Sample records for earth observation imagery

  1. An Evolving Model for Capacity Building with Earth Observation Imagery

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  2. NASA Earth Observations (NEO): Data Imagery for Education and Visualization

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2008-12-01

    NASA Earth Observations (NEO) has dramatically simplified public access to georeferenced imagery of NASA remote sensing data. NEO targets the non-traditional data users who are currently underserved by functionality and formats available from the existing data ordering systems. These users include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists. NEO currently serves imagery from 45 different datasets with daily, weekly, and/or monthly temporal resolutions, with more datasets currently under development. The imagery from these datasets is produced in coordination with several data partners who are affiliated either with the instrument science teams or with the respective data processing center. NEO is a system of three components -- website, WMS (Web Mapping Service), and ftp archive -- which together are able to meet the wide-ranging needs of our users. Some of these needs include the ability to: view and manipulate imagery using the NEO website -- e.g., applying color palettes, resizing, exporting to a variety of formats including PNG, JPEG, KMZ (Google Earth), GeoTIFF; access the NEO collection via a standards-based API (WMS); and create customized exports for select users (ftp archive) such as Science on a Sphere, NASA's Earth Observatory, and others.

  3. Google Haul Out: Earth Observation Imagery and Digital Aerial Surveys in Coastal Wildlife Management and Abundance Estimation

    PubMed Central

    Moxley, Jerry H.; Bogomolni, Andrea; Hammill, Mike O.; Moore, Kathleen M. T.; Polito, Michael J.; Sette, Lisa; Sharp, W. Brian; Waring, Gordon T.; Gilbert, James R.; Halpin, Patrick N.; Johnston, David W.

    2017-01-01

    Abstract As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances. PMID:29599542

  4. Google Haul Out: Earth Observation Imagery and Digital Aerial Surveys in Coastal Wildlife Management and Abundance Estimation.

    PubMed

    Moxley, Jerry H; Bogomolni, Andrea; Hammill, Mike O; Moore, Kathleen M T; Polito, Michael J; Sette, Lisa; Sharp, W Brian; Waring, Gordon T; Gilbert, James R; Halpin, Patrick N; Johnston, David W

    2017-08-01

    As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.

  5. The value of earth observations: methods and findings on the value of Landsat imagery

    USGS Publications Warehouse

    Miller, Holly M.; Serbina, Larisa O.; Richardson, Leslie A.; Ryker, Sarah J.; Newman, Timothy R.

    2016-01-01

    Data from Earth observation systems are used extensively in managing and monitoring natural resources, natural hazards, and the impacts of climate change, but the value of such data can be difficult to estimate, particularly when it is available at no cost. Assessing the socioeconomic and scientific value of these data provides a better understanding of the existing and emerging research, science, and applications related to this information and contributes to the decision making process regarding current and future Earth observation systems. Recent USGS research on Landsat data has advanced the literature in this area by using a variety of methods to estimate value. The results of a 2012 survey of Landsat users, a 2013 requirements assessment, and 2013 case studies of applications of Landsat imagery are discussed.

  6. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  7. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  8. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  9. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  10. NASA's Earth Imagery Service as Open Source Software

    NASA Astrophysics Data System (ADS)

    De Cesare, C.; Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J.; Cechini, M. F.; Boller, R. A.; Baynes, K.

    2016-12-01

    The NASA Global Imagery Browse Service (GIBS) is a software system that provides access to an archive of historical and near-real-time Earth imagery from NASA-supported satellite instruments. The imagery itself is open data, and is accessible via standards such as the Open Geospatial Consortium (OGC)'s Web Map Tile Service (WMTS) protocol. GIBS includes three core software projects: The Imagery Exchange (TIE), OnEarth, and the Meta Raster Format (MRF) project. These projects are developed using a variety of open source software, including: Apache HTTPD, GDAL, Mapserver, Grails, Zookeeper, Eclipse, Maven, git, and Apache Commons. TIE has recently been released for open source, and is now available on GitHub. OnEarth, MRF, and their sub-projects have been on GitHub since 2014, and the MRF project in particular receives many external contributions from the community. Our software has been successful beyond the scope of GIBS: the PO.DAAC State of the Ocean and COVERAGE visualization projects reuse components from OnEarth. The MRF source code has recently been incorporated into GDAL, which is a core library in many widely-used GIS software such as QGIS and GeoServer. This presentation will describe the challenges faced in incorporating open software and open data into GIBS, and also showcase GIBS as a platform on which scientists and the general public can build their own applications.

  11. "New Space Explosion" and Earth Observing System Capabilities

    NASA Astrophysics Data System (ADS)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  12. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  13. Visualizing Moon Data and Imagery with Google Earth

    NASA Astrophysics Data System (ADS)

    Weiss-Malik, M.; Scharff, T.; Nefian, A.; Moratto, Z.; Kolb, E.; Lundy, M.; Hancher, M.; Gorelick, N.; Broxton, M.; Beyer, R. A.

    2009-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Moon Web site was a limited series of maps and Apollo content. The new Moon in Google Earth feature provides a similar virtual planet experience for the Moon as we have for the Earth and Mars. We incorporated existing Clementine and Lunar Orbiter imagery for the basemaps and a combination of Kaguya LALT topography and some terrain created from Apollo Metric and Panoramic images. We also have information about the Apollo landings and other robotic landers on the surface, as well as historic maps and charts, and guided tours. Some of the first-released LROC imagery of the Apollo landing sites has been put in place, and we look forward to incorporating more data as it is released from LRO, Chandraayan-1, and Kaguya. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections — in geological context and within a single user interface — are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers. Screen shot of Moon in Google Earth, a freely downloadable application for

  14. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  15. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  16. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  17. Visualizing Mars data and imagery with Google Earth

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Broxton, M.; Gorelick, N.; Hancher, M.; Lundy, M.; Kolb, E.; Moratto, Z.; Nefian, A.; Scharff, T.; Weiss-Malik, M.

    2009-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Mars Web site allowed users to view base maps of Mars via the Web, but it did not have the full features of the 3D Google Earth client. We have previously demonstrated the use of Google Earth to display Mars imagery, but now with the launch of Mars in Google Earth, there is a base set of Mars data available for anyone to work from and add to. There are a variety of global maps to choose from and display. The Terrain layer has the MOLA gridded data topography, and where available, HRSC terrain models are mosaicked into the topography. In some locations there is also meter-scale terrain derived from HiRISE stereo imagery. There is rich information in the form of the IAU nomenclature database, data for the rovers and landers on the surface, and a Spacecraft Imagery layer which contains the image outlines for all HiRISE, CTX, CRISM, HRSC, and MOC image data released to the PDS and links back to their science data. There are also features like the Traveler's Guide to Mars, Historic Maps, Guided Tours, as well as the 'Live from Mars' feature, which shows the orbital tracks of both the Mars Odyssey and Mars Reconnaissance Orbiter for a few days in the recent past. It shows where they have acquired imagery, and also some preview image data. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections

  18. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  19. Evaluation of Skylab earth laser beacon imagery. [spaceborne photography

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.

    1975-01-01

    During the Skylab 3 and 4 missions the Skylab spacecraft was illuminated by a low power argon ion and dye laser. The earth laser beacon was studied visually by the astronauts. In addition, they collected 35 mm hand-held color photographs of the beacons. Photographs are shown that were obtained on Skylab 3 and Skylab 4. The imagery collected during the Skylab mission was analyzed to evaluate the utility of beacon lasers as terrestial 'artificial stars' for space navigation. The analyses of the imagery revealed two unusual features of the earth laser beacon: (1) The beacon, even though of a low power (approximately 1 watt), is considerably brighter than any other terrain feature and is readily visible on imagery at a distance in excess of 1500 km (900 miles). (2) Another feature of the beacon is its large size. The typical beacon extends over about 5 resolution areas with a characteristic dimension of about 200 m.

  20. Role of light satellites in the high-resolution Earth observation domain

    NASA Astrophysics Data System (ADS)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  1. Observations of the earth using nighttime visible imagery

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1983-01-01

    The earth as viewed from space in visible light at night reveals some features not easily discernible during the day such as aurora, forest fires, city lights and gas flares. In addition, those features having a high albedo such as snow and ice can be identified on many moonlit nights nearly as well as they can in sunlight. The Air Force DMSP satellites have been operating in the visible wavelengths at night since the mid 1960s. Most all other satellites having optical sensors are incapable of imaging at night. Imaging systems having improved light sensitivity in the visible portion of the spectrum should be considered when planning future earth resources satellite missions in order to utilize nighttime as well as daytime visual observations.

  2. The Functional Equivalence between Movement Imagery, Observation, and Execution Influences Imagery Ability

    ERIC Educational Resources Information Center

    Williams, Sarah E.; Cumming, Jennifer; Edwards, Martin G.

    2011-01-01

    Based on literature identifying movement imagery, observation, and execution to elicit similar areas of neural activity, research has demonstrated that movement imagery and observation successfully prime movement execution. To investigate whether movement and observation could prime ease of imaging from an external visual-imagery perspective, an…

  3. NASA's Earth Observations Program: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    A presentation will be given at the Annual National Awards and President's Invited Lecture. The event is sponsored by the Associated Scientific and Technical Societies, an organization which serves the interests of 40,000 scientists and engineers all over South Africa. A general presentation will be given on the topic of NASA's Earth Observation Program and will be supplemented with visualizations using the NASA/NOAA Earth Science Electronic theater. Included will be space observations with an eye on southern Africa, including Etosha National Park, Namibia, Okavanga Delta, Botswana, Victoria Falls, Zimbabwe, and Cape Town, the Highveld around Johannesburg, Blyde River Canyon, and the Lowveld of Kruger National Park in South Africa; also included will be some AVHRR imagery of fire occurrence during the dry season, mostly the Miombo woodland of Zambia, Angola, Malawi, and northern Mozambique, supplemented with SeaWiFS imagery for VI, aerosols, clouds, AVHRR fire time series, Landsat TM (and possibly ETM+, if available), and other global data sets. Would also like to include some Terra animations from SVS, including perhaps the launch sequence. The presentation would conclude with some of the ER-2 MAS imagery from Brazil that highlights the capability that we plan to bring to Africa in August 2000.

  4. Earth Observation

    NASA Image and Video Library

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  5. Results of 17 Independent Geopositional Accuracy Assessments of Earth Satellite Corporation's GeoCover Landsat Thematic Mapper Imagery. Geopositional Accuracy Validation of Orthorectified Landsat TM Imagery: Northeast Asia

    NASA Technical Reports Server (NTRS)

    Smith, Charles M.

    2003-01-01

    This report provides results of an independent assessment of the geopositional accuracy of the Earth Satellite (EarthSat) Corporation's GeoCover, Orthorectified Landsat Thematic Mapper (TM) imagery over Northeast Asia. This imagery was purchased through NASA's Earth Science Enterprise (ESE) Scientific Data Purchase (SDP) program.

  6. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2017-12-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  7. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.; hide

    2017-01-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  8. Earth observations during Space Shuttle flight STS-35 - Columbia's Mission to Planet Earth, December 2-10, 1990

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Evans, Cynthia A.; Helfert, Michael R.; Brand, Vance D.; Gardner, Guy S.; Lounge, John M.; Hoffman, Jeffery A.; Parker, Robert A.; Durrance, Samuel T.; Parise, Ronald A.

    1991-01-01

    Some of the most significant earth-viewing imagery obtained during Space Shuttle Columbia's flight STS-35, December 2-10, 1990, is reviewed with emphasis on observations of the Southern Hemisphere. In particular, attention is given to environmental observations in areas of Madagascar, Brazil, and Persian Gulf; observation of land resources (Namibia, offshore Australia); and observations of ocean islands (Phillipines, Indonesia, and Reunion). Some of the photographs are included.

  9. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  10. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  11. Environmental Remote Sensing Analysis Using Open Source Virtual Earths and Public Domain Imagery

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Worthy, L. D.

    2008-12-01

    Human activities increasingly impact natural environments. Globally, many ecosystems are stressed to unhealthy limits, leading to loss of valuable ecosystem services- economic, ecologic and intrinsic. Virtual earths (virtual globes) (e.g., NASA World Wind, ossimPlanet, ArcGIS Explorer, Google Earth, Microsoft Virtual Earth) are geospatial data integration tools that can aid our efforts to understand and protect the environment. Virtual earths provide unprecedented desktop views of our planet, not only to professional scientists, but also to citizen scientists, students, environmental stewards, decision makers, urban developers and planners. Anyone with a broadband internet connection can explore the planet virtually, due in large part to freely available open source software and public domain imagery. This has at least two important potential benefits. One, individuals can study the planet from the visually intuitive perspective of the synoptic aerial view, promoting environmental awareness and stewardship. Two, it opens up the possibility of harnessing the in situ knowledge and observations of citizen scientists familiar with landscape conditions in their locales. Could this collective knowledge be harnessed (crowd sourcing) to validate and quality assure land cover and other maps? In this presentation we present examples using public domain imagery and two open source virtual earths to highlight some of the functionalities currently available. OssimPlanet is used to view aerial data from the USDA Geospatial Data Gateway. NASA World Wind is used to extract georeferenced high resolution USGS urban area orthoimagery. ArcGIS Explorer is used to demonstrate an example of image analysis using web processing services. The research presented here was conducted under the Environmental Feature Finder project of the Environmental Protection Agency's Advanced Monitoring Initiative. Although this work was reviewed by EPA and approved for publication, it may not necessarily

  12. Web Map Apps using NASA's Earth Observing Fleet

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M. M.; King, B. A.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2016-12-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASA's Earth observing fleet. Spanning 15+ years and running through as recently as "a few hours ago", GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development.

  13. Enhancing Earth Observation and Modeling for Tsunami Disaster Response and Management

    NASA Astrophysics Data System (ADS)

    Koshimura, Shunichi; Post, Joachim

    2017-04-01

    In the aftermath of catastrophic natural disasters, such as earthquakes and tsunamis, our society has experienced significant difficulties in assessing disaster impact in the limited amount of time. In recent years, the quality of satellite sensors and access to and use of satellite imagery and services has greatly improved. More and more space agencies have embraced data-sharing policies that facilitate access to archived and up-to-date imagery. Tremendous progress has been achieved through the continuous development of powerful algorithms and software packages to manage and process geospatial data and to disseminate imagery and geospatial datasets in near-real time via geo-web-services, which can be used in disaster-risk management and emergency response efforts. Satellite Earth observations now offer consistent coverage and scope to provide a synoptic overview of large areas, repeated regularly. These can be used to compare risk across different countries, day and night, in all weather conditions, and in trans-boundary areas. On the other hand, with use of modern computing power and advanced sensor networks, the great advances of real-time simulation have been achieved. The data and information derived from satellite Earth observations, integrated with in situ information and simulation modeling provides unique value and the necessary complement to socio-economic data. Emphasis also needs to be placed on ensuring space-based data and information are used in existing and planned national and local disaster risk management systems, together with other data and information sources as a way to strengthen the resilience of communities. Through the case studies of the 2011 Great East Japan earthquake and tsunami disaster, we aim to discuss how earth observations and modeling, in combination with local, in situ data and information sources, can support the decision-making process before, during and after a disaster strikes.

  14. The Earth Observatory Natural Event Tracker (EONET): An API for Matching Natural Events to GIBS Imagery

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2015-12-01

    Hidden within the terabytes of imagery in NASA's Global Imagery Browse Services (GIBS) collection are hundreds of daily natural events. Some events are newsworthy, devastating, and visibly obvious at a global scale, others are merely regional curiosities. Regardless of the scope and significance of any one event, it is likely that multiple GIBS layers can be viewed to provide a multispectral, dataset-based view of the event. To facilitate linking between the discrete event and the representative dataset imagery, NASA's Earth Observatory Group has developed a prototype application programming interface (API): the Earth Observatory Natural Event Tracker (EONET). EONET supports an API model that allows users to retrieve event-specific metadata--date/time, location, and type (wildfire, storm, etc.)--and web service layer-specific metadata which can be used to link to event-relevant dataset imagery in GIBS. GIBS' ability to ingest many near real time datasets, combined with its growing archive of past imagery, means that API users will be able to develop client applications that not only show ongoing events but can also look at imagery from before and after. In our poster, we will present the API and show examples of its use.

  15. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  16. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  17. Earth Resources Technology Satellite. Cumulative non-US standard catalog, 23 July 1972 - 23 July 1973. Volume 1: Observation ID

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A catalog containing data pertaining to the imagery acquired by the Earth Resources Technology Satellite (ERTS) from its date of launch, July 23, 1972 through the first year of activity is presented. The catalog supersedes the previous catalog which supplied data available through May 1973. Two listings of the imagery are included: (1) an observation identifications listing and (2) a listing of the imagery based on geographical location, the coordinate listing.

  18. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  19. Web Map Apps using NASA's Earth Observing Fleet

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M.; hide

    2016-01-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access

  20. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  1. Scalable Earth-observation Analytics for Geoscientists: Spacetime Extensions to the Array Database SciDB

    NASA Astrophysics Data System (ADS)

    Appel, Marius; Lahn, Florian; Pebesma, Edzer; Buytaert, Wouter; Moulds, Simon

    2016-04-01

    Today's amount of freely available data requires scientists to spend large parts of their work on data management. This is especially true in environmental sciences when working with large remote sensing datasets, such as obtained from earth-observation satellites like the Sentinel fleet. Many frameworks like SpatialHadoop or Apache Spark address the scalability but target programmers rather than data analysts, and are not dedicated to imagery or array data. In this work, we use the open-source data management and analytics system SciDB to bring large earth-observation datasets closer to analysts. Its underlying data representation as multidimensional arrays fits naturally to earth-observation datasets, distributes storage and computational load over multiple instances by multidimensional chunking, and also enables efficient time-series based analyses, which is usually difficult using file- or tile-based approaches. Existing interfaces to R and Python furthermore allow for scalable analytics with relatively little learning effort. However, interfacing SciDB and file-based earth-observation datasets that come as tiled temporal snapshots requires a lot of manual bookkeeping during ingestion, and SciDB natively only supports loading data from CSV-like and custom binary formatted files, which currently limits its practical use in earth-observation analytics. To make it easier to work with large multi-temporal datasets in SciDB, we developed software tools that enrich SciDB with earth observation metadata and allow working with commonly used file formats: (i) the SciDB extension library scidb4geo simplifies working with spatiotemporal arrays by adding relevant metadata to the database and (ii) the Geospatial Data Abstraction Library (GDAL) driver implementation scidb4gdal allows to ingest and export remote sensing imagery from and to a large number of file formats. Using added metadata on temporal resolution and coverage, the GDAL driver supports time-based ingestion of

  2. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of

  3. Earth Observations

    NASA Image and Video Library

    2010-09-09

    ISS024-E-014071 (9 Sept. 2010) --- This striking panoramic view of the southwestern USA and Pacific Ocean is an oblique image photographed by an Expedition 24 crew member looking outwards at an angle from the International Space Station (ISS). While most unmanned orbital satellites view Earth from a nadir perspective?in other words, collecting data with a ?straight down? viewing geometry?crew members onboard the space station can acquire imagery at a wide range of viewing angles using handheld digital cameras. The ISS nadir point (the point on Earth?s surface directly below the spacecraft) was located in northwestern Arizona, approximately 260 kilometers to the east-southeast, when this image was taken. The image includes parts of the States of Arizona, Nevada, Utah, and California together with a small segment of the Baja California, Mexico coastline at center left. Several landmarks and physiographic features are readily visible. The Las Vegas, NV metropolitan area appears as a gray region adjacent to the Spring Mountains and Sheep Range (both covered by white clouds). The Grand Canyon, located on the Colorado Plateau in Arizona, is visible (lower left) to the east of Las Vegas with the blue waters of Lake Mead in between. The image also includes the Mojave Desert, stretching north from the Salton Sea (left) to the Sierra Nevada mountain range. The Sierra Nevada range is roughly 640 kilometers long (north-south) and forms the boundary between the Central Valley of California and the adjacent Basin and Range. The Basin and Range is so called due to the pattern of long linear valleys separated by parallel linear mountain ranges ? this landscape, formed by extension and thinning of Earth?s crust, is particularly visible at right.

