framework's native component interface. (3) Create semantic mappings between modeling frameworks that support semantic mediation. This third goal involves creating a crosswalk between the CF Standard Names and the CSDMS Standard Names (a set of naming conventions). This talk will summarize progress towards these goals.

  5. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  6. UNH Data Cooperative: A Cyber Infrastructure for Earth System Studies

    NASA Astrophysics Data System (ADS)

    Braswell, B. H.; Fekete, B. M.; Prusevich, A.; Gliden, S.; Magill, A.; Vorosmarty, C. J.

    2007-12-01

    Earth system scientists and managers have a continuously growing demand for a wide array of earth observations derived from various data sources including (a) modern satellite retrievals, (b) "in-situ" records, (c) various simulation outputs, and (d) assimilated data products combining model results with observational records. The sheer quantity of data, and formatting inconsistencies make it difficult for users to take full advantage of this important information resource. Thus the system could benefit from a thorough retooling of our current data processing procedures and infrastructure. Emerging technologies, like OPeNDAP and OGC map services, open standard data formats (NetCDF, HDF) data cataloging systems (NASA-Echo, Global Change Master Directory, etc.) are providing the basis for a new approach in data management and processing, where web- services are increasingly designed to serve computer-to-computer communications without human interactions and complex analysis can be carried out over distributed computer resources interconnected via cyber infrastructure. The UNH Earth System Data Collaborative is designed to utilize the aforementioned emerging web technologies to offer new means of access to earth system data. While the UNH Data Collaborative serves a wide array of data ranging from weather station data (Climate Portal) to ocean buoy records and ship tracks (Portsmouth Harbor Initiative) to land cover characteristics, etc. the underlaying data architecture shares common components for data mining and data dissemination via web-services. Perhaps the most unique element of the UNH Data Cooperative's IT infrastructure is its prototype modeling environment for regional ecosystem surveillance over the Northeast corridor, which allows the integration of complex earth system model components with the Cooperative's data services. While the complexity of the IT infrastructure to perform complex computations is continuously increasing, scientists are often forced to spend considerable amount of time to solve basic data management and preprocessing tasks and deal with low level computational design problems like parallelization of model codes. Our modeling infrastructure is designed to take care the bulk of the common tasks found in complex earth system models like I/O handling, computational domain and time management, parallel execution of the modeling tasks, etc. The modeling infrastructure allows scientists to focus on the numerical implementation of the physical processes on a single computational objects(typically grid cells) while the framework takes care of the preprocessing of input data, establishing of the data exchange between computation objects and the execution of the science code. In our presentation, we will discuss the key concepts of our modeling infrastructure. We will demonstrate integration of our modeling framework with data services offered by the UNH Earth System Data Collaborative via web interfaces. We will layout the road map to turn our prototype modeling environment into a truly community framework for wide range of earth system scientists and environmental managers.

  7. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  8. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open-ended questionnaires about impact on students identify higher order thinking, critical evaluation of quantitative and qualitative information, cooperative learning, and engagement in STEM content through inquiry as core competencies of this educational method. This presentation will describe the program model and results from internal evaluation.

  9. Newtonian-Machian analysis of the neo-Tychonian model of planetary motions

    NASA Astrophysics Data System (ADS)

    Popov, Luka

    2013-03-01

    The calculation of the trajectories in the Sun-Earth-Mars system is performed using two different models, both in the framework of Newtonian mechanics. The first model is the well-known Copernican system, which assumes that the Sun is at rest and that all the planets orbit around it. The second is a less well-known model, developed by Tycho Brahe (1546-1601), according to which the Earth stands still, the Sun orbits around the Earth, and the other planets orbit around the Sun. The term ‘neo-Tychonian system’ refers to the assumption that orbits of distant masses around the Earth are synchronized with the Sun's orbit. It is the aim of this paper to show the kinematical and dynamical equivalence of these systems, under the assumption of Mach's principle.

  10. Modernizing Earth and Space Science Modeling Workflows in the Big Data Era

    NASA Astrophysics Data System (ADS)

    Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.

    2017-12-01

    Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and automation in the near term, and longer term investments in virtualized environments for improved scalability, tolerance for lossy data compression, novel data-centric memory and storage technologies, and tools for peer reviewing, preserving and sharing workflows, as well as fundamental statistical and machine learning algorithms.

  11. Computational Aspects of Data Assimilation and the ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, A.

    2003-01-01

    The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.

  12. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  13. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  14. Climate Science: How Earth System Models are Reshaping the Science Policy Interface.

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  15. Representing natural and manmade drainage systems in an earth system modeling framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wu, Huan; Huang, Maoyi

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  16. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  17. The computational future for climate and Earth system models: on the path to petaflop and beyond.

    PubMed

    Washington, Warren M; Buja, Lawrence; Craig, Anthony

    2009-03-13

    The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.

  18. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and scalable professional development programming to facilitate systemic changes in the teaching and learning about climate and global change. We are establishing a diverse community of scientists and educators across the country that are using these tools, and plan to create local networks supported by UGC staff and partners.

  19. SPITFIRE within the MPI Earth system model: Model development and evaluation

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Thonicke, Kirsten; Kloster, Silvia

    2014-09-01

    Quantification of the role of fire within the Earth system requires an adequate representation of fire as a climate-controlled process within an Earth system model. To be able to address questions on the interaction between fire and the Earth system, we implemented the mechanistic fire model SPITFIRE, in JSBACH, the land surface model of the MPI Earth system model. Here, we document the model implementation as well as model modifications. We evaluate our model results by comparing the simulation to the GFED version 3 satellite-based data set. In addition, we assess the sensitivity of the model to the meteorological forcing and to the spatial variability of a number of fire relevant model parameters. A first comparison of model results with burned area observations showed a strong correlation of the residuals with wind speed. Further analysis revealed that the response of the fire spread to wind speed was too strong for the application on global scale. Therefore, we developed an improved parametrization to account for this effect. The evaluation of the improved model shows that the model is able to capture the global gradients and the seasonality of burned area. Some areas of model-data mismatch can be explained by differences in vegetation cover compared to observations. We achieve benchmarking scores comparable to other state-of-the-art fire models. The global total burned area is sensitive to the meteorological forcing. Adjustment of parameters leads to similar model results for both forcing data sets with respect to spatial and seasonal patterns. This article was corrected on 29 SEP 2014. See the end of the full text for details.

  20. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  1. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  2. Teaching Climate Change Using System Models: An Understanding Global Change Project Pilot Study

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Stuhlsatz, M.; Bracey, Z. B.; Marshall, C. R.

    2017-12-01

    Teaching and learning about historical and anthropogenic climate change in the classroom requires integrating instructional resources that address physical, chemical, and biological processes. The Understanding Global Change (UGC) framework and system models developed at the University of California Museum of Paleontology (UCMP) provide visualizations of the relationships and feedbacks between Earth system processes, and the consequences of anthropogenic activities on global climate. This schema provides a mechanism for developing pedagogic narratives that are known to support comprehension and retention of information and relationships. We designed a nine-day instructional unit for middle and high school students that includes a sequence of hands-on, inquiry-based, data rich activities combined with conceptual modeling exercises intended to foster students' development of systems thinking and their understanding of human influences on Earth system processes. The pilot unit, Sea Level Rise in the San Francisco Bay Area, addresses the human causes and consequences of sea level rise and related Earth system processes (i.e., the water cycle and greenhouse effect). Most of the content is not Bay Area specific, and could be used to explore sea level rise in any coastal region. Students completed pre and post assessments, which included questions about the connectedness of components of the Earth system and probed their attitudes towards participating in environmental stewardship activities. Students sequentially drew models representing the content explored in the activities and wrote short descriptions of their system diagrams that were collected by teachers for analysis. We also randomly assigned classes to engage in a very short additional intervention that asked students to think about the role that humans play in the Earth system and to draw themselves into the models. The study will determine if these students have higher stewardship scores and more frequently discuss their personal impact on the Earth system in their writing tasks. The results from this pilot will inform the design of future resources using UGC system models.

  3. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  4. Benchmark Comparison of Dual- and Quad-Core Processor Linux Clusters with Two Global Climate Modeling Workloads

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.

  5. Angular radiation models for earth-atmosphere system. Volume 2: Longwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; Stowe, L. L.

    1989-01-01

    The longwave angular radiation models that are required for analysis of satellite measurements of Earth radiation, such as those from the Earth Radiation Budget Experiment (ERBE) are presented. The models contain limb-darkening characteristics and mean fluxes. Limb-darkening characteristics are the longwave anisotropic factor and the standard deviation of the longwave radiance. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) data set is described. Tabulated values and computer-generated plots are included for the limb-darkening and mean-flux models.

  6. Development of FIAT-Based Parametric Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concept

    NASA Astrophysics Data System (ADS)

    Sepka, S. A.; Samareh, J. A.

    2014-06-01

    Mass estimating relationships have been formulated to determine a vehicle's Thermal Protection System material and required thickness for safe Earth entry. We focus on developing MERs, the resulting equations, model limitations, and model accuracy.

  7. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  8. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  9. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  10. Space research on organs and tissues

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Morey-Holton, Emily

    1992-01-01

    The effects of microgravity on various physiological systems are reviewed focusing on muscle, bone, cardiovascular, pulmonary, neurovestibular, liver, and endocrine systems. It is noted that certain alterations of organs and tissues caused by microgravity are not reproducible in earth-bound animal or human models. Thus space research on organs and tissues is essential for both validating the earth-bound models used in laboratories and studying the adaptations to weightlessness which cannot be mimicked on earth.

  11. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  12. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  13. How to `Elk-test' biogeochemical models in a data rich world? (Invited)

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Ciais, P.; Seneviratne, S. I.; Carvalhais, N.; Dalmonech, D.; Jung, M.; Luo, Y.; Mahecha, M. D.; Moffat, A. M.; Tomelleri, E.; Zaehle, S.

    2010-12-01

    Process-oriented biogeochemical models are a primary tool that has been used to project future states of climate and ecosystems in the earth system in response to anthropogenic and other forcing, and receive tremendous attention also in the context us the planned assessment report AR5 by the IPCC. However, model intercomparison and data-model comparison studies indicate large uncertainties regarding predictions of global interactions between atmosphere and biosphere. Rigorous scientific testing of these models is essential but very challenging, largely because neither it is technically and ethically possible to perform global earth-scale experiments, nor do we have replicate Earths for hypothesis testing. Hence, model evaluations have to rely on monitoring data such as ecological observation networks, global remote sensing or short-term and small-scale experiments. Here, we critically examine strategies of how model evaluations have been performed with a particular emphasis on terrestrial ecosystems. Often weak ‘validations’ are being presented which do not take advantage of all the relevant information in the observed data, but also apparent falsifications are made, that are hampered by a confusion of system processes with system behavior. We propose that a stronger integration of recent advances in pattern-oriented and system-oriented methodologies will lead to more satisfying earth system model evaluation and development, and show a few enlightening examples from terrestrial biogeochemical modeling and other disciplines. Moreover it is crucial to take advantage of the multidimensional nature of arising earth observation data sets which should be matched by models simultaneously, instead of relying on univariate simple comparisons. A new critical model evaluation is needed to improve future IPCC assessments in order to reduce uncertainties by distinguishing plausible simulation trajectories from fairy tales.

  14. NEW DIRECTIONS AND CHALLENGES FOR THE COMMUNITY EARTH SYSTEM MODELIn this talk, we will discuss the upcoming release of CESM2 and the challenges encountered in the process. We will then discuss upcoming new opportunities in development and applications of Earth System Models

    NASA Astrophysics Data System (ADS)

    Lamarque, J. F.

    2016-12-01

    In this talk, we will discuss the upcoming release of CESM2 and the computational and scientific challenges encountered in the process. We will then discuss upcoming new opportunities in development and applications of Earth System Models; in particular, we will discuss additional ways in which the university community can contribute to CESM.

  15. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  16. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less

  17. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.

  18. Chasing Perfection: Should We Reduce Model Uncertainty in Carbon Cycle-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Lombardozzi, D.; Wieder, W. R.; Lindsay, K. T.; Thomas, R. Q.

    2015-12-01

    Earth system model simulations of the terrestrial carbon (C) cycle show large multi-model spread in the carbon-concentration and carbon-climate feedback parameters. Large differences among models are also seen in their simulation of global vegetation and soil C stocks and other aspects of the C cycle, prompting concern about model uncertainty and our ability to faithfully represent fundamental aspects of the terrestrial C cycle in Earth system models. Benchmarking analyses that compare model simulations with common datasets have been proposed as a means to assess model fidelity with observations, and various model-data fusion techniques have been used to reduce model biases. While such efforts will reduce multi-model spread, they may not help reduce uncertainty (and increase confidence) in projections of the C cycle over the twenty-first century. Many ecological and biogeochemical processes represented in Earth system models are poorly understood at both the site scale and across large regions, where biotic and edaphic heterogeneity are important. Our experience with the Community Land Model (CLM) suggests that large uncertainty in the terrestrial C cycle and its feedback with climate change is an inherent property of biological systems. The challenge of representing life in Earth system models, with the rich diversity of lifeforms and complexity of biological systems, may necessitate a multitude of modeling approaches to capture the range of possible outcomes. Such models should encompass a range of plausible model structures. We distinguish between model parameter uncertainty and model structural uncertainty. Focusing on improved parameter estimates may, in fact, limit progress in assessing model structural uncertainty associated with realistically representing biological processes. Moreover, higher confidence may be achieved through better process representation, but this does not necessarily reduce uncertainty.

  19. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  20. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  1. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  2. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  3. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  4. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  5. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by Piers in the last months of his leadership of Earth Science at NASA Goddard.

  6. Lunar Flight Study Series: Volume 6. A Study of Geometrical and Terminal Characteristics of Earth-Moon Transits Embedded in the Earth-Moon Plane

    NASA Technical Reports Server (NTRS)

    Lisle, B. J.

    1963-01-01

    This report represents the results of a study of coplanar earth-moon transits. The study was initiated to provide information concerning coplanar geometrical characteristics of earth-moon trnasits. The geometrical aspects of transit behavior are related to variations injection conditions. The model of the earth-moon system used in this investigation is the Jacobian model of the restricted three body problem. All transits considered in this study are restricted to the moon-earth plane (MEP).

  7. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic and North Atlantic basin and their influence on the ocean stratification and ocean circulation are analysed. The changes in the surface climate and the atmospheric circulation associated with the impact of the Greenland ice sheet changes are quantified. The interaction between the Greenland ice sheet and Arctic sea ice is also examined.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  10. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  11. Modeling Earth system changes of the past

    NASA Technical Reports Server (NTRS)

    Kutzbach, John E.

    1992-01-01

    This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.

  12. Numerical analysis of seismic events distributions on the planetary scale and celestial bodies astrometrical parameters

    NASA Astrophysics Data System (ADS)

    Bulatova, Dr.

    2012-04-01

    Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.

  13. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  14. ESPC Common Model Architecture Earth System Modeling Framework (ESMF) Software and Application Development

    DTIC Science & Technology

    2015-09-30

    originate from NASA , NOAA , and community modeling efforts, and support for creation of the suite was shared by sponsors from other agencies. ESPS...Framework (ESMF) Software and Application Development Cecelia Deluca NESII/CIRES/ NOAA Earth System Research Laboratory 325 Broadway Boulder, CO...Capability (NUOPC) was established between NOAA and Navy to develop a common software architecture for easy and efficient interoperability. The

  15. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  16. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  17. Pedotransfer functions in Earth system science: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Van Looy, K.; Minasny, B.; Nemes, A.; Verhoef, A.; Weihermueller, L.; Vereecken, H.

    2017-12-01

    We make a stronghold for a new generation of Pedotransfer functions (PTFs) that is currently developed in the different disciplines of Earth system science, offering strong perspectives for improvement of integrated process-based models, from local to global scale applications. PTFs are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. To meet the methodological challenges for a successful application in Earth system modeling, we highlight how PTF development needs to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly capture the spatial heterogeneity of soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration and organic carbon content, root density and vegetation water uptake. We present an outlook and stepwise approach to the development of a comprehensive set of PTFs that can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques and soil information availability provide a true breakthrough for this, yet further improvements are necessary in three domains: 1) the determining of unknown relationships and dealing with uncertainty in Earth system modeling; 2) the step of spatially deploying this knowledge with PTF validation at regional to global scales; and 3) the integration and linking of the complex model parameterizations (coupled parameterization). Integration is an achievable goal we will show.

  18. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are coupled in IAMs , and the need for a lexicon that is agreed upon by the IAM community.

  19. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial proof-of-concept of this framework, coupling a widely used agricultural crop model (DSSAT) with a widely used hydrology model (TopoFlow).

  20. 8 years of experience in international, interdisciplinary and structured doctoral training in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Weitz, Antje; Stevens, Bjorn; Marotzke, Jochem

    2010-05-01

    The mission of the International Max Planck Research School on Earth System Modelling (IMPRS-ESM) is to provide a high quality, modern and structured graduate education to students pursuing a doctoral degree in Earth system modelling. In so doing, the IMPRS-ESM also strives to advance the emerging discipline (or cross-discipline) of Earth system modelling; to provide a framework for attracting the most talented and creative young women and men from around the world to pursue their doctoral education in Germany; to provide advanced as well as specialized academic training and scientific guidance to doctoral students; to encourage academic networking and publication of research results; to better integrate doctoral research at the Max Planck Institute for Meteorology (MPI-M) with education and research at the University of Hamburg and other cooperating institutions. Core elements are rigorous selection of doctoral students, effective academic supervision, advanced academic training opportunities and interdisciplinary communication as well as administrative support. IMPRS-ESM graduates have been recognized with a variety of awards. 85% of our alumni continue a career in research. In this presentation we review the challenges for an interdisciplinary PhD program in Earth system sciences and the types of routines we have implemented to surmount them as well as key elements that we believe contribute to the success of our doctoral program.

  1. Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.

  2. A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application

    PubMed Central

    Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang

    2018-01-01

    Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549

  3. Earth survey applications division: Research leading to the effective use of space technology in applications relating to the Earth's surface and interior

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1980-01-01

    Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system.

  4. Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.

    2002-01-01

    Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.

  5. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  6. Four dimensional studies in earth space

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.

  7. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  8. Technical report series on global modeling and data assimilation. Volume 1: Documentation of the Goddard Earth Observing System (GEOS) General Circulation Model, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina

    1994-01-01

    This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.

  9. The Future of Planetary Climate Modeling and Weather Prediction

    NASA Technical Reports Server (NTRS)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  10. MODELING THE DYNAMICS OF THE INTEGRATED EARTH SYSTEM AND THE VALUE OF GLOBAL ECOSYSTEM SERVICES USING THE GUMBO MODEL. (R827169)

    EPA Science Inventory

    A global unified metamodel of the biosphere (GUMBO) was developed to simulate the integrated earth system and assess the dynamics and values of ecosystem services. It is a `metamodel' in that it represents a synthesis and a simplification of several existing dynamic gl...

  11. Computer modelling of the optical behaviour of rare earth dopants in BaY2F8

    NASA Astrophysics Data System (ADS)

    Jackson, R. A.; Valerio, M. E. G.; Couto Dos Santos, M. A.; Amaral, J. B.

    2005-01-01

    BaY2F8, when doped with rare earth elements is a material of interest in the development of solid-state laser systems, especially for use in the infrared region. This paper presents the application of a new computational technique, which combines atomistic modelling and crystal field calculations in a study of rare earth doping of the material. Atomistic modelling is used to calculate the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters, which are an important indicator in assessing the optical behaviour of the dopant-crystal system. Comparisons with the results of recent experimental work on this material are made.

  12. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    PubMed Central

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2015-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency. PMID:26213457

  13. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    PubMed

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  14. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  15. Design strategies for human & earth systems modeling to meet emerging multi-scale decision support needs

    NASA Astrophysics Data System (ADS)

    Spak, S.; Pooley, M.

    2012-12-01

    The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.

  16. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  17. Representing Reservoir Stratification in Land Surface and Earth System Models

    NASA Astrophysics Data System (ADS)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  18. ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric

    2016-03-01

    A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.

  19. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  20. Secular Resonances During Main-Sequence and Post-Main-Sequence Planetary System Dynamics

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.

    We investigate gravitational perturbations of an asteroid belt by secular resonances. We ap- ply analytic and numerical models to main-sequence and post-main-sequence planetary systems. First, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the nu6 resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the solar system is somewhat special in its lack of a super-Earth mass planet in the inner solar system. We therefore consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M_{Earth} and a separation greater than about 0.7 AU. These results have implications for the habitability of exoplanetary systems. Secondly, we model white dwarf pollution by asteroids from secular resonances. In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs that require a continu- ous accretion of asteroids. We show that secular resonances driven by two outer companions can provide a source of pollution if an inner terrestrial planet is engulfed during the red-giant branch phase. Secular resonances may be a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures including systems with two giant planets and systems with one giant planet and a binary star companion.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J. C.; Stephens, J. C.; Chung, Serena

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focusmore » on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  2. Comprehensive data set of global land cover change for land surface model applications

    NASA Astrophysics Data System (ADS)

    Sterling, Shannon; Ducharne, AgnèS.

    2008-09-01

    To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.

  3. The Contribution of GGOS to Understanding Dynamic Earth Processes

    NASA Astrophysics Data System (ADS)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements of continental and basin-scale water masses; loading and unloading of the land surface due to seasonal changes of groundwater; measurement of water level of major lakes and rivers by satellite altimetry; and improved digital terrain models as basis for flux modeling of surface water and flood modeling. Geodesy is crucial for cryospheric studies because of its ability to measure the motions of ice masses and changes in their volumes. Ice sheets, glaciers, and sea ice are intricately linked to the Earth's climate system. They store a record of past climate; they strongly affect surface energy budget, global water cycle, and sea-level change; and they are sensitive indicators of climate change. Geodesy is at the heart of all present-day ocean studies. Geodetic observations uniquely produce accurate, quantitative, and integrated observations of gravity, ocean circulation, sea surface height, ocean bottom pressure, and mass exchanges among the ocean, cryosphere, and land. Geodetic observations have made fundamental contributions to monitoring and understanding physical ocean processes. In particular, geodesy is the basic technique used to determine an accurate geoid model, allowing for the determination of absolute surface geostrophic currents, which are necessary to quantify heat transport of the ocean. Geodesy also provides the absolute reference for tide gauge measurements, allowing those measurements to be merged with satellite altimetric measurements to provide a coherent worldwide monitoring system for sea level change. In this presentation, selected examples of the contribution of geodetic observations to understanding the dynamic Earth system will be presented.

  4. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  5. An Overview of the Future Development of Climate and Earth System Models for Scientific and Policy Use (Invited)

    NASA Astrophysics Data System (ADS)

    Washington, W. M.

    2010-12-01

    The development of climate and earth system models has been regarded primarily as the making of scientific tools to study the complex nature of the Earth’s climate. These models have a long history starting with very simple physical models based on fundamental physics in the 1960s and over time they have become much more complex with atmospheric, ocean, sea ice, land/vegetation, biogeochemical, glacial and ecological components. The policy use aspects of these models did not start in the 1960s and 1970s as decision making tools but were used to answer fundamental scientific questions such as what happens when the atmospheric carbon dioxide concentration increases or is doubled. They gave insights into the various interactions and were extensively compared with observations. It was realized that models of the earlier time periods could only give first order answers to many of the fundamental policy questions. As societal concerns about climate change rose, the policy questions of anthropogenic climate change became better defined; they were mostly concerned with the climate impacts of increasing greenhouse gases, aerosols, and land cover change. In the late 1980s, the United Nations set up the Intergovernmental Panel on Climate Change to perform assessments of the published literature. Thus, the development of climate and Earth system models became intimately linked to the need to not only improve our scientific understanding but also answering fundamental policy questions. In order to meet this challenge, the models became more complex and realistic so that they could address these policy oriented science questions such as rising sea level. The presentation will discuss the past and future development of global climate and earth system models for science and policy purposes. Also to be discussed is their interactions with economic integrated assessment models, regional and specialized models such as river transport or ecological components. As an example of one development pathway, the NSF/Department of Energy supported Community Climate System and Earth System Models will be featured in the presentation. Computational challenges will also part of the discussion.

  6. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  7. Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package

    DTIC Science & Technology

    2007-12-01

    oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems

  8. NASA's Earth Resources Laboratory - Seventeen years of using remotely sensed satellite data in land applications

    NASA Technical Reports Server (NTRS)

    Cashion, Kenneth D.; Whitehurst, Charles A.

    1987-01-01

    The activities of the Earth Resources Laboratoy (ERL) for the past seventeen years are reviewed with particular reference to four typical applications demonstrating the use of remotely sensed data in a geobased information system context. The applications discussed are: a fire control model for the Olympic National Park; wildlife habitat modeling; a resource inventory system including a potential soil erosion model; and a corridor analysis model for locating routes between geographical locations. Some future applications are also discussed.

  9. A Trade Study of Thermosphere Empirical Neutral Density Models

    DTIC Science & Technology

    2014-08-01

    n,m = Degree and order, respectively ′ = Geocentric latitude Approved for public release; distribution is unlimited. 2 λ = Geocentric ...coordinate. The ECI coordinate system also known as the Approved for public release; distribution is unlimited. 3 geocentric equatorial system has...seconds for numerical integration. The EGM96 model specifies V in the Earth-Center, Earth-Fixed (ECEF) coordinate frame, a geocentric coordinate

  10. Using PlayDoh Astronomy for Understanding the Size and Scale of the Earth-Moon System and as a Probe for Spatial Translation Ability

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika

    2013-01-01

    To help students love science more and to help them understand the vast distances that pervade astronomy, we use kinesthetic modeling of the Earth-Moon system using PlayDoh. When coupled with discussion, we found (in a pilot study) that students of all ages (children up through adults) acquired a more accurate mental representation of the Earth-Moon system. During early September 2012, we devised and implemented a curriculum unit that focused on the Earth-Moon system and how that relates to eclipses for six middle-Tennessee 6th grade public school classrooms. For this unit, we used PlayDoh as the kinesthetic modeling tool. First, we evaluated what the students knew about the size and scale prior to this intervention using paper and model pre-tests. Second, we used the PlayDoh to model the Earth-Moon system and when possible, conducted an immediate post-test. The students then engaged with the PlayDoh model to help them understand eclipses. Third, we conducted a one-month-later delayed post-test. One thing to note is that about half of the students had experienced the PlayDoh modeling part of a 5th grade pilot lesson during May 2012 therefore the pre-test acted as a four-month-later delayed post-test for these students. We find, among other things, that students retain relative size information more readily than relative distance information. We also find differences in how consistent students are when trying to translate the size/scale they have in their heads to the different modes of assessment utilized.

  11. Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)

    NASA Astrophysics Data System (ADS)

    Bishop, M. P.; Houser, C.; Lemmons, K.

    2015-12-01

    Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.

  12. Shock compression of Fe-Ni-Si system to 280 GPa: Implications for the composition of the Earth's outer core

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2014-07-01

    The shock Hugoniot of an Fe-9 wt %Ni-10 wt %Si system as a model of the Earth's core has been measured up to ~280 GPa using a two-stage light-gas gun. The samples had an average density of 6.853 (±0.036) g/cm3. The relationship between shock velocity (Us) and particle velocity (up) can be described by Us (km/s) = 3.95 (±0.15) + 1.53 (±0.05) up (km/s). The calculated Hugoniot temperatures and the melting curve indicate that the model composition melts above a shock pressure of ~168 GPa, which is significantly lower than the shock-melting pressure of iron (~225 GPa). A comparison of the pressure-density (P-ρ) profiles between the model composition and the preliminary reference Earth model gives a silicon content close to 10 wt %, necessary to compensate the density deficit in the Earth's outer core from seismological observations, if silicon is present as a major light element in the Fe-Ni core system.

  13. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  14. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  15. Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation

    NASA Technical Reports Server (NTRS)

    Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.

  16. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  17. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  18. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  19. An Earth with affinities to Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2015-12-01

    The Enstatite chondrite model for the Earth, as envisaged by Marc Javoy and colleagues, has strengths and weaknesses. The overwhelming evidence against layered mantle scenarios makes the existing enstatite Earth models unacceptable. Increasingly, stable and radiogenic isotope data for the Earth and the range of chondrites find that many (but not all) isotopic ratios are shared between the Earth and enstatite chondrites. This significant amount of overlap in isotope space compels one to reconsider the enstatite chondrite model for the Earth. During early solar system formation (circa +1 Ma) radial inward migration of the Jupiter and Saturn in the disk (e.g., Grand Tack model) would fully disrupted an asteroid belt, resulting in mixing and redistribution of preexisting components, while much later after the disk is gone (e.g., +100 Ma) gravitational scattering by these planets may have transported small bodies from the outer reaches of the solar system inward towards the rocky planets (Nice model). Astromineralogy reveals variations in the proportion of olivine to pyroxene in accretion disks, some with inner disk regions being richer in olivine relative to the disk wide composition, while other disks show the abundance of olivine is greater in the outer (vs the inner) part of the circumstellar disk, with differences in disk mineralogy being relating to type of star (e.g., T Tauri vs Herbig Ae/Be stars). The inner disk regions (a few AU) show higher abundances of large grains and generally higher crystallinity as compared to outer disk regions, suggesting grain growth occurs more rapidly in the inner disk regions. Recent results from geoneutrino measurements are most consistent with geochemical models that predict 20 TW of radiogenic power, less so with existing enstatite Earth models predicting less power in the planet. At 1 AU the Earth accreted a greater proportion of olivine to pyroxene (i.e., Mg/Si of pyrolite) than that available to the known enstatite chondrite parent body. The Earth accreted early in a reduced state, perhaps to the point of differentiating silicides into the core. Later accreted material was increasingly more oxidized. Stirring and mixing in the early solar system created opportunities for the Earth and enstatite chondrites to share some, but not all chemical and isotopic characteristics.

  20. On the management and processing of earth resources information

    NASA Technical Reports Server (NTRS)

    Skinner, C. W.; Gonzalez, R. C.

    1973-01-01

    The basic concepts of a recently completed large-scale earth resources information system plan are reported. Attention is focused throughout the paper on the information management and processing requirements. After the development of the principal system concepts, a model system for implementation at the state level is discussed.

  1. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  2. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact

    NASA Astrophysics Data System (ADS)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.

    2018-04-01

    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  3. Sensor Webs as Virtual Data Systems for Earth Science

    NASA Astrophysics Data System (ADS)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing improved science predictions. Still other projects are maturing technology to support autonomous operations, communications and system interoperability. This paper will highlight lessons learned by various projects during the first half of the AIST program. Several sensor web demonstrations have been implemented and resulting experience with evolving standards, such as the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) among others, will be featured. The role of sensor webs in support of the intergovernmental Group on Earth Observations' Global Earth Observation System of Systems (GEOSS) will also be discussed. The GEOSS vision is a distributed system of systems that builds on international components to supply observing and processing systems that are, in the whole, comprehensive, coordinated and sustained. Sensor web prototypes are under development to demonstrate how remote sensing satellite data, in situ sensor networks and decision support systems collaborate in applications of interest to GEO, such as flood monitoring. Furthermore, the international Committee on Earth Observation Satellites (CEOS) has stepped up to the challenge to provide the space-based systems component for GEOSS. CEOS has proposed "virtual constellations" to address emerging data gaps in environmental monitoring, avoid overlap among observing systems, and make maximum use of existing space and ground assets. Exploratory applications that support the objectives of virtual constellations will also be discussed as a future role for sensor webs.

  4. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  5. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    NASA Astrophysics Data System (ADS)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  6. Quantifying the importance of model-to-model variability in integrated assessments of 21st century climate

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.

    2016-12-01

    The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.

  7. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in the UM within the initial 500 Myr, as a result of early formation of CC, which supports other evidence in favor of the presence of Hadean continental crust. Therefore, a chondritic Th/U ratio (4 ± 0.2) in the UM until 2 Gyr appears rather unlikely. We find that the κ conundrum - the observation that measured Th/U ratios and those deduced from 208Pb-206Pb isotope systematics differ - is a natural outcome of an open system evolution in which preferential recycling of U for the past 2 Gyr has played a dominant role. Overall, our simulations strongly favor exponential crustal growth, starting in the early Hadean, the transient preservation of compositionally distinct mantle reservoirs over billion year time periods, and a generally less incompatible element depleted, but non-primitive composition of the lower mantle.

  8. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  9. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.

  10. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1993-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  11. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1992-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  12. TERSSE: Definition of the Total Earth Resources System for the Shuttle Era. Volume 2: An Assessment of the Current State-of-the-Art

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results of a state-of-the-art assessment of technology areas which affect the Earth Resources Program are presented along with a functional description of the basic earth resources system. Major areas discussed include: spacecraft flight hardware, remote sensors, data processing techniques and hardware, user models, user interfaces, and operations technology.

  13. On the origin and composition of Theia: Constraints from new models of the Giant Impact

    NASA Astrophysics Data System (ADS)

    Meier, M. M. M.; Reufer, A.; Wieler, R.

    2014-11-01

    Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner Solar System at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other Solar System materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cúk, M., Stewart, S.T. [2012]. Science 338, 1047; and "merger", Canup, R.M. [2012]. Science 338, 1052) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer, A., Meier, M.M.M., Benz, W., Wieler, R. [2012]. Icarus 221, 296-299) allows for a Theia similar to enstatite-chondrites and other Earth-like materials. If the Earth and Moon inherited their different mantle FeO contents from the bulk mantles of the proto-Earth and Theia, the high angular momentum models cannot explain the observed difference. However, both the hit-and-run as well as the classical or "canonical" Giant Impact model naturally explain this difference as the consequence of a simple mixture of two mantles with different FeO. Therefore, the simplest way to reconcile the isotopic similarity, and FeO dissimilarity, of Earth and Moon is a Theia with an Earth-like isotopic composition and a higher (∼20%) mantle FeO content.

  14. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  15. Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.

    1988-01-01

    Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.

  16. Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models

    NASA Technical Reports Server (NTRS)

    Bryan, Frank

    2001-01-01

    Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.

  17. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  18. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413-415. [3] Barry, P.H. and Hilton (2016) Geochem. Persp. Letters, 2, 148-159. [4] Som, S.M. et al. (2016) Nat. Geosci., 9, 448-451. [5] Stueken et al. (2016) Astrobiology, 16, in press. [6] Johnson et al. (2015) Earth Science Reviews, 148,150-173.

  19. Science Projects from Astronomy to Zoology.

    ERIC Educational Resources Information Center

    Learning, 1983

    1983-01-01

    Activities for teaching about the solar system, the earth's rotation, plants, pendulums, and animal adaptation are described. Included are suggestions for building scale models to illustrate the solar system's proportions and the earth's rotation speed, and for using playground swings to demonstrate pendulum motion. (PP)

  20. Development of a model to compute the extension of life supporting zones for Earth-like exoplanets.

    PubMed

    Neubauer, David; Vrtala, Aron; Leitner, Johannes J; Firneis, Maria G; Hitzenberger, Regina

    2011-12-01

    A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.

  1. Collaborative Project: Building improved optimized parameter estimation algorithms to improve methane and nitrogen fluxes in a climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie

    Soils in natural and managed ecosystems and wetlands are well known sources of methane, nitrous oxides, and reactive nitrogen gases, but the magnitudes of gas flux to the atmosphere are still poorly constrained. Thus, the reasons for the large increases in atmospheric concentrations of methane and nitrous oxide since the preindustrial time period are not well understood. The low atmospheric concentrations of methane and nitrous oxide, despite being more potent greenhouse gases than carbon dioxide, complicate empirical studies to provide explanations. In addition to climate concerns, the emissions of reactive nitrogen gases from soils are important to the changing nitrogenmore » balance in the earth system, subject to human management, and may change substantially in the future. Thus improved modeling of the emission fluxes of these species from the land surface is important. Currently, there are emission modules for methane and some nitrogen species in the Community Earth System Model’s Community Land Model (CLM-ME/N); however, there are large uncertainties and problems in the simulations, resulting in coarse estimates. In this proposal, we seek to improve these emission modules by combining state-of-the-art process modules for emissions, available data, and new optimization methods. In earth science problems, we often have substantial data and knowledge of processes in disparate systems, and thus we need to combine data and a general process level understanding into a model for projections of future climate that are as accurate as possible. The best methodologies for optimization of parameters in earth system models are still being developed. In this proposal we will develop and apply surrogate algorithms that a) were especially developed for computationally expensive simulations like CLM-ME/N models; b) were (in the earlier surrogate optimization Stochastic RBF) demonstrated to perform very well on computationally expensive complex partial differential equations in earth science with limited numbers of simulations; and, c) will be (as part of the proposed research) significantly improved both by adding asynchronous parallelism, early truncation of unsuccessful simulations, and the improvement of both serial and parallel performance by the use of derivative and sensitivity information from global and local surrogate approximations S(x). The algorithm development and testing will be focused on the CLM-ME/N model application, but the methods are general and are expected to also perform well on optimization for parameter estimation of other climate models and other classes of continuous multimodal optimization problems arising from complex simulation models. In addition, this proposal will compile available datasets of emissions of methane, nitrous oxides and reactive nitrogen species and develop protocols for site level comparisons with the CLM-ME/N. Once the model parameters are optimized against site level data, the model will be simulated at the global level and compared to atmospheric concentration measurements for the current climate, and future emissions will be estimated using climate change as simulated by the CESM. This proposal combines experts in earth system modeling, optimization, computer science, and process level understanding of soil gas emissions in an interdisciplinary team in order to improve the modeling of methane and nitrogen gas emissions. This proposal thus meets the requirements of the SciDAC RFP, by integrating state-of-the-art computer science and earth system to build an improved earth system model.« less

  2. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  3. Simple Thermal Environment Model (STEM) User's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.

    2001-01-01

    This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.

  4. Evaluating the Ocean Component of the US Navy Earth System Model

    NASA Astrophysics Data System (ADS)

    Zamudio, L.

    2017-12-01

    Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.

  5. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  6. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  7. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  8. Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Couto Dos Santos, M. A.; Valerio, M. E. G.; Jackson, R. A.

    2005-10-01

    BaY2F8, when doped with rare earth elements, is a material of interest in the development of solid-state laser systems, especially for use in the infrared region. This paper presents the application of a computational technique, which combines atomistic modelling and crystal field calculations, in a study of rare earth doping of the material. Atomistic modelling is used to calculate the intrinsic defect structure and the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters, which are an important indicator in assessing the optical behaviour of the dopant-crystal system. Energy levels are then calculated for the Dy3+-substituted material, and comparisons with the results of recent experimental work are made.

  9. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  10. Contribution towards a draft revision of recommendations 681: Propagation data required for the design of Earth-space land mobile telecommunications systems

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis

    1993-01-01

    Propagation models that can be used for the design of earth-space land mobile-satellite telecommunications systems are presented. These models include: empirical roadside shadowing, attenuation frequency scaling, fade and non-fade duration distribution, multipath in a mountain environment, and multipath in a roadside tree environment. Propagation data from helicopter-mobile and satellite-mobile measurements in Australia and the United States were used to develop the models.

  11. Contribution Towards a Draft Revision of Recommendation 681 Propogation Data Required for the Design of Earth-Space Land Mobile Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Bishop, D.

    1993-01-01

    Propogation models that can be used for the design of Earth-space land mobile-satellite telecommunications systems are presented. These models include: empirical roadside shadowing, attenuation frequency scaling, fade and non-fade duration distribution, multipath in a mountain environment, and multipath in a roadside tree environment. Propogation data from helicopter-mobile and satellite-mobile measurements in Australia and the United States were used to develop the models.

  12. The B-dot Earth Average Magnetic Field

    NASA Technical Reports Server (NTRS)

    Capo-Lugo, Pedro A.; Rakoczy, John; Sanders, Devon

    2013-01-01

    The average Earth's magnetic field is solved with complex mathematical models based on mean square integral. Depending on the selection of the Earth magnetic model, the average Earth's magnetic field can have different solutions. This paper presents a simple technique that takes advantage of the damping effects of the b-dot controller and is not dependent of the Earth magnetic model; but it is dependent on the magnetic torquers of the satellite which is not taken into consideration in the known mathematical models. Also the solution of this new technique can be implemented so easily that the flight software can be updated during flight, and the control system can have current gains for the magnetic torquers. Finally, this technique is verified and validated using flight data from a satellite that it has been in orbit for three years.

  13. A long time span relativistic precession model of the Earth

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Soffel, Michael H.; Tao, Jin-He; Han, Wen-Biao; Tang, Zheng-Hong

    2015-04-01

    A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic integrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with corresponding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ±1 Myr around J2000.0 are provided. In the interval ±2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. Supported by the National Natural Science Foundation of China.