  4. Earth observation images taken as part of the EarthKAM educational program

    NASA Image and Video Library

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  5. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  6. Transferring Knowledge from a Bird's-Eye View - Earth Observation and Space Travels in Schools

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Voß, Kerstin

    2014-05-01

    In spring 2014, four commercial cameras will be transported by a Dragon spacecraft to the International Space Station (ISS) and mounted to the ESA Columbus laboratory. The cameras will deliver live earth observation data from different angles. The "Columbus-Eye"* project aims at distributing the video and image data produced by those cameras through a web portal. It should primary serve as learning portal for pupils comprising teaching material around the ISS earth observation imagery. The pupils should be motivated to work with the images in order to learn about curriculum relevant topics of natural sciences. The material will be prepared based on the experiences of the FIS* (German abbreviation for "Remote Sensing in Schools") project and its learning portal. Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 5 years since FIS' kickoff. The talk presents the educational valorization of remote sensing data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of remote sensing holds ready for teaching the regular curricula of Geography, Biology, Physics, Math and Informatics. Beside the sequenced implementation into digital and interactive teaching units, examples of a richly illustrated encyclopedia as well as easy-to-use image processing tools are given. The presentation finally addresses the question of how synergies of space travels can be used to enhance the fascination of earth observation imagery in the light of problem-based learning in everyday school lessons.

  7. JEOS. The JANUS earth observation satellite

    NASA Astrophysics Data System (ADS)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  8. NASA Earth Observations (NEO): Data Access for Informal Education and Outreach

    NASA Technical Reports Server (NTRS)

    Ward, Kevin; Herring, David

    2005-01-01

    The NEO (NASA Earth Observations) web space is currently under development with the goal of significantly increasing the demand for NASA remote sensing data while dramatically simplifying public access to georeferenced images. NEO will target the unsophisticated, nontraditional data users who are currently underserved by the existing data ordering systems. These users will include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists and amateur Earth observers. Users will be able to view and manipulate georeferenced browse imagery and, if they desire, download directly or order the source HDF data from the data provider (e.g., NASA DAAC or science team) via a single, integrated interface. NE0 will accomplish this goal by anticipating users expectations and knowledge level, thus providing an interface that presents material to users in a more simplified manner, without relying upon the jargon/technical terminology that make even the identification of the appropriate data set a significant hurdle. NEO will also act as a gateway that manages users expectations by providing specific details about images and data formats, developing tutorials regarding the manipulation of georeferenced imagery and raw data, links to software tools and ensuring that users are able to get the image they want in the format they want as easily as possible.

  9. Observer perspective imagery with stuttering.

    PubMed

    Lowe, Robyn; Menzies, Ross; Packman, Ann; O'Brian, Sue; Onslow, Mark

    2015-01-01

    Adults who stutter are at risk of developing a range of psychological conditions. Social anxiety disorder is the most common anxiety disorder associated with stuttering. Observer perspective imagery is one cognitive process involved in the maintenance of some anxiety disorders. This involves viewing images as if looking at the self from the perspective of another. In contrast, the field perspective involves looking out from the self at the surrounding environment. The purpose of this study was to assess the presence of observer perspective imagery with stuttering. The authors administered the Hackmann, Surawy and Clark (1998) semi-structured interview to 30 adults who stutter and 30 controls. Group images and impressions were compared for frequency, perspective recalled and emotional valence. The stuttering group was significantly more likely than controls to recall images and impressions from an observer rather than a field perspective for anxious situations. It is possible the present results could reflect the same attentional processing bias that occurs with anxiety disorders in the non-stuttering population. These preliminary results provide an explanation for the persistence of conditions such as social anxiety disorder with stuttering. Clinical implications are discussed.

  10. Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping

    NASA Astrophysics Data System (ADS)

    Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard

    2015-05-01

    Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment

  11. Global Imagery Browse Services (GIBS) - Rapidly Serving NASA Imagery for Applications and Science Users

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.

    2012-12-01

    Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a

  12. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  13. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  14. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  15. Exploitation of multi-temporal Earth Observation imagery for monitoring land cover change in mining sites

    NASA Astrophysics Data System (ADS)

    Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.

    2012-04-01

    Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks

  16. Naval EarthMap Observer (NEMO) science and naval products

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.; Kappus, Mary E.; Gao, Bo-Cai; Bissett, W. Paul; Snyder, William A.

    1998-11-01

    A wide variety of applications of imaging spectrometry have been demonstrated using data from aircraft systems. Based on this experience the Navy is pursuing the Hyperspectral Remote Sensing Technology (HRST) Program to use hyperspectral imagery to characterize the littoral environment, for scientific and environmental studies and to meet Naval needs. To obtain the required space based hyperspectral imagery the Navy has joined in a partnership with industry to build and fly the Naval EarthMap Observer (NEMO). The NEMO spacecraft has the Coastal Ocean Imaging Spectrometer (COIS) a hyperspectral imager with adequate spectral and spatial resolution and a high signal-to- noise ratio to provide long term monitoring and real-time characterization of the coastal environment. It includes on- board processing for rapid data analysis and data compression, a large volume recorder, and high speed downlink to handle the required large volumes of data. This paper describes the algorithms for processing the COIS data to provide at-launch ocean data products and the research and modeling that are planned to use COIS data to advance our understanding of the dynamics of the coastal ocean.

  17. Synthetic aperture lidar as a future tool for earth observation

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  18. Earth Observation

    NASA Image and Video Library

    2012-07-10

    ISS032-E-006129 (10 July 2012) --- Flooding in Krymsk in the Krasnodar region of southern Russia is featured in this image photographed by an Expedition 32 crew member on the International Space Station. On the night of July 7, 2012 a major storm dumped more than a foot of water on the southern Russian area of Krasnodar, near the Black Sea. The resulting flood was likened to a tsunami, and to date, more than 170 people died, most from the city of Krymsk. The Moscow times reports that more than 19,000 people lost everything. This image taken by cosmonauts aboard the space station shows the city of Krymsk. The tan-colored areas indicate some of the regions that were flooded; the color is probably due to the mud and debris that were left by the floodwaters. Krymsk is located in the western foothills on the northern slope of the Caucasus Mountains?a range that stretches between the Black Sea and the Caspian Sea. The vast amount of rain quickly overwhelmed the small river channels that flow northward from the mountains to the Russian lowlands and the Kuban River; Krymsk, located on one of those tributaries, was directly in the pathway of the flash flood. As part of the international partner agreement to use the International Space Station to benefit humanity, crew members and other Earth observing instruments provide best-effort support to the International Disaster Charter (IDC) when it is activated by collecting imagery of areas on the ground impacted by natural events such as the flooding in Krymsk. This image was acquired July 10, 2012 in response to the IDC activation.

  19. Earth Observation from the International Space Station -Remote Sensing in Schools-

    NASA Astrophysics Data System (ADS)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  20. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  1. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  2. Citizen Science for Earth Observation: Applications in Environmental Monitoring and Disaster Response

    NASA Astrophysics Data System (ADS)

    Kotovirta, V.; Toivanen, T.; Tergujeff, R.; Hame, T.; Molinier, M.

    2015-04-01

    Citizen science is a promising way to increase temporal and spatial coverages of in-situ data, and to aid in data processing and analysis. In this paper, we present how citizen science can be used together with Earth observation, and demonstrate its value through three pilot projects focusing on forest biomass analysis, data management in emergencies and water quality monitoring. We also provide recommendations and ideas for follow-up activities. In the forest biomass analysis pilot, in the state of Durango (Mexico), local volunteers make in-situ forest inventory measurements with mobile devices. The collected data is combined with Landsat-8 imagery to derive forest biomass map of the area. The study area includes over 390 permanent sampling plots that will provide reference data for concept validation and verification. The emergency data management pilot focuses in the Philippines, in the areas affected by the typhoons Haiyan in November 2013 and Hagupit in December 2014. Data collected by emergency workers and citizens are combined with satellite data (Landsat-8, VHR if available) to intensify the disaster recovery activities and the coordination efforts. Simple processes for citizens, nongovernmental organisations and volunteers are developed to find and utilize up to date and freely available satellite imagery for coordination purposes and for building new not-for-profit services in disaster situations. In the water quality monitoring pilot, citizens around the Baltic Sea area contribute to the algae situation awareness by collecting algae observations using a mobile application. In-situ observations are compared with surface algal bloom products based on the satellite imagery, e.g. Aqua MODIS images with 500 meter resolution. As an outcome, the usability of the citizen observations together with satellite data in the algae monitoring will be evaluated.

  3. Interactively Browsing NASA's EOS Imagery in Full Resolution

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Joshi, T.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.; Murphy, K. J.

    2012-12-01

    Worldview is a new tool designed to interactively browse full-resolution imagery from NASA's fleet of Earth Observing System (EOS) satellites. It is web-based and developed using open standards (JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage, no artificial boundaries, and views in geographic and polar projections. Currently tailored to the near real-time community, Worldview enables the rapid evaluation and comparison of imagery related to such application areas as fires, floods, and air quality. It is supported by the Global Imagery Browse Services (GIBS), a system that continuously ingests, mosaics, and serves approximately 21GB of imagery daily. This imagery spans over 50 data products that are available within three hours of observation from instruments aboard Terra, Aqua, and Aura. The GIBS image archive began in May 2012 and will have published approximately 4.4TB of imagery as of December 2012. Worldview facilitates rapid access to this archive and is supplemented by socioeconomic data layers from the Socioeconomic Data and Applications Center (SEDAC), including products such as population density and economic risk from cyclones. Future plans include the accessibility of additional products that cover the entire Terra/MODIS and Aqua/MODIS missions (>150TB) and the ability to download the underlying science data of the onscreen imagery.

  4. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  5. Naval EarthMap Observer: overview and data processing

    NASA Astrophysics Data System (ADS)

    Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.

    1999-12-01

    We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.

  6. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  7. Earth Observation

    NASA Image and Video Library

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  8. GeoDash: Assisting Visual Image Interpretation in Collect Earth Online by Leveraging Big Data on Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Markert, Kel; Ashmall, William; Johnson, Gary; Saah, David; Mollicone, Danilo; Diaz, Alfonso Sanchez-Paus; Anderson, Eric; Flores, Africa; Griffin, Robert

    2017-01-01

    Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.

  9. GeoDash: Assisting Visual Image Interpretation in Collect Earth Online by Leveraging Big Data on Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Markert, K. N.; Ashmall, W.; Johnson, G.; Saah, D. S.; Anderson, E.; Flores Cordova, A. I.; Díaz, A. S. P.; Mollicone, D.; Griffin, R.

    2017-12-01

    Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.

  10. Earth Observation from the ISS Columbus Laboratory- An Open Education Approach to Foster Geographical Competences of Pupils in Secondary Schools

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Schultz, Johannes; Seig, Fabian; Menz, Gunter

    2016-08-01

    Since spring 2014, four commercial off-the-shelf cam- eras (COTS) are attached to ESA's Columbus laboratory taking videos of the Earth 24/7. The only European partner of the NASA experiment 'High Definition Earth Viewing' (HDEV) is the educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' (www.columbuseye.uni-bonn.de). In order to implement earth observation techniques for a sustainable use in secondary school lessons, the project develops interactive teaching materials. They enable pupils to apply professional remote sensing analyses. The paper explains the development paradigm of the project rooted in problem-based learning and moderate constructivism. It will be discussed how teachers are provided with didactical commentaries and trained in face-to-face workshops for an efficient and sustainable implementation of the material. In doing so, it is ensured that pupils can experience the value of earth observation and space technologies to monitor ongoing processes of coupled human-environment systems driving the future of the Earth.

  11. Earth Observation

    NASA Image and Video Library

    2011-08-02

    ISS028-E-020276 (2 Aug. 2011) --- This photograph of polar mesospheric clouds was acquired at an altitude of just over 202 nautical miles (about 322 kilometers) in the evening hours (03:19:54 Greenwich Mean Time) on Aug. 2, 2011, as the International Space Station was passing over the English Channel. The nadir coordinates of the station were 49.1 degrees north latitude and 5.5 degrees west longitude. Polar mesospheric clouds (also known as noctilucent, or ?night-shining? clouds) are transient, upper atmospheric phenomena that are usually observed in the summer months at high latitudes (greater than 50 degrees) of both the Northern and Southern Hemispheres. They appear bright and cloudlike while in deep twilight. They are illuminated by sunlight when the lower layers of the atmosphere are in the darkness of Earth?s shadow. The horizon of Earth appears at the bottom of the image, with some layers of the lower atmosphere already illuminated by the rising sun. The higher, bluish-colored clouds look much like wispy cirrus clouds, which can be found as high as 60,000 feet (18 kilometers) in the atmosphere. However noctilucent clouds, as seen here, are observed in the mesosphere at altitudes of 250,000 to 280,000 feet (about 76 to 85 kilometers). Astronaut observations of polar mesospheric clouds over northern Europe in the summer are not uncommon.

  12. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!

  13. Supersampling multiframe blind deconvolution resolution enhancement of adaptive optics compensated imagery of low earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.

    2002-09-01

    We describe a postprocessing methodology for reconstructing undersampled image sequences with randomly varying blur that can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive-optics-(AO)-compensated imagery taken by the Starfire Optical Range 3.5-m telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground-based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques that include a representation of spatial sampling by the focal plane array elements based on a forward stochastic model. This generalization enables the random shifts and shape of the AO- compensated point spread function (PSF) to be used to partially eliminate the aliasing effects associated with sub-Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss that occurs when imaging in wide- field-of-view (FOV) modes.

  14. Earth Observation

    NASA Image and Video Library

    2014-06-27

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.

  15. Expanding Access and Usage of NASA Near Real-Time Imagery and Data

    NASA Astrophysics Data System (ADS)

    Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.

    2013-12-01

    In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery

  16. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. On crewmember's Flickr page - Look straight down into an aurora.

  17. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of a solar array is also visible.

  18. Earth Observation

    NASA Image and Video Library

    2013-07-26

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Never tire of finding shapes in the clouds! These look very botanical to me. Simply perfect.

  19. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  20. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  1. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  2. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  3. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: From southernmost point of orbit over the South Pacific- all clouds seemed to be leading to the South Pole.

  4. Earth Observation

    NASA Image and Video Library

    2013-07-21

    Earth observation taken during night pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message this is labeled as : Tehran, Iran. Lights along the coast of the Caspian Sea visible through clouds. July 21.

  5. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of the U.S. Lab and PMM are also visible.

  6. Earth Observation

    NASA Image and Video Library

    2014-05-31

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: CEO - Arena de Sao Paolo. View used for Twitter message: Cloudy skies over São Paulo Brazil

  7. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  8. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  9. Geometric Positioning for Satellite Imagery without Ground Control Points by Exploiting Repeated Observation.

    PubMed

    Ma, Zhenling; Wu, Xiaoliang; Yan, Li; Xu, Zhenliang

    2017-01-26

    With the development of space technology and the performance of remote sensors, high-resolution satellites are continuously launched by countries around the world. Due to high efficiency, large coverage and not being limited by the spatial regulation, satellite imagery becomes one of the important means to acquire geospatial information. This paper explores geometric processing using satellite imagery without ground control points (GCPs). The outcome of spatial triangulation is introduced for geo-positioning as repeated observation. Results from combining block adjustment with non-oriented new images indicate the feasibility of geometric positioning with the repeated observation. GCPs are a must when high accuracy is demanded in conventional block adjustment; the accuracy of direct georeferencing with repeated observation without GCPs is superior to conventional forward intersection and even approximate to conventional block adjustment with GCPs. The conclusion is drawn that taking the existing oriented imagery as repeated observation enhances the effective utilization of previous spatial triangulation achievement, which makes the breakthrough for repeated observation to improve accuracy by increasing the base-height ratio and redundant observation. Georeferencing tests using data from multiple sensors and platforms with the repeated observation will be carried out in the follow-up research.

  10. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2011-12-01

    efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.

  11. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2013-12-01

    efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.

  12. Earth Observations

    NASA Image and Video Library

    2014-11-18

    ISS042E006751 (11/08/2014) --- Earth observation taken from the International Space Station of the coastline of the United Arab Emirates. The large wheel along the coast center left is "Jumeirah" Palm Island, with a conference center, hotels, recreation areas and a large marine zoo.

  13. Medium-sized aperture camera for Earth observation

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  14. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  15. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  16. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  17. DEIMOS-2: cost-effective, very-high resolution multispectral imagery

    NASA Astrophysics Data System (ADS)

    Pirondini, Fabrizio; López, Julio; González, Enrique; González, José Antonio

    2014-10-01

    ELECNOR DEIMOS is a private Spanish company, part of the Elecnor industrial group, which owns and operates DEIMOS-1, the first Spanish Earth Observation satellite. DEIMOS-1, launched in 2009, is among the world leading sources of high resolution data. On June 19th, 2014 ELECNOR DEIMOS launched its second satellite, DEIMOS-2, which is a very-high resolution, agile satellite capable of providing 75-cm pan-sharpened imagery, with a 12kmwide swath. The DEIMOS-2 camera delivers multispectral imagery in 5 bands: Panchromatic, G, R, B and NIR. DEIMOS-2 is the first European satellite completely owned by private capital, which is capable of providing submetric multispectral imagery. The whole end-to-end DEIMOS-2 system is designed to provide a cost-effective, dependable and highly responsive service to cope with the increasing need of fast access to very-high resolution imagery. The same 24/7 commercial service which is now available for DEIMOS-1, including tasking, download, processing and delivery, will become available for DEIMOS-2 as well, as soon as the satellite enters into commercial operations, at the end of its in-orbit commissioning. The DEIMOS-2 satellite has been co-developed by ELECNOR DEIMOS and SATREC-I (South Korea), and it has been integrated and tested in the new ELECNOR DEIMOS Satellite Systems premises in Puertollano (Spain). The DEIMOS-2 ground segment, which includes four receiving/commanding ground stations in Spain, Sweden and Canada, has been completely developed in-house by ELECNOR DEIMOS, based on its Ground Segment for Earth Observation (gs4EO®) suite. In this paper we describe the main features of the DEIMOS-2 system, with emphasis on its initial operations and the quality of the initial imagery, and provide updated information on its mission status.

  18. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.

  19. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  20. Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.

    2017-12-01

    In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.