  14. Simulating modern-day cropland and pasture burning in an Earth system model

    NASA Astrophysics Data System (ADS)

    Rabin, Sam; Malyshev, Sergey; Shevliakova, Elena; Magi, Brian; Pacala, Steve

    2015-04-01

    Throughout the Holocene, humans have extended our influence across a larger and larger fraction of ecosystems, even creating some new ones in the process. Herds of livestock grazing either native vegetation (rangeland) or specially planted species (pasture) have modified huge areas of land. We have even developed new plant species and cultivated them as crops. The extent of our ecosystem modification intensified dramatically with the advent of industrialized agriculture, to the point where cropland and pasture (which will henceforth encompass rangeland as well) now cover over a third of the Earth's land area. One way we have altered the terrestrial biosphere is by intentionally and unintentionally altering fire's frequency, intensity, and seasonal timing. This is especially true for agricultural ecosystems. Because their maintenance and use require a level of human control, cropland and pasture often experience fire regimes substantially different from those of the ecosystems they replaced or what would occur in the absence of active fire management. For example, farmers might burn to prepare land for planting or to dispose of crop residues, and pastoralists often use fire to prevent encroachment of unpalatable woody plants. Due to the vast global extent of agriculture, and considering the myriad ways fire affects the Earth system, it is critical that we understand (a) the ways people manage fire on cropland and pasture and (b) the effects of this management on the Earth system. Earth system models are an ideal tool for examining this kind of question. By simulating the processes within and interactions among the atmosphere, oceans, land, and terrestrial ecosystems, Earth system models allow phenomena such as fire to be examined in their global context. However, while the past fifteen years have seen great progress in the simulation of vegetation fire within Earth system models, the direct human influence via cropland and pasture management burning has been mostly ignored. Instead, indirect functions are usually used to incorporate human influence based on population density and economic factors. This paper describes a global fire model that incorporates knowledge from new estimates of cropland and pasture burning to explicitly simulate fire on those lands across the world. After briefly describing some of the agricultural fire patterns observed in Eurasia, we detail the structure of the model and context in which it was developed. We then use the model to investigate the contribution of cropland and pasture fire to emissions of greenhouse gases and aerosols, as well as net carbon cycling across the globe.

  15. Fresh approaches to Earth surface modeling

    NASA Astrophysics Data System (ADS)

    Kopylova, N. S.; Starikov, I. P.

    2018-05-01

    The paper considers modelling of the surface when fixing objects in the geocentric coordinate systems in the course of GLONASS satellite system development. The authors revealed new approaches to presentation of geographical data to a user, transformation of map properties and the leading role of ERS (Earth remote sensing) as a source of mapping information; change of scientific paradigms aimed at improvement of high-accuracy cartographic objects representation in the plane.

  16. MMU (Manned Maneuvering Unit) Task Simulator.

    DTIC Science & Technology

    1986-01-15

    motion is obtained by applying the Clohessy - Wiltshire equations for terminal rendezvous/docking with the earth modeled as a uniform sphere " (Aj<endix...quaternions. The Clohessy - Wiltshire equations for terminal rendezvous/docking are used to model orbital drift. These are linearized equations of...system is the Clohessy - Wiltshire system, centered at the target and described in detail in Appendix A. The earth’s vector list is scaled at one distance

  17. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  18. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.

    PubMed

    Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-06-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

  19. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations

    PubMed Central

    Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-01-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116

  20. Evaluation of advanced geopotential models for operational orbit determination

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Davis, B. E.; Samii, M. V.; Engel, C. J.; Doll, C. E.

    1988-01-01

    To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study.

  1. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)

  2. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  3. Our changing planet: The FY 1993 US global change research program. A supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An improved predictive understanding of the integrated Earth system, including human interactions, will provide direct benefits by anticipating and planning for possible impacts on commerce, agriculture, energy, resource utilization, human safety, and environmental quality. The central goal of the U.S. Global Change Research Program (USGCRP) is to help establish the scientific understanding and the basis for national and international policymaking related to natural and human-induced changes in the global Earth system. This will be accomplished through: (1) establishing an integrated, comprehensive, long-term program of documenting the Earth system on a global scale; (2) conducting a program of focused studies to improve our understanding of the physical, geological, chemical, biological, and social processes that influence the Earth system processes; and (3) developing integrated conceptual and predictive Earth system models.

  4. Global Weather Prediction and High-End Computing at NASA

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San

    2003-01-01

    We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.

  5. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  6. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  7. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  8. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  9. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  10. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  11. Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data

    NASA Technical Reports Server (NTRS)

    Bryant, Scott

    2009-01-01

    A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  12. Lunar Pole Illumination and Communications Statistics Computed from GSSR Elevation Data

    NASA Technical Reports Server (NTRS)

    Bryant, Scott

    2010-01-01

    The Goldstone Solar System RADAR (GSSR) group at JPL produced a Digital Elevation Model (DEM) of the lunar south pole using data obtained in 2006. This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This paper uses that Digital Elevation Model to compute average solar illumination and Earth visibility near the lunar south pole. This data quantifies solar power and Earth communications resources at proposed lunar base locations. The elevation data were converted into local terrain horizon masks, then converted into selenographic latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Proposed lunar south pole base sites were examined in detail, with the best site showing multi-year averages of solar power availability of 92% and Direct-To-Earth (DTE) communication availability of about 50%. Results are compared with a theoretical model, and with actual sun and Earth visibility averaged over the years 2009 to 2028. Results for the lunar North pole were computed using the GSSR DEM of the lunar North pole produced in 1997. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  13. Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.

    2011-12-01

    For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and water capacity providing a spectrum of possible future cropping patterns. The resulting cropping patterns were then used in VIC-CropSyst to quantify the impacts of climate change, economic, and water management scenarios on crop production, and water resources availability. This modeling framework provides opportunities to study the interactions between human activities and complex natural processes and is a valuable tool for inclusion in an earth system model with the goal of informing land use and water management.

  14. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  15. Check-Up of Planet Earth at the Turn of the Millennium: Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ramanathan, V.

    1998-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-AM) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment.

  16. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  17. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  18. Light-weight Parallel Python Tools for Earth System Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.

    2015-12-01

    With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.

  19. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  20. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less

  1. Modeling the Round Earth through Diagrams

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Ramadas, Jayashree

    2008-01-01

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students…

  2. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.

    2015-05-01

    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  3. Models meet data: Challenges and opportunities in implementing land management in Earth system models.

    PubMed

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Kuemmerle, Tobias; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Naudts, Kim

    2018-04-01

    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs. © 2017 John Wiley & Sons Ltd.

  4. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  5. Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J.

    2005-02-01

    The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.

  6. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release from land soils. Analysis of synthetic sediment cores from the simulations provides guidelines for the interpretation of real sediment cores spanning the warming events. With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, timescales and locations of methane injections driving specific, observed deep-time, global warming events.

  7. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  8. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models to represent human water demands is rather limited, particularly with respect to future projections and coupled land-atmospheric simulations. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved. In particular, human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.

  9. Progress in Earth System Modeling since the ENIAC Calculation

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-05-01

    The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.

  10. Coloration Determination of Spectral Darkening Occurring on a Broadband Earth Observing Radiometer: Application to Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Matthews, Grant; Priestley, Kory; Loeb, Norman G.; Loukachine, Konstantin; Thomas, Susan; Walikainen, Dale; Wielicki, Bruce A.

    2006-01-01

    It is estimated that in order to best detect real changes in the Earth s climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth s Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 - 5microns, total 0.3. > 100microns, and window 8 - 12microns). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.

  11. Potential biases in evapotranspiration estimates from Earth system models due to spatial heterogeneity and lateral moisture redistribution

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Kirchner, J. W.

    2016-12-01

    Evapotranspiration (ET) is a key process in land-climate interactions and affects the dynamics of the atmosphere at local and regional scales. In estimating ET, most earth system models average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). This spatial averaging could potentially bias ET estimates, due to the nonlinearities in the underlying relationships. In addition, most earth system models ignore lateral redistribution of water within and between grid cells, which could potentially alter both local and regional ET. Here we present a first attempt to quantify the effects of spatial heterogeneity and lateral redistribution on grid-cell-averaged ET as seen from the atmosphere over heterogeneous landscapes. Using a Budyko framework to express ET as a function of P and PET, we quantify how sub-grid heterogeneity affects average ET at the scale of typical earth system model grid cells. We show that averaging over sub-grid heterogeneity in P and PET, as typical earth system models do, leads to overestimates of average ET. We use a similar approach to quantify how lateral redistribution of water could affect average ET, as seen from the atmosphere. We show that where the aridity index P/PET increases with altitude, gravitationally driven lateral redistribution will increase average ET, implying that models that neglect lateral moisture redistribution will underestimate average ET. In contrast, where the aridity index P/PET decreases with altitude, gravitationally driven lateral redistribution will decrease average ET. This approach yields a simple conceptual framework and mathematical expressions for determining whether, and how much, spatial heterogeneity and lateral redistribution can affect regional ET fluxes as seen from the atmosphere. This analysis provides the basis for quantifying heterogeneity and redistribution effects on ET at regional and continental scales, which will be the focus of future work.

  12. Extraction of volatiles and metals from extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1992-01-01

    Recent progress in defining the physical, orbital, and chemical properties of the Earth-crossing asteroid and comet population was integrated into an elaborate Monte Carlo model of the fluxes of bodies in the inner Solar System. This model is of use in projecting flight opportunities to as-yet undiscovered near-Earth objects and in assessing the impact hazard to life on Earth and the evolutionary consequences of impacts on the other terrestrial planets. Further progress was made in defining desirable transportation system architectures for the use of non-terrestrial volatiles and metals, including the delivery of propellants to near-Earth space for fueling of space exploration initiative (SEI) type expeditions, the construction and resupply of Solar Power Satellite constellations in various Earth orbits (including geosynchronous earth orbit (GEO) and Highly Eccentric Earth Orbit (HEEO)), and retrieval of He-3 for use as a clean fusion fuel on Earth. These studies suggest a greater future role for SERC in the exploration of space energy sources to meet Earth's 21st-century energy requirements. Laboratory studies of volatilization and deposition of ferrous metal alloys demonstrated deposition of strong iron films from carbonyl chemical vapor deposition (CVD), showing the crucial role of additive gases in governing the CVD process, and pointing the way to specific experiments on extraction and deposition of ferrous metals from nonterrestrial materials.

  13. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  14. Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System

    NASA Technical Reports Server (NTRS)

    Hou, Xi-yun; Tang, Jing-shi; Liu, Lin

    2007-01-01

    The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed.

  15. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  16. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  17. The cloud-phase feedback in the Super-parameterized Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Burt, M. A.; Randall, D. A.

    2016-12-01

    Recent comparisons of observations and climate model simulations by I. Tan and colleagues have suggested that the Wegener-Bergeron-Findeisen (WBF) process tends to be too active in climate models, making too much cloud ice, and resulting in an exaggerated negative cloud-phase feedback on climate change. We explore the WBF process and its effect on shortwave cloud forcing in present-day and future climate simulations with the Community Earth System Model, and its super-parameterized counterpart. Results show that SP-CESM has much less cloud ice and a weaker cloud-phase feedback than CESM.

  18. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  19. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Baek, Sunghye; Boucher, Olivier; Dufresne, Jean-Louis; Decharme, Bertrand; Saint-Martin, David; Roehrig, Romain

    2018-01-01

    Ocean surface represents roughly 70 % of the Earth's surface, playing a large role in the partitioning of the energy flow within the climate system. The ocean surface albedo (OSA) is an important parameter in this partitioning because it governs the amount of energy penetrating into the ocean or reflected towards space. The old OSA schemes in the ARPEGE-Climat and LMDZ models only resolve the latitudinal dependence in an ad hoc way without an accurate representation of the solar zenith angle dependence. Here, we propose a new interactive OSA scheme suited for Earth system models, which enables coupling between Earth system model components like surface ocean waves and marine biogeochemistry. This scheme resolves spectrally the various contributions of the surface for direct and diffuse solar radiation. The implementation of this scheme in two Earth system models leads to substantial improvements in simulated OSA. At the local scale, models using the interactive OSA scheme better replicate the day-to-day distribution of OSA derived from ground-based observations in contrast to old schemes. At global scale, the improved representation of OSA for diffuse radiation reduces model biases by up to 80 % over the tropical oceans, reducing annual-mean model-data error in surface upwelling shortwave radiation by up to 7 W m-2 over this domain. The spatial correlation coefficient between modeled and observed OSA at monthly resolution has been increased from 0.1 to 0.8. Despite its complexity, this interactive OSA scheme is computationally efficient for enabling precise OSA calculation without penalizing the elapsed model time.

  20. Towards magnetic sounding of the Earth's core by an adjoint method

    NASA Astrophysics Data System (ADS)

    Li, K.; Jackson, A.; Livermore, P. W.

    2013-12-01

    Earth's magnetic field is generated and sustained by the so called geodynamo system in the core. Measurements of the geomagnetic field taken at the surface, downwards continued through the electrically insulating mantle to the core-mantle boundary (CMB), provide important constraints on the time evolution of the velocity, magnetic field and temperature anomaly in the fluid outer core. The aim of any study in data assimilation applied to the Earth's core is to produce a time-dependent model consistent with these observations [1]. Snapshots of these ``tuned" models provide a window through which the inner workings of the Earth's core, usually hidden from view, can be probed. We apply a variational data assimilation framework to an inertia-free magnetohydrodynamic system (MHD) [2]. Such a model is close to magnetostrophic balance [3], to which we have added viscosity to the dominant forces of Coriolis, pressure, Lorentz and buoyancy, believed to be a good approximation of the Earth's dynamo in the convective time scale. We chose to study the MHD system driven by a static temperature anomaly to mimic the actual inner working of Earth's dynamo system, avoiding at this stage the further complication of solving for the time dependent temperature field. At the heart of the models is a time-dependent magnetic field to which the core-flow is enslaved. In previous work we laid the foundation of the adjoint methodology, applied to a subset of the full equations [4]. As an intermediate step towards our ultimate vision of applying the techniques to a fully dynamic mode of the Earth's core tuned to geomagnetic observations, we present the intermediate step of applying the adjoint technique to the inertia-free Navier-Stokes equation in continuous form. We use synthetic observations derived from evolving a geophysically-reasonable magnetic field profile as the initial condition of our MHD system. Based on our study, we also propose several different strategies for accurately determining the entire trajectory of Earth's geodynamo system. [1] A. Fournier, G. Hulot, D. Jault, W. Kuang, A. Tangborn, N. Gillet, E. Canet, J. Aubert, and F. Lhuillier. An introduction to data assimilation and predictability in geomagnetism. Space. Sci. Rev., 155:247-291, 2010. [2] G. A. Glatzmaier and P. H. Roberts. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter., 91:63-75, 1995. [3] J. B. Taylor. The magneto-hydrodynamics of a rotating fluid and the earth's dynamo problem. Proc. R. Soc. Lond. A, 274(1357):274-283, 1963. [4] K. Li, A. Jackson, and P. W. Livermore. Variational data assimilation for the initial value dynamo problem. Phys. Rev. E, 84:056321, 2011.

  1. Atmospheric Models for Aeroentry and Aeroassist

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  2. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  3. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Arthur; Cayan, Daniel; Pierce, David

    This project addressed the ability of the Community Climate System Model (CCSM3 and CCSM4), the Community Earth System Model (CESM), and other models to simulate the processes involved in controlling winter storms affecting the U.S. West Coast as well as other precipitation processes in the climate system.

  5. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  6. Evaluation of the Geomagnetic Field Models based on Magnetometer Measurements for Satellite's Attitude Determination System

    NASA Astrophysics Data System (ADS)

    Cilden, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2016-07-01

    Magnetometers are common attitude determination sensors for small satellites at low Earth orbit; therefore, magnetic field model of the Earth is necessary to estimate the satellite's attitude angles. Difference in the components of the magnetic field vectors -mostly used as unit vector. Therefore the angle between them (model and measurement data) affects the estimation accuracy of the satellite's attitude. In this study, geomagnetic field models are compared with satellite magnetic field observations in order to evaluate the models using the magnetometer results with high accuracy. For attitude determination system, IGRF model is used in most of the cases but the difference between the sensor and model increases when the geomagnetic activity occurs. Hence, several models including the empirical ones using the external variations in the Earth's geomagnetic field resulting from the solar wind and interplanetary magnetic field are of great importance in determination of the satellite's attitude correctly. IGRF model describes the internal-part of the geomagnetic field, on the other hand candidate models to IGRF, such as recently developed POMME-6 model based on Champ data, CHAOS-5 (CHAmp, Oersted, Swarm), T89 (Tsyganenko's model), include simple parameterizations of external fields of magnetospheric sources in addition to the internal field especially for low Earth orbiting satellites. Those models can be evaluated to see noticeable difference on extraterrestrial field effects on satellite's attitude determination system changing with its height. The comparisons are made between the models and observations and between the models under various magnetospheric activities. In this study, we will present our preliminary results from the comparisons and discuss their implications from the satellite attitude perspective.

  7. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  8. Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.

    2017-12-01

    Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.

  9. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design. [tropospheric scattering

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-01-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  10. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review

    NASA Astrophysics Data System (ADS)

    Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.

    2017-07-01

    The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.

  11. Coupled Data Assimilation in Navy ESPC

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.

    2017-12-01

    Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.

  12. An improved model of the Earth's gravitational field: GEM-T1

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.

    1987-01-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.

  13. Hydrologic resilience and Amazon productivity.

    PubMed

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  14. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  15. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Kenyon, S.C.; Factor, J. K.; Trimmer, R. G.; Pavlis, N. K.; Chinn, D. S.; Cox, C. M.; Klosko, S. M.; Luthcke, S. B.; Torrence, M. H.; hide

    1998-01-01

    The NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) have collaborated to develop an improved spherical harmonic model of the Earth's gravitational potential to degree 360. The new model, Earth Gravitational Model 1996 (EGM96), incorporates improved surface gravity data, altimeter-derived gravity anomalies from ERS-1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking data-including new data from Satellite Laser Ranging (SLR), the Global Postioning System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French DORIS system, and the US Navy TRANET Doppler tracking system-as well as direct altimeter ranges from TOPEX/POSEIDON (T/P), ERS-1, and GEOSAT. The final solution blends a low-degree combination model to degree 70, a block-diagonal solution from degree 71 to 359, and a quadrature solution at degree 360. The model was used to compute geoid undulations accurate to better than one meter (with the exception of areas void of dense and accurate surface gravity data) and realize WGS84 as a true three-dimensional reference system. Additional results from the EGM96 solution include models of the dynamic ocean topography to degree 20 from T/P and ERS-1 together, and GEOSAT separately, and improved orbit determination for Earth-orbiting satellites.

  16. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  17. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  18. NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2008-01-01

    This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.

  19. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  20. Coupling integrated assessment and earth system models: concepts and an application to land use change

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  1. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  2. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  3. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    NASA Astrophysics Data System (ADS)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment, the time of traditional manual operation and CyberConnector operation was compared and other benefits were identified. The result indicates that CyberConnector can save about 80% of data customization time. In addition, it can simplify the steps to plug in a data source into an ESM and lower the entry barriers for beginners to use EO data in ESMs.

  4. Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activiy

    NASA Technical Reports Server (NTRS)

    Desai, Vishal

    1994-01-01

    This paper describes the Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activity performed by Code 540 in support of the Ecom project. Ecom is the ground-to-ground data transport system for operational EOS traffic. The National Aeronautic and Space Administration (NASA) Communications (Nascom) Division, Code 540, is responsible for implementing Ecom. Ecom interfaces with various systems to transport EOS forward link commands, return link telemetry, and science payload data. To understand the complexities surrounding the design and implementation of Ecom, it is necessary that sufficient testbedding, modeling, and analysis be conducted prior to the design phase. These activities, when grouped, are referred to as the EMAT activity. This paper describes work accomplished to date in each of the three major EMAT activities: modeling, analysis, and testbedding.

  5. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  6. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational, managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  7. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  8. Thermodynamic Assessment of the Y2o3-yb2o3-zro2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2002-01-01

    Yttria-zirconia (Y2O3-ZrO2) is the most widely used of the rare earth oxide-zirconia systems. There are numerous experimental studies of the phase boundaries in this system. In this paper, we assess these data and derive parameters for the solution models in this system. There is current interest in other rare earth oxide-zirconia systems as well as systems with several rare earth oxides and zirconia, which may offer improved properties over the Y2O3-ZrO2 system. For this reason, we also assess the ytterbia-zirconia (Yb2O3-ZrO2) and Y2O3-Yb2O3-ZrO2 system.

  9. Television broadcast from space systems: Technology, costs

    NASA Technical Reports Server (NTRS)

    Cuccia, C. L.

    1981-01-01

    Broadcast satellite systems are described. The technologies which are unique to both high power broadcast satellites and small TV receive-only earth terminals are also described. A cost assessment of both space and earth segments is included and appendices present both a computer model for satellite cost and the pertinent reported experience with the Japanese BSE.