  1. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  2. Earth Resources Technology Satellite: US standard catalog No. U-12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    To provide dissemination of information regarding the availability of Earth Resources Technology Satellite (ERTS) imagery, a U.S. Standard Catalog is published on a monthly schedule. The catalogs identify imagery which has been processed and input to the data files during the preceding month. The U.S. Standard Catalog includes imagery covering the Continental United States, Alaska, and Hawaii. As a supplement to these catalogs, an inventory of ERTS imagery on 16 millimeter microfilm is available. The catalogs consist of four parts: (1) annotated maps which graphically depict the geographic areas covered by the imagery listed in the current catalog, (2) a computer-generated listing organized by observation identification number (D) with pertinent information on each image, (3) a computer listing of observations organized by longitude and latitude, and (4) observations which have had changes made in their catalog information since the original entry in the data base.

  3. Action observation and motor imagery for rehabilitation in Parkinson's disease: A systematic review and an integrative hypothesis.

    PubMed

    Caligiore, Daniele; Mustile, Magda; Spalletta, Gianfranco; Baldassarre, Gianluca

    2017-01-01

    This article discusses recent evidence supporting the use of action observation therapy and motor imagery practice for rehabilitation of Parkinson's disease. A main question that emerges from the review regards the different effectiveness of these approaches and the possibility of integrating them into a single method to enhance motor behaviour in subjects with Parkinson's disease. In particular, the reviewed studies suggest that action observation therapy can have a positive effect on motor facilitation of patients and that a long-term rehabilitation program based on action observation therapy or motor imagery practice can bring some benefit on their motor recovery. Moreover, the paper discusses how the research on the combined use of action observation and motor imagery for motor improvements in healthy subjects may encourage the combined use of action observation therapy and motor imagery practice for therapeutic aims in Parkinson's disease. To date, this hypothesis has never been experimented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Emotion regulation through execution, observation, and imagery of emotional movements

    PubMed Central

    Shafir, Tal; Taylor, Stephan F.; Atkinson, Anthony P.; Langenecker, Scott A.; Zubieta, Jon-Kar

    2014-01-01

    According to Damasio’s somatic marker hypothesis, emotions are generated by conveying the current state of the body to the brain through interoceptive and proprioceptive afferent input. The resulting brain activation patterns represent unconscious emotions and correlate with subjective feelings. This proposition implies a corollary that the deliberate control of motor behavior could regulate feelings. We tested this possibility, hypothesizing that engaging in movements associated with a certain emotion would enhance that emotion and/or the corresponding valence. Furthermore, because motor imagery and observation are thought to activate the same mirror-neuron network engaged during motor execution, they might also activate the same emotional processing circuits, leading to similar emotional effects. Therefore, we measured the effects of motor execution, motor imagery and observation of whole-body dynamic expressions of emotions (happiness, sadness, fear) on affective state. All three tasks enhanced the corresponding affective state, indicating their potential to regulate emotions. PMID:23561915

  5. International Space Station Instmments Collect Imagery of Natural Disasters

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Stefanov, W. L.

    2013-01-01

    A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.

  6. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  7. Applications of Earth Observations for Fisheries Management: An analysis of socioeconomic benefits

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Kiefer, D. A.; Turner, W.

    2013-12-01

    This paper will discuss the socioeconomic impacts of a project applying Earth observations and models to support management and conservation of tuna and other marine resources in the eastern Pacific Ocean. A project team created a software package that produces statistical analyses and dynamic maps of habitat for pelagic ocean biota. The tool integrates sea surface temperature and chlorophyll imagery from MODIS, ocean circulation models, and other data products. The project worked with the Inter-American Tropical Tuna Commission, which issues fishery management information, such as stock assessments, for the eastern Pacific region. The Commission uses the tool and broader habitat information to produce better estimates of stock and thus improve their ability to identify species that could be at risk of overfishing. The socioeconomic analysis quantified the relative value that Earth observations contributed to accurate stock size assessments through improvements in calculating population size. The analysis team calculated the first-order economic costs of a fishery collapse (or shutdown), and they calculated the benefits of improved estimates that reduce the uncertainty of stock size and thus reduce the risk of fishery collapse. The team estimated that the project reduced the probability of collapse of different fisheries, and the analysis generated net present values of risk mitigation. USC led the project with sponsorship from the NASA Earth Science Division's Applied Sciences Program, which conducted the socioeconomic impact analysis. The paper will discuss the project and focus primarily on the analytic methods, impact metrics, and the results of the socioeconomic benefits analysis.

  8. Earth observations taken from Space Shuttle Columbia during STS-93 mission

    NASA Image and Video Library

    1999-07-23

    STS093-704-087 (23-27 July 1999) --- This low angle, early morning shot over Chile was photographed from the Earth-orbiting Space Shuttle Columbia during the STS-93 mission. In the words of one of the scientists studying the STS-93 Earth imagery, Laguna Verde, in the Atacama Province of Chile (near the Argentine border), lies like a turquoise jewel among the stark black and white snow covered volcanic peaks of the High Andes. The ambient elevation in this part of the Andes is 16,000 feet (4,877 meters) with the highest local peak, Nevada Ojas de Salado (just to the right of the lake), reaching to 23,240 feet. (7084 meters.)

  9. NASA Polar Imagery: Have It Your Way or Have It Our Way

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Alarcon, C.; Boller, R. A.; Cechini, M. F.; Davies, D.; Ilavajhala, S.; Hall, J. R.; Huang, T.; Joshi, T.; McGann, J. M.; Murphy, K. J.; Plesea, L.; Roberts, J. T.; Thompson, C. K.; Timmons, E.

    2013-12-01

    The MODIS Rapid Response project has been providing complete near real-time imagery coverage of Antarctica since December 2008 and the Arctic since March 2009. In late 2009, the Land Atmosphere Near real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. To meet these performance goals, the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) was chosen as the standard interface for these services. GIBS has been one of the pioneers in providing tiled image services for the polar regions and also in the clarification of the time and elevation dimensions as used within the WMTS specification. Currently, there are more than a dozen MODIS imagery products available in polar stereographic projections for each pole, including four daily one kilometer 11 micron thermal infrared band images during all seasons. Imagery back to mid-2013 is currently available and reprocessing of imagery from the entire MODIS record is underway and community input is being solicited on recommendations for additional imagery layers from MODIS and other NASA instruments. A variety of geo-spatial client software is able to access these WMTS services. In addition, users can write their own interfaces using OpenLayers or the GDAL library. An OpenLayers demonstration client, Worldview (http://earthdata.nasa.gov/worldview), was developed at Goddard to showcase GIBS imagery. Worldview provides easy viewing of the entire imagery record. A search function allows discovery and

  10. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  11. Building a Dashboard for Natural Event Monitoring: NASA's Global Imagery Browse Services + Earth Observatory Natural Event Tracker + Worldview

    NASA Astrophysics Data System (ADS)

    Ward, K.; Boller, R. A.

    2016-12-01

    The quantity of remotely-sensed Earth science data is vast and encompasses such breadth of topic that it is impossible for any one person, or even a team, to grasp the meaning of those data as a whole. In order to derive meaning from data, it is important that we explore context-specific approaches to its investigation. Collating and curating data for specific, interdisciplinary audiences is one such approach. Scientific disciplines have their own ways of grouping data sets for interdisciplinary analysis, bringing a specific context to the examination of data. The studies of sea level rise (involving sea surface temperature + sea ice and glaciers + wind, for example) and vegetation productivity (precipitation + land cover + surface temperature + groundwater) are just a couple of ways that data are grouped in an effort to bring focus and understanding to a specific topic. Natural events (hurricanes, fires, dust and haze, etc.) is another context where data from disparate disciplines and sensors can be brought together to tell a single story from multiple perspectives. In this presentation we will show how we have taken a broad selection of science data made available as imagery through NASA's Global Imagery Browse Services (GIBS) and then mapped those data sets to types of natural events in order to create virtual collections of imagery. We will then demonstrate how we combine those virtual collections with curated natural event metadata from the Earth Observatory Natural Event Tracker (EONET) using the browser-based Worldview map client to provide a dashboard that can be used by many different audiences as a portal to monitor and understand these natural events.

  12. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  13. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  14. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  15. Earth observations taken from OV-105 during the STS-99 mission

    NASA Image and Video Library

    2000-02-17

    S99-E-5555 (17 February 2000) --- As photographed from the Space Shuttle Endeavour, this oblique electronic still image of Earth's horizon reveals a great deal of cloud cover. In the case of the electronic still camera (ESC), as well as film-bearing instruments, clouds naturally obscure views of recognizable land masses. Much of Earth is heavily cloud covered during the current mission and meteorlogists and oceanographers are interested in studying that aspect. However, the Shuttle Radar Topography Mission's other sensing equipment, X-SAR and C-band antennae, are able to penetrate cloud cover and record important topographic data for mapmakers and scientists of other disciplines. In addition to the sensing equipment mentioned above, this mission is supporting the EarthKAM project which utilizes the services of another electronic still camera mounted in Endeavour's windows. Unlike this oblique view, EarthKAM records strictly vertical or nadir imagery of points all over the world. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.

  16. Deep Space Earth Observations from DSCOVR

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Herman, J.

    2018-02-01

    The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.

  17. Earth Resources Technology Satellite: Non-US standard catalog No. N-13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    To provide dissemination of information regarding the availability of Earth Resources Technology Satellite (ERTS) imagery, a Non-U.S. Standard Catalog is published on a monthly schedule. The catalogs identify imagery which has been processed and input to the data files during the preceding month. The Non-U.S. Standard Catalog includes imagery covering all areas except that of the United States, Hawaii, and Alaska. Imagery adjacent to the Continental U.S. and Alaska borders will normally appear in the U.S. Standard Catalog. As a supplement to these catalogs, an inventory of ERTS imagery on 16 millimeter microfilm is available. The catalogs consist of four parts: (1) annotated maps which graphically depict the geographic areas covered by the imagery listed in the current catalog, (2) a computer-generated listing organized by observation identification number (ID) with pertinent information for each image, (3) a computer listing of observations organized by longitude and latitude, and (4) observations which have had changes made in their catalog information since the original entry in the data base.

  18. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  19. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  20. Observation of wave celerity evolution in the nearshore using digital video imagery

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.

    2008-12-01

    Celerity of incident waves in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of waves propagating in shallow water including the surf zone is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf zone. The breaking wave celerity is computed along a cross-shore transect from the wave crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear wave celerity computed from the measured water depths over the entire surf zone. Compared to the nonlinear shallow water wave equation (NSWE)-based celerity computed using the measured depths and wave heights, in general, the video-based celerity shows good agreements over the surf zone except the regions across the incipient wave breaking locations. In the regions across the breaker points, the observed wave celerity is even larger than the NSWE-based celerity due to the transition of wave crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear wave celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear wave celerity theory applied.

  1. Virginia Water Resources: Utilizing NASA Earth Observations to Monitor the Extent of Harmful Algal Blooms in Virginia Rivers

    NASA Astrophysics Data System (ADS)

    Lubkin, S. H.; Morgan, C.

    2015-12-01

    Harmful algal bloom species have had an increasing ecological impact on the Chesapeake Bay Watershed where they disrupt water chemistry, kill fish and cause human illness. In Virginia, scientists from Virginia Institute of Marine Science and Old Dominion University monitor HABs and their effect on water quality; however, these groups lack a method to monitor HABs in real time. This limits the ability to document associated water quality conditions and predict future blooms. Band reflectance values from Landsat 8 Surface Reflectance data (USGS Earth Explorer) and MODIS Chlorophyll imagery (NOAA CoastWatch) were cross calibrated to create a regression model that calculated concentrations of chlorophyll. Calculations were verified with in situ measurements from the Virginia Estuarine and Coastal Observing System. Imagery produced with the Chlorophyll-A calculation model will allow VIMS and ODU scientists to assess the timing, magnitude, duration and frequency of HABs in Virginia's Chesapeake watershed and to predict the environmental and water quality conditions that favor bloom development.

  2. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  3. Trace gas detection in hyperspectral imagery using the wavelet packet subspace

    NASA Astrophysics Data System (ADS)

    Salvador, Mark A. Z.

    This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.

  4. Earth Observing System Covariance Realism Updates

    NASA Technical Reports Server (NTRS)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  5. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  6. COMS normal operation for Earth Observation mission

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  7. Users guide to high altitude imagery of Michigan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A guide to the high altitude imagery of Michigan outlines the areas of the state covered by selected recent high altitude aircraft and Earth Resources Technology Satellite flights. The types of remote sensing used are described. Maps of the flight coverage areas are included along with price lists of available imagery.

  8. The U.S. National Plan for Civil Earth Observations

    NASA Astrophysics Data System (ADS)

    Stryker, T.; Clavin, C.; Gallo, J.

    2014-12-01

    Globally, the United Sates Government is one of the largest providers of environmental and Earth-system data. As the nation's Earth observation capacity has grown, so have the complexity and challenges associated with managing Earth observation systems and related data holdings. In July 2014, the White House Office of Science and Technology Policy released the first-ever National Plan for Civil Earth Observations to address these challenges. The Plan provides a portfolio management-based framework for maximizing the value of Federal Earth observations. The Plan identifies Federal priorities for Earth observations and improved management of their data. Through routine assessments, expanding data management efforts, interagency planning, and international collaboration, OSTP and its partner agencies will seek ensure the continued provision of and access to key Earth observation data, which support a broad range of public services and research programs. The presenters will provide a detailed review of the components of the National Plan, its impacts across the Federal agencies involved in Earth observations, and associated efforts to enable interagency coordination.

  9. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  10. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  11. The High Definition Earth Viewing (HDEV) Payload

    NASA Technical Reports Server (NTRS)

    Muri, Paul; Runco, Susan; Fontanot, Carlos; Getteau, Chris

    2017-01-01

    The High Definition Earth Viewing (HDEV) payload enables long-term experimentation of four, commercial-of-the-shelf (COTS) high definition video, cameras mounted on the exterior of the International Space Station. The payload enables testing of cameras in the space environment. The HDEV cameras transmit imagery continuously to an encoder that then sends the video signal via Ethernet through the space station for downlink. The encoder, cameras, and other electronics are enclosed in a box pressurized to approximately one atmosphere, containing dry nitrogen, to provide a level of protection to the electronics from the space environment. The encoded video format supports streaming live video of Earth for viewing online. Camera sensor types include charge-coupled device and complementary metal-oxide semiconductor. Received imagery data is analyzed on the ground to evaluate camera sensor performance. Since payload deployment, minimal degradation to imagery quality has been observed. The HDEV payload continues to operate by live streaming and analyzing imagery. Results from the experiment reduce risk in the selection of cameras that could be considered for future use on the International Space Station and other spacecraft. This paper discusses the payload development, end-to- end architecture, experiment operation, resulting image analysis, and future work.

  12. Earth Observation

    NASA Image and Video Library

    2016-04-20

    ISS047e069406 (04/20/2016) ---Earth observation image taken by the Expedition 47 crew aboard the International Space Station. This is an oblique south-looking view of the main Bahama island chain. Cuba is across the entire top of the image, the Florida Peninsula on the right margin. In the Bahamas, the main Andros island is just distinguishable under cloud upper left of center. Under less cloud is the Abaco Islands in the foreground (middle of pic nearest camera left of center.)

  13. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  14. Connecting Earth observation to high-throughput biodiversity data.

    PubMed

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W

    2017-06-22

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

  15. Modelling Middle Infrared Thermal Imagery from Observed or Simulated Active Fire

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Gastellu-Etchegorry, J. P.; Mell, W.; Johnston, J.; Filippi, J. B.

    2016-12-01

    The Fire Radiative Power (FRP) is used in the atmospheric and fire communities to estimate fire emission. For example, the current version of the emission inventory GFAS is using FRP observation from the MODIS sensors to derive daily global distribution of fire emissions. Although the FRP product is widely accepted, most of its theoretical justifications are still based on small scale burns. When up-scaling to large fires effects of view angle, canopy cover, or smoke absorption are still unknown. To cover those questions, we are building a system based on the DART radiative transfer model to simulate the middle infrared radiance emitted by a propagating fire front and propagating in the surrounding scene made of ambient vegetation and plume aerosols. The current version of the system was applied to fire ranging from a 1m2 to 7ha. The 3D fire scene used as input in DART is made of the flame, the vegetation (burnt and unburnt), and the plume. It can be either set up from [i] 3D physical based model scene (ie WFDS, mainly applicable for small scale burn), [ii] coupled 2D fire spread - atmospheric models outputs (eg ForeFire-MesoNH) or [iii] derived from thermal imageries observations (here plume effects are not considered). In the last two cases, as the complexity of physical processes occurring in the flame (in particular soot formation and emission) is not to solved, the flames structures are parameterized with (a) temperature and soot concentration based on empirical derived profiles and (b) 3D triangular shape hull interpolated at the fire front location. Once the 3D fire scene is set up, DART is then used to render thermal imageries in the middle infrared. Using data collected from burns conducted at different scale, the modelled thermal imageries are compared against observations, and effects of view angle are discussed.

  16. Medium Resolution Global Earth Observations with Landsat: Looking 35 Years Back and 50 Years Forward

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Irons, J. R.; Goward, S. N.

    2007-12-01

    The modern era of global medium resolution satellite remote sensing was inaugurated 35 years ago, in July 1972, with the launch of the first Landsat satellite carrying the Multispectral Scanner (MSS) sensor. Ten years after that first launch, Landsat 4 carried a much-improved sensor aloft, the Thematic Mapper. The TM provided better spatial resolution (30 m versus 79 m) than the MSS, as well as additional spectral bands in the mid- infrared (IR) and thermal IR regions. Roughly another decade later, in April 1999, the Enhanced Thematic Mapper Plus (ETM+) instrument was placed in orbit on Landsat 7. The ETM+ provided a new 15 m panchromatic band and a much-improved thermal band resolution (60 m versus 120 m). Through a combination of planning and good luck, the various Landsat missions have delivered a continuous set of calibrated, multispectral images of the Earth's surface spanning this entire 35-year time period. This imagery database has been used in agricultural evaluations, forest management inventories, geological surveys, water resource estimates, coastal zone appraisals, and a host of other applications to meet the needs of a very broad user community, including business, government, science, education, national security, and now -- even the casual observer -- as Landsat imagery provides the skeletal backbone of Google Earth. Landsat established the U.S. as the world leader in terrestrial remote sensing, contributed significantly to the understanding of the Earth's environment, spawned revolutionary uses of space-based data by the commercial value-added industry, and encouraged a new generation of commercial satellites that provide regional, high-resolution spatial images. In spite of the overall success of the Landsat series of satellites, the first 35 years of the Landsat legacy have been extremely challenging as the push to embrace new technologies was often questioned by those who simply wanted to maintain whatever the current capability was at that

  17. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  18. Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth

    NASA Astrophysics Data System (ADS)

    Kandel, Robert S.

    1994-06-01

    Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.

  19. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention.

    PubMed

    Scott, Matthew; Taylor, Stephen; Chesterton, Paul; Vogt, Stefan; Eaves, Daniel Lloyd

    2018-06-01

    Rehabilitation professionals typically use motor imagery (MI) or action observation (AO) to increase physical strength for injury prevention and recovery. Here we compared hamstring force gains for MI during AO (AO + MI) against two pure MI training groups. Over a 3-week intervention physically fit adults imagined Nordic hamstring exercises in both legs and synchronized this with a demonstration of the same action (AO + MI), or they purely imagined this action (pure MI), or imagined upper-limb actions (pure MI-control). Eccentric hamstring strength gains were assessed using ANOVAs, and magnitude-based inference (MBI) analyses determined the likelihood of clinical/practical benefits for the interventions. Hamstring strength only increased significantly following AO + MI training. This effect was lateralized to the right leg, potentially reflecting a left-hemispheric dominance in motor simulation. MBIs: The right leg within-group treatment effect size for AO + MI was moderate and likely beneficial (d = 0.36), and only small and possibly beneficial for pure MI (0.23). Relative to pure MI-control, effects were possibly beneficial and moderate for AO + MI (0.72), although small for pure MI (0.39). Since hamstring strength predicts injury prevalence, our findings point to the advantage of combined AO + MI interventions, over and above pure MI, for injury prevention and rehabilitation. Implications for rehabilitation While hamstring strains are the most common injury across the many sports involving sprinting and jumping, Nordic hamstring exercises are among the most effective methods for building eccentric hamstring strength, for injury prevention and rehabilitation. In the acute injury phase it is crucial not to overload damaged soft tissues, and so non-physical rehabilitation techniques are well suited to this phase. Rehabilitation professionals typically use either motor imagery or action observation techniques to safely improve physical

  20. Observing and characterizing avalanche activity in the Khumbu Himal, Nepal, using Pleiades and airborne HDR imagery

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg

    2017-04-01

    In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.

  1. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  2. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have

  3. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  4. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  5. Earth Observing System, Conclusions and Recommendations

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  6. Comparing synthetic imagery with real imagery for visible signature analysis: human observer results

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Richards, Noel; Madden, Christopher S.; Winter, Neal; Wheaton, Vivienne C.

    2017-10-01

    Synthetic imagery could potentially enhance visible signature analysis by providing a wider range of target images in differing environmental conditions than would be feasible to collect in field trials. Achieving this requires a method for generating synthetic imagery that is both verified to be realistic and produces the same visible signature analysis results as real images. Is target detectability as measured by image metrics the same for real images and synthetic images of the same scene? Is target detectability as measured by human observer trials the same for real images and synthetic images of the same scene, and how realistic do the synthetic images need to be? In this paper we present the results of a small scale exploratory study on the second question: a photosimulation experiment conducted using digital photographs and synthetic images generated of the same scene. Two sets of synthetic images were created: a high fidelity set created using an image generation tool, E-on Vue, and a low fidelity set created using a gaming engine, Unity 3D. The target detection results obtained using digital photographs were compared with those obtained using the two sets of synthetic images. There was a moderate correlation between the high fidelity synthetic image set and the real images in both the probability of correct detection (Pd: PCC = 0.58, SCC = 0.57) and mean search time (MST: PCC = 0.63, SCC = 0.61). There was no correlation between the low fidelity synthetic image set and the real images for the Pd, but a moderate correlation for MST (PCC = 0.67, SCC = 0.55).

  7. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  8. The NASA Space Shuttle Earth Observations Office

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Wood, Charles A.

    1989-01-01

    The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.

  9. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach

  10. Access High Quality Imagery from the NOAA View Portal

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Powell, A. M.; Loomis, T.; Goel, V.; Mills, B.; Cowan, D.

    2013-12-01

    NOAA curates a vast treasure trove of environmental data, but one that is sometimes not easily accessed, especially for education, outreach, and media purposes. Traditional data portals in NOAA require extensive knowledge of the specific names of observation platforms, models, and analyses, along with nomenclature for variable outputs. A new website and web mapping service (WMS) from NOAA attempts to remedy such issues. The NOAA View data imagery portal provides a seamless entry point into data from across the agency: satellite, models, in-situ analysis, etc. The system provides the user with ability to browse, animate, and download high resolution (e.g., 4,000 x 2,000 pixel) imagery, Google Earth, and even proxy data files. The WMS architecture also allows the resources to be ingested into other software systems or applications.

  11. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  12. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2009-12-03

    ISS022-E-005807 (3 Dec. 2009) --- Cloud formations and sunglint near Italy are featured in this image photographed by an Expedition 22 crew member on the International Space Station. This view depicts the Calabria region of southern Italy ? the toe of Italy?s ?boot? ? outlined by the Ionian and Tyrrhenian Seas to the southeast and northwest respectively. The water surfaces present a mirror-like appearance due to sunglint. This phenomenon is caused by sunlight reflecting off the water surface directly back towards the crew member aboard the space station. The ISS was located over northwestern Romania, approximately 1,040 kilometers to the northeast of Calabria, when this image was taken. The Calabrian peninsula appears shortened and distorted due to the high viewing angle from the station. Such imagery is termed oblique, indicating that the view is not looking directly downwards towards Earth?s surface from the ISS (known as a nadir view). This highly oblique view also highlights two distinct cloud patterns over the Calabrian interior. Patchy, highly textured cumulus clouds are present at lower altitudes, while grey altostratus clouds are elongated by prevailing winds at higher altitudes. The Strait of Messina, just visible at upper right, marks the boundary between the coastlines of Italy and the island of Sicily.

  13. Scientific Contributions to GEO Global Earth Observation Priorities

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Ledrew, E.

    2009-12-01

    Numerous counties and non-governmental organizations have produced documents, held workshops, and published reports in the past decade that identify Earth observation needs to meet their particular objectives. The Group on Earth Observations (GEO) has conducted a review of these documents, workshops, and reports to identify the priority observations common to many societal benefit areas. GEO has made a concerted effort to include materials from a broad range of user types, including scientific researchers, resource managers, and policy makers. GEO has also sought an international breadth in the materials reviewed, including observation priorities from developing countries. The activity will help GEO optimize the observations in GEOSS that are most likely to provide societal benefits, and GEO members will use the results of this meta-analysis to support investment decisions. The Earth observations in GEOSS serve scientific research and applications endeavors. As a primary user of ground-based, airborne, in situ, and space-based observations of the Earth, the scientific community has a significant voice and vested interest in the observations offered through GEOSS. Furthermore, the science and technology community will have opportunities to identify critical scientific/technological advances needed to produce any observations that are needed yet not currently available. In this paper, we will discuss this GEO effort to identify Earth observations priorities. We will present initial findings for some societal benefit areas and the overall meta-analysis. We will also discuss possible roles for the science and technology community to contribute to those priorities, such as scientific advances needed to achieve the observations or to realize societal benefits from the observations.

  14. A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Brian E.; Wu, Chin-Chun; Howard, Russell A.

    We identify coronal mass ejections (CMEs) associated with magnetic clouds (MCs) observed near Earth by the Wind spacecraft from 2008 to mid-2012, a time period when the two STEREO spacecraft were well positioned to study Earth-directed CMEs. We find 31 out of 48 Wind MCs during this period can be clearly connected with a CME that is trackable in STEREO imagery all the way from the Sun to near 1 au. For these events, we perform full 3D reconstructions of the CME structure and kinematics, assuming a flux rope (FR) morphology for the CME shape, considering the full complement ofmore » STEREO and SOHO imaging constraints. We find that the FR orientations and sizes inferred from imaging are not well correlated with MC orientations and sizes inferred from the Wind data. However, velocities within the MC region are reproduced reasonably well by the image-based reconstruction. Our kinematic measurements are used to provide simple prescriptions for predicting CME arrival times at Earth, provided for a range of distances from the Sun where CME velocity measurements might be made. Finally, we discuss the differences in the morphology and kinematics of CME FRs associated with different surface phenomena (flares, filament eruptions, or no surface activity).« less

  15. Survey and Chase: A New Method of Observations For The Michigan Orbital Debris Survey Telescope (MODEST)

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira J.; Seitzer, Patrick; Rodriquez, Heather M.; Barker, Edwin S.; Matney, Mark J.

    2006-01-01

    For more than 40 years astronauts have been observing Earth, taking photographs or digital images from their spacecraft. Today, a robust program of observation from the International Space Station (ISS) has yielded hundreds of thousands of images of the Earth s surface collected since 2001. Seeing Earth through the eyes of an astronaut is exciting to the general public, and the images are popular in classrooms. Because the ISS has an orbital inclination of 51.6 degrees (the north-south limits of the orbit are at 51.6 degrees latitude), high latitude observations are common. Some of the most striking images collected include views of polar phenomena. Astronauts routinely pass above brilliant red and green aurora; view high, wispy clouds at the top of the atmosphere; or look down on glaciers and floating ice rafts. These images, framed and captured by humans, are easily interpreted by students and teachers. Astronaut observations provide a way to visualize complicated polar phenomena and communicate about them to students of all ages. Over the next two years, astronauts aboard the ISS will formally focus their observations on polar phenomena as participants in the International Polar Year (IPY). Imagery acquisition from the ISS will be coordinated with other IPY scientists staging studies and field campaigns on the ground. The imagery collected from the ISS will be cataloged and served on NASA s web-based database of images, http://eol.jsc.nasa.gov . The website allows investigators, students and teachers to search through the imagery, assemble image datasets, and download the imagery and the metadata. We display some of the most spectacular examples of polar imagery and demonstrate NASA s database of astronaut images of Earth.

  16. Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation.

    PubMed

    Lapenta, Olivia M; Minati, Ludovico; Fregni, Felipe; Boggio, Paulo S

    2013-01-01

    Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal, and sham) in 21 male participants (mean age 23.8 ± 3.06), over the left M1 with a current of 2 mA for 20 min. Following this, we recorded the EEG at C3, C4, and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02). Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p = 0.03). The main findings of this study were (1) Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (2) polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (3) specific focal and opposite inter-hemispheric effects, i.e., contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore, it shows that tDCS can be highly focal when guided by a behavioral task.

  17. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13

  18. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  19. International program for Earth observations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail.

  20. Earth Observation

    NASA Image and Video Library

    2011-07-06

    ISS028-E-014782 (6 July 2011) --- The Shoemaker (formerly Teague) Impact Structure, located in Western Australia in a drainage basin south of the Waldburg Range, presents an other-worldly appearance in this detailed photograph recorded from onboard the International Space Station on July 6. The Shoemaker impact site is approximately 30 kilometers in diameter, and is clearly defined by concentric ring structures formed in sedimentary rocks (brown to dark brown, image center) that were deformed by the impact event approximately 1630 million years ago, according to the Earth Impact Database. Several saline and ephemeral lakes?Nabberu, Teague, Shoemaker, and numerous smaller ponds?occupy the land surface between the concentric ring structures. Differences in color result from both water depth and suspended sediments, with some bright salt crusts visible around the edges of smaller ponds (image center The Teague Impact Structure was renamed Shoemaker in honor of the late Dr. Eugene M. Shoemaker, a pioneer in the field of impact crater studies and planetary geology, and founder of the Astrogeology Branch of the United States Geological Survey. The image was recorded with a digital still camera using a 200 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

  1. BOREAS Landsat MSS Imagery: Digital Counts

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. The Earth Resources Technology Satellite (ERTS) Program launched the first of a series of satellites (ERTS-1) in 1972. Part of the NASA Earth Resources Survey Program, the ERTS Program and the ERTS satellites were later renamed Landsat to better represent the civil satellite program's prime emphasis on remote sensing of land resources. Landsat satellites 1 through 5 carry the Multispectral Scanner (MSS) sensor. Canada for Remote Sensing (CCRS) and BOREAS personnel gathered a set of MSS images of the BOREAS region from Landsat satellites 1, 2, 4, and 5 covering the dates of 21 Aug 1972 to 05 Sep 1988. The data are provided in binary image format files of various formats. The Landsat MSS imagery is available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Earth Observations

    NASA Image and Video Library

    2010-09-11

    ISS024-E-014233 (11 Sept. 2010) --- A smoke plume near the northern Caspian Sea, Kazakhstan is featured in this image photographed by an Expedition 24 crew member on the International Space Station. This broad view of the north coast of the Caspian Sea shows a smoke plume (left) and two river deltas (bottom and lower right). The larger delta is that of the Volga River which appears prominently here in sunglint (light reflected off a water surface back towards the observer), and the smaller less prominent delta is that of the Ural River. Wide angle, oblique views ? taken looking outward at an angle, rather than straight down towards Earth ? such as this give an excellent impression of how crew members onboard the space station view Earth. For a sense of scale, the Caucasus Mts. (across the Caspian, top right) are approximately 1,100 kilometers to the southwest of the International Space Station?s nadir point location ? the point on Earth directly underneath the spacecraft ? at the time this image was taken. The smoke plume appears to be sourced in the dark-toned coastal marsh vegetation along the outer fringe of the Ural River delta, rather than in a city or at some oil storage facility. Although even small fires produce plumes that are long and bright and thus easily visible from space, the density of the smoke in this plume, and its 350-kilometer length across the entire north lobe of the Caspian Sea, suggest it was a significant fire. The smoke was thick enough nearer the source to cast shadows on the sea surface below. Lines mark three separate pulses of smoke, the most recent, nearest the source, extending directly south away from the coastline (lower left). With time, plumes become progressively more diffuse. The oldest pulse appears to be the thinnest, casting no obvious shadows (center left).

  3. A Potpourri of Near-Earth Asteroid Observations

    NASA Astrophysics Data System (ADS)

    Tholen, David J.; Ramanjooloo, Yudish; Fohring, Dora; Hung, Denise; Micheli, Marco

    2016-10-01

    Ongoing astrometric follow-up of near-Earth asteroids has yielded a variety of interesting results. In the limited space of a DPS abstract, three recently observed objects are worth mentioning.2008 HU4 is among the most accessible asteroids for a human space flight mission. We successfully recovered this object at a second opposition on 2016 April 26 despite the large ephemeris uncertainty. The small size of this asteroid makes it relatively easy to detect the departure from purely gravitational motion caused by solar radiation pressure, which can be used to estimate the density of the object. At the time of this writing, the object remains bright enough for additional observations, so we expect to improve on our five-sigma detection of a relatively low density (roughly similar to water, indicating a high porosity) between now and the DPS meeting.2016 HO3 is a newly-discovered co-orbital with the Earth. Our 2016 May 10-11 observations extended the observational arc by enough to permit backward extrapolation that led to prediscovery observations by Pan-STARRS in 2015, and then annually back to 2011, and ultimately to Sloan DSS observations in 2004. The 12-year arc is sufficient to examine the dynamical behavior of the object, which shows how it will remain in the vicinity of the Earth for decades, if not centuries. Our observations also revealed a rapid rotation (less than a half hour) with large brightness variation (in excess of 1 magnitude), which helps to explain why this object eluded discovery until this year.2011 YV62 is among the top 20 largest near-Earth asteroids with Earth impact solutions (in 2078 and 2080). At the time of this writing, the object is flagged as being "lost", but a re-examination of observations made in 2013 and 2015 finally yielded a successful recovery at a magnitude fainter than 24. We expect the new observations to eliminate the impact possibilities. The story behind this difficult recovery is fascinating.

  4. International Polar Year Observations From the International Space Station

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael

    2006-01-01

    Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

  5. Perceptual evaluation of color transformed multispectral imagery

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.

    2014-04-01

    Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.

  6. Optical data communication for Earth observation satellite systems

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Loecherbach, E.

    1991-10-01

    The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.

  7. Eye Gaze Metrics Reflect a Shared Motor Representation for Action Observation and Movement Imagery

    ERIC Educational Resources Information Center

    McCormick, Sheree A.; Causer, Joe; Holmes, Paul S.

    2012-01-01

    Action observation (AO) and movement imagery (MI) have been reported to share similar neural networks. This study investigated the congruency between AO and MI using the eye gaze metrics, dwell time and fixation number. A simple reach-grasp-place arm movement was observed and, in a second condition, imagined where the movement was presented from…

  8. Earth observation image data format

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1976-01-01

    A flexible format for computer compatable tape (CCT) containing multispectral earth observation sensor data is described. The driving functions which comprise the data format requirements are summarized and general data format guidelines are discussed.

  9. The Common Framework for Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T. S.; Sherman, R.

    2016-12-01

    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  10. Use of ERTS-1 imagery in forest inventory

    NASA Technical Reports Server (NTRS)

    Rennie, J. C.; Birth, E. E.

    1974-01-01

    The utility of ERTS-1 imagery when combined with field observations and with aircraft imagery and field observations is evaluated. Satellite imagery consisted of 9-1/2 inch black and white negatives of four multispectral scanner bands taken over Polk County, Tennessee. Aircraft imagery was obtained by a C-130 flying at 23,000 ft over the same area and provided the basis for locating ground plots for field observations. Correspondence between aircraft and satellite imagery was somewhat inaccurate due to seasonal differences in observations and lack of good photogrammetry with the data processing system used. Better correspondence was found between satellite imagery and ground observations. Ways to obtain more accurate data are discussed, and comparisons between aircraft and satellite observations are tabulated.

  11. Optical MEMS for earth observation payloads

    NASA Astrophysics Data System (ADS)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  12. The Evolution of an Imagery Data System

    NASA Astrophysics Data System (ADS)

    Alarcon, C.; De Cesare, C.; Huang, T.; Roberts, J. T.; Rodriguez, J.; Cechini, M. F.; Boller, R. A.; Baynes, K.

    2016-12-01

    NASA's Global Imagery Browse Services (GIBS) has provided visualization of NASA's Earth Science data archives since 2011. The scope of GIBS has expanded over time to include community requested features such as granules, vectors, and profile imagery support. Behind the GIBS system lies the data management and automation package, The Imagery Exchange (TIE). As new features are added to GIBS, TIE must keep up with the capabilities that are required to automate the generation of our products while maintaining a robust generation pipeline. This presentation will focus on the challenges and solutions to expanding the TIE subsystem into a more evolved framework that can support the ever- growing needs of GIBS. This includes the efforts into redesigning the workflow to support sub-daily (e.g. granules) imagery while increasing the overall efficiency of the entire generation lifecycle.

  13. Earth Observation

    NASA Image and Video Library

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  14. Analysis of Critical Earth Observation Priorities for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  15. Imaging_Earth_With_MUSES

    NASA Image and Video Library

    2017-07-11

    Commercial businesses and scientific researchers have a new capability to capture digital imagery of Earth, thanks to MUSES: the Multiple User System for Earth Sensing facility. This platform on the outside of the International Space Station is capable of holding four different payloads, ranging from high-resolution digital cameras to hyperspectral imagers, which will support Earth science observations in agricultural awareness, air quality, disaster response, fire detection, and many other research topics. MUSES program manager Mike Soutullo explains the system and its unique features including the ability to change and upgrade payloads using the space station’s Canadarm2 and Special Purpose Dexterous Manipulator. For more information about MUSES, please visit: https://www.nasa.gov/mission_pages/station/research/news/MUSES For more on ISS science, https://www.nasa.gov/mission_pages/station/research/index.html or follow us on Twitter @ISS_research

  16. Developing Initial Response Products Using Data from Optical and SAR Earth Observing Platforms for Natural Disaster Response

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Molthan, A.; Dabboor, M.

    2016-12-01

    After a disaster occurs, decision makers require timely information to assist decision making and support. Earth observing satellites provide tools including optical remote sensors that sample in various spectral bands within the visible, near-infrared, and thermal infrared. However, views from optical sensors can be blocked when clouds are present, and cloud-free observations can be significantly delayed depending upon on their repeat cycle. Synthetic aperture radar (SAR) offers several advantages over optical sensors in terms of spatial resolution and the ability to map the Earth's surface whether skies are clear or cloudy. In cases where both SAR and cloud-free optical data are available, these instruments can be used together to provide additional confidence in what is being observed at the surface. This presentation demonstrates cases where SAR imagery can enhance the usefulness for mapping natural disasters and their impacts to the land surface, specifically from severe weather and flooding. The Missouri and Mississippi River flooding from early in 2016 and damage from hail swath in northwestern Iowa on 17 June 2016 are just two events that will be explored. Data collected specifically from the EO-1 (optical), Landsat (optical) and Sentinel 1 (SAR) missions are used to explore several applicable methodologies to determine which products and methodologies may provide decision makers with the best information to provide actionable information in a timely manner.