  10. Diagnostic Studies with GLA Fields

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1997-01-01

    Assessments of the NASA Goddard Earth Observing System-1 Data Assimilation System(GEOS-1 DAS), regarding heating rates, energetics, and angular momentum quantities were made. These diagnostics can be viewed as measures of climate variability. Comparisons with the NOAA/NCEP reanalysis system of momentum and energetics diagnostics are included. Water vapor and angular momentum are diagnosed in many models, including those of NASA, as part of the Atmospheric Model Intercomparison Project. 'Me GEOS-I and NOAA/NCEP global atmospheric angular momentum values are coherent on time scales down to about three days. Furthermore, they agree with the series of Earth angular momentum, as measured by tiny fluctuations in the rotation rate of the Earth, as variations in the length of day. The torques that effect such changes in atmospheric and Earth momentum are dominated by the influence of particular mountain systems, including the Rockies, Himalayas, and Andes, upon mountain torques on time scales shorter than about two weeks. Other project areas included collaboration with Goddard Space Flight Center to examine the impact of mountainous areas and the treatments of parameterizations on diagnoses of the atmosphere. Relevant preprints are included herein.

  11. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  12. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    NASA Astrophysics Data System (ADS)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  13. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  14. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissuer, Jack; Rivera, E.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron. and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and those of inclusions in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about 100 Myr after the oldest meteorites. In addition, the age of the famous Martian meteorite ALH84001 and an early solidification time estimated from the Martian crust, suggest that the inner Solar System was fairly clear of large bodies about 10 Myr after the oldest meteorites formed. Thus, the 'standard model' suggests that for a period of several tens of millions of years the terrestrial planet region had few. if any, lunar-sized bodies and there were five terrestrial planets, Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the Solar System before the hypothesized Moon-forming impact, we are integrating the Solar System with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon system. We are looking at ranges in mass ratio and initial values for eccentricity, inclination. and semi-major axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 Myr elapses. Results are presented in a companion paper.

  15. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Rivera, E.; Duncan, M. J.; Levison, H. F.

    1998-01-01

    The giant impact hypothesis was introduced in the mid-1970s after consideration of results from the Apollo missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar Fe, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about100 m.y. after the oldest meteorites. In addition, the age of the famous martian meteorite ALH 84001 and an early Martian solidification time obtained by Lee and Halliday suggest that the inner solar system was fairly clear of large bodies about 10 m.y. after the oldest meteorites formed. Thus, the "standard model" suggests that for several tens of millions of years, the terrestrial planet region had few, if any, lunar-sized bodies, and there were five terrestrial planets: Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the solar system before the hypothesized Moon-forming impact, we are integrating the solar system with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon System. We are looking at ranges in mass ratio and initial values for eccentricity, inclination, and semimajor axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 m.y. elapses. Results are presented in a companion abstract, (also presented at this meeting).

  16. An improved Rosetta pedotransfer function and evaluation in earth system models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2017-12-01

    Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.

  17. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  18. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    NASA Astrophysics Data System (ADS)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  19. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production

    PubMed Central

    Kleidon, A.

    2010-01-01

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248

  20. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production.

    PubMed

    Kleidon, A

    2010-05-12

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.

  1. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  2. Long-Term Evaluation of Ocean Tidal Variation Models of Polar Motion and UT1

    NASA Astrophysics Data System (ADS)

    Karbon, Maria; Balidakis, Kyriakos; Belda, Santiago; Nilsson, Tobias; Hagedoorn, Jan; Schuh, Harald

    2018-04-01

    Recent improvements in the development of VLBI (very long baseline interferometry) and other space geodetic techniques such as the global navigation satellite systems (GNSS) require very precise a-priori information of short-period (daily and sub-daily) Earth rotation variations. One significant contribution to Earth rotation is caused by the diurnal and semi-diurnal ocean tides. Within this work, we developed a new model for the short-period ocean tidal variations in Earth rotation, where the ocean tidal angular momentum model and the Earth rotation variation have been setup jointly. Besides the model of the short-period variation of the Earth's rotation parameters (ERP), based on the empirical ocean tide model EOT11a, we developed also ERP models, that are based on the hydrodynamic ocean tide models FES2012 and HAMTIDE. Furthermore, we have assessed the effect of uncertainties in the elastic Earth model on the resulting ERP models. Our proposed alternative ERP model to the IERS 2010 conventional model considers the elastic model PREM and 260 partial tides. The choice of the ocean tide model and the determination of the tidal velocities have been identified as the main uncertainties. However, in the VLBI analysis all models perform on the same level of accuracy. From these findings, we conclude that the models presented here, which are based on a re-examined theoretical description and long-term satellite altimetry observation only, are an alternative for the IERS conventional model but do not improve the geodetic results.

  3. Global plate motion frames: Toward a unified model

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen

    2008-09-01

    Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

  4. Building sector feedbacks lead to increased energy demands

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Link, R. P.; Patel, P.; Horowitz, R.; Clarke, L.; Mundra, A.

    2017-12-01

    Typically in human-earth system modeling studies, feedbacks between the earth and human systems are analyzed by passing information between independent models, leading to data errors and poor reproducibility. In this study we explore the two-way feedbacks between the human and earth systems in the building sector of GCAM, an integrated assessment model and, its fully-integrated climate component, Hector. While there is a general agreement in the literature that increasing temperatures will increase cooling energy demands and decrease heating energy demands, there has been no fully-coupled analysis of this dynamic that would, for example, account for the feedbacks on hydrofluorocarbons from increased cooling demands. Using a statistical relationship between global mean temperature change and heating and cooling degree days, we find that the feedbacks on hydrofluorocarbons lead to an increase in global mean temperature of between 0.16 to 0.27 °C in 2100. Demands for electricity increase by about 10% in Africa, while demands decrease in Canada by about 3.0% when taking into account these feedbacks. While the feedbacks between building energy demand and global mean temperature are modest by themselves, this study prompts future research on coupled human-earth system feedbacks, in particular in regards to land, water, and other energy infrastructure.

  5. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  6. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies, developed in collaboration between teachers and JMU faculty members, provide a tangible, relevant setting in which students can apply and understand mathematical applications and scientific processes related to evolving Earth systems. Initial results from student questionnaires and teacher focus groups suggest that the anticipated impacts of MAESTRO on students are being realized, including increased valuing of mathematics and Earth science in society and transfer between mathematics and science courses. As a high percentage of students in the MAESTRO schools are of low socio-economic status, they also face the prospect of becoming first-generation college students, hopefully considering STEM academic pathways. MAESTRO will drive the development of challenging and engaging instruction designed to draw a larger pool of students into STEM career pathways.

  7. Towards representing human behavior and decision making in Earth system models - an overview of techniques and approaches

    NASA Astrophysics Data System (ADS)

    Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst

    2017-11-01

    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.

  8. Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth

    NASA Astrophysics Data System (ADS)

    Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben

    2017-04-01

    There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.

  9. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  10. Giant impactors - Plausible sizes and populations

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Vail, S. M.

    1986-01-01

    The largest sizes of planetesimals required to explain spin properties of planets are investigated in the context of the impact-trigger hypothesis of lunar origin. Solar system models with different large impactor sources are constructed and stochastic variations in obliquities and rotation periods resulting from each source are studied. The present study finds it highly plausible that earth was struck by a body of about 0.03-0.12 earth masses with enough energy and angular momentum to dislodge mantle material and form the present earth-moon system.

  11. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  12. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.

    2016-09-01

    The giant impact theory is the most widely recognized formation scenario of the Earth's Moon. Giant impact models based on dynamical simulations predict that the Moon acquired a significant amount of impactor (Theia) material, which is challenging to reconcile with geochemical data for O, Si, Cr, Ti and W isotopes in the Earth and Moon. Three new giant impact scenarios have been proposed to account for this discrepancy - hit-and-run impact, impact with a fast-spinning protoEarth and massive impactors - each one reducing the proportion of the impactor in the Moon compared to the original canonical giant impact model. The validity of each theory and their different dynamical varieties are evaluated here using an integrated approach that considers new high-precision Zr isotope measurements of lunar rocks, and quantitative geochemical modelling of the isotopic composition of the impactor Theia. All analysed lunar samples (whole-rock, ilmenite and pyroxene separates) display identical Zr isotope compositions to that of the Earth within the uncertainty of 13 ppm for 96Zr/90Zr (2σ weighted average). This 13 ppm upper limit is used to infer the most extreme isotopic composition that Theia could have possessed, relative to the Earth, for each of the proposed giant impact theories. The calculated Theian composition is compared with the Zr isotope compositions of different solar system materials in order to constrain the source region of the impactor. As a first order approximation, we show that all considered models (including the canonical) are plausible, alleviating the initial requirement for the new giant impact models. Albeit, the canonical and hit-and-run models are the most restrictive, suggesting that the impactor originated from a region close to the Earth. The fast-spinning protoEarth and massive impactor models are more relaxed and increase the allowed impactor distance from the Earth. Similar calculations carried out for O, Cr, Ti and Si isotope data support these conclusions but exclude a CI- and enstatite chondrite-like composition for Theia. Thus, the impactor Theia most likely had a Zr isotope composition close to that of the Earth, and this suggests that a large part of the inner solar system (or accretion region of the Earth, Theia and enstatite chondrites) had a uniform Zr isotope composition.

  13. DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow

    USGS Publications Warehouse

    Fan, Yin; Richard, Steve; Bristol, R. Sky; Peters, Shanan; Ingebritsen, Steven E.; Moosdorf, Nils; Packman, Aaron I.; Gleeson, Tom; Zazlavsky, Ilya; Peckham, Scott; Murdoch, Larry; Cardiff, Michael; Tarboton, David; Jones, Norm; Hooper, Richard; Arrigo, Jennifer; Gochis, David; Olson, John

    2015-01-01

    Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle–ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

  14. Radiometric sounding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less

  15. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  16. Mode and Intermediate Waters in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  17. Post Landsat-D advanced concept evaluation /PLACE/

    NASA Technical Reports Server (NTRS)

    Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.

    1979-01-01

    The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.

  18. Development of FIAT-based Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concep

    NASA Technical Reports Server (NTRS)

    Sepka, Steven Andrew; Zarchi, Kerry Agnes; Maddock, Robert W.; Samareh, Jamshid A.

    2011-01-01

    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.

  19. Putting to Rest WISHE-ful Misconceptions for Tropical Cyclone Intensification

    DTIC Science & Technology

    2014-11-27

    Modeling Earth Systems 10.1002/2014MS000362 MONTOMERY ET AL. VC 2014. The Authors. 7 atmosphere that is nearly neutral to convective instability (very low...non-commercial and no modifica- tions or adaptations are made. MONTOMERY ET AL. VC 2014. The Authors. 1 Journal of Advances in Modeling Earth Systems ...the ocean to the atmosphere by the local prevailing winds. In this view, the term ‘‘WISHE mechanism’’ is indistinguishable from ‘‘bulk-aerodynamic

  20. Development Of FIAT-Based Thermal Protection System Mass Estimating Relationships For NASA's Multi-Mission Earth Entry Concept

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Trumble, Kerry A.; Maddock, Robert W.; Samareh, Jamshid

    2012-01-01

    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.

  1. A trajectory generation and system characterization model for cislunar low-thrust spacecraft. Volume 2: Technical manual

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.

    1990-01-01

    The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.

  2. CEOS SEO and GISS Meeting

    NASA Technical Reports Server (NTRS)

    Killough, Brian; Stover, Shelley

    2008-01-01

    The Committee on Earth Observation Satellites (CEOS) provides a brief to the Goddard Institute for Space Studies (GISS) regarding the CEOS Systems Engineering Office (SEO) and current work on climate requirements and analysis. A "system framework" is provided for the Global Earth Observation System of Systems (GEOSS). SEO climate-related tasks are outlined including the assessment of essential climate variable (ECV) parameters, use of the "systems framework" to determine relevant informational products and science models and the performance of assessments and gap analyses of measurements and missions for each ECV. Climate requirements, including instruments and missions, measurements, knowledge and models, and decision makers, are also outlined. These requirements would establish traceability from instruments to products and services allowing for benefit evaluation of instruments and measurements. Additionally, traceable climate requirements would provide a better understanding of global climate models.

  3. The thermoelectric properties of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Cai, Jianwei

    Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.

  4. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  5. Prediction of rain effects on earth-space communication links operating in the 10 to 35 GHz frequency range

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.

    1989-01-01

    This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.

  6. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  7. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  8. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  9. Earth and ocean physics. [results of ERTS-1 imagery for determining earth gravity and tectonic conditions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for obtaining a parameterization of the marine geoid for suitable orthogonality properties in altimetry data is discussed. The application of the technique to the Puerto Rico trench is explained and a map of the data is developed. The Goddard Earth Model (GEM-6) is described to show the method for determining the earth gravity field using data obtained from satellite tracking stations. The derivation of a global ocean tide model from satellite data is explained. The influence of solid earth and ocean tides on the inclination of GEOS-1 is plotted. The delineation of the geographical fracture pattern and boundary system of the tectonic plates using ERTS satellite is shown.

  10. Application of a global solar wind/planetary obstacle interaction computational model: Earth, Venus, Mars, Jupiter and Saturn studies

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1984-01-01

    The investigations undertaken in this report relate to studies of various solar wind interaction phenomena with Venus, Earth, Mars, Jupiter and Saturn. A computational model is developed for the determination of the detailed plasma and magnetic field properties associated with various planetary obstacles throughout the solar system.

  11. Interplay between solid Earth and biological evolution

    NASA Astrophysics Data System (ADS)

    Höning, Dennis; Spohn, Tilman

    2017-04-01

    Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.

  12. The Race To Understand A Changing Planet

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.

    2012-01-01

    The Earth's climate is changing rapidly. In some respects, the rate of change is outpacing the predictions of only a few years ago. The challenge to Earth Science is to put forward credible projections of possible future climates so that the public and policy makers can make science-based decisions about energy development strategies. Models, observations and experiments all play strong roles in improving knowledge and increasing confidence in our predictions. The models have progressed from simple, coarse-resolution descriptions of atmospheric dynamics and physics only twenty years ago, to full-up Earth System models (ESMs) that include complete descriptions of the oceans and cryosphere. It has been convincingly argued that such complexity - the construction of realistic "toy" Earth's - is necessary to address the complex processes involved in climate change, including not only the physical atmosphere, oceans and cryosphere, but also the carbon cycle - both its natural and anthropogenic components - and the biosphere. Observations, particularly satellite observations, have more or less kept pace with the demands of the modelers, being able to observe progressively more and different facets of the Earth system, but the global satellite fleet is in need of an overhaul very soon. Lastly, field experiments and process studies confront the models with facts and allow us to develop more sophisticated and accurate satellite data algorithms. The challenges facing our relatively small Earth and planetary science communities are considerable and the stakes are significant. The stakeholders, now numbering 7 billion but soon to be 10 billion, will be relying on our results and capabilitie's to guide them into the future.

  13. The race to understand a changing planet

    NASA Astrophysics Data System (ADS)

    Sellers, P. J.

    2012-12-01

    The Earth's climate is changing rapidly. In some respects, the rate of change is outpacing the predictions of only a few years ago. The challenge to Earth Science is to put forward credible projections of possible future climates so that the public and policy makers can make science-based decisions about energy development strategies. Models, observations and experiments all play strong roles in improving knowledge and increasing confidence in our predictions. The models have progressed from simple, coarse-resolution descriptions of atmospheric dynamics and physics only twenty years ago, to full-up Earth System models (ESMs) that include complete descriptions of the oceans and cryosphere. It has been convincingly argued that such complexity - the construction of realistic "toy" Earths - is necessary to address the complex processes involved in climate change, including not only the physical atmosphere, oceans and cryosphere, but also the carbon cycle - both its natural and anthropogenic components - and the biosphere. Observations, particularly satellite observations, have more or less kept pace with the demands of the modelers, being able to observe progressively more and different facets of the Earth system, but the global satellite fleet is in need of an overhaul very soon. Lastly, field experiments and process studies confront the models with facts and allow us to develop more sophisticated and accurate satellite data algorithms. The challenges facing our relatively small Earth and planetary science communities are considerable and the stakes are significant. The stakeholders, now numbering 7 billion but soon to be 10 billion, will be relying on our results and capabilities to guide them into the future.

  14. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition, the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.

  15. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2005-01-01

    The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  16. Multilayer Insulation Ascent Venting Model

    NASA Technical Reports Server (NTRS)

    Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.

    2017-01-01

    The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.

  17. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  18. Basic Geometric Support of Systems for Earth Observation from Geostationary and Highly Elliptical Orbits

    NASA Astrophysics Data System (ADS)

    Gektin, Yu. M.; Egoshkin, N. A.; Eremeev, V. V.; Kuznecov, A. E.; Moskatinyev, I. V.; Smelyanskiy, M. B.

    2017-12-01

    A set of standardized models and algorithms for geometric normalization and georeferencing images from geostationary and highly elliptical Earth observation systems is considered. The algorithms can process information from modern scanning multispectral sensors with two-coordinate scanning and represent normalized images in optimal projection. Problems of the high-precision ground calibration of the imaging equipment using reference objects, as well as issues of the flight calibration and refinement of geometric models using the absolute and relative reference points, are considered. Practical testing of the models, algorithms, and technologies is performed in the calibration of sensors for spacecrafts of the Electro-L series and during the simulation of the Arktika prospective system.

  19. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.

  20. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    PubMed

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  1. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  2. More details...
  3. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones, atmospheric rivers, blizzards, etc. It is evident that ESMs need an in-situ framework to decouple the diagnostics and analytics from the prognostics and physics computations of the models so that the diagnostic computations could be performed concurrently without limiting model throughput. We are designing a science-driven online analytics framework for earth system models. Our approach is to adopt several data workflow technologies, such as the Adaptable IO System (ADIOS), being developed under the U.S. Exascale Computing Project (ECP) and integrate these to allow for extreme performance IO, in situ workflow integration, science-driven analytics and visualization all in a easy to use computational framework. This will allow science teams to write data 100-1000 times faster and seamlessly move from post processing the output for validation and verification purposes to performing these calculations in situ. We can easily and knowledgeably envision a near-term future where earth system models like ACME and CESM will have to address not only the challenges of the volume of data but also need to consider the velocity of the data. The earth system model of the future in the exascale era, as they incorporate more complex physics at higher resolutions, will be able to analyze more simulation content without having to compromise targeted model throughput.

  4. Development of the earth-moon system with implications for the geology of the early earth

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1976-01-01

    Established facts regarding the basic features of the earth and the moon are reviewed, and some important problems involving the moon are discussed (extent of melting, time of crustal differentiation and nature of bombardment, bulk chemical composition, and nature and source of mare basins), with attention given to the various existing theories concerning these problems. Models of the development of the earth-moon system from the solar nebula are examined, with particular attention focused on those that use the concept of capture with disintegration. Impact processes in the early crust of the earth are briefly considered, with attention paid to Green's (1972) suggestion that Archaean greenstone belts may be the terrestrial equivalent of lunar maria.

  5. The PRISM project

    NASA Astrophysics Data System (ADS)

    Guilyardi, E.

    2003-04-01

    The European Union's PRISM infrastructure project (PRogram for Integrated earth System Modelling) aims at designing a flexible environment to easily assemble and run Earth System Models (http://prism.enes.org). Europe's widely distributed modelling expertise is both a strength and a challenge. Recognizing this, the PRISM project aims at developing an efficient shared modelling software infrastructure for climate scientists, providing them with an opportunity for greater focus on scientific issues, including the necessary scientific diversity (models and approaches). The proposed PRISM system includes 1) the use - or definition - and promotion of scientific and technical standards to increase component modularity, 2) an end-to-end software environment (coupler, user interface, diagnostics) to launch, monitor and analyze complex Earth System Models built around the existing and future community models, 3) testing and quality standards to ensure HPC performance on a variety of platforms and 4) community wide inputs and requirements capture in all stages of system specifications and design through user/developers meetings, workshops and thematic schools. This science driven project, led by 22 institutes* and started December 1st 2001, benefits from a unique gathering of scientific and technical expertise. More than 30 models (both global and regional) have expressed interest to be part of the PRISM system and 6 types of components have been identified: atmosphere, atmosphere chemistry, land surface, ocean, sea ice and ocean biochemistry. Progress and overall architecture design will be presented. * MPI-Met (Coordinator), KNMI (co-coordinator), MPI-M&D, Met Office, University of Reading, IPSL, Meteo-France, CERFACS, DMI, SMHI, NERSC, ETH Zurich, INGV, MPI-BGC, PIK, ECMWF, UCL-ASTR, NEC, FECIT, SGI, SUN, CCRLE

  6. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  7. A new stomatal paradigm for earth system models? (Invited)

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.