  17. Catalogs of Space Shuttle earth observations photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A review is presented of postflight cataloging and indexing activities of mission data obtained from Space Shuttle earth observations photography. Each Space Shuttle mission acquires 1300-4400 photographs of the earth that are reviewed and interpreted by a team of photointerpreters and cataloging specialists. Every photograph's manual and electronic set of plots is compared for accuracy of its locational coordinates. This cataloging activity is a critical and principal part of postflight activity and ensures that the database is accurate, updated and consequently made meaningful for further utilization in the applications and research communities. A final product in the form of a Catalog of Space Shuttle Earth Observations Handheld Photography is published for users of this database.

  18. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  19. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  20. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  1. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  2. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  3. Requirements and concept design for large earth survey telescope for SEOS

    NASA Technical Reports Server (NTRS)

    Mailhot, P.; Bisbee, J.

    1975-01-01

    The efforts of a one year program of Requirements Analysis and Conceptual Design for the Large Earth Survey Telescope for the Synchronous Earth Observatory Satellite is summarized. A 1.4 meter aperture Cassegrain telescope with 0.6 deg field of view is shown to do an excellent job in satisfying the observational requirements for a wide range of earth resources and meteorological applications. The telescope provides imagery or thermal mapping in ten spectral bands at one time in a field sharing grouping of linear detector arrays. Pushbroom scanning is accomplished by spacecraft slew.

  4. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Jennifer Brennan, NASA EOSDIS Outreach Lead at NASA's Goddard Spaceflight Center, speaks to participants at a NASA Earth Day sponsored exhibit about satellite earth imagery, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  5. Normalization of satellite imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  6. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  7. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  8. STS-43 Earth observation of a colorful sunrise

    NASA Image and Video Library

    1991-08-11

    STS-43 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, captures the Earth's limb at sunrise with unusual cloud patterns silhouetted by the sunlight and rising into the terminator lines.

  9. Earth Observations taken by Expedition 44 crewmember

    NASA Image and Video Library

    2015-06-20

    ISS044E002419 (06/20/2015) --- This Earth observation of Iran was taken by members of Expedition 44 on the International Space Station on June 20, 2015. Described as "Earth Art" it is the western shore of Lake Urmia near Gülmanxana, Iran (~36.6N, 45.3E).

  10. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  11. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  12. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  13. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley; Olson, V.; Trenchard, M.; Willis, K.; Baskin, P.

    2006-01-01

    This viewgraph presentation asks the question "Is the observation of earth from the ISS a positive (salutogenic) experience for crew members?"All images are distributed to the public via the "Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov. The objectives of the study are (1) Mine the dataset of Earth Observation photography--What can it tell us about the importance of viewing the Earth as a positive experience for the crewmembers? (2) Quantify extent to which photography was self-initiated (not requested by scientists) (3) Identify patterns photography activities versus scientific requested photography.

  14. GIONET (GMES Initial Operations Network for Earth Observation Research Training)

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Balzter, H.

    2013-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. Copernicus (previously known as GMES (Global Monitoring for Environment and Security) is a joint undertaking of the European Space Agency and the European Commission. It develops fully operational Earth Observation monitoring services for a community of end users from the public and private sector. The first services that are considered fully operational are the land monitoring and emergency monitoring core services. In GIONET, 14 early stage researchers are being trained at PhD level in understanding the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers are based in industry and universities across Europe, as well as receiving the best technical training and scientific education. The training programme through supervised research focuses on 14 research topics. Each topic is carried out by an Early Stage Researcher based in one of the partner organisations and is expected to lead to a PhD degree. The 14 topics are grouped in 5 research themes: Forest monitoring Land cover and change Coastal zone and freshwater monitoring Geohazards and emergency response Climate adaptation and emergency response The methods developed and used in GIONET are as diverse as its research topics. GIONET has already held two summer schools; one at Friedrich Schiller University in Jena (Germany), on 'New operational radar satellite applications: Introduction to SAR, Interferometry and Polarimetry for Land Surface Mapping'. The 2nd summer school took place last September at the University of Leicester (UK )on 'Remote sensing of land cover and forest in GMES'. The next Summer School in September 2013

  15. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  16. Continuity of Earth Radiation Budget Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  17. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  18. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  19. New Earth-Observing Instrument Installed on the International Space Station

    NASA Image and Video Library

    2017-12-08

    In January 2013, a new Earth-observing instrument was installed on the International Space Station (ISS). ISERV Pathfinder consists of a commercial camera, a telescope, and a pointing system, all positioned to look through the Earth-facing window of ISS’s Destiny module. ISERV Pathfinder is intended as an engineering exercise, with the long-term goal of developing a system for providing imagery to developing nations as they monitor natural disasters and environmental concerns. The image above is the “first light” from the new ISERV camera system, taken at 1:44 p.m. local time on February 16, 2013. It shows the Rio San Pablo as it empties into the Golfo de Montijo in Veraguas, Panama. It is an ecological transition zone, changing from agriculture and pastures to mangrove forests, swamps, and estuary systems. The area has been designated a protected area by the National Environmental Authority (ANAM) of Panama and is listed as a “wetland of international importance” under the Ramsar Convention. (Note that the image is rotated so that north is to the upper right.) “ISERV’s full potential is yet to be seen, but we hope it will really make a difference in people’s lives,” said principal investigator Burgess Howell of NASA’s Marshall Space Flight Center. “For example, if an earthen dam gives way in Bhutan, we want to be able to show officials where the bridge is out or where a road is washed out or a power substation is inundated. This kind of information is critical to focus and speed rescue efforts.” The instrument will be controlled from NASA Marshall in Huntsville, Alabama, in collaboration with researchers at hubs in Central America, East Africa, and the Hindu Kush–Himalaya region. They will rely on positioning software to know where the space station is at each moment and to calculate the next chance to view a particular area on the ground. If there's a good viewing opportunity, the SERVIR team will instruct the camera to take high

  20. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  1. Real-time data and communications services of NCAR's Earth Observing Laboratory

    NASA Astrophysics Data System (ADS)

    Webster, C. J.; Daniels, M.; Stossmeister, G.

    2011-12-01

    Near real-time information is critical for mission management of atmospheric observing systems. Advances in satellite communications and Internet distribution have allowed the Earth Observing Laboratory (EOL) of NCAR to provide data, information and imagery to the scientists during evolving weather situations. Real-time data are necessary for updating interactive displays that show products from forecast models and many disparate observation systems (e.g. satellite, soundings, surface radars and aircraft in-situ observations). At the same time, network-based collaborative tools such as chat and web conferencing facilitate interactive participation between remote groups of scientists, engineers, operations centers and the observing platforms. In the recent PREDICT deployment of the NSF/NCAR GV research aircraft, dropsondes were released from the aircraft at 45,000 ft over a 1000 km x 1000 km area to give profiles of pressure, temperature, humidity and wind below the aircraft. Real-time data from the sondes was collected by the aircraft and relayed by satcom into the Global Telecommunications System (GTS) and assimilated into forecast models. The model forecast results were then fed back into ground-based and airborne displays (along with a multitude of observations) for enhanced decision-making and mission guidance. This environment of streaming data in real-time also allows more experts to look at data and compare it with other measurements. One particular benefit is that it alerts instrument operators on the ground and in the air to instrument problems, which can then be addressed very rapidly. The resulting communications and collaborations infrastructure results in unprecedented improvements to our data quality and rapid targeting of mission resources to important weather events. Using several examples, this presentation will provide an overview of current tools and processes in use at EOL, and future needs will be discussed.

  2. Lithospheric Subduction on Earth and Venus?

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Garcia, E.; Stegman, D. R.; Schubert, G.

    2016-12-01

    There are three mechanisms by which terrestrial planets can shed excess heat: conduction across a surface thermal boundary layer; advection of heat through volcanic pipes; and mobile plates/subduction. On the Earth about 30% is released by conduction and 70% by subduction. The dominant mode of heat transport on Venus is largely unknown. Plate flexure models rule out significant heat loss by conduction and the resurfacing from active volcanism is in discordance with a surface age of 600 Ma. There are 9000 km of trenches on Venus that may have been subduction sites but they do not appear active today and are only 25% of the length of the subduction zones on the Earth. Turcotte and others have proposed an episodic recycling model that has short bursts ( 150 Ma) of plate tectonic activity followed by long periods ( 450 Ma) of stagnant lid convection. This talk will review the arguments for and against subduction zones on Venus and discuss possible new satellite observations that could help resolve the subduction issue. Figure Caption. (a) Global mosaic of Magellan SAR imagery. (b) Zoom of area along the Artemis trench, which has similar topography and fracture patterns as the Aleutian subduction zone on Earth. Trench and outer rise lines were digitized from the matching topography image (not shown). The Magellan SAR imagery and topography, displayed on Google Earth, can be downloaded at http://topex.ucsd.edu/venus/index.html

  3. ESA Earth Observation missions at the service of geoscience

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2017-04-01

    The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development

  4. Earth Observations taken with ESA NightPod hardware

    NASA Image and Video Library

    2012-12-08

    ISS034-E-005935 (8 Dec. 2012) --- A nighttime view of Liege, Belgium is featured in this image photographed by an Expedition 34 crew member on the International Space Station. To paraphrase the old expression, “all roads lead to Liege” – or at least one could get that impression from this nighttime photograph. The brightly lit core of the Liege urban area appears to lie at the center of a network of roadways—traceable by continuous orange lighting—extending outwards into the rural, and relatively dark, Belgium countryside. For a sense of scale the distance from left to right is approximately 70 kilometers. The region at upper left to the southeast of Verviers includes agricultural fields and forest; hence it appears almost uniformly dark at night. The image was taken using the European Space Agency’s Nodding mechanism, also known as the NightPod. NightPod is an electro-mechanical mount system designed to compensate digital cameras for the motion of the space station relative to Earth. The primary mission goal was to take high-resolution, long exposure digital imagery of Earth from the station’s Cupola, particularly cities at night. While the official NightPod mission has been completed, the mechanism remains onboard for crew members to use. Liege is the third most populous metropolitan region in Belgium (after Brussels and Antwerp); it includes 52 municipalities, including the nearby city of Seraing.

  5. Seeing Earth Through the Eyes of an Astronaut

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa

    2014-01-01

    The Human Exploration Science Office within the ARES Directorate has undertaken a new class of handheld camera photographic observations of the Earth as seen from the International Space Station (ISS). For years, astronauts have attempted to describe their experience in space and how they see the Earth roll by below their spacecraft. Thousands of crew photographs have documented natural features as diverse as the dramatic clay colors of the African coastline, the deep blues of the Earth's oceans, or the swirling Aurora Borealis of Australia in the upper atmosphere. Dramatic recent improvements in handheld digital single-lens reflex (DSLR) camera capabilities are now allowing a new field of crew photography: night time-lapse imagery.

  6. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  7. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  8. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  9. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2014-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  10. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2015-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  11. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability

  12. Committee on Earth Observation Satellites (CEOS) perspectives about the GEO Supersite initiative

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Zoffoli, Simona; Giguere, Christine; Hoffmann, Joern; Lindsay, Francis; Seguin, Guy

    2014-05-01

    This presentation is outlining the effort of the Committee on Earth Observation Satellites (CEOS) using its global collaboration structure to support implementing the GEO priority action DI-01 Informing Risk Management and Disaster Reduction addressing the component: C2 Geohazards Monitoring, Alert, and Risk Assessment. A CEOS Supersites Coordination Team (SCT) has been established in order to make best use of the CEOS global satellite resources. For this, the CEOS SCT has taken a holistic view on the science data needs and availability of resources, considering the constraints and exploitation potentials of synergies. It is interfacing with the Supersites Science Advisory Group and the Principle Investigators to analyze how the satellite data associated with seismic and Global Navigation Satellite System (GNSS) data can support national authorities and policy makers in risk assessment and the development of mitigation strategies. CEOS SCT aims to support the establishment of a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. The three Supersites projects which are funded under the EC FP7 action, namely (i) FUTUREVOLC: A European volcanological supersite in Iceland: a monitoring system and network for the future Geohazards Monitoring, Alert, and Risk Assessment, (ii) MARsite: New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, (iii) MED-SUV: MEDiterranean Volcanoes and related seismic risks, have been examined as a vehicle to fulfill these ambitious objectives. FUTUREVOLC has already been granted CEOS support. This presentation will outline CEOS agreed process and criteria applied by the Supersites Coordination Team (SCT), for selecting these Supersites in the context of the GSNL initiative, as

  13. Earth Observations from Space: The First 50 Years of Scientific Achievements

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  14. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  15. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    NASA Astrophysics Data System (ADS)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  16. Earth observation mission operation of COMS during in-orbit test

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2011-11-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionality and the performance of many aspects of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The Earth observation mission operation of COMS during the IOT phase is introduced in terms of mission operation characteristics, mission planning, and mission operation results for the missions of meteorological observation and ocean monitoring, respectively.

  17. Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark

    1993-01-01

    The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

  18. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  19. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.

    1995-01-01

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.

  20. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    PubMed

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Seasonal vegetation differences from ERTS imagery

    NASA Technical Reports Server (NTRS)

    Ashley, M. D.; Rea, J.

    1975-01-01

    Knowledge of the times when crop and forest vegetation experience seasonally related changes in development is important in understanding growth and yield relationships. This article describes how densitometry of earth resources technology satellite (ERTS-1) multispectral scanner (MSS) imagery can be used to identify such phenological events. Adjustments for instrument calibration, aperture size, gray-scale differences between overpasses, and normalization of changing solar elevation are considered in detail. Seasonal vegetation differences can be identified by densitometry of band 5 (0.6-0.7 microns) and band 7 (0.8-1.1 microns) MSS imagery. Band-to-band ratios of the densities depicted the changes more graphically than the individual band readings.

  2. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    USGS Publications Warehouse

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  3. Applications of NASA Earth Observation Imagery in Google Earth Engine to Estimate Glacier Trends and Water Availability in Chile's Aconcagua Watershed

    NASA Astrophysics Data System (ADS)

    Webb, M. J.; Babis, B.; Deland, S.; McGurk, G.

    2017-12-01

    The Aconcagua basin of Central Chile, just north of the capital city of Santiago, is characterized by the glaciated Andes to the east, which supply meltwater runoff to the lower fertile river valleys. Known for the production of fruit and vegetable crops, the region is experiencing stressed hydrologic resources as a result of anomalous climate conditions and anthropogenic water consumption. Traditionally, the wet and cool winter months account for 80 percent of Aconcagua's total annual precipitation, while dry and warm conditions prevail during the summer months. Consequently, the basin depends on seasonal glacial accumulation to provide water storage for the dry season when up to 67 percent of water is derived from glacial runoff. Overall, 70 percent of regional water is consumed by agricultural practices, specifically the fruit and vegetable farming that thrives in Aconcagua's Mediterranean-type climate. Globally, weather intensification and the rising zero-degree isotherm are poised to threaten the stability and longevity of glacial water resources. In recent years, Chile has experienced periods of prolonged drought as well as glacier shrinkage. The Aconcagua basin is especially vulnerable to these changes as a consequence of its agricultural economies and reliance on sub-tropical glaciers for water resources. Aconcagua is among the top three regions contributing to Chile's gross domestic product (GDP). Furthermore, in 2011 the Chilean government announced plans to increase the national land under irrigation by 57 percent by 2022. In partnership with the Chilean Ministry of Agriculture, the objective of this research was to integrate NASA Earth observations in conjunction with in situ river discharge measurements into Google Earth Engine to enhance regional understanding of current and future climate conditions in Chile. The remotely-sensed datasets included Landsat TM/OLI derived glacial extent, Terra MODIS snow cover and surface temperature, and Aqua AMSR

  4. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  5. Mosaicked Historic Airborne Imagery from Seward Peninsula, Alaska, Starting in the 1950's

    DOE Data Explorer

    Cherry, Jessica; Wirth, Lisa

    2016-12-06

    Historical airborne imagery for each Seward Peninsula NGEE Arctic site - Teller, Kougarok, Council - with multiple years for each site. This dataset includes mosaicked, geolocated and, where possible, orthorectified, historic airborne and recent satellite imagery. The older photos were sourced from USGS's Earth Explorer site and the newer, satellite imagery is from the Statewide Digital Mapping Initiative (SDMI) project managed by the Geographic Information Network of Alaska on behalf of the state of Alaska.

  6. Automated protocols for spaceborne sub-meter resolution "Big Data" products for Earth Science

    NASA Astrophysics Data System (ADS)

    Neigh, C. S. R.; Carroll, M.; Montesano, P.; Slayback, D. A.; Wooten, M.; Lyapustin, A.; Shean, D. E.; Alexandrov, O.; Macander, M. J.; Tucker, C. J.

    2017-12-01

    The volume of available remotely sensed data has grown exceeding Petabytes per year and the cost for data, storage systems and compute power have both dropped exponentially. This has opened the door for "Big Data" processing systems with high-end computing (HEC) such as the Google Earth Engine, NASA Earth Exchange (NEX), and NASA Center for Climate Simulation (NCCS). At the same time, commercial very high-resolution (VHR) satellites have grown into a constellation with global repeat coverage that can support existing NASA Earth observing missions with stereo and super-spectral capabilities. Through agreements with the National Geospatial-Intelligence Agency NASA-Goddard Space Flight Center is acquiring Petabytes of global sub-meter to 4 meter resolution imagery from WorldView-1,2,3 Quickbird-2, GeoEye-1 and IKONOS-2 satellites. These data are a valuable no-direct cost for the enhancement of Earth observation research that supports US government interests. We are currently developing automated protocols for generating VHR products to support NASA's Earth observing missions. These include two primary foci: 1) on demand VHR 1/2° ortho mosaics - process VHR to surface reflectance, orthorectify and co-register multi-temporal 2 m multispectral imagery compiled as user defined regional mosaics. This will provide an easy access dataset to investigate biodiversity, tree canopy closure, surface water fraction, and cropped area for smallholder agriculture; and 2) on demand VHR digital elevation models (DEMs) - process stereo VHR to extract VHR DEMs with the NASA Ames stereo pipeline. This will benefit Earth surface studies on the cryosphere (glacier mass balance, flow rates and snow depth), hydrology (lake/water body levels, landslides, subsidence) and biosphere (forest structure, canopy height/cover) among others. Recent examples of products used in NASA Earth Science projects will be provided. This HEC API could foster surmounting prior spatial-temporal limitations while

  7. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning

    NASA Technical Reports Server (NTRS)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred

    2007-01-01

    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  8. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    PubMed

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    ,

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  10. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  11. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation.

    PubMed

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf

    2017-06-01

    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    NASA Astrophysics Data System (ADS)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  13. The role of GPS in precise earth observation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Lindal, Gunnar F.; Liu, Chao-Han

    1988-01-01

    The potential of the Global Positioning System (GPS) for precise earth observation is evaluated. It is projected that soon GPS will be utilized to track remote-sensing satellites with subdecimeter accuracy. The first will be Topex/Poseidon, a US/French ocean altimetry mission to be launched in 1991. In addition, it is suggested that developments planned for future platforms may push orbit accuracy near 1 cm within a decade. GPS receivers on some platforms will track the signals down to the earth limb to observe occultation by intervening media. This will provide comprehensive information on global temperature and climate and help detect the possible onset of a greenhouse effect. It is also projected that dual-frequency observations will be used to trace the flow of energy across earth systems through detection of ionospheric gravity waves, and to map the structure of the ionosphere by computer tomography.

  14. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  15. Crew Earth Observations (CEO) taken during STS-113

    NASA Image and Video Library

    2002-12-04

    STS113-708-014 (23 November - 7 December 2002) --- The STS-113 crewmembers used a handheld 70mm still camera to record this image of Patagonia lakes in southern Argentina. The lowest of the three lakes in this view is Lake Argentino. The next one north (middle lake) is Lake Viedma, and the lake on the top margin is Lake San Martín. According to NASA scientists studying the STS-113 Earth imagery, all three of these large lakes have been carved out by glaciers in the "recent" ice age, descending from the Andes Mountains (under cloud along the right side of the view). Three glacier tongues can be discerned as small white features leading into the western (left) ends of each lake. The rounded ends of the lakes, according to the Johnson Space Center scientists, are produced by the slow "flowing" action of glacial ice on the plains next to the mountain chain. Snow cap on lower peaks next to the cloud make a jagged pattern.

  16. Observing Coronal Mass Ejections from the Sun-Earth L5 Point

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; St Cyr, O. C.

    2013-12-01

    Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere and are known to be responsible for severe space weather. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). The STEREO mission viewed CMEs from points away from the Sun-Earth line and demonstrated the importance of such observations in understanding the three-dimensional structure of CMEs and their true kinematics. In this paper, we show that it is advantageous to observe CMEs from the Sun-Earth L5 point in studying CMEs that affect Earth. In particular, these observations are important in identifying that part of the CME that is likely to arrive at Earth. L5 observations are critical for several aspects of CME studies such as: (i) they can also provide near-Sun space speed of CMEs, which is an important input for modeling Earth-arriving CMEs, (ii) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, and (iii) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, which may not be possible from the Sun-Earth line. We also discuss how the L5 vantage point compares with the Sun-Earth L4 point for observing Earth-affecting CMEs. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C., MacDowall, R. J., Maksimovic, M., Sittler, E., et al. (2011b), Earth-Affecting Solar Causes Observatory (EASCO): a mission at

  17. The Group on Earth Observations (GEO) through 2025

    NASA Astrophysics Data System (ADS)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  18. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.

  19. Understanding USGS user needs and Earth observing data use for decision making

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2016-12-01

    US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.

  20. Earth Observation-Supported Service Platform for the Development and Provision of Thematic Information on the Built Environment - the Tep-Urban Project

    NASA Astrophysics Data System (ADS)

    Esch, T.; Asamer, H.; Boettcher, M.; Brito, F.; Hirner, A.; Marconcini, M.; Mathot, E.; Metz, A.; Permana, H.; Soukop, T.; Stanek, F.; Kuchar, S.; Zeidler, J.; Balhar, J.

    2016-06-01

    The Sentinel fleet will provide a so-far unique coverage with Earth observation data and therewith new opportunities for the implementation of methodologies to generate innovative geo-information products and services. It is here where the TEP Urban project is supposed to initiate a step change by providing an open and participatory platform based on modern ICT technologies and services that enables any interested user to easily exploit Earth observation data pools, in particular those of the Sentinel missions, and derive thematic information on the status and development of the built environment from these data. Key component of TEP Urban project is the implementation of a web-based platform employing distributed high-level computing infrastructures and providing key functionalities for i) high-performance access to satellite imagery and derived thematic data, ii) modular and generic state-of-the art pre-processing, analysis, and visualization techniques, iii) customized development and dissemination of algorithms, products and services, and iv) networking and communication. This contribution introduces the main facts about the TEP Urban project, including a description of the general objectives, the platform systems design and functionalities, and the preliminary portfolio products and services available at the TEP Urban platform.

  1. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  2. SkySat-1: very high-resolution imagery from a small satellite

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk

    2014-10-01

    This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.

  3. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  4. Earth rotation excitation mechanisms derived from geodetic space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  5. Using Google Streetview Panoramic Imagery for Geoscience Education

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  6. Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.

    2004-01-01

    The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.

  7. NASA's Big Earth Data Initiative Accomplishments

    NASA Technical Reports Server (NTRS)

    Klene, Stephan A.; Pauli, Elisheva; Pressley, Natalie N.; Cechini, Matthew F.; McInerney, Mark

    2017-01-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Services (GIBS).

  8. NASA's Big Earth Data Initiative Accomplishments

    NASA Astrophysics Data System (ADS)

    Klene, S. A.; Pauli, E.; Pressley, N. N.; Cechini, M. F.; McInerney, M.

    2017-12-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Service(GIBS)

  9. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  10. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  11. Value of Earth Observation for Risk Mitigation

    NASA Astrophysics Data System (ADS)

    Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.

    2017-12-01

    Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.

  12. Impact of left versus right hemisphere subcortical stroke on the neural processing of action observation and imagery.

    PubMed

    Dettmers, Christian; Nedelko, Violetta; Schoenfeld, Mircea Ariel

    2015-01-01

    Mental training appears to be an attractive tool in stroke rehabilitation. The objective of this study was to investigate whether any differences in the processing of action observation and imagery might exist between patients with left and right hemisphere subcortical strokes. Eighteen patients with strictly subcortical stroke (nine right-hemispheric) underwent a functional magnetic resonance imaging (fMRI) study with an experimental paradigm in which motor acts had to be observed and/or imagined from a first person perspective. Changes in hemodynamic activity were measured using fMRI. The activity level was found to be higher in the non-lesioned compared to the lesioned hemisphere. Patients with lesions in the left hemisphere had a higher activation level in visual (fusiform and lingual gyri), superior temporal areas and dorsal premotor regions across all performed comparisons than those with right hemisphere lesions. Furthermore they had more vivid imagery experiences and lower scores on the Stroke Impact Scale. Patients with left hemisphere subcortical lesions recruit more cortical regions in the processing of action pictures and videos. This recruitment was further enhanced during imagery. This is most likely related to the fact that the lesion touched the dominant hemisphere.

  13. The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services

    NASA Astrophysics Data System (ADS)

    Denis, Gil; de Boissezon, Hélène; Hosford, Steven; Pasco, Xavier; Montfort, Bruno; Ranera, Franck

    2016-10-01

    The paper reviews the evolution of Earth Observation systems in Europe and Worldwide and analyses the potential impact of their performance in support of emergency response services. Earth Observation satellites play already a significant role in supporting the action of first responders in case of major disasters. The main principle is the coordinated use of satellites in order to ensure a rapid response and the timely delivery of images and geospatial information of the area affected by the event. The first part of the paper reviews the main instruments and evaluates their current performance. The International Charter ;Space and Major Disasters;, signed in October 2000, was the first international initiative aimed at establishing a unified system for the acquisition of space data. The charter is a cooperation agreement between space agencies and operators of space systems. At regional level, a similar instrument exists in Asia: Sentinel-Asia. In the frame of the European programme Copernicus, the emergency management service was launched in 2009. Geo-information products derived from space imagery are delivered during all phases of the emergency management cycle, in either rush or non-rush mode, free of charge for the users. In both cases, the capacities were historically drawn from national missions, funded with public money and directly operated by the space agencies or by national operators.

  14. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project

  15. Earth observations during Space Shuttle flight STS 50 - Columbia's mission to planet earth (June 25-July 9, 1992)

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Evans, Cynthia; Wilkinson, Justin; Helms, David; Chambers, Mark; Brumbaugh, Fred; Richards, Richard N.

    1993-01-01

    A review of the imagery acquired during the STS 50 mission of the Space Shuttle is presented. The earth viewing photography from this flight includes photos of dust plumes over several portions of the Red Sea, Arabian Sea, Persian Gulf, the Mediterranean Sea, and the Atlantic Ocean. Over land, prominent dust plumes were seen over Iraq, North Africa, Sudan, and West Africa. The color infrared photography includes images of the tropical rain forests of South America and South and Southeast Asia. Other examples include photographs of floods in Argentina, photos of Lake Chad in Africa, Coastal Madagascar, the Aswan dam and the Nile, geologic features of North Africa, the center pivot irrigation land areas of Saudi Arabia, flooding in Asian rivers, and sediment plumes of South American and South and Southeast Asian coasts.

  16. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, < 25 kg) are emerging as a viable alternative to conventional remote sensing platforms for Earth observation (EO). sUAS technology affords greater control, lower cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  17. Earth observation for regional scale environmental and natural resources management

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  18. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  19. Looking at Earth observation impacts with fresh eyes: a Landsat example

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoting; Snyder, Greg; Quirk, Bruce; Stensaas, Greg; Vadnais, Carolyn; Babcock, Michael; Dale, Erin; Doucette, Peter

    2016-05-01

    The U. S. Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) activity in the Land Remote Sensing (LRS) program to provide a structured approach to collect, store, maintain, and analyze user requirements and Earth observing system capabilities information. RCA-EO enables the collection of information on current key Earth observation products, services, and projects, and to evaluate them at different organizational levels within an agency, in terms of how reliant they are on Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. Within the USGS, RCA-EO has engaged over 500 subject matter experts in this assessment, and evaluated the impacts of more than 1000 different Earth observing data sources on 345 key USGS products and services. This paper summarizes Landsat impacts at various levels of the organizational structure of the USGS and highlights the feedback of the subject matter experts regarding Landsat data and Landsat-derived products. This feedback is expected to inform future Landsat mission decision making. The RCA-EO approach can be applied in a much broader scope to derive comprehensive knowledge of Earth observing system usage and impacts, to inform product and service development and remote sensing technology innovation beyond the USGS.

  20. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  1. Effects of motor imagery and action observation on hand grip strength, electromyographic activity and intramuscular oxygenation in the hand gripping gesture: A randomized controlled trial.

    PubMed

    Losana-Ferrer, Alejandro; Manzanas-López, Sergio; Cuenca-Martínez, Ferran; Paris-Alemany, Alba; La Touche, Roy

    2018-04-01

    The aim of this study was to evaluate the effects of motor imagery and action observation combined with a hand grip strength program on the forearm muscles. Sixty subjects were selected and randomized into three groups: motor imagery (n = 20), action observation (n = 20), or a control group (n = 20). Outcome measures included hand grip strength, electromyographical activity and intramuscular oxygenation. The hand grip strength significantly increased in the motor imagery (p < .001) and action observation (p < .001) groups compared with the control group, although there were no differences between the both groups (p = .30). In the electromyographical activity, intra-group significant differences were found in motor imagery (p = .002) and action observation (p = .003) groups, although there were no differences between the both groups (p = 1.00) Intramuscular oxygenation results did not show any statistically significant differences between any of the study groups (p > .05). Our results suggest that both motor imagery and action observation training, combined with a hand grip strength program, present a significant strength gain and significant change in the strength and electromyographical activity of the forearm muscles, however no change was found in intramuscular oxygenation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Prospects for phenological monitoring in an arid southwestern U.S. rangeland using field observations with hyperspatial and moderate resolution imagery

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Laliberte, A. S.; Rango, A.; Herrick, J. E.

    2009-12-01

    Relating field observations of plant phenological events to remotely sensed depictions of land surface phenology remains a challenge to the vertical integration of data from disparate sources. This research conducted at the Jornada Basin Long-Term Ecological Research site in southern New Mexico capitalizes on legacy datasets pertaining to reproductive phenology and biomass and hyperspatial imagery. Large amounts of exposed bare soil and modest cover from shrubs and grasses in these arid and semi-arid ecosystems challenge the integration of field observations of phenology and remotely sensed data to monitor changes in land surface phenology. Drawing on established field protocols for reproductive phenology, hyperspatial imagery (4 cm), and object-based image analysis, we explore the utility of two approaches to scale detailed observations (i.e., field and 4 cm imagery) to the extent of long-term field plots (50 x 50m) and moderate resolution Landsat Thematic Mapper (TM) imagery (30 x 30m). Very high resolution color-infrared imagery was collected June 2007 across 15 LTER study sites that transect five distinct vegetation communities along a continuum of grass to shrub dominance. We examined two methods for scaling spectral vegetation indices (SVI) at 4 cm resolution: pixel averaging and object-based integration. Pixel averaging yields the mean SVI value for all pixels within the plot or TM pixel. Alternatively, the object-based method is based on a weighted average of SVI values that correspond to discrete image objects (e.g., individual shrubs or grass patches). Object-based image analysis of 4 cm imagery provides a detailed depiction of ground cover and allows us to extract species-specific contributions to upscaled SVI values. The ability to discern species- or functional-group contributions to remotely sensed signals of vegetation greenness can greatly enhance the design of field sampling protocols for phenological research. Furthermore, imagery from unmanned

  3. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  4. NASA's Global Imagery Browse Services: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Baynes, K.; Boller, R. A.; Roberts, J. T.; Cechini, M. F.; Alarcon, C.; Pilone, D.

    2016-12-01

    NASA's Global Imagery Browse Services (GIBS) provides quick access to almost 500 satellite imagery products, covering every part of the world in a free, open, and interoperable manner. Much of the imagery is available with a few hours after satellite overpass and some products span over 15 years. This imagery has been used for a diverse array of applications including wildfire monitoring, air quality research, education, and soaring above the Earth through immersive planetarium shows. In addition to describing GIBS and its origins and showcasing these applications, this talk will describe the process of how new layers are integrated into the system through interfacing with data providers, how the GIBS team has evolved use cases from the community for new functionality, such as vector data and vertical profile information, and how the GIBS team is pushing forward with research and development aimed at bringing data and imagery together in a seamless manner. Finally, we will discuss new layers currently being integrated into the system and an on-going prototype to evolve the system into a cloud environment.

  5. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070412 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 panorama featuring wildfires which are plaguing the Northwest and causing widespread destruction. (Note: south is at the top of the frame). The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Parts of Oregon and Washington are included in the scene. Mt. Jefferson, Three Sisters and Mt. St. Helens are all snow-capped and visible in the photo, and the Columbia River can also be delineated.

  6. Earth observation

    NASA Image and Video Library

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  7. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  8. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  9. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  10. The space shuttle payload planning working groups. Volume 7: Earth observations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Earth Observations working group of the space shuttle payload planning activity are presented. The objectives of the Earth Observation experiments are: (1) establishment of quantitative relationships between observable parameters and geophysical variables, (2) development, test, calibration, and evaluation of eventual flight instruments in experimental space flight missions, (3) demonstration of the operational utility of specific observation concepts or techniques as information inputs needed for taking actions, and (4) deployment of prototype and follow-on operational Earth Observation systems. The basic payload capability, mission duration, launch sites, inclinations, and payload limitations are defined.

  11. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  12. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  13. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  14. Spatial Analysis of Environmental Factors Related to Lyme Disease in Alabama by Means of NASA Earth Observation Systems

    NASA Technical Reports Server (NTRS)

    Renneboog, Nathan; Capilouto, Emily G.; Firsing, Stephen L., III; Levy, Kyle; McAllister, Marilyn; Roa, Kathryn; Setia,Shveta; Xie, Lili; Burnett, Donna; Luvall, Jeffrey C.

    2009-01-01

    This slide presentation reviews the epidemiology of Lyme Disease that accounts for more than 95% or vector borne diseases in the United States. The history, symptoms and the life cycle of the tick, the transmitting agent of Lyme Disease, a map that shows the cases reported to the CDC between1990 and 2006 and the number of cases in Alabama by year from 1986 to 2007. A NASA project is described, the goals of which are to (1) Demonstrate the presence of the chain of infection of Lyme disease in Alabama (2) Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama and (3) Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies. The remote sensing methods included: Analyzed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and DigitalGlobe Quickbird satellite imagery from summer months and Performed image analyses in ER Mapper 7.1. Views from the ASTER and Quickbird land cover are shown, the Normalized Difference Vegetation Index (NDVI) algorithm was applied to all ASTER and Quickbird imagery. The use of the images to obtain the level of soil moisture is reviewed, and this analysis was used along with the NDVI, was used to identify the areas that support the tick population.

  15. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  16. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  17. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  18. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    NASA Technical Reports Server (NTRS)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  19. The Operations Security Concept for Future ESA Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bargellini, P.; Merri, M.

    2008-08-01

    Next-generation European earth observation missions will play a critical role in public safety and security infrastructures. This makes it necessary for ESA to protect the communication infrastructure of these missions in order to guarantee their service availability. In this paper, we discuss the development process for a generic earth observation security concept. This concept has been developed as part of a GMES Flight Operation Segment security study with the objective to analyse and select a number of high level security requirements for the missions. Further, we studied the impact of an implementation for these requirements on the operational infrastructure of current earth observation missions.

  20. Earth Science Observations from the International Space Station: An Overview (Invited)

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2013-12-01

    The International Space Station (ISS) provides a unique and valuable platform for observing the Earth. With its mid-inclination (~51 degree) orbit, it provides the opportunity to view most of the Earth, with data acquisition possible over a full range of local times, in an orbit that nicely complements the polar sun-synchronous orbits used for much of space-based Earth observation, and can draw on a heritage of mid-inclination observations from both free flying satellites and the Space Shuttle program. The ISS, including its component observing modules supplied by NASA's international partners, can provide needed resources and viewing opportunities by a broad range of Earth-viewing scientific instruments. In this talk, the overall picture of Earth viewing from ISS will be presented, with examples from a range of past, current, and projected sensors being shared; talks on the ISS implementation for a subset of current and projected payload will be presented in individual talks presented by their their respective teams.

  1. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    USGS Publications Warehouse

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  2. Earth Observation

    NASA Image and Video Library

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  3. Mental imagery of gravitational motion.

    PubMed

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco

    2017-10-01

    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using satellite imagery to identify and analyze tumuli on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Diniega, Serina; Sangha, Simran; Browne, Brandon

    2018-01-01

    Tumuli are small, dome-like features that form when magmatic pressures build within a subsurface lava pathway, causing the overlying crust to bulge upwards. As the appearance of these features has been linked to lava flow structure (e.g., underlying lava flow tubes) and conditions, there is interest in identifying such features in satellite images so they can be used to expand our understanding of lava flows within regions difficult to access (such as on other planets). Here, we define a methodology for identifying (and measuring) tumuli within satellite imagery, and validate it by comparing our results with fieldwork results of terrestrial tumuli reported in the literature and with independent measurements we made within Amboy Field, CA. In addition, we present aggregated results from the application of our methodology to satellite images of six terrestrial fields and seven martian fields (with >2100 tumuli identified, per planet). Comparisons of tumuli morphometrics on Earth and Mars yield similarities in size and overall shape, which were surprising given the many differences in the environmental and planetary conditions within which these features have formed. Given our measurements, we identify constraints for tumulus formation models and drivers that would yield similar shapes and sizes on two different planets. Furthermore, we test a published hypothesis regarding the number of tumuli that form per a square kilometer, and find it unlikely that a diagnostic "tumuli density" value exists.

  5. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-26

    ISS043E142265 (04/26/2015) --- NASA astronaut Scott Kelly on the International Space Station Apr.26, 2015 tweeted this image out of an Earth observation as part of his Space Geo contest "name this location" with this remark and clue: "This frozen body of water is the world's oldest (25 million years) and deepest basin on Earth. Name it!"