    2013-12-01

    The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress, stomatal conductance, and photosynthetic capacity within the canopy. Stomatal conductance for each layer is calculated so as to maximize carbon gain, within the limitations of plant water storage and soil-to-canopy water transport. An iterative procedure determines for every model timestep the maximum stomatal conductance for a canopy layer and the associated assimilation rate. We compare the Ball-Berry stomatal model and the SPA stomatal model within the multi-layer canopy parameterization. We use eddy covariance flux tower data for six sites (three deciduous broadleaf forest and three evergreen needleleaf forest) spanning a total of 51 site-years. The multi-layer canopy has improved simulation of gross primary production (GPP), evapotranspiration, and sensible heat flux compared with the most recent version of the Community Land Model (CLM4.5). The Ball-Berry and SPA stomatal models have prominent differences in simulated fluxes and compared with observations. This is most evident during drought.

  8. The Determination of Earth Orientation by VLBI and GNSS: Principles and Results

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole

    2017-10-01

    The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.

  9. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  10. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Looy, Kris; Bouma, Johan; Herbst, Michael

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  11. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE PAGES

    Van Looy, Kris; Bouma, Johan; Herbst, Michael; ...

    2017-12-28

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  12. The Earth's missing lead may not be in the core.

    PubMed

    Lagos, M; Ballhaus, C; Münker, C; Wohlgemuth-Ueberwasser, C; Berndt, J; Kuzmin, Dmitry V

    2008-11-06

    Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile element, some Pb may also have been lost after accretion. The unique (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios of the Earth's mantle suggest that some lead was lost about 50 to 130 Myr after Solar System formation. This has commonly been explained by lead lost via the segregation of a sulphide melt to the Earth's core, which assumes that lead has an affinity towards sulphide. Some models, however, have reconciled the Earth's lead deficit with volatilization. Whichever model is preferred, the broad coincidence of U-Pb model ages with the age of the Moon suggests that lead loss may be related to the Moon-forming impact. Here we report partitioning experiments in metal-sulphide-silicate systems. We show that lead is neither siderophile nor chalcophile enough to explain the high U/Pb ratio of the Earth's mantle as being a result of lead pumping to the core. The Earth may have accreted from initially volatile-depleted material, some lead may have been lost to degassing following the Moon-forming giant impact, or a hidden reservoir exists in the deep mantle with lead isotope compositions complementary to upper-mantle values; it is unlikely though that the missing lead resides in the core.

  13. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the impact anisotropy correction has on observation - model bias, and is of critical importance for CERES.

  14. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  15. Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.

    2016-12-01

    Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.

  16. Architecture Studies for Commercial Production of Propellants From the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.; Diaz, Javier; Blair, Brad R.; Oderman, Mark; Vaucher, Marc

    2003-01-01

    Two architectures are developed that could be used to convert water held in regolith deposits within permanently shadowed lunar craters into propellant for use in near-Earth space. In particular, the model has been applied to an analysis of the commercial feasibility of using lunar derived propellant to convey payloads from low Earth orbit to geosynchronous Earth orbit. Production and transportation system masses were estimated for each architecture and cost analysis was made using the NAFCOM cost model. Data from the cost model were analyzed using a financial analysis tool reported in a companion paper (Lamassoure et al., 2002) to determine under what conditions the architectures might be commercially viable. Analysis of the architectural assumptions is used to identify the principal areas for further research, which include technological development of lunar mining and water extraction systems, power systems, reusable space transportation systems, and orbital propellant depots. The architectures and commercial viability are sensitive to the assumed concentration of ice in the lunar deposits, suggesting that further lunar exploration to determine whether higher-grade deposits exist would be economically justified.

  17. On the Meaning of Feedback Parameter, Transient Climate Response, and the Greenhouse Effect: Basic Considerations and the Discussion of Uncertainties

    NASA Astrophysics Data System (ADS)

    Kramm, Gerhard

    2010-07-01

    In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.

  18. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  19. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, James

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development ofmore » sustainable solutions for the nation's energy and environmental challenges.« less

  20. Sustainability, collapse and oscillations in a simple World-Earth model

    NASA Astrophysics Data System (ADS)

    Nitzbon, Jan; Heitzig, Jobst; Parlitz, Ulrich

    2017-07-01

    The Anthropocene is characterized by close interdependencies between the natural Earth system and the global human society, posing novel challenges to model development. Here we present a conceptual model describing the long-term co-evolution of natural and socio-economic subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society. A well-being-dependent parametrization of fertility and mortality governs human population dynamics. Our analysis focuses on assessing possible asymptotic states of the Earth system for a qualitative understanding of its complex dynamics rather than quantitative predictions. Low dimension and simple equations enable a parameter-space analysis allowing us to identify preconditions of several asymptotic states and hence fates of humanity and planet. These include a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations. We consider different scenarios corresponding to different socio-cultural stages of human history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted by the finding that carbon stocks during the past centuries evolved opposing to what would ‘naturally’ be expected on a planet without humans. The intensity of biomass use and the contribution of ecosystem services to human well-being are found to be crucial determinants of the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation. The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different asymptotic states might still be almost indistinguishable during even a centuries-long transient phase. Given current human population levels, our study also supports the claim that besides reducing the global demand for energy, only the extensive use of renewable energies may pave the way into a sustainable future.

  21. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  1. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  2. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  3. Model Based Reasoning by Introductory Students When Analyzing Earth Systems and Societal Challenges

    NASA Astrophysics Data System (ADS)

    Holder, L. N.; Herbert, B. E.

    2014-12-01

    Understanding how students use their conceptual models to reason about societal challenges involving societal issues such as natural hazard risk assessment, environmental policy and management, and energy resources can improve instructional activity design that directly impacts student motivation and literacy. To address this question, we created four laboratory exercises for an introductory physical geology course at Texas A&M University that engages students in authentic scientific practices by using real world problems and issues that affect societies based on the theory of situated cognition. Our case-study design allows us to investigate the various ways that students utilize model based reasoning to identify and propose solutions to societally relevant issues. In each of the four interventions, approximately 60 students in three sections of introductory physical geology were expected to represent and evaluate scientific data, make evidence-based claims about the data trends, use those claims to express conceptual models, and use their models to analyze societal challenges. Throughout each step of the laboratory exercise students were asked to justify their claims, models, and data representations using evidence and through the use of argumentation with peers. Cognitive apprenticeship was the foundation for instruction used to scaffold students so that in the first exercise they are given a partially completed model and in the last exercise students are asked to generate a conceptual model on their own. Student artifacts, including representation of earth systems, representation of scientific data, verbal and written explanations of models and scientific arguments, and written solutions to specific societal issues or environmental problems surrounding earth systems, were analyzed through the use of a rubric that modeled authentic expertise and students were sorted into three categories. Written artifacts were examined to identify student argumentation and justifications of solutions through the use of evidence and reasoning. Higher scoring students justified their solutions through evidence-based claims, while lower scoring students typically justified their solutions using anecdotal evidence, emotional ideologies, and naive and incomplete conceptions of earth systems.

  4. Climate change likely to favor shift toward warmer climate states of the Pliocene and Eocene

    NASA Astrophysics Data System (ADS)

    Burke, K. D.; Williams, J. W.

    2017-12-01

    As the world warms due to rising greenhouse gas concentrations, the climate system is moving toward a state without precedent in the historical record. Various past climate states have been proposed as potential analogues or model systems for the coming decades, including the early to middle Holocene, the last interglacial, the middle Pliocene, and the early Eocene. However, until now, such comparisons have been qualitative. To compare these time periods to the projected climate states for the 21st and 22nd centuries, we conduct a climate similarity analysis using the standardized Euclidean distance metric (SED) and seasonal means of surface air temperature and precipitation. We make this future-to-past comparison using 30-year mean climatologies, for every decade between 2020 and 2280 AD (27 total comparisons). The list of past earth system states includes the historical period (1940-1970 AD), a pre-industrial control (ca. 1850), the middle Holocene (ca. 6 ka), the last glacial maximum (ca. 21 ka), the last interglacial (ca. 125 ka), the middle Pliocene (ca. 3 Ma), and the early Eocene (ca. 50-55 Ma). To reduce uncertainties resulting from choice of earth system model, analyses are based on simulations from three earth system models (HadCM, CCSM, NASA/GISS Model-E), using in part experiments from PMIP2, PMIP3/CMIP5, EoMIP, and PlioMIP. Results are presented for two representative concentration pathways (RCP's 4.5, 8.5). By 2050 AD, the most common past climate analogue is sourced from the Pliocene for RCP 8.5, while by 2190 AD, the Eocene becomes the source of the most common past climate analogue. For RCP 4.5, in which radiative forcings stabilize this century, the Pliocene becomes the most important past climate analogue by 2100 AD. Low latitude climates are the first to most closely resemble these past earth warm periods. The mid-latitudes then follow this pattern by the end of the 22nd century. Although no past state of the earth system is a perfect analogue for the Anthropocene, these analyses clarify the similarities between the expected climates of the future and the geological climates of the past.

  5. 75 FR 72688 - Approval and Promulgation of Implementation Plans; New Mexico; Interstate Transport of Pollution

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... some days and this does not appear to be an error in the modeling system''.\\2\\ \\2\\ Commenter referenced... modeling with a readily available modeling system (since construction of a complete modeling system from... from WildEarth Guardians. Comment No. 1--The commenter stated that EPA inappropriately defined the term...

  6. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka

    2005-01-01

    This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.

  7. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    NASA Astrophysics Data System (ADS)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which makes the process of building a geophysical Earth model from a geological model much simpler. In this presentation we will explore the issues that arise when working with realistic Earth models and when synthesizing geophysical electromagnetic data for them. We briefly consider meshfree methods as a possible means of alleviating some of these issues.

  8. Continental Growth and Mantle Hydration as Earth System Feedback Cycles and possible Effects of the Biosphere

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2016-12-01

    The evolution of Earth is charcterized by intertwined feedback cycles. We focus on two feedback cycles that include the mantle water budget and the continental crust and study possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water will reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the mantle water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents grow by volcanism above subduction zones, whose total length is determined by the total area of the continents. Furthermore, the erosion rate of the continents is proportional to the total surface area of continental crust. The rate of sediment subduction affects the rate of transport of water to the mantle and the production rate of new continental crust. We present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface are of continents. The stable points represent either an Earth mostly covered by continents and a wet mantle or an Earth mostly covered by oceans with a dry mantle. The presently observed Earth is inbetween these extreme states but the state is intrinsically unstable. We couple the feedback model to a parameterized thermal evolution model. We show how Earth evolved towards its present unstable state. We argue that other feedback cycles such as the carbonate silicate cycle may act to stabilize the present state, however. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, the biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and mantle water budget at its present day state.

  9. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  10. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  11. 1999 NCCS Highlights

    NASA Technical Reports Server (NTRS)

    Bennett, Jerome (Technical Monitor)

    2002-01-01

    The NASA Center for Computational Sciences (NCCS) is a high-performance scientific computing facility operated, maintained and managed by the Earth and Space Data Computing Division (ESDCD) of NASA Goddard Space Flight Center's (GSFC) Earth Sciences Directorate. The mission of the NCCS is to advance leading-edge science by providing the best people, computers, and data storage systems to NASA's Earth and space sciences programs and those of other U.S. Government agencies, universities, and private institutions. Among the many computationally demanding Earth science research efforts supported by the NCCS in Fiscal Year 1999 (FY99) are the NASA Seasonal-to-Interannual Prediction Project, the NASA Search and Rescue Mission, Earth gravitational model development efforts, the National Weather Service's North American Observing System program, Data Assimilation Office studies, a NASA-sponsored project at the Center for Ocean-Land-Atmosphere Studies, a NASA-sponsored microgravity project conducted by researchers at the City University of New York and the University of Pennsylvania, the completion of a satellite-derived global climate data set, simulations of a new geodynamo model, and studies of Earth's torque. This document presents highlights of these research efforts and an overview of the NCCS, its facilities, and its people.

  12. Lightcurve Analysis for Two Near-Earth Asteroids Eclipsed by the Earth's Shadow

    NASA Astrophysics Data System (ADS)

    Birtwhistle, Peter

    2018-07-01

    Photometry was obtained from Great Shefford Observatory of near-Earth asteroids 2012 XE54 in 2012 and 2016 VA in 2016 during close approaches. A superfast rotation period has been determined for 2012 XE54 and H-G magnitude system coefficients have been estimated for 2016 VA. While under observation, 2012 XE54 underwent a deep penumbral eclipse by the Earth's shadow and 2016 VA also experienced a total eclipse by the Earth's shadow. The dimming due to the eclipses is modeled taking into account solar limb darkening.

  13. GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal; hide

    2017-01-01

    A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.

  14. Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Zhao, Xinyu; Sheng, Yang; Tan, Mei-Chee; Roth, Charles M.; Riman, Richard E.; Moghe, Prabhas V.; Pierce, Mark C.

    2018-03-01

    Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models.

  15. Potassium isotopic evidence for a high-energy giant impact origin of the Moon.

    PubMed

    Wang, Kun; Jacobsen, Stein B

    2016-10-27

    The Earth-Moon system has unique chemical and isotopic signatures compared with other planetary bodies; any successful model for the origin of this system therefore has to satisfy these chemical and isotopic constraints. The Moon is substantially depleted in volatile elements such as potassium compared with the Earth and the bulk solar composition, and it has long been thought to be the result of a catastrophic Moon-forming giant impact event. Volatile-element-depleted bodies such as the Moon were expected to be enriched in heavy potassium isotopes during the loss of volatiles; however such enrichment was never found. Here we report new high-precision potassium isotope data for the Earth, the Moon and chondritic meteorites. We found that the lunar rocks are significantly (>2σ) enriched in the heavy isotopes of potassium compared to the Earth and chondrites (by around 0.4 parts per thousand). The enrichment of the heavy isotope of potassium in lunar rocks compared with those of the Earth and chondrites can be best explained as the result of the incomplete condensation of a bulk silicate Earth vapour at an ambient pressure that is higher than 10 bar. We used these coupled constraints of the chemical loss and isotopic fractionation of K to compare two recent dynamic models that were used to explain the identical non-mass-dependent isotope composition of the Earth and the Moon. Our K isotope result is inconsistent with the low-energy disk equilibration model, but supports the high-energy, high-angular-momentum giant impact model for the origin of the Moon. High-precision potassium isotope data can also be used as a 'palaeo-barometer' to reveal the physical conditions during the Moon-forming event.

  16. The Earth: Plasma Sources, Losses, and Transport Processes

    NASA Astrophysics Data System (ADS)

    Welling, Daniel T.; André, Mats; Dandouras, Iannis; Delcourt, Dominique; Fazakerley, Andrew; Fontaine, Dominique; Foster, John; Ilie, Raluca; Kistler, Lynn; Lee, Justin H.; Liemohn, Michael W.; Slavin, James A.; Wang, Chih-Ping; Wiltberger, Michael; Yau, Andrew

    2015-10-01

    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

  17. The gravity field observations and products at IGFS

    NASA Astrophysics Data System (ADS)

    Barzaghi, Riccardo; Vergos, George; Bonvalot, Sylvain; Barthelmes, Franz; Reguzzoni, Mirko; Wziontek, Hartmut; Kelly, Kevin

    2017-04-01

    The International Gravity Field Service (IGFS) is a service of the International Association of Geodesy (IAG) that was established in 2003 at the IAG/IUGG General Assembly in Sapporo (Japan). This service aims at coordinating the actions of the IAG services related to the Earth gravity field, i.e. the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM) and the International Digital Elevation Model Service (IDEMS). Also, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. In this work, a presentation is given on the recent activities of the service, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame. Particularly, the impact that these activities have in improving the estimation of the Earth's gravity field, either at global and local scale, is highlighted also in the framework of GGOS.

  18. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    DTIC Science & Technology

    2011-01-20

    of 2009, was de- signed to address the important question of the frequency of Earth -size planets around Sun -like stars, and to characterize ex...physically associated with the candidate (hierarchical triple systems) and in a long-period orbit around their common center of mass would often be spatially...positive scenar- ios that is complementary to other diagnostics, and should play an important role in the discovery of Earth -size planets around other

  19. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  20. Teaching Monte Carlo Strategies for Earth System Modelling using a Guided Group-Learning Approach in the Classroom

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Pianosi, F.; Woods, R. A.

    2016-12-01

    The need for quantifying uncertainty in earth system modelling has now been well established on both scientific and policy-making grounds. There is an urgent need to bring the skills and tools needed for doing so into practice. However, such topics are currently largely constrained to specialist graduate courses or to short courses for PhD students. Teaching the advanced skills needed for implementing and for using uncertainty analysis is difficult because students feel that it is inaccessible and it can be boring if presented using frontal teaching in the classroom. While we have made significant advancement in sharing teaching material, sometimes even including teaching notes (Wagener et al., 2012, Hydrology and Earth System Sciences), there is great need for understanding how we can bring such advanced topics into the undergraduate (and even graduate) curriculum in an effective manner. We present the results of our efforts to teach Matlab-based tools for uncertainty quantification in earth system modelling in a civil engineering undergraduate course. We use the example of teaching Monte Carlo strategies, the basis for the most widely used uncertainty quantification approaches, through the use of guided group-learning activities in the classroom. We utilize a three-step approach: [1] basic introduction to the problem, [2] guided group-learning to develop a possible solution, [3] comparison of possible solutions with state-of-the-art algorithms across groups. Our initial testing in an undergraduate course suggests that (i) overall students find a group-learning approach more engaging, (ii) that different students take charge of advancing the discussion at different stages or for different problems, and (iii) that making appropriate suggestions (facilitator) to guide the discussion keeps the speed of advancement sufficiently high. We present the approach, our initial results and suggest how a wider course on earth system modelling could be formulated in this manner.

  1. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  2. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Ruskol, E. L.

    2017-05-01

    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  3. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  4. Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Curcic, M.

    2017-12-01

    The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.

  5. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    NASA Astrophysics Data System (ADS)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so that they can cover an even wider net of data sources. The goal is to develop the means to link together the upper level and lower level ontologies and to have these registered within the GEOSS Registry. Actual operational ontologies that would link to models or link to data collections containing input variables required by models would have to be nested underneath this top level ontology, analogous to the mapping that has been carried out among ontologies within GEON.

  6. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  7. CPMIP: measurements of real computational performance of Earth system models in CMIP6

    NASA Astrophysics Data System (ADS)

    Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett

    2017-01-01

    A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).

  8. Use of global positioning system measurements to determine geocentric coordinates and variations in Earth orientation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.; Lichten, S. M.

    1993-01-01

    Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.

  9. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  10. Handbook for the estimation of microwave propagation effects: Link calculations for earth-space paths (path loss and noise estimation)

    NASA Technical Reports Server (NTRS)

    Crane, R. K.; Blood, D. W.

    1979-01-01

    A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions.

  11. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  12. Climate Information Responding to User Needs (CIRUN)

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2009-05-01

    For the past several decades many different US agencies have been involved in collecting Earth observations, e.g., NASA, NOAA, DoD, USGS, USDA. More recently, the US has led the international effort to design a Global Earth Observation System of Systems (GEOSS). Yet, there has been little substantive progress at the synthesis and integration of the various research and operational, space-based and in situ, observations. Similarly, access to such a range of observations across the atmosphere, ocean, and land surface remains fragmented. With respect to prediction of the Earth System, the US has not developed a comprehensive strategy. For climate, the US (e.g., NOAA, NASA, DoE) has taken a two-track strategy. At the more immediate time scale, coupled ocean-atmosphere models of the physical climate system have built upon the tradition of daily numerical weather prediction in order to extend the forecast window to seasonal to interannual times scales. At the century time scale, the nascent development of Earth System models, combining components of the physical climate system with biogeochemical cycles, are being used to provide future climate change projections in response to anticipated greenhouse gas forcings. Between these to two approaches to prediction lies a key deficiency of interest to decision makers, especially as it pertains to adaptation, i.e., deterministic prediction of the Earth System at time scales from days to decades with spatial scales from global to regional. One of many obstacles to be overcome is the design of present day observation and prediction products based on user needs. To date, most of such products have evolved from the technology and research "push" rather than the user or stakeholder "pull". In the future as planning proceeds for a national climate service, emphasis must be given to a more coordinated approach in which stakeholders' needs help design future Earth System observational and prediction products, and similarly, such products need to be tailored to provide decision support.

  13. Run Environment and Data Management for Earth System Models

    NASA Astrophysics Data System (ADS)

    Widmann, H.; Lautenschlager, M.; Fast, I.; Legutke, S.