  6. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  7. Kinesthetic motor imagery modulates body sway.

    PubMed

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    USGS Publications Warehouse

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  9. International Space Station Earth Observations Working Group

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  10. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  11. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  12. Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL

    NASA Astrophysics Data System (ADS)

    Appel, Marius; Lahn, Florian; Buytaert, Wouter; Pebesma, Edzer

    2018-04-01

    Earth observation (EO) datasets are commonly provided as collection of scenes, where individual scenes represent a temporal snapshot and cover a particular region on the Earth's surface. Using these data in complex spatiotemporal modeling becomes difficult as soon as data volumes exceed a certain capacity or analyses include many scenes, which may spatially overlap and may have been recorded at different dates. In order to facilitate analytics on large EO datasets, we combine and extend the geospatial data abstraction library (GDAL) and the array-based data management and analytics system SciDB. We present an approach to automatically convert collections of scenes to multidimensional arrays and use SciDB to scale computationally intensive analytics. We evaluate the approach in three study cases on national scale land use change monitoring with Landsat imagery, global empirical orthogonal function analysis of daily precipitation, and combining historical climate model projections with satellite-based observations. Results indicate that the approach can be used to represent various EO datasets and that analyses in SciDB scale well with available computational resources. To simplify analyses of higher-dimensional datasets as from climate model output, however, a generalization of the GDAL data model might be needed. All parts of this work have been implemented as open-source software and we discuss how this may facilitate open and reproducible EO analyses.

  13. From Soup to Nuts: How Terra has enabled the growth of NASA Earth science communication

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.

    2014-12-01

    The birth of NASA's Earth Observatory website in 1999 closely mirrored the launch of Terra and over the years its growth has paralleled that of the Earth Observing System (EOS) program. With the launch of Terra, NASA gained an extraordinary platform that not only promised new science capabilities but gave us the data and imagery for telling the stories behind the science. The Earth Observatory Group was founded to communicate these stories to the public. We will present how we have used the capabilities of all the Terra instruments over the past 15 years to expand the public's knowledge of NASA Earth science. The ever-increasing quantity and quality of Terra data, combined with technological improvements to data availability and services has allowed the Earth Observatory and, as a result, the greater science-aware media, to greatly expand the visibility of NASA data and imagery. We will offer thoughts on best practices in using these multi-faceted instruments for public communication and we will share how we have worked with Terra science teams and affiliated systems to see the potential stories in their data and the value of providing the data in a timely fashion. Terra has allowed us to tell the stories of our Earth today like never before.

  14. Dissemination of Earth Remote Sensing Data for Use in the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2015-01-01

    The National Weather Service has developed the Damage Assessment Toolkit (DAT), an application for smartphones and tablets that allows for the collection, geolocation, and aggregation of various damage indicators that are collected during storm surveys. The DAT supports the often labor-intensive process where meteorologists venture into the storm-affected area, allowing them to acquire geotagged photos of the observed damage while also assigning estimated EF-scale categories based upon their observations. Once the data are collected, the DAT infrastructure aggregates the observations into a server that allows other meteorologists to perform quality control and other analysis steps before completing their survey and making the resulting data available to the public. In addition to in-person observations, Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by identifying portions of damage tracks that may be missed due to road limitations, access to private property, or time constraints. Products resulting from change detection techniques can identify damage to vegetation and the land surface, aiding in the survey process. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit. This presentation will highlight recent developments in a streamlined approach for disseminating Earth remote sensing data via web mapping services and a new menu interface that has been integrated within the DAT. A review of current and future products will be provided, including products derived from MODIS and VIIRS for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage

  15. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.

    2014-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  16. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  17. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070439 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above a point on Earth located at 48.0 degrees north latitude and 116.9 degrees west longitude when the image was exposed. The state of Washington is especially affected by the fires, many of which have been blamed on lightning. This particular fire was part of the Carlton Complex Fire, located near the city of Brewster in north central Washington. The reservoir visible near the center of the image is Banks Lake.

  18. Landsat imagery: a unique resource

    USGS Publications Warehouse

    Miller, H.; Sexton, N.; Koontz, L.

    2011-01-01

    Landsat satellites provide high-quality, multi-spectral imagery of the surface of the Earth. These moderate-resolution, remotely sensed images are not just pictures, but contain many layers of data collected at different points along the visible and invisible light spectrum. These data can be manipulated to reveal what the Earth’s surface looks like, including what types of vegetation are present or how a natural disaster has impacted an area (Fig. 1).

  19. Earth Observations taken by Expedition 47 Crewmember.

    NASA Image and Video Library

    2016-03-26

    ISS047e022293 (03/26/2016) --- This Earth Observation image from the International Space Station is of a large extinct volcano in the lower southwest African Brukkaros Mountain in the country of Namibia.

  20. Ikonos Imagery Product Nonuniformity Assessment

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Zanoni, Vicki; Pagnutti, Mary; Holekamp, Kara; Smith, Charles

    2002-01-01

    During the early stages of the NASA Scientific Data Purchase (SDP) program, three approximately equal vertical stripes were observable in the IKONOS imagery of highly spatially uniform sites. Although these effects appeared to be less than a few percent of the mean signal, several investigators requested new imagery. Over time, Space Imaging updated its processing to minimize these artifacts. This however, produced differences in Space Imaging products derived from archive imagery processed at different times. Imagery processed before 2/22/01 is processed with one set of coefficients, while imagery processed after that date requires another set. Space Imaging produces its products from raw imagery, so changes in the ground processing over time can change the delivered digital number (DN) values, even for identical orders of a previously acquired scene. NASA Stennis initiated studies to investigate the magnitude and changes in these artifacts over the lifetime of the system and before and after processing updates.

  1. Jupyter meets Earth: Creating Comprehensible and Reproducible Scientific Workflows with Jupyter Notebooks and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2016-12-01

    Deriving actionable information from Earth observation data obtained from sensors or models can be quite complicated, and sharing those insights with others in a form that they can understand, reproduce, and improve upon is equally difficult. Journal articles, even if digital, commonly present just a summary of an analysis that cannot be understood in depth or reproduced without major effort on the part of the reader. Here we show a method of improving scientific literacy by pairing a recently developed scientific presentation technology (Jupyter Notebooks) with a petabyte-scale platform for accessing and analyzing Earth observation and model data (Google Earth Engine). Jupyter Notebooks are interactive web documents that mix live code with annotations such as rich-text markup, equations, images, videos, hyperlinks and dynamic output. Notebooks were first introduced as part of the IPython project in 2011, and have since gained wide acceptance in the scientific programming community, initially among Python programmers but later by a wide range of scientific programming languages. While Jupyter Notebooks have been widely adopted for general data analysis, data visualization, and machine learning, to date there have been relatively few examples of using Jupyter Notebooks to analyze geospatial datasets. Google Earth Engine is cloud-based platform for analyzing geospatial data, such as satellite remote sensing imagery and/or Earth system model output. Through its Python API, Earth Engine makes petabytes of Earth observation data accessible, and provides hundreds of algorithmic building blocks that can be chained together to produce high-level algorithms and outputs in real-time. We anticipate that this technology pairing will facilitate a better way of creating, documenting, and sharing complex analyses that derive information on our Earth that can be used to promote broader understanding of the complex issues that it faces. http://jupyter.orghttps://earthengine.google.com

  2. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  3. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  4. STS-59 crewmembers in training for onboard Earth observations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  5. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  6. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  7. Earth observations of the Himalayan Mountains taken during STS-99

    NASA Image and Video Library

    2000-03-10

    STS099-735-046 (11-22 February 2000) ---Mt. Everest (29,028 feet or 8,848 meters), is featured in the center of this 70mm frame photographed by one of the STS-99 crew members. Everest, also called Qomolangma Feng, is just north of the border between Nepal and China. The Himalayas and the Tibetan Plateau are products of the collision of the Indian and Eurasian tectonic plates. With the continuing northward march of India, the crust of the Earth has become thicker and the Tibetan Plateau has been uplifted to an average elevation of about 15,000 feet. According to NASA scientists studying the STS-99 imagery, fossil-bearing limestones are at the summit of the mountain. The scientists say that these limestones were deposited beneath the sea around 510 million years ago (Cambrian to Ordovician time). Glaciers, moraines, and outwash plains are spectacularly displayed. Glacial meltwaters in this area feed the Arun River, eventually reaching the Ganges on the plains of India.

  8. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  9. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  10. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2014-01-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities

  11. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  12. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  13. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  14. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  15. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  16. Enhancing voluntary imitation through attention and motor imagery.

    PubMed

    Bek, Judith; Poliakoff, Ellen; Marshall, Hannah; Trueman, Sophie; Gowen, Emma

    2016-07-01

    Action observation activates brain areas involved in performing the same action and has been shown to increase motor learning, with potential implications for neurorehabilitation. Recent work indicates that the effects of action observation on movement can be increased by motor imagery or by directing attention to observed actions. In voluntary imitation, activation of the motor system during action observation is already increased. We therefore explored whether imitation could be further enhanced by imagery or attention. Healthy participants observed and then immediately imitated videos of human hand movement sequences, while movement kinematics were recorded. Two blocks of trials were completed, and after the first block participants were instructed to imagine performing the observed movement (Imagery group, N = 18) or attend closely to the characteristics of the movement (Attention group, N = 15), or received no further instructions (Control group, N = 17). Kinematics of the imitated movements were modulated by instructions, with both Imagery and Attention groups being closer in duration, peak velocity and amplitude to the observed model compared with controls. These findings show that both attention and motor imagery can increase the accuracy of imitation and have implications for motor learning and rehabilitation. Future work is required to understand the mechanisms by which these two strategies influence imitation accuracy.

  17. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley J.; Olson, Valerie A.; Trenchard, Mike; Willis, Kim; Baskin, Pam; Ritsher, Jennifer Boyd

    2006-01-01

    To provide for the well-being of crewmembers on future exploration missions, understanding how space station crewmembers handle the inherently stressful isolation and confinement during long-duration missions is important. A recent retrospective survey of previously flown astronauts found that the most commonly reported psychologically enriching aspects of spaceflight had to do with their Perceptions of Earth. Crewmembers onboard the International Space Station (ISS) photograph Earth through the station windows. Some of these photographs are in response to requests from scientists on the ground through the Crew Earth Observations (CEO) payload. Other photographs taken by crewmembers have not been in response to these formal requests. The automatically recorded data from the camera provides a dataset that can be used to test hypotheses about factors correlated with self-initiated crewmember photography. The present study used objective in-flight data to corroborate the previous questionnaire finding and to further investigate the nature of voluntary Earth-Observation activity. We examined the distribution of photographs with respect to time, crew, and subject matter. We also determined whether the frequency fluctuated in conjunction with major mission events such as vehicle dockings, and extra-vehicular activities (EVAs, or spacewalks), relative to the norm for the relevant crew. We also examined the influence of geographic and temporal patterns on frequency of Earth photography activities. We tested the hypotheses that there would be peak photography intensity over locations of personal interest, and on weekends. From December 2001 through October 2005 (Expeditions 4-11) crewmembers took 144,180 photographs of Earth with time and date automatically recorded by the camera. Of the time-stamped photographs, 84.5% were crew-initiated, and not in response to CEO requests. Preliminary analysis indicated some phasing in patterns of photography during the course of a

  18. Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes.

    PubMed

    Battaglia, Claudia; D'Artibale, Emanuele; Fiorilli, Giovanni; Piazza, Marina; Tsopani, Despina; Giombini, Arrigo; Calcagno, Giuseppe; di Cagno, Alessandra

    2014-12-01

    The aim of this study was to evaluate whether a mental training protocol could improve gymnastic jumping performance. Seventy-two rhythmic gymnasts were randomly divided into an experimental and control group. At baseline, experimental group completed the Movement Imagery Questionnaire Revised (MIQ-R) to assess the gymnast ability to generate movement imagery. A repeated measures design was used to compare two different types of training aimed at improving jumping performance: (a) video observation and PETTLEP mental training associated with physical practice, for the experimental group, and (b) physical practice alone for the control group. Before and after six weeks of training, their jumping performance was measured using the Hopping Test (HT), Drop Jump (DJ), and Counter Movement Jump (CMJ). Results revealed differences between jumping parameters F(1,71)=11.957; p<.01, and between groups F(1,71)=10.620; p<.01. In the experimental group there were significant correlations between imagery ability and the post-training Flight Time of the HT, r(34)=-.295, p<.05 and the DJ, r(34)=-.297, p<.05. The application of the protocol described herein was shown to improve jumping performance, thereby preserving the elite athlete's energy for other tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  20. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case

  1. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data

  2. Aspiring to Spectral Ignorance in Earth Observation

    NASA Astrophysics Data System (ADS)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  3. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance

    PubMed Central

    Kim, Taeho; Frank, Cornelia; Schack, Thomas

    2017-01-01

    Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training. PMID:29089881

  4. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  5. Earth Observation from Space: Competition or Cooperation?

    DTIC Science & Technology

    1992-04-01

    or remote sensing from space (2). Earth observations or remote sensing includes all forms of observation by sensors borne by a space object including...3). The capabilities of remote sensing are as varied as the sensors that are built and put in orbit, but =- • I •1 capabilities fall into two...adversary or ally. For example, the ability of one nation to observe and study another through space-borne sensors permits strategic assessment of a

  6. Earth Observation

    NASA Image and Video Library

    2014-06-07

    ISS040-E-008174 (7 June 2014) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  7. Earth observations from space: History, promise, and reality. Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  8. STS-45 Earth observation of the Aurora Australis or Southern Lights

    NASA Image and Video Library

    1992-04-02

    STS-45 Earth observation taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the Aurora Australis or Southern Lights. The green appearing auroral activity engulfs the thin blue line on the Earth's limb. Aurorae were observed and photographed throughout the STS-45 nine-day mission.

  9. STS-45 Earth observation of the Aurora Australis or Southern Lights

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Earth observation taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the Aurora Australis or Southern Lights. The green appearing auroral activity engulfs the thin blue line on the Earth's limb. Aurorae were observed and photographed throughout the STS-45 nine-day mission.

  10. Global Partnership in Global Earth Observations

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Obersteiner, M.

    2007-12-01

    The emergence of a global partnership on earth observations will crucially drive the configuration of future observing systems and consequently shape how socio-economic benefits are generated. In this paper we take a game-theoretical approach to model cooperation on building global earth observation systems. We consider several societies whose economies are subject to shocks mimicking major natural disasters. Economies operate optimally and lead to the best possible expected value for the social welfares in the future. In order to increase its welfare even more society can make a decision to invest into a global alerting system which lowers the risk of disasters. We start our investigation from a single-society case and show conditions under which benefits of such investment can be reaped. The propensity to invest increases with economic affluence and degree of vulnerability to natural disasters. We find that for poor and/or less vulnerable countries it is better to forbear from investment. If to consider a situation of multiple societies a strategic gaming situation emerges motivated by the fact that every society will benefit from a global system regardless of whether they invested or not. Our analysis of possible equilibrium solutions shows that similar to the formation of trading blocks (e.g. EU, NAFTA) only in the case of similar societies we will observe cooperation behavior (when all invest) and otherwise we will observe free-riding. This insight, that we might face a prisoners dilemma problem in the formation of a GEOSS, has important implications for the GEO process.

  11. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  12. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  13. Photography from space to help solve problems on earth. [using ERTS imagery

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Varied uses of ERTS imagery are briefly discussed. Applications to mineral/land resources, environment, land use, water resources, maps/charts, marine resources, and agriculture/forestry/range resources are also provided.

  14. Earth Observation

    NASA Image and Video Library

    2014-06-02

    ISS040-E-006817 (2 June 2014) --- Intersecting the thin line of Earth's atmosphere, International Space Station solar array wings are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  15. Planning for the Global Earth Observation System of Systems (GEOSS)

    USGS Publications Warehouse

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Geodetic Earth Observation

    NASA Astrophysics Data System (ADS)

    Rothacher, Markus

    2017-04-01

    Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.

  17. Near Real-Time Applications of Earth Remote Sensing for Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.

    2013-01-01

    Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing

  18. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  19. A prospectus for Thematic Mapper research in the Earth sciences

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Earth science applications of Thematic Mapper (TM) imagery are discussed. Prospective research themes are defined in a general sense in relation to the technical measurement capabilities of the TM and the various types of Earth information that can potentially be derived from multispectral TM imagery. An overview of the system developed to acquire and reduce TM data is presented. The technical capabilities of this system are presented in detail. The orbital performance of the TM sensor is described, based upon the analysis of LANDSAT 4 and 5 TM data collected to date.

  20. Earth Observation

    NASA Image and Video Library

    2013-05-19

    ISS036-E-002224 (21 May 2013) --- The sun is captured in a "starburst" mode over Earth's horizon by one of the Expedition 36 crew members as the orbital outpost was above a point in southwestern Minnesota on May 21, 2013.

  1. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  2. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  3. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  4. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2013-02-14

    ISS034-E-48455 (14 Feb. 2013) --- Looking out at Earth?s surface from the International Space Station (ISS), astronauts and cosmonauts frequently observe sunglint highlighting both ocean and inland water surfaces. The Atlantic Ocean, including Cape Cod Bay and Buzzards Bay, along the coastlines of Massachusetts and Rhode Island, has a burnished, mirror-like appearance in this image. This is due to sunlight reflected off the water surface back towards the station crew member who took the photo. The peak reflection point is towards the right side of the image, lending the waters of Long Island Sound and the upper Massachusetts coastline an even brighter appearance. Sunglint also illuminates the surface waters of Chesapeake Bay, located over 400 kilometers (250 miles) to the southwest of the tip of Long Island. This suggests that the Sun was low on the horizon due to the observed extent of the sunglint effect. The time of image acquisition, approximately 4:26 p.m. Eastern Standard Time, was about one hour before local sunset. There is little in this image to indicate that the region was still recovering from a major winter storm that dropped almost one meter (three feet) of snow over much of the northeastern USA less than a week earlier. The high viewing angle from the space station also allows Earth?s curvature, or limb, to be seen; blue atmospheric layers gradually fade into the darkness of space across the top part of the image. Low clouds near Cape Cod, Long Island, and further down the Atlantic coastline cast shadows over the water surfaces, reducing the sunglint in some areas.

  5. STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three

  6. Spatial forms and mental imagery.

    PubMed

    Price, Mark C

    2009-01-01

    Four studies investigated how general mental imagery might be involved in mediating the phenomenon of 'synaesthetic' spatial forms - i.e., the experience that sequences such as months or numbers have spatial locations. In Study 1, people with spatial forms scored higher than controls on visual imagery self-report scales. This is consistent with the suggestion that strong general imagery is at least a necessary condition to experience spatial forms. However self-reported spatial imagery did not differ between groups, suggesting either that the spatial nature of forms is mediated by special synaesthetic mechanisms, or that forms are depictive visual images rather than explicit spatial models. A methodological implication of Study 1 was that a general tendency for people with spatial forms to use imagery strategies might account for some of their previously-reported behavioural differences with control groups. This concern was supported by Studies 2-4. Normal participants were encouraged to visually image the months in various spatial layouts, and spatial associations for months were tested using left/right key presses to classify month names as belonging to the first or second half of the year (Studies 2-3) or as odd/even (Study 4). Reaction times showed month-SNARC (Spatial Numerical Association of Response Codes) effects of similar magnitude to previously-reported data from spatial form participants (Price and Mentzoni, 2008). Additionally, reversing the spatial associations within instructed images was sufficient to reverse the direction of observed month-SNARC effects (i.e., positive vs negative slope), just as different spatial forms were previously shown to modulate the direction of effects (ibid.). Results challenge whether previously observed behavioural differences between spatial form and control groups need to be explained in terms of special synaesthetic mechanisms rather than intentional imagery strategies. It is argued that usually strong general

  7. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  8. Interpretation of geographic patterns in simulated orbital television imagery of earth resources

    NASA Technical Reports Server (NTRS)

    Latham, J. P.; Cross, C. I.; Kuyper, W. H.; Witmer, R. E.