    2009-04-01

    The Integrating Model and Data Infrastructure (IMDI) developed and maintained by the Model and Data Group (M&D) comprises the Standard Compile Environment (SCE) and the Standard Run Environment (SRE). The IMDI software has a modular design, which allows to combine and couple a suite of model components and as well to execute the tasks independently and on various platforms. Furthermore the modular structure enables the extension to new model combinations and new platforms. The SRE presented here enables the configuration and performance of earth system model experiments from model integration up to storage and visualization of data. We focus on recently implemented tasks such as synchronous data base filling, graphical monitoring and automatic generation of meta data in XML forms during run time. As well we address the capability to run experiments in heterogeneous IT environments with different computing systems for model integration, data processing and storage. These features are demonstrated for model configurations and on platforms used in current or upcoming projects, e.g. MILLENNIUM or IPCC AR5.

  14. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duval, Aleta; Keller, Vernon W.

    2003-01-01

    There are eight destinations in the Solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Robe entry at Titan, are discussed. Recent updates to the Mars atmospheric model, in support of ongoing Mars aerocapture systems analysis studies, are also presented.

  15. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  16. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  17. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of NASA's effort to continually evolve its data systems led ECHO to enhancing the method in which it receives inventory metadata from the data centers to allow for multiple metadata formats including ISO 19115. ECHO's metadata model will also be mapped to the NASA-specific convention for ingesting science metadata into the ECHO system. As NASA's new Earth Science missions and data centers are migrating to the ISO 19115 standards, EOSDIS is developing metadata management resources to assist in the reading, writing and parsing ISO 19115 compliant metadata. To foster interoperability with other agencies and international partners, NASA is working to ensure that a common ISO 19115 convention is developed, enhancing data sharing capabilities and other data analysis initiatives. NASA is also investigating the use of ISO 19115 standards to encode data quality, lineage and provenance with stored values. A common metadata standard across NASA's Earth Science data systems promotes interoperability, enhances data utilization and removes levels of uncertainty found in data products.

  18. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  19. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.

  20. GEOS Atmospheric Model: Challenges at Exascale

    NASA Technical Reports Server (NTRS)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as less frequent increases in vertical resolution. Coupling these resolution changes with increases in complexity, the computational demands on the GEOS production and research systems should easily increase 100-fold over the next five years. Currently, our 12.5 kilometer weather prediction system narrowly meets the time-to-solution demands of a near-real-time production system. Work is now in progress to take advantage of a hybrid MPI-OpenMP parallelism strategy, in an attempt to achieve a modest two-fold speed-up to accommodate an immediate demand due to increased scientific complexity and an increase in vertical resolution. Pursuing demands that require a 10- to 100-fold increases or more, however, would require a detailed exploration of the computational profile of GEOS, as well as targeted solutions using more advanced high-performance computing technologies. Increased computing demands of 100-fold will be required within five years based on anticipated changes in the GEOS production systems, increases of 1000-fold can be anticipated over the next ten years.

  1. The Earth's magnetosphere modeling and ISO standard

    NASA Astrophysics Data System (ADS)

    Alexeev, I.

    The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace

  2. From COST 271 to 296 EU actions on ionospheric monitoring and modelling for terrestrial and Earth space radio systems

    NASA Astrophysics Data System (ADS)

    Zolesi, B.; Cander, Lj. R.; Altadill, D.

    The ionospheric community has long been aware that co-operative research on an international basis is essential to deal with temporal and spatial changes in the ionosphere that influence the performance of terrestrial and Earth-space radio systems. The EU COST (Co-operation in the field of Scientific and Technical Research) 271 Action on "Effects of the Upper Atmosphere on Terrestrial and Earth-space Communications" has had during the period of October 2000-August 2004 the following main objectives: (1) to evaluate the influence of upper atmospheric conditions on terrestrial and Earth-space communications, (2) to develop methods and techniques to improve ionospheric models over Europe for telecommunication and navigation applications and (3) to transfer the results to the appropriate radiocommunication study groups of the International Telecommunication Union (ITU-R) and other national and international organizations dealing with the modern communication systems. At the beginning of 2005 the new 296 Action in the COST Telecommunications, Information Science and Technology domain on "Mitigation of Ionospheric Effects on Radio Systems (MIERS)" was approved for the period 2005-2009. The main objectives of the MIERS are: (a) to support and enhanced the existing European facilities for historical and real-time digital ionospheric data collection and exchange; (b) to develop an integrated approach to ionospheric modelling, create the mechanism needed to ingest processed data into models, extend and develop suitable mitigation models and define the protocols needed to link models together; and (c) to strengthen the areas of expertise that already exist by stimulating closer cooperation between scientists and users, focusing the scope of all the previous COST ionospheric related studies to the mitigation of ionospheric effects on radio systems. This paper summarises briefly how the major objectives of the COST271 Action have been achieved and what are the most important activities to be undertaken in the follow-on COST296 Action.

  3. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).

  4. Decadal climate predictions improved by ocean ensemble dispersion filtering

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its ensemble average, improves a prediction system. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Our study shows that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure applying the average during the model run, called ensemble dispersion filter, results in more accurate results than the standard prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080044866&hterms=Chemistry+research+work&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DChemistry%2Bresearch%2Bwork','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080044866&hterms=Chemistry+research+work&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DChemistry%2Bresearch%2Bwork"><span>Emphasizing Spectrum Management for Sustainable Development Research and Applications in Disaster Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ambrose, Stephen; Habib, Shahid</p> <p>2007-01-01</p> <p>NASA's spaceborne Earth and Heliospheric Observatories and airborne sensors provide a plethora of measurements. These measurements are used in science research to understand the climatology of our home planet and the solar fluxes and cycle of the only star in our solar system 'Sun' which is critical driver for the retention of life on Earth. Specifically, these measurements help us to understand the water and energy cycle, the carbon cycle, weather and climate, atmospheric chemistry, solar variability, and solid Earth and interior to feed into sophisticated mathematical models to analyze and predict the Earth's behavior as an integrated system. The main thrust of this research is on improving the prediction capability in the areas of weather, long term climate and solid Earth processes, and further help the humanity and future generations in terms of societal benefits in managing natural disasters, sustainability issues and many more. This work is further linked with our contributions in the Global Earth Observing System of Systems (GEOSS) Specifically, the data and knowledge resulting from the Earth observing systems and analytical models of the Earth can be made available for assimilation into decision support systems to serve society for disaster management. Through partnerships with national and international agencies and organizations, NASA's Science Mission Directorate's, Applied Sciences Program contributes to benchmarking practical uses of observations and predictions from Earth science remote sensing systems research. The objective is to establish innovative solutions using Earth observations and science information to provide decision support that can be adapted in applications of national and international priority. We along with the international community will continue this critical field of investigation by using our existing and future sensors from space, airborne and insitue environment. In our quest to expanding our knowledge, there will be a need for deploying additional sensors to obtain high spatial, temporal and spectral resolution measurements. These sensors operate in multiple spectral band ranging from UV, visible, infrared, microwave and radio frequency ranges. Of a particular concern is the microwave frequency bands which play a key role in land, ocean, moisture sensing. This is because of a growing commercial demand in the area of high speed broadband communication all over the world, the electronic manufacturers are looking into high frequency microwave spectral bands. This may present a risk to the remote sensing sensors because of additional sources of noise that can impair the highly sensitive passive remote sensing instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-JPL-20171130-EARTHf-0001-DIY+Glacier+Modeling+with+Virtual+Earth+System+Laboratory.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-JPL-20171130-EARTHf-0001-DIY+Glacier+Modeling+with+Virtual+Earth+System+Laboratory.html"><span>JPL-20171130-EARTHf-0001-DIY Glacier Modeling with Virtual Earth System Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-11-30</p> <p>Eric Larour, JPL Climate Scientist, explains the NASA research tool "VESL" -- Virtual Earth System Laboratory -- that allows anyone to run their own climate experiment. The user can use a slider to simulate and increase or decrease in the amount of snowfall on a particular glacier then see a video of the results, including the glacier melting's effect on sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004003"><span>The Diverse Data, User Driven Services and the Power of Giovanni at NASA GES DISC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Suhung</p> <p>2017-01-01</p> <p>This presentation provides an overview of remote sensing and model data at GES (Goddard Earth Sciences) DISC (Data and Information Services Center); Overview of data services at GES DISC (Registration with NASA data system; Searching and downloading data); Giovanni (Geospatial Interactive Online VisualizationANd aNalysis Infrastructure): online data exploration tool; and NASA Earth Data and Information System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9787B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9787B"><span>From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brücher, Tim; Latif, Mojib</p> <p>2017-04-01</p> <p>We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes internal to the Earth system to climate variability at different time scales. Third, in order to achieve a higher level of understanding of natural climate variability at time scales of millennia, its governing processes and implications for the future climate, we bring together three different research communities: the Earth system modeling community, the proxy data community and the computational science community. The consortium consists of 18 partners including all major modelling centers within Germany. The funding comprises approximately 65 PostDoc positions and more than 120 scientists are involved. PalMod is coordinated at the Helmholtz Centre for Ocean Research Kiel (GEOMAR).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ERL.....8d4048A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ERL.....8d4048A"><span>The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan</p> <p>2013-12-01</p> <p>We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN43B..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN43B..04Z"><span>Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.</p> <p>2013-12-01</p> <p>As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs of researchers and organizations representing both established and emerging CI users; and (g) make best use of NSF's current investment in the geoscience CI. The presentation will focus on the challenges and methodology of EarthCube CI design, in particular on supporting social engagement and interaction between geoscientists and computer scientists as a core function of EarthCube architecture. This capability must include mechanisms to not only locate and integrate available geoscience resources, but also engage individuals and projects, research products and publications, and enable efficient communication across many EarthCube stakeholders leading to long-term institutional alignment and trusted collaborations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25114317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25114317"><span>The iodine-plutonium-xenon age of the Moon-Earth system revisited.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Avice, G; Marty, B</p> <p>2014-09-13</p> <p>Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3898S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3898S"><span>Educational program using four-dimensional presentation of space data and space-borne data with Dagik Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke</p> <p></p> <p>We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...U21A19C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...U21A19C"><span>Vector Data Model: A New Model of HDF-EOS to Support GIS Applications in EOS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chi, E.; Edmonds, R d</p> <p>2001-05-01</p> <p>NASA's Earth Science Data Information System (ESDIS) project has an active program of research and development of systems for the storage and management of Earth science data for Earth Observation System (EOS) mission, a key program of NASA Earth Science Enterprise. EOS has adopted an extension of the Hierarchical Data Format (HDF) as the format of choice for standard product distribution. Three new EOS specific datatypes - point, swath and grid - have been defined within the HDF framework. The enhanced data format is named HDF-EOS. Geographic Information Systems (GIS) are used by Earth scientists in EOS data product generation, visualization, and analysis. There are two major data types in GIS applications, raster and vector. The current HDF-EOS handles only raster type in the swath data model. The vector data model is identified and developed as a new HDFEOS format to meet the requirements of scientists working with EOS data products in vector format. The vector model is designed using a topological data structure, which defines the spatial relationships among points, lines, and polygons. The three major topological concepts that the vector model adopts are: a) lines connect to each other at nodes (connectivity), b) lines that connect to surround an area define a polygon (area definition), and c) lines have direction and left and right sides (contiguity). The vector model is implemented in HDF by mapping the conceptual model to HDF internal data models and structures, viz. Vdata, Vgroup, and their associated attribute structures. The point, line, and polygon geometry and attribute data are stored in similar tables. Further, the vector model utilizes the structure and product metadata, which characterize the HDF-EOS. Both types of metadata are stored as attributes in HDF-EOS files, and are encoded in text format by using Object Description Language (ODL) and stored as global attributes in HDF-EOS files. EOS has developed a series of routines for storing, retrieving, and manipulating vector data in category of access, definition, basic I/O, inquiry, and subsetting. The routines are tested and form a package, HDF-EOS/Vector. The alpha version of HDFEOS/Vector has been distributed through the HDF-EOS project web site at http://hdfeos.gsfc.nasa.gov. We are also developing translators between HDF-EOS vector format and variety of GIS formats, such as Shapefile. The HDF-EOS vector model enables EOS scientists to deliver EOS data in a way ready for Earth scientists to analyze using GIS software, and also provides EOS project a mechanism to store GIS data product in meaningful vector format with significant economy in storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011540','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011540"><span>Effects of selective fusion on the thermal history of the earth's mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, W.H.K.</p> <p>1968-01-01</p> <p>A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1798b0055S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1798b0055S"><span>Time-optimal control of the spacecraft trajectories in the Earth-Moon system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starinova, O. L.; Fain, M. K.; Materova, I. L.</p> <p>2017-01-01</p> <p>This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29176916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29176916"><span>Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming</p> <p>2017-01-01</p> <p>The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5701283','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5701283"><span>Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming</p> <p>2017-01-01</p> <p>The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth. PMID:29176916</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001230','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001230"><span>Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.</p> <p>2017-01-01</p> <p>Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/news/ceres-fm6-first-light-imagery','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/news/ceres-fm6-first-light-imagery"><span>CERES FM6 First Light Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2018-06-07</p> <p>... Larger Image   Clouds and the Earth's Radiant Energy System Flight Model 6 (CERES FM6) opened its cover on Jan. 5, 2018 ... radiometer that NASA/NOAA has flown that measures the solar energy reflected by Earth, heat the planet emits, and the role of clouds in ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMED52A0010J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMED52A0010J"><span>College and University Earth System Science Education for the 21st Century (ESSE 21)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, D. R.; Ruzek, M.; Schweizer, D.</p> <p>2002-12-01</p> <p>The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, minors or degree tracks, and programs or departments that are self-sustaining in the coming decades. Interdisciplinary college and university teams are competitively selected through a peer-reviewed Call for Participation. ESSE 21 offers an infrastructure for an interactive community of educators and researchers including under represented participants that develops interdisciplinary Earth system science content utilizing NASA resources involving global change data, models, visualizations and electronic media and networks. The Program provides for evaluation and assessment guides to help assure the pedagogical effectiveness of materials developed. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012A%26G....53e...7.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012A%26G....53e...7."><span>News and Views: Keep it down! AU becomes au, and is defined in metres; Kepler survey announces two planets in a binary star system; Is there plate tectonics on Mars? Vaporizing Earth - for research!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2012-10-01</p> <p>Division 1 of the IAU recommended that the astronomical unit - originally the length of the semi-major axis of the Earth's orbit - be redefined as a fixed number of kilometres. A team of observers using data from NASA's Kepler space observatory announced at the IAU General Assembly that they had discovered two planets orbiting a pair of binary stars, and that such planets could exist in the habitable zone of their system. The Red Planet has long been considered something of a dead planet as far as tectonic movements of its crust, but careful analysis of thermal and topographic images of the surface suggest the existence of major faults with horizontal slip along the Valles Marineris. The question of what would happen if Earth were to approach the Sun and start vaporizing has been modelled in order to help to model the composition of super-Earths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150007130&hterms=big+datas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbig%2Bdatas','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150007130&hterms=big+datas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbig%2Bdatas"><span>Smarter Earth Science Data System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Thomas</p> <p>2013-01-01</p> <p>The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53J..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53J..08L"><span>Insights from Modeling the Integrated Climate, Biogeochemical Cycles, Human Activities and Their Interactions in the ACME Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.</p> <p>2017-12-01</p> <p>Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..06M"><span>GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.</p> <p>2017-12-01</p> <p>A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN53C1895C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN53C1895C"><span>VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.</p> <p>2016-12-01</p> <p>We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.206..152G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.206..152G"><span>Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grobbe, N.; Slob, E. C.; Thorbecke, J. W.</p> <p>2016-07-01</p> <p>We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21K..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21K..01H"><span>NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haynes, J.; Estes, S. M.</p> <p>2017-12-01</p> <p>Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.G23C0699K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.G23C0699K"><span>A preliminary geodetic data model for geographic information systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, K. M.</p> <p>2009-12-01</p> <p>Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing geophysical datasets, thus facilitating creation of multi-tiered models. The Geodetic Data Model encourages data assimilation and analysis and facilitates data interoperability, coordination and integration in earth system modeling. It offers a basic set of data structures organized in a simple and homogeneous way and can streamline access to and processing of geodetic data. It can aid knowledge discovery through the use of GIS technology to enable identification and understanding of relationships and provide well-established tools and methods to communicate complex technical knowledge with non-specialist audiences. The Geodetic Data Model comprise the base classes for using workflow driven ontology (WDO) techniques for specifying the computation of complex geodetic products along with the ability to capture provenance information. While we do not specify WDO for any given geodetic product, we recognize that structured geodetic data is essential for generating any geodetic WDO, a task that can be streamlined in some GIS software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10188E..0EJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10188E..0EJ"><span>Quantum geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jitrik, Oliverio; Lanzagorta, Marco; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.</p> <p>2017-05-01</p> <p>The study of plate tectonic motion is important to generate theoretical models of the structure and dynamics of the Earth. In turn, understanding tectonic motion provides insight to develop sophisticated models that can be used for earthquake early warning systems and for nuclear forensics. Tectonic geodesy uses the position of a network of points on the surface of earth to determine the motion of tectonic plates and the deformation of the earths crust. GPS and interferometric synthetic aperture radar are commonly used techniques used in tectonic geodesy. In this paper we will describe the feasibility of interferometric synthetic aperture quantum radar and its theoretical performance for tectonic geodesy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21028314-origins-computer-weather-prediction-climate-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21028314-origins-computer-weather-prediction-climate-modeling"><span>The origins of computer weather prediction and climate modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lynch, Peter</p> <p>2008-03-20</p> <p>Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. Amore » fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JCoPh.227.3431L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JCoPh.227.3431L"><span>The origins of computer weather prediction and climate modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynch, Peter</p> <p>2008-03-01</p> <p>Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050156639&hterms=literature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dliterature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050156639&hterms=literature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dliterature"><span>The Hindlimb Unloading Rat Model: Literature Overview, Comparison with Spaceflight Data, and Technique Update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina</p> <p>2004-01-01</p> <p>The hindlimb unloading (HU) rodent model is used extensively to study the response of many physiological systems to certain aspects of spaceflight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of HU, and is divided into three sections. The first section examines the characteristics of 1063 articles using or reviewing the HU model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and Hu animals from the 14-day Cosmos 2044 mission. The final section describes modifications to HU required by different experimental paradigms and a method to protect the tail harness for long duration studies. HU in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human spaceflight and disuse on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A43H..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A43H..07F"><span>Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.</p> <p>2011-12-01</p> <p>NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED52A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED52A..08G"><span>Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.</p> <p>2017-12-01</p> <p>Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth-system processes. Students present their findings and recommendations in a public forum format. Student-learning outcomes are measured using a combination of formative and summative assessments that address students' proficiency with science and engineering content and practices in conjunction with the unit's Unifying CCC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150005484&hterms=accounting+decision+making&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Daccounting%2Bdecision%2Bmaking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150005484&hterms=accounting+decision+making&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Daccounting%2Bdecision%2Bmaking"><span>Making an Informed Decision on Freshwater Management by Integrating Remote Sensing Data with Traditional Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hyon, Jason J.</p> <p>2012-01-01</p> <p>The US National Research Council (NRC) recommended that: "The U.S. government, working in concert with the private sector, academe, the public, and its international partners, should renew its investment in Earth-observing systems and restore its leadership in Earth science and applications." in response to the NASA Earth Science Division's request to prioritize research areas, observations, and notional missions to make those objectives. In this presentation, we will discuss our approach to connect remote sensing science to decision support applications by establishing a framework to integrate direct measurements, earth system models, inventories, and other information to accurately estimate fresh water resources in global, regional, and local scales. We will discuss our demonstration projects and lessons learned from the experience. Deploying a monitoring system that offers sustained, accurate, transparent and relevant information represents a challenge and opportunity to a broad community spanning earth science, water resource accounting and public policy. An introduction to some of the scientific and technical infrastructure issues associated with monitoring systems is offered here to encourage future treatment of these topics by other contributors as a concluding remark.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160000450&hterms=earth+system+modeling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearth%2Bsystem%2Bmodeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160000450&hterms=earth+system+modeling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearth%2Bsystem%2Bmodeling"><span>Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160000450'); toggleEditAbsImage('author_20160000450_show'); toggleEditAbsImage('author_20160000450_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160000450_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160000450_hide"></p> <p>2014-01-01</p> <p>Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950018357&hterms=Just-In-Time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJust-In-Time','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950018357&hterms=Just-In-Time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJust-In-Time"><span>Space observations for global and regional studies of the biosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.</p> <p>1994-01-01</p> <p>The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2243228Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2243228Z"><span>Uncovering the Chemistry of Earth-like Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein</p> <p>2015-08-01</p> <p>We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI52B..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI52B..02Z"><span>Uncovering the Chemistry of Earth-like Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.</p> <p>2015-12-01</p> <p>We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.3116..235F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.3116..235F"><span>Reentry survivability modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fudge, Michael L.; Maher, Robert L.</p> <p>1997-10-01</p> <p>Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P11A1847U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P11A1847U"><span>By Inferno's Light: Characterizing TESS Object of Interest Host Stars for Prioritizing Our Search for Habitable Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.</p> <p>2016-12-01</p> <p>The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN21B1692D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN21B1692D"><span>Earth System Documentation (ES-DOC) Preparation for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denvil, S.; Murphy, S.; Greenslade, M. A.; Lawrence, B.; Guilyardi, E.; Pascoe, C.; Treshanksy, A.; Elkington, M.; Hibling, E.; Hassell, D.</p> <p>2015-12-01</p> <p>During the course of 2015 the Earth System Documentation (ES-DOC) project began its preparations for CMIP6 (Coupled Model Inter-comparison Project 6) by further extending the ES-DOC tooling ecosystem in support of Earth System Model (ESM) documentation creation, search, viewing & comparison. The ES-DOC online questionnaire, the ES-DOC desktop notebook, and the ES-DOC python toolkit will serve as multiple complementary pathways to generating CMIP6 documentation. It is envisaged that institutes will leverage these tools at different points of the CMIP6 lifecycle. Institutes will be particularly interested to know that the documentation burden will be either streamlined or completely automated.As all the tools are tightly integrated with the ES-DOC web-service, institutes can be confident that the latency between documentation creation & publishing will be reduced to a minimum. Published documents will be viewable with the online ES-DOC Viewer (accessible via citable URL's). Model inter-comparison scenarios will be supported using the ES-DOC online Comparator tool. The Comparator is being extended to:• Support comparison of both Model descriptions & Simulation runs;• Greatly streamline the effort involved in compiling official tables.The entire ES-DOC ecosystem is open source and built upon open standards such as the Common Information Model (CIM) (versions 1 and 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC22A..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC22A..03C"><span>Teleconnections in complex human-Earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvin, K. V.; Edmonds, J.</p> <p>2017-12-01</p> <p>Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EaFut...6..149S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EaFut...6..149S"><span>Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonntag, Sebastian; Ferrer González, Miriam; Ilyina, Tatiana; Kracher, Daniela; Nabel, Julia E. M. S.; Niemeier, Ulrike; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke</p> <p>2018-02-01</p> <p>To contribute to a quantitative comparison of climate engineering (CE) methods, we assess atmosphere-, ocean-, and land-based CE measures with respect to Earth system effects consistently within one comprehensive model. We use the Max Planck Institute Earth System Model (MPI-ESM) with prognostic carbon cycle to compare solar radiation management (SRM) by stratospheric sulfur injection and two carbon dioxide removal methods: afforestation and ocean alkalinization. The CE model experiments are designed to offset the effect of fossil-fuel burning on global mean surface air temperature under the RCP8.5 scenario to follow or get closer to the RCP4.5 scenario. Our results show the importance of feedbacks in the CE effects. For example, as a response to SRM the land carbon uptake is enhanced by 92 Gt by the year 2100 compared to the reference RCP8.5 scenario due to reduced soil respiration thus reducing atmospheric CO2. Furthermore, we show that normalizations allow for a better comparability of different CE methods. For example, we find that due to compensating processes such as biogeophysical effects of afforestation more carbon needs to be removed from the atmosphere by afforestation than by alkalinization to reach the same global warming reduction. Overall, we illustrate how different CE methods affect the components of the Earth system; we identify challenges arising in a CE comparison, and thereby contribute to developing a framework for a comparative assessment of CE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1635R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1635R"><span>Lunar-based Earth observation geometrical characteristics research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning</p> <p>2016-07-01</p> <p>As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914358V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914358V"><span>Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus</p> <p>2017-04-01</p> <p>The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911198B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911198B"><span>Ontology of Earth's nonlinear dynamic complex systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babaie, Hassan; Davarpanah, Armita</p> <p>2017-04-01</p> <p>As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....1867P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....1867P"><span>Earth system modelling: a GAIM perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prentice, C.</p> <p>2003-04-01</p> <p>For over a decade the IGBP Task Force on Global Analysis, Integration (formerly Interepretation) and Modelling (GAIM) has facilitated international, interdisciplinary research. The focus has been development, comparison and evaluation of models describing Earth system components, especially terrestrial and ocean carbon cycling and atmospheric transport. GAIM also sponsored the BIOME 6000 project, which produced snapshots of world vegetation patterns for the last glacial maximum (LGM) and mid-Holocene, and experiments in coupled atmosphere-biosphere modelling that used these results. The most successful achievements have brought together modellers and data experts so that model comparisons could be made “with open eyes”. The need to bring together different communities (such as data experts and modellers; ecologists and atmospheric scientists; economists and ecologists...) only increases, and is a major rationale for the continuation of GAIM. GAIM has recently set out 23 overarching questions which could define future directions in Earth system science. Many have a “human dimension”, reflecting the fact that the societal context is poorly defined. Natural scientists often appeal to societal reasons to study global change, but typically don’t incorporate human science perspectives in their research strategies. Other questions have a “physical dimension” as biogeochemistry, atmospheric chemistry and physical climate science merge. As IGBP II begins, GAIM faces the challenge of tackling large gaps in our knowledge of how the coupled Earth system works, with and without human interfence. On the natural science side, the Vostok ice-core record dramatically illustrates our current state of ignorance. Vostok established that the Earth system’s response to orbital forcing is characterized by strong non-linear interactions between atmospheric greenhouse-gas and aerosol constituents and climate. The problem is that we don’t understand most of these interactions. There is some predictive understanding of past climates on these timescales, there is a large body of paleoenvironmental data from all of the world’s continents and oceans, and the models that could link trace gases, aerosols and climate change in a fully interactive and predictive way are under development. The challenge for GAIM is to goad the disparate scientific communities involved into working together. This will likely only happen if the nations that fund science dismantle barriers to interdisciplinary co-operation and construct facilitating mechanisms instead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913498D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913498D"><span>The UK Earth System Models Marine Biogeochemical Evaluation Toolkit, BGC-val</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Mora, Lee</p> <p>2017-04-01</p> <p>The Biogeochemical Validation toolkit, BGC-val, is a model and grid independent python-based marine model evaluation framework that automates much of the validation of the marine component of an Earth System Model. BGC-val was initially developed to be a flexible and extensible system to evaluate the spin up of the marine UK Earth System Model (UKESM). However, the grid-independence and flexibility means that it is straightforward to adapt the BGC-val framework to evaluate other marine models. In addition to the marine component of the UKESM, this toolkit has been adapted to compare multiple models, including models from the CMIP5 and iMarNet inter-comparison projects. The BGC-val toolkit produces multiple levels of analysis which are presented in a simple to use interactive html5 document. Level 1 contains time series analyses, showing the development over time of many important biogeochemical and physical ocean metrics, such as the Global primary production or the Drake passage current. The second level of BGC-val is an in-depth spatial analyses of a single point in time. This is a series of point to point comparison of model and data in various regions, such as a comparison of Surface Nitrate in the model vs data from the world ocean atlas. The third level analyses are specialised ad-hoc packages to go in-depth on a specific question, such as the development of Oxygen minimum zones in the Equatorial Pacific. In additional to the three levels, the html5 document opens with a Level 0 table showing a summary of the status of the model run. The beta version of this toolkit is available via the Plymouth Marine Laboratory Gitlab server and uses the BSD 3 clause license.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215136H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215136H"><span>The Svalbard Integrated Arctic Earth Observing System (SIOS) ESFRI Initiative - A possible future cornerstone of European Arctic research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Georg H.; Refsnes, Karin</p> <p>2010-05-01</p> <p>The Norwegian initiative "Svalbard Integrated Arctic Earth Observing System (SIOS) was included in the Revised Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) in 2009; an application to perform a preparatory phase project is currently under evaluation. The main aim of the SIOS initiative is to establish an Earth System observation platform in the European Arctic that is capable to match the whole scope of Earth System Models (ESM) on the observational side, ranging from solar/space-terrestrial interaction via atmosphere-ocean land-cryosphere coupling at the ground to geosphere-biosphere coupling. To this end, it is planned to integrate and upgrade all Arctic research stations on- and offshore in the Svalbard region which are currently operated by 15 nations, both European and worldwide. The initiative will also include the comprehensive marine and airborne monitoring and research activities and utilize the easy access to remote sensing data emerging from the satellite receiving activities at Longyearbyen. The already very comprehensive activity - though with limited international coordination - on Svalbard preconditions, as a first step, a thorough gap analysis of existing infrastructure in light of the needs of the modeling community and a careful design of the future overarching infrastructure. The interdisciplinary scientific character of SIOS makes the initiative well-suited to serve as a catalyser and integrator of the environmental ESFRI initiatives in the Arctic, while the truly global composition of the consortium may serve as a model for the envisaged pan-Arctic observing system SAON.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADB010427','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADB010427"><span>Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 2. Requirements Compilation and Analysis. Part 1. User and Model Requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-03-01</p> <p>Milestones will be established after staffing at 6WW. Long-Term Procedures: A capability will be acquired in automated support to Command and Control under... geocentric latitude f = ZttsinQ g = geopotential a = mean radius of earth Ü = angular rotation of the earth 7.29 x 10" rad/sec u,v</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED53D0185J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED53D0185J"><span>GLOBE and the Earth SySTEM Model in Teacher Preparation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jabot, M.; Moore, J.; Dorofy, P.</p> <p>2017-12-01</p> <p>This presentation will share the growing body of work linking ArcMap and GLOBE and the Earth SySTEM approach in the development of preservice teachers. Our work is linking the power of ArcMap with the vast database of GLOBE in a unique way that links the power of geospatial technologies in shaping the planning for and delivery of science instruction in the P-5 classroom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760008826','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760008826"><span>Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RvGeo..55.1199V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RvGeo..55.1199V"><span>Pedotransfer Functions in Earth System Science: Challenges and Perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Looy, Kris; Bouma, Johan; Herbst, Michael; Koestel, John; Minasny, Budiman; Mishra, Umakant; Montzka, Carsten; Nemes, Attila; Pachepsky, Yakov A.; Padarian, José; Schaap, Marcel G.; Tóth, Brigitta; Verhoef, Anne; Vanderborght, Jan; van der Ploeg, Martine J.; Weihermüller, Lutz; Zacharias, Steffen; Zhang, Yonggen; Vereecken, Harry</p> <p>2017-12-01</p> <p>Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25984921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25984921"><span>In search of future earths: assessing the possibility of finding Earth analogues in the later stages of their habitable lifetimes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Malley-James, Jack T; Greaves, Jane S; Raven, John A; Cockell, Charles S</p> <p>2015-05-01</p> <p>Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10 pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022462','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022462"><span>Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, David P.</p> <p>2015-01-01</p> <p>The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17963474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17963474"><span>How rare is complex life in the Milky Way?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bounama, Christine; von Bloh, Werner; Franck, Siegfried</p> <p>2007-10-01</p> <p>An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC23C0924K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC23C0924K"><span>Analysis of consistency of global net land-use change carbon emission scenario using offline vegetation model and earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kato, E.; Kawamiya, M.</p> <p>2010-12-01</p> <p>For CMIP5 experiments, emissions scenarios data sets for climate models are prepared as Representative Concentration Pathways (RCPs) by the Integrated Assessment Models (IAMs). IAMs also have depicted regional land-use scenarios based on the socioeconomic assumption of the future scenarios of RCPs. In the land-use harmonization project, gridded land-use transition data has been constructed from the regional IAMs future land-use scenarios which smoothly connects historical reconstructions of land-use based on HYDE 3 data and FAO wood harvest data. In this study, using the gridded transition land-use scenario data, global net CO2 emission from land-use change for each RCPs scenarios is evaluated with a offline version of terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool), utilizing a protocol to estimate carbon emission from deforested biomass considering delayed decomposition of product pools, and regrowth absorption from the secondary lands with abandoned agricultural lands. From the model output, effect of CO2 fertilization and land-use scenario itself on the emission is assessed to see the consistency of the scenarios. In addition, to see the effect of climate change and the climate-carbon feedback on terrestrial ecosystems, net land-use change CO2 emission is also evaluated with an earth system model, MIROC-ESM incorporating a DGVM with land-use change component. In the simulations with earth system model, RCP 6.0 scenario has been evaluated by model runs with and without land-use change forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA070452','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA070452"><span>HOWLS LOCATER Computer Program: Description and User’s Guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-12-26</p> <p>December.1978 Preari d fr the Defense Advanc ed Research Projects Agency L U undir Electronic Systems , Division-,Contract F19628?8C-0OO2 by Lincoln...Sensors 25 4.13 Battle Scenarios 25 5.0 NtOHIMATICAL GWW. TO LOCATER 27 5.1 Earth Nlod-a 27 S.2 Coordinate Systems and Transformations 27 5.2.1 Earth...on weapon lation accuracy of radar system paramneters, trajectory modeling anid estimation algorithmns, and envir-ontmntl effects such as wind, tr</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22706645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22706645"><span>Development and application of earth system models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prinn, Ronald G</p> <p>2013-02-26</p> <p>The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESD.....9...33L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESD.....9...33L"><span>Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauer, Axel; Jones, Colin; Eyring, Veronika; Evaldsson, Martin; Hagemann, Stefan; Mäkelä, Jarmo; Martin, Gill; Roehrig, Romain; Wang, Shiyu</p> <p>2018-01-01</p> <p>The performance of updated versions of the four earth system models (ESMs) CNRM, EC-Earth, HadGEM, and MPI-ESM is assessed in comparison to their predecessor versions used in Phase 5 of the Coupled Model Intercomparison Project. The Earth System Model Evaluation Tool (ESMValTool) is applied to evaluate selected climate phenomena in the models against observations. This is the first systematic application of the ESMValTool to assess and document the progress made during an extensive model development and improvement project. This study focuses on the South Asian monsoon (SAM) and the West African monsoon (WAM), the coupled equatorial climate, and Southern Ocean clouds and radiation, which are known to exhibit systematic biases in present-day ESMs. The analysis shows that the tropical precipitation in three out of four models is clearly improved. Two of three updated coupled models show an improved representation of tropical sea surface temperatures with one coupled model not exhibiting a double Intertropical Convergence Zone (ITCZ). Simulated cloud amounts and cloud-radiation interactions are improved over the Southern Ocean. Improvements are also seen in the simulation of the SAM and WAM, although systematic biases remain in regional details and the timing of monsoon rainfall. Analysis of simulations with EC-Earth at different horizontal resolutions from T159 up to T1279 shows that the synoptic-scale variability in precipitation over the SAM and WAM regions improves with higher model resolution. The results suggest that the reasonably good agreement of modeled and observed mean WAM and SAM rainfall in lower-resolution models may be a result of unrealistic intensity distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3102S"><span>Change in Water Cycle- Important Issue on Climate Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Pratik</p> <p></p> <p>Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical resolution to date as well. Since water vapor is the Earth's primary greenhouse gas and contributes significantly to uncertainties in projections of future global warming, it is critical to understand how it varies in the Earth system. We should concern for these drastic changes and should protect it. Keywords-Hydrological cycle,Climate models,Aqua’s instruments</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750007639','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750007639"><span>Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1974-01-01</p> <p>An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA31A2152S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA31A2152S"><span>An Evolving Model for Capacity Building with Earth Observation Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sylak-Glassman, E. J.</p> <p>2015-12-01</p> <p>For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use imagery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T44D..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T44D..02C"><span>Visualizing Three-dimensional Slab Geometries with ShowEarthModel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.</p> <p>2017-12-01</p> <p>Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH31B0221Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH31B0221Y"><span>Numerical simulation of earth fissures caused by overly aquifer exploitation at Guangming Village, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, S.; Franceschini, A.; Zhang, Y.; Janna, C.; Gong, X.; Yu, J.; Teatini, P.</p> <p>2017-12-01</p> <p>Earth fissures accompanying anthropogenic land subsidence due to overly aquifer exploitation create significant geohazards in China. In the framework of an efficient and safe management of groundwater, numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because, due to compatibility conditions, they cannot be effectively applied in discontinuous mechanics. We present an innovative modelling approach for the simulation of fissure development. Firstly, a regional 3D groundwater model is calibrated on available piezometric records; secondly, the regional outcome is used to define the boundary conditions of a local 3D groundwater model developed at the fissure scale and implementing a refined discretization of the local hydrogeologic setting; finally, the pressure change are used as forcing factor in a local 3D geomechanical model, which combines Finite Elements and Interface Elements to simulate the deformation of the continuous aquifer system and the generation and sliding/opening of earth fissures The approach has been applied to simulate the earth fissure at Guangming Village in Wuxi, China with land subsidence of more than 1 m caused by the overexploitation of the second confined aquifer. The first earth fissure was observed in 1998. It developed fast from 1998 to 2007. The domain addressed by the local simulations is 2 km wide and 5 km long. The thickness of the aquifer system ranges from 0 m, in the proximity of a mountain ridge southward, to 210 m northward and includes a phreatic aquifer, the first and second confined aquifers, and four aquitards. The simulations spanned the period from 1980, i.e. before the inception of large groundwater withdrawals, to 2015. The modelling results highlight that the earth fissures at Guangming Village have been caused by tension and shear, which developed from the land surface downward. The main factors contributing to fissure generation include the shallow bedrock with a sharp ridge, the asymmetric shape of ridge, the uneven thickness of the sedimentary deposits at the west and east side of the buried ridge together with a different pressure change that have been responsible for differential land subsidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AIPC..361..365B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AIPC..361..365B"><span>The Van Sant AVHRR image projected onto a rhombicosidodecahedron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baron, Michael; Morain, Stan</p> <p>1996-03-01</p> <p>IDEATION, a design and development corporation, Santa Fe, New Mexico, has modeled Tom Van Sant's ``The Earth From Space'' image to a rhombicosidodecahedron. ``The Earth from Space'' image, produced by the Geosphere® Project in Santa Monica, California, was developed from hundreds of AVHRR pictures and published as a Mercator projection. IDEATION, utilizing a digitized Robinson Projection, fitted the image to foldable, paper components which, when interconnected by means of a unique tabular system, results in a rhombicosidodecahedron representation of the Earth exposing 30 square, 20 triangular, and 12 pentagonal faces. Because the resulting model is not spherical, the borders of the represented features were rectified to match the intersecting planes of the model's faces. The resulting product will be licensed and commercially produced for use by elementary and secondary students. Market research indicates the model will be used in both the demonstration of geometric principles and the teaching of fundamental spatial relations of the Earth's lands and oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...767...54I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...767...54I"><span>A Compound Model for the Origin of Earth's Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Izidoro, A.; de Souza Torres, K.; Winter, O. C.; Haghighipour, N.</p> <p>2013-04-01</p> <p>One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22167404-compound-model-origin-earth-water','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22167404-compound-model-origin-earth-water"><span>A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Izidoro, A.; Winter, O. C.; De Souza Torres, K.</p> <p>2013-04-10</p> <p>One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In viewmore » of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11D..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11D..08K"><span>Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.</p> <p>2017-12-01</p> <p>Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED23C0727C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED23C0727C"><span>Exploring the Earth System through online interactive models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coogan, L. A.</p> <p>2013-12-01</p> <p>Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that the student answers and immediately gets feedback whether the answer is correct or not. This way the students can ensure they understand the concepts before moving on. A discussion forum for the students to discuss the topics is in development and each page has a feedback option to allow both numerical (1-10) and written feedback on how useful the webpage was. By the end of exploring any given process students are expected to understand how the different parameters explored by the model interact to control the results. They should appreciate why the controlling equations look the way they do (all equations needed to develop the models are present in the introduction) and how these interact to control the results. While this is no substitute to students undertaking the calculations for themselves this approach allows a much wider range of topics to be explored quantitatively than if the students have to code all models themselves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100040473','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100040473"><span>Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.</p> <p>2010-01-01</p> <p>A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22039077-notion-well-defined-tectonic-regimes-terrestrial-planets-solar-system-others','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22039077-notion-well-defined-tectonic-regimes-terrestrial-planets-solar-system-others"><span>ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com</p> <p>2012-08-20</p> <p>A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC22D..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC22D..07G"><span>Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.</p> <p>2015-12-01</p> <p>Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003054"><span>Method and apparatus for autonomous, in-receiver prediction of GNSS ephemerides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor)</p> <p>2012-01-01</p> <p>Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquisition of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parameterized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H14F..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H14F..04R"><span>What Do We Mean By Sensitivity Analysis? The Need For A Comprehensive Characterization Of Sensitivity In Earth System Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Razavi, S.; Gupta, H. V.</p> <p>2014-12-01</p> <p>Sensitivity analysis (SA) is an important paradigm in the context of Earth System model development and application, and provides a powerful tool that serves several essential functions in modelling practice, including 1) Uncertainty Apportionment - attribution of total uncertainty to different uncertainty sources, 2) Assessment of Similarity - diagnostic testing and evaluation of similarities between the functioning of the model and the real system, 3) Factor and Model Reduction - identification of non-influential factors and/or insensitive components of model structure, and 4) Factor Interdependence - investigation of the nature and strength of interactions between the factors, and the degree to which factors intensify, cancel, or compensate for the effects of each other. A variety of sensitivity analysis approaches have been proposed, each of which formally characterizes a different "intuitive" understanding of what is meant by the "sensitivity" of one or more model responses to its dependent factors (such as model parameters or forcings). These approaches are based on different philosophies and theoretical definitions of sensitivity, and range from simple local derivatives and one-factor-at-a-time procedures to rigorous variance-based (Sobol-type) approaches. In general, each approach focuses on, and identifies, different features and properties of the model response and may therefore lead to different (even conflicting) conclusions about the underlying sensitivity. This presentation revisits the theoretical basis for sensitivity analysis, and critically evaluates existing approaches so as to demonstrate their flaws and shortcomings. With this background, we discuss several important properties of response surfaces that are associated with the understanding and interpretation of sensitivity. Finally, a new approach towards global sensitivity assessment is developed that is consistent with important properties of Earth System model response surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29564865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29564865"><span>Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Higgins, Laura M; Ganapathy, Vidya; Kantamneni, Harini; Zhao, Xinyu; Sheng, Yang; Tan, Mei-Chee; Roth, Charles M; Riman, Richard E; Moghe, Prabhas V; Pierce, Mark C</p> <p>2018-03-01</p> <p>Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412396S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412396S"><span>Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.</p> <p>2017-12-01</p> <p>Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMetR..31..633C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMetR..31..633C"><span>An overview of mineral dust modeling over East Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Siyu; Huang, Jianping; Qian, Yun; Zhao, Chun; Kang, Litai; Yang, Ben; Wang, Yong; Liu, Yuzhi; Yuan, Tiangang; Wang, Tianhe; Ma, Xiaojun; Zhang, Guolong</p> <p>2017-08-01</p> <p>East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008217"><span>Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Putman, William M.</p> <p>2010-01-01</p> <p>NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070005032','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070005032"><span>Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Righter, Kevin</p> <p>2007-01-01</p> <p>A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013205','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013205"><span>Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)</p> <p>2016-01-01</p> <p>Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870033369&hterms=Iron+deficiency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DIron%2Bdeficiency','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870033369&hterms=Iron+deficiency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DIron%2Bdeficiency"><span>Moon origin - The impact-trigger hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartmann, William K.</p> <p>1986-01-01</p> <p>Arguments in favor of the impact-trigger model of lunar origin are presented. Lunar properties favoring this hypothesis include: (1) lunar iron and volatile deficiency; (2) angular momentum of the earth-moon system; and (3) similar O isotopes, bulk iron contents, and densities of earth's mantle and the moon. It is shown that the intense early bombardment averaged during earth's formation was several billion times the present meteoritic mass flux, consistent with a giant impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130001833&hterms=human+communication&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhuman%2Bcommunication','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130001833&hterms=human+communication&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhuman%2Bcommunication"><span>Architecting the Human Space Flight Program with Systems Modeling Language (SysML)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, Maddalena M.; Fernandez, Michela Munoz; McVittie, Thomas I.; Sindiy, Oleg V.</p> <p>2012-01-01</p> <p>The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007976','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007976"><span>HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.</p> <p>2014-01-01</p> <p>We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=volcano&pg=2&id=EJ661813','ERIC'); return false;" href="https://eric.ed.gov/?q=volcano&pg=2&id=EJ661813"><span>Modeling Olympus Mons from the Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lebofsky, Nancy R.; Lebofsky, Larry A.</p> <p>2002-01-01</p> <p>Presents a science activity using cubes for constructing the "Olympus Mons" model, the largest known volcano in the solar system. Uses the Catalina Mountains as a real-life comparison and builds a scale-proportionate model. (YDS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1535G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1535G"><span>A Comparison of Peak Electric Fields and GICs in the Pacific Northwest Using 1-D and 3-D Conductivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gannon, J. L.; Birchfield, A. B.; Shetye, K. S.; Overbye, T. J.</p> <p>2017-11-01</p> <p>Geomagnetically induced currents (GICs) are a result of the changing magnetic fields during a geomagnetic disturbance interacting with the deep conductivity structures of the Earth. When assessing GIC hazard, it is a common practice to use layer-cake or one-dimensional conductivity models to approximate deep Earth conductivity. In this paper, we calculate the electric field and estimate GICs induced in the long lines of a realistic system model of the Pacific Northwest, using the traditional 1-D models, as well as 3-D models represented by Earthscope's Electromagnetic transfer functions. The results show that the peak electric field during a given event has considerable variation across the analysis region in the Pacific Northwest, but the 1-D physiographic approximations may accurately represent the average response of an area, although corrections are needed. Rotations caused by real deep Earth conductivity structures greatly affect the direction of the induced electric field. This effect may be just as, or more, important than peak intensity when estimating GICs induced in long bulk power system lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP42B..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP42B..03G"><span>Simulation of Glacial Cycles Before and After the Mid-Pleistocene Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganopolski, A.; Willeit, M.; Calov, R.</p> <p>2017-12-01</p> <p>In spite of significant progress achieved in understanding of glacial cycles, the cause of Mid-Pleistocene transition (MPT) is still not fully understood. To study possible mechanisms of the MPT we used the Earth system model of intermediate complexity CLIMBER-2 which incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry. We run the model through the entire Quaternary. The only prescribed forcing in these simulations is variations in Earth orbital parameters. In addition we prescribed gradually evolving in time terrestrial sediment cover and global volcanic outgassing. We found that gradual removal of terrestrial sediment from the Northern Hemisphere continent by glacial processes is sufficient to explain transition from 40-ka to 100-ka worlds around 1 million years ago. By starting the model at different times and using the same initial conditions we found that modeling results converge to the same solution which depends only on the orbital forcing and lower boundary conditions. Our results thus strongly suggest that Quaternary glacial cycles are externally forced and nearly deterministic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN51A0002R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN51A0002R"><span>Development of the AuScope Australian Earth Observing System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rawling, T.</p> <p>2017-12-01</p> <p>Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED44A..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED44A..03F"><span>Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.</p> <p>2007-12-01</p> <p>The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H"><span>Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, M.</p> <p>2016-12-01</p> <p>Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011217"><span>NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behnke, Jeanne; Ramapriyan, H. K. " Rama"</p> <p>2016-01-01</p> <p>NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7670L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7670L"><span>Modeling change from large-scale high-dimensional spatio-temporal array data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Meng; Pebesma, Edzer</p> <p>2014-05-01</p> <p>The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.G31C0817M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.G31C0817M"><span>Gravity Field Changes due to Long-Term Sea Level Changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.</p> <p>2004-12-01</p> <p>Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED31E..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED31E..06F"><span>Teaching programming and modelling skills to first-year earth & environmental science undergraduates: outcomes and lessons learned from a pilot project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, J. A.; Brewer, C.; O'Brien, G.</p> <p>2017-12-01</p> <p>Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings will be discussed, along with lessons learned in the process and plans for the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.5077E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.5077E"><span>An ontology for component-based models of water resource systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elag, Mostafa; Goodall, Jonathan L.</p> <p>2013-08-01</p> <p>Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP31C1333S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP31C1333S"><span>Geomanetically Induced Currents (GIC) calculation, impact assessment on transmission system and validation using 3-D earth conductivity tensors and GIC measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, R.; McCalley, J. D.</p> <p>2016-12-01</p> <p>Geomagnetic disturbance (GMD) causes the flow of geomagnetically induced currents (GIC) in the power transmission system that may cause large scale power outages and power system equipment damage. In order to plan for defense against GMD, it is necessary to accurately estimate the flow of GICs in the power transmission system. The current calculation as per NERC standards uses the 1-D earth conductivity models that don't reflect the coupling between the geoelectric and geomagnetic field components in the same direction. For accurate estimation of GICs, it is important to have spatially granular 3-D earth conductivity tensors, accurate DC network model of the transmission system and precisely estimated or measured input in the form of geomagnetic or geoelectric field data. Using these models and data the pre event, post event and online planning and assessment can be performed. The pre, post and online planning can be done by calculating GIC, analyzing voltage stability margin, identifying protection system vulnerabilities and estimating heating in transmission equipment. In order to perform the above mentioned tasks, an established GIC calculation and analysis procedure is needed that uses improved geophysical and DC network models obtained by model parameter tuning. The issue is addressed by performing the following tasks; 1) Geomagnetic field data and improved 3-D earth conductivity tensors are used to plot the geoelectric field map of a given area. The obtained geoelectric field map then serves as an input to the PSS/E platform, where through DC circuit analysis the GIC flows are calculated. 2) The computed GIC is evaluated against GIC measurements in order to fine tune the geophysical and DC network model parameters for any mismatch in the calculated and measured GIC. 3) The GIC calculation procedure is then adapted for a one in 100 year storm, in order to assess the impact of the worst case GMD on the power system. 4) Using the transformer models, the voltage stability margin would be analyzed for various real and synthetic geomagnetic or geoelectric field inputs, by calculating the reactive power absorbed by the transformers during an event. All four steps will help the electric utilities and planners to make use of better and accurate estimation techniques for GIC calculation, and impact assessment for future GMD events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43C0287C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43C0287C"><span>The Simulated Impact of Dimethyl Sulfide Emissions on the Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cameron-Smith, P. J.; Elliott, S.; Shrivastava, M. B.; Burrows, S. M.; Maltrud, M. E.; Lucas, D. D.; Ghan, S.</p> <p>2015-12-01</p> <p>Dimethyl sulfide (DMS) is one of many biologically derived gases and particles emitted from the ocean that has the potential to affect climate. In the case of DMS it is oxidized to sulfate, which increases the aerosol loading in the atmosphere either through nucleation or condensation on other aerosols, which in turn changes the energy balance of the Earth by reflection of sunlight either through direct reflection by the aerosols or by modifying clouds. We have previously shown that the geographical distribution of DMS emission from the ocean may be quite sensitive to climate changes, especially in the Southern Ocean. Our state-of-the-art sulfur-cycle Earth system model (ESM), based on the Community Earth System Model (CESM) climate model, includes an ocean sulfur ecosystem model, the oxidation of DMS to sulfate by atmospheric chemistry, and the indirect effect of sulfate on radiation via clouds using the Modal Aerosol Model (MAM). Our multi-decadal simulations calculate the impact of DMS on the energy balance and climate of the Earth system, and its sensitivity/feedback to climate change. The estimate from our simulations is that DMS is responsible for ~6 W/m2 of reflected sunlight in the pre-industrial era (globally averaged), and ~4 W/m2 in the present era. The reduction is caused by increased competition with cloud condensation nuclei from anthropogenic aerosols in the present era, and therefore partially offsets the cooling from the anthropogenic aerosols. The distribution of these effects are not uniform, and doesn't necessarily follow the simulated DMS distribution, because some clouds are more sensitive to DMS derived sulfate than others, and there are surface feedbacks such as the ice-albedo feedback. Although our calculated impact of DMS is higher than some previous studies, it is not much higher than recent observational estimates (McCoy, et al., 2015). We are now porting these capabilities to the US Department of Energy's Accelerated Climate Modeling for Energy (ACME) model. This work was conducted by the ACME and SciDAC programs of the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing Research of the U.S. Department of Energy. Prepared by LLNL under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B11B0482C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B11B0482C"><span>The Impact of the Ocean Sulfur Cycle on Climate using the Community Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cameron-Smith, P. J.; Elliott, S. M.; Bergmann, D. J.; Branstetter, M. L.; Chuang, C.; Erickson, D. J.; Jacob, R. L.; Maltrud, M. E.; Mirin, A. A.</p> <p>2011-12-01</p> <p>Chemical cycling between the various Earth system components (atmosphere, biosphere, land, ocean, and sea-ice) can cause positive and negative feedbacks on the climate system. The long-standing CLAW/GAIA hypothesis proposed that global warming might stimulate increased production of dimethyl sulfide (DMS) by plankton in the ocean, which would then provide a negative climate feedback through atmospheric oxidation of the DMS to sulfate aerosols that reflect sunlight directly, and indirectly by affecting clouds. Our state-of-the-art earth system model (CESM with an ocean sulfur cycle and atmospheric chemistry) shows increased production of DMS over the 20th century by plankton, particularly in the Southern Ocean and Equatorial Pacific, which leads to modest cooling from direct reflection of sunlight in those regions. This suggests the possibility of local climate change mitigation by the plankton species that produce DMS. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960027030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960027030"><span>Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. Volume 1; Overviews (subsystem 0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Cess, Robert D.; Charlock, Thomas P.; Coakley, James A.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis</p> <p>1995-01-01</p> <p>The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM32A..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM32A..01K"><span>Data-driven Applications for the Sun-Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kondrashov, D. A.</p> <p>2016-12-01</p> <p>Advances in observational and data mining techniques allow extracting information from the large volume of Sun-Earth observational data that can be assimilated into first principles physical models. However, equations governing Sun-Earth phenomena are typically nonlinear, complex, and high-dimensional. The high computational demand of solving the full governing equations over a large range of scales precludes the use of a variety of useful assimilative tools that rely on applied mathematical and statistical techniques for quantifying uncertainty and predictability. Effective use of such tools requires the development of computationally efficient methods to facilitate fusion of data with models. This presentation will provide an overview of various existing as well as newly developed data-driven techniques adopted from atmospheric and oceanic sciences that proved to be useful for space physics applications, such as computationally efficient implementation of Kalman Filter in radiation belts modeling, solar wind gap-filling by Singular Spectrum Analysis, and low-rank procedure for assimilation of low-altitude ionospheric magnetic perturbations into the Lyon-Fedder-Mobarry (LFM) global magnetospheric model. Reduced-order non-Markovian inverse modeling and novel data-adaptive decompositions of Sun-Earth datasets will be also demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G43C..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G43C..07T"><span>The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, T. B.; Meade, B. J.</p> <p>2017-12-01</p> <p>While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN44A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN44A..07H"><span>Information Requirements for Integrating Spatially Discrete, Feature-Based Earth Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Hsu, L.; Song, L.; Zaslavsky, I.; Valentine, D. L.</p> <p>2014-12-01</p> <p>Several cyberinfrastructures have emerged for sharing observational data collected at densely sampled and/or highly instrumented field sites. These include the CUAHSI Hydrologic Information System (HIS), the Critical Zone Observatory Integrated Data Management System (CZOData), the Integrated Earth Data Applications (IEDA) and EarthChem system, and the Integrated Ocean Observing System (IOOS). These systems rely on standard data encodings and, in some cases, standard semantics for classes of geoscience data. Their focus is on sharing data on the Internet via web services in domain specific encodings or markup languages. While they have made progress in making data available, it still takes investigators significant effort to discover and access datasets from multiple repositories because of inconsistencies in the way domain systems describe, encode, and share data. Yet, there are many scenarios that require efficient integration of these data types across different domains. For example, understanding a soil profile's geochemical response to extreme weather events requires integration of hydrologic and atmospheric time series with geochemical data from soil samples collected over various depth intervals from soil cores or pits at different positions on a landscape. Integrated access to and analysis of data for such studies are hindered because common characteristics of data, including time, location, provenance, methods, and units are described differently within different systems. Integration requires syntactic and semantic translations that can be manual, error-prone, and lossy. We report information requirements identified as part of our work to define an information model for a broad class of earth science data - i.e., spatially-discrete, feature-based earth observations resulting from in-situ sensors and environmental samples. We sought to answer the question: "What information must accompany observational data for them to be archivable and discoverable within a publication system as well as interpretable once retrieved from such a system for analysis and (re)use?" We also describe development of multiple functional schemas (i.e., physical implementations for data storage, transfer, and archival) for the information model that capture the requirements reported here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18259455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18259455"><span>Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arnon, S; Rotman, S; Kopeika, N S</p> <p>1997-08-20</p> <p>The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1341585','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1341585"><span>Integrated Earth System Model (iESM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying</p> <p>2016-12-02</p> <p>The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060012305&hterms=service+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dservice%2Bprocesses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060012305&hterms=service+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dservice%2Bprocesses"><span>NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leptoukh, Gregory</p> <p>2006-01-01</p> <p>The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H51L..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H51L..04P"><span>High Performance Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System at NASA/GSFC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.</p> <p>2008-12-01</p> <p>The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, land data assimilation and parameter estimation will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0364/pdf/OF03-364.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0364/pdf/OF03-364.pdf"><span>Cx-02 Program, workshop on modeling complex systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.</p> <p>2003-01-01</p> <p>This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGeod..92....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGeod..92....1M"><span>Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek</p> <p>2018-01-01</p> <p>The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26607544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26607544"><span>Collisionless encounters and the origin of the lunar inclination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pahlevan, Kaveh; Morbidelli, Alessandro</p> <p>2015-11-26</p> <p>The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EOSTr..91..281W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EOSTr..91..281W"><span>Research and Teaching About the Deep Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Michael L.; Mogk, David W.; McDaris, John</p> <p>2010-08-01</p> <p>Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237012"><span>On-Board Propulsion System Analysis of High Density Propellants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schneider, Steven J.</p> <p>1998-01-01</p> <p>The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AEdRv...6b..54P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AEdRv...6b..54P"><span>Modeling the Round Earth through Diagrams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padalkar, Shamin; Ramadas, Jayashree</p> <p></p> <p>Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1330744','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1330744"><span>Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maslowski, Wieslaw</p> <p></p> <p>This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate throughmore » polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920002366','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920002366"><span>LAGEOS geodetic analysis-SL7.1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, D. E.; Kolenkiewicz, R.; Dunn, P. J.; Klosko, S. M.; Robbins, J. W.; Torrence, M. H.; Williamson, R. G.; Pavlis, E. C.; Douglas, N. B.; Fricke, S. K.</p> <p>1991-01-01</p> <p>Laser ranging measurements to the LAGEOS satellite from 1976 through 1989 are related via geodetic and orbital theories to a variety of geodetic and geodynamic parameters. The SL7.1 analyses are explained of this data set including the estimation process for geodetic parameters such as Earth's gravitational constant (GM), those describing the Earth's elasticity properties (Love numbers), and the temporally varying geodetic parameters such as Earth's orientation (polar motion and Delta UT1) and tracking site horizontal tectonic motions. Descriptions of the reference systems, tectonic models, and adopted geodetic constants are provided; these are the framework within which the SL7.1 solution takes place. Estimates of temporal variations in non-conservative force parameters are included in these SL7.1 analyses as well as parameters describing the orbital states at monthly epochs. This information is useful in further refining models used to describe close-Earth satellite behavior. Estimates of intersite motions and individual tracking site motions computed through the network adjustment scheme are given. Tabulations of tracking site eccentricities, data summaries, estimated monthly orbital and force model parameters, polar motion, Earth rotation, and tracking station coordinate results are also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27799656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27799656"><span>Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ćuk, Matija; Hamilton, Douglas P; Lock, Simon J; Stewart, Sarah T</p> <p>2016-11-17</p> <p>In the giant-impact hypothesis for lunar origin, the Moon accreted from an equatorial circum-terrestrial disk; however, the current lunar orbital inclination of five degrees requires a subsequent dynamical process that is still unclear. In addition, the giant-impact theory has been challenged by the Moon's unexpectedly Earth-like isotopic composition. Here we show that tidal dissipation due to lunar obliquity was an important effect during the Moon's tidal evolution, and the lunar inclination in the past must have been very large, defying theoretical explanations. We present a tidal evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modelling, we show that the solar perturbations on the Moon's orbit naturally induce a large lunar inclination and remove angular momentum from the Earth-Moon system. Our tidal evolution model supports recent high-angular-momentum, giant-impact scenarios to explain the Moon's isotopic composition and provides a new pathway to reach Earth's climatically favourable low obliquity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070013784&hterms=management+projects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmanagement%2Bprojects','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070013784&hterms=management+projects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmanagement%2Bprojects"><span>Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.</p> <p>2006-01-01</p> <p>NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060004756','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060004756"><span>GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duvall, Aleta; Justus, C. G.; Keller, Vernon W.</p> <p>2005-01-01</p> <p>Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020069014','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020069014"><span>Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)</p> <p>2002-01-01</p> <p>One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860012088','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860012088"><span>Graphical techniques to assist in pointing and control studies of orbiting spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howell, L. W.; Ruf, J. H.</p> <p>1986-01-01</p> <p>Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>