    1972-01-01

    In order to better determine the effects of the television imagery characteristics upon the interpretation of geographic patterns obtainable from orbital television sensors, and in order to better evaluate the influences of alternative sensor system parameters such as changes in orbital altitudes or scan line rates, a team of three professional interpreters independently mapped thematically the selected geographic phenomena that they could detect in orbital television imagery produced on a fourteen inch monitor and recorded photographically for analysis. Three thematic maps were compiled by each interpreter. The maps were: (1) transportation patterns; (2) other land use; and (3) physical regions. The results from the three interpreters are compared, agreements noted, and differences analyzed for cause such as disagreement on identification of phenomenon, visual acuity, differences in interpretation techniques, and differing professional backgrounds.

  9. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  10. Earth observing system - Concepts and implementation strategy

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  11. US data policy for Earth observation from space

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    Distribution of data from U.S. Earth observations satellites is subject to different data policies and regulations depending on whether the systems in question are operational or experimental. Specific laws, regulations, and policies are in place for the distribution of satellite data from the National Oceanic and Atmospheric Administration (NOAA) operational environmental satellites and from NASA experimental systems. There is a government wide policy for exchange of data for global change research. For the Earth Observing System (EOS) and its international partner programs, a set of data exchange principles is nearing completion. The debate over the future of the LANDSAT program in the U.S. will impact policy for the programs, but the outcome of the debate is not yet known.

  12. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015342 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  13. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015335 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  14. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  15. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  16. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015355 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at bottom center) were recorded in a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  17. Earth Observation

    NASA Image and Video Library

    2013-06-13

    ISS036-E-007619 (13 June 2013) --- To a crew member aboard the International Space Station, the home planet is seen from many different angles and perspectives, as evdenced by this Expedition 36 image of Earth's atmophere partially obscured by one of the orbital outpost's solar panels.

  18. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  19. How imagery changes self-motion perception

    PubMed Central

    Nigmatullina, Y.; Arshad, Q.; Wu, K.; Seemungal, B.M.; Bronstein, A.M.; Soto, D.

    2015-01-01

    Imagery and perception are thought to be tightly linked, however, little is known about the interaction between imagery and the vestibular sense, in particular, self-motion perception. In this study, the observers were seated in the dark on a motorized chair that could rotate either to the right or to the left. Prior to the physical rotation, observers were asked to imagine themselves rotating leftward or rightward. We found that if the direction of imagined rotation was different to the physical rotation of the chair (incongruent trials), the velocity of the chair needed to be higher for observers to experience themselves rotating relative to when the imagined and the physical rotation matched (on congruent trials). Accordingly, the vividness of imagined rotations was reduced on incongruent relative to congruent trials. Notably, we found that similar effects of imagery were found at the earliest stages of vestibular processing, namely, the onset of the vestibular–ocular reflex was modulated by the congruency between physical and imagined rotations. Together, the results demonstrate that mental imagery influences self-motion perception by exerting top-down influences over the earliest vestibular response and subsequent perceptual decision-making. PMID:25637805

  20. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  1. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  2. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  3. Near Real-­Time Applications of Earth Remote Sensing for Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.

    2013-01-01

    Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing

  4. NextGEOSS: The Next Generation Data Hub For Earth Observations

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  5. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  6. Lagrange Point Missions: the Key to Next-Generation Integrated Earth Observations. DSCOVR Innovation

    NASA Astrophysics Data System (ADS)

    Valero, F. P. J.

    2016-12-01

    From L-1 DSCOVR is capable of new, unique observations potentially conducive to a deeper scientific understanding of the Earth sciences. At L-1 and L-2 the net gravitational pull of the Earth and Sun equals the centripetal force required to orbit the Sun with the same period as the Earth. Satellites at or near L-1 and L-2 keep the same position relative to the Sun and the Earth. DSCOVR does not orbit the Earth but the Sun in synchronism with Earth, acts like a planetoid (orbits the Sun in the ecliptic plane) while acquiring integrated plus spatially and time resolved scientific data as Earth rotates around its axis. Because of the planet's axial tilt relative to the ecliptic plane, the Polar Regions are visible during local summer from L-1 and local winter from L-2 (Fig. 1). DSCOVR's synoptic and continuous observations solve most of the temporal and spatial limitations associated with low Earth (LEO) and Geostationary (GEO) orbits. Two observatories, one at L-1 (daytime) and one at L-2 (nighttime), would acquire minute-by-minute climate quality data for essentially every point on Earth. The integration of L-1, L-2, LEO, and GEO satellites plus the Moon offers new scientific tools and enriched data sets for Earth sciences. Lagrange points observatories are key to next-generation integrated Earth observations. For example, DSCOVR at L-1 views the Earth plus the Moon (a reference) and simultaneously, at one time or another, all LEO and GEO satellites. The L-1 and L-2 satellites would be the link between the Moon, LEO and GEO satellites while providing the data needed to build an integrated Earth observational system. The above properties are the bases for DSCOVR's innovation and scientific approach that systematically observes climate drivers (radiation, aerosols, ozone, clouds, water vapor, vegetation) from L-1 in a way not possible but synergistic with other satellites. Next step: more capable L-1 plus L-2 satellites. The way of the future.

  7. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015354 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at lower left) were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  8. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  9. Google Earth Science

    ERIC Educational Resources Information Center

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  10. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment

    NASA Astrophysics Data System (ADS)

    Vesecky, John F.; Stewart, Robert H.

    1982-04-01

    Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more

  11. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  12. Observations of Near-Earth Asteroids in Polarized Light

    NASA Astrophysics Data System (ADS)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  13. EarthTutor: An Interactive Intelligent Tutoring System for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bell, A. M.; Parton, K.; Smith, E.

    2005-12-01

    Earth science classes in colleges and high schools use a variety of satellite image processing software to teach earth science and remote sensing principles. However, current tutorials for image processing software are often paper-based or lecture-based and do not take advantage of the full potential of the computer context to teach, immerse, and stimulate students. We present EarthTutor, an adaptive, interactive Intelligent Tutoring System (ITS) being built for NASA (National Aeronautics and Space Administration) that is integrated directly with an image processing application. The system aims to foster the use of satellite imagery in classrooms and encourage inquiry-based, hands-on earth science scientific study by providing students with an engaging imagery analysis learning environment. EarthTutor's software is available as a plug-in to ImageJ, a free image processing system developed by the NIH (National Institute of Health). Since it is written in Java, it can be run on almost any platform and also as an applet from the Web. Labs developed for EarthTutor combine lesson content (such as HTML web pages) with interactive activities and questions. In each lab the student learns to measure, calibrate, color, slice, plot and otherwise process and analyze earth science imagery. During the activities, EarthTutor monitors students closely as they work, which allows it to provide immediate feedback that is customized to a particular student's needs. As the student moves through the labs, EarthTutor assesses the student, and tailors the presentation of the content to a student's demonstrated skill level. EarthTutor's adaptive approach is based on emerging Artificial Intelligence (AI) research. Bayesian networks are employed to model a student's proficiency with different earth science and image processing concepts. Agent behaviors are used to track the student's progress through activities and provide guidance when a student encounters difficulty. Through individual

  14. Earth Observation

    NASA Image and Video Library

    2014-06-14

    ISS040-E-011868 (14 June 2014) --- The dark waters of the Salton Sea stand out against neighboring cultivation and desert sands in the middle of the Southern California desert, as photographed by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station on June 14, 2014.

  15. Analysis of mirror neuron system activation during action observation alone and action observation with motor imagery tasks.

    PubMed

    Cengiz, Bülent; Vurallı, Doğa; Zinnuroğlu, Murat; Bayer, Gözde; Golmohammadzadeh, Hassan; Günendi, Zafer; Turgut, Ali Emre; İrfanoğlu, Bülent; Arıkan, Kutluk Bilge

    2018-02-01

    This study aimed to explore the relationship between action observation (AO)-related corticomotor excitability changes and phases of observed action and to explore the effects of pure AO and concurrent AO and motor imagery (MI) state on corticomotor excitability using TMS. It was also investigated whether the mirror neuron system activity is muscle-specific. Fourteen healthy volunteers were enrolled in the study. EMG recordings were taken from the right first dorsal interosseous and the abductor digiti minimi muscles. There was a significant main effect of TMS timing (after the beginning of the movement, at the beginning of motor output state, and during black screen) on the mean motor evoked potential (MEP) amplitude. Mean MEP amplitudes for AO combined with MI were significantly higher than pure AO session. There was a significant interaction between session and TMS timing. There was no significant main effect of muscle on MEP amplitude. The results indicate that corticomotor excitability is modulated by different phases of the observed motor movement and this modulation is not muscle-specific. Simultaneous MI and AO enhance corticomotor excitability significantly compared to pure AO.

  16. Pancake Ice Thickness Mapping in the Beaufort Sea From Wave Dispersion Observed in SAR Imagery

    NASA Astrophysics Data System (ADS)

    Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P. O. G.; Holt, B.

    2018-03-01

    The early autumn voyage of RV Sikuliaq to the southern Beaufort Sea in 2015 offered very favorable opportunities for observing the properties and thicknesses of frazil-pancake ice types. The operational region was overlaid by a dense network of retrieved satellite imagery, including synthetic aperture radar (SAR) imagery from Sentinel-1 and COSMO-SkyMed (CSK). This enabled us to fully test and apply the SAR-waves technique, first developed by Wadhams and Holt (1991), for deriving the thickness of frazil-pancake icefields from changed wave dispersion. A line of subimages from a main SAR image (usually CSK) is analyzed running into the ice along the main wave direction. Each subimage is spectrally analyzed to yield a wave number spectrum, and the change in the shape of the spectrum between open water and ice, or between two thicknesses of ice, is interpreted in terms of the viscous equations governing wave propagation in frazil-pancake ice. For each of the case studies considered here, there was good or acceptable agreement on thickness between the extensive in situ observations and the SAR-wave calculation. In addition, the SAR-wave analysis gave, parametrically, effective viscosities for the ice covering a consistent and narrow range of 0.03-0.05 m2 s-1.

  17. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  18. Monitoring Earth Surface Dynamics With Optical Imagery

    NASA Astrophysics Data System (ADS)

    Leprince, Sébastien; Berthier, Etienne; Ayoub, François; Delacourt, Christophe; Avouac, Jean-Philippe

    2008-01-01

    The increasing availability of high-quality optical satellite images should allow, in principle, continuous monitoring of Earth's surface changes due to geologic processes, climate change, or anthropic activity. For instance, sequential optical images have been used to measure displacements at Earth's surface due to coseismic ground deformation [e.g., Van Puymbroeck et al., 2000], ice flow [Scambos et al., 1992; Berthier et al., 2005], sand dune migration [Crippen, 1992], and landslides [Kääb, 2002; Delacourt et al., 2004]. Surface changes related to agriculture, deforestation, urbanization, and erosion-which do not involve ground displacement-might also be monitored, provided that the images can be registered with sufficient accuracy. Although the approach is simple in principle, its use is still limited, mainly because of geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties.

  19. Investigation of Skylab imagery for regional planning. [New York, New Jersey, and Connecticut

    NASA Technical Reports Server (NTRS)

    Harting, W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It is feasible to use earth terrain camera imagery to detect four land uses (vacant land, developed land, streets, and water) for general regional planning purposes. Multispectral imagery is suitable for detecting, mapping, and measuring water bodies as small as two acres. Sufficient information can be extracted to prepare graphic and pictorial representations of the general growth and development patterns, but cannot be incorporated into an inventory file for predictive models.

  20. Earth Observation

    NASA Image and Video Library

    2013-07-03

    ISS036-E-015292 (3 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 3-4 by the Expedition 36 crew members aboard the International Space Station. This image was recorded on July 3.

  1. Selective effect of physical fatigue on motor imagery accuracy.

    PubMed

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary

  2. Selective Effect of Physical Fatigue on Motor Imagery Accuracy

    PubMed Central

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r = 0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary

  3. STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment

    NASA Image and Video Library

    1992-04-22

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three-axis ring-laser gyro.

  4. ASTER, a multinational Earth observing concept

    NASA Technical Reports Server (NTRS)

    Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.

    1993-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.

  5. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  6. Earth observation taken by the Expedition 42 crew

    NASA Image and Video Library

    2015-03-02

    ISS042E311037 (03/02/2015) --- A waning sun, splayed its light across the planet and created this serene scene. US astronauts aboard the International Space Station snapped this Earth Observation on Mar 2, 2015.

  7. Towards a Preservation Content Standard for Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Lowe, Dawn; Murphy, Kevin

    2017-01-01

    Information from Earth observing missions (remote sensing with airborne and spaceborne instruments, and in situ measurements such as those from field campaigns) is proliferating in the world. Many agencies across the globe are generating important datasets by collecting measurements from instruments on board aircraft and spacecraft, globally and constantly. The data resulting from such measurements are a valuable resource that needs to be preserved for the benefit of future generations. These observations are the primary record of the Earths environment and therefore are the key to understanding how conditions in the future will compare to conditions today. Earth science observational data, derived products and models are used to answer key questions of global significance. In the near-term, as long as the missions data are being used actively for scientific research, it continues to be important to provide easy access to the data and services commensurate with current information technology. For the longer term, when the focus of the research community shifts toward new missions and observations, it is essential to preserve the previous mission data and associated information. This will enable a new user in the future to understand how the data were used for deriving information, knowledge and policy recommendations and to repeat the experiment to ascertain the validity and possible limitations of conclusions reached in the past and to provide confidence in long term trends that depended on data from multiple missions. Organizations that collect, process, and utilize Earth observation data today have a responsibility to ensure that the data and associated content continue to be preserved by them or are gathered and handed off to other organizations for preservation for the benefit of future generations. In order to ensure preservation of complete content necessary for understanding and reusing the data and derived digital products from todays missions, it is

  8. National project for the evaluation of ERTS imagery applications to various earth resources problems of Turkey

    NASA Technical Reports Server (NTRS)

    Alpan, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. It is observed that LANDSAT images can be used in preparing an accurate tectonic map of the study areas. These images are most useful in geological mapping areas where vegetation cover is sparse. LANDSAT images can be used to identify and separate evergreens and trees with leaves, and they can successfully delineate boundaries of forestry areas. Water holding capacity of the soil, internal and external drainage, vegetation pattern, irrigated and nonirrigated land, and fallow and planted fields are also detected on the LANDSAT imagery.

  9. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2016-12-01

    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  10. Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.

    PubMed

    Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip

    2016-01-01

    Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended.

  11. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  12. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Burks, J. E.; Camp, P.; McGrath, K.; Bell, J. R.

    2014-12-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit (DAT), a suite of applications used by meteorologists in the survey process. The DAT includes a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season

  13. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  14. Earth Observation Research for GMES Initial Operations

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  15. Teachers as Learners Examine Land-Use Change in the Local Environment Using Remote Sensing Imagery

    ERIC Educational Resources Information Center

    Klagges, Hope; Harbor, Jon; Shepardson, Daniel; Bell, Cheryl; Meyer, Jason; Burgess, Willie; Leuenberger, Ted

    2002-01-01

    In environmental science education, learners are exposed to earth phenomena that occur across a wide range of spatial and temporal scales. However, it is challenging for learners to grasp the significance of spatial and temporal change because they have limited perspectives of the Earth. Within the scientific community, remotely sensed imagery is…

  16. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  17. Earth Observation

    NASA Image and Video Library

    2014-08-10

    ISS040-E-091158 (10 Aug. 2014) --- One of the Expedition 40 crew members 225 nautical miles above Earth onboard the International Space Station used a 200mm lens to record this image of Hawke's Bay, New Zealand on Aug. 10, 2014. Napier and the bay area's most populous area are at bottom center of the frame.

  18. Earth Observations taken by Expedition 47 Crewmember

    NASA Image and Video Library

    2016-03-14

    ISS047e007765 (03/14/2016) --- Using special cameras and Chronophotography aboard the International Space Station, crew members of Expedition 47 during Earth observations capture awesome beauty . This nighttime image shows an approaching lightning storm on the left. The gold and red aurora act as a frame to this display of natures wonders.

  19. Looking Homeward Toward Earth: The Power of Perspective

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2012-08-01

    With the 1968 "Earthrise" image of planet Earth emerging from beyond the lunar horizon, society's view of our celestial home was changed forever. Beautiful and vulnerable, and suspended in dark stillness, this image inspired an appreciation that we are one human race, whose fate hinges delicately on our collective actions. Since that time, space-based observations of the Earth have continued to provide essential insights and information across the full spectrum of human activities and natural processes, and have even become a mainstream part of our daily lives. From documenting disappearing Arctic ice cover, to providing key insights to hurricane evolution, to tracking the amount of movement and cycles of Earth's biomass, these observations allow us to understand how and why our world is changing, and what these changes mean for life on Earth. But beyond their tremendous scientific value, they can be a powerful and inspiring tool for generating a true appreciation of the complexities and beauty of the world in which we live. From that iconic Earthrise photograph to the viral popularity of event-based satellite imagery, the power of the space-based perspective satisfies our need for constant and current information, and fuels our emotional connection to the planet we call home.

  20. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  1. Linking goniometer measurements to hyperspectral and multisensor imagery for retrieval of beach properties and coastal characterization

    NASA Astrophysics Data System (ADS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Montes, Marcos J.; Fusina, Robert; Musser, Joseph; Li, Rong-Rong; Vermillion, Michael; Smith, Geoffrey; Korwan, Daniel; Snow, Charlotte; Miller, W. David; Gardner, Joan; Sletten, Mark; Georgiev, Georgi; Truitt, Barry; Killmon, Marcus; Sellars, Jon; Woolard, Jason; Parrish, Christopher; Schwarzscild, Art

    2012-06-01

    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR'11). Focus areas for VCR'11 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR'11 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR'11.

  2. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  3. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth

    USGS Publications Warehouse

    Sato, H.P.; Harp, E.L.

    2009-01-01

    The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.

  4. Sharing Earth Observation Data When Health Management

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2015-12-01

    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  5. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  6. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  7. Training Visual Imagery: Improvements of Metacognition, but not Imagery Strength

    PubMed Central

    Rademaker, Rosanne L.; Pearson, Joel

    2012-01-01

    Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again 2 weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice. PMID:22787452

  8. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  9. Essential climatic variables estimation with satellite imagery

    NASA Astrophysics Data System (ADS)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  10. STS-4 earth observations from space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 earth observations from space. Views include both Florida coasts, with Cape Canaveral visible at the center of the frame. The photo was exposed through the aft window on the flight deck of the Columbia. The vertical tail and both orbital maneuvering systems (OMS) pods are visible in the foreground. Other features on the Earth which are visible include Tampa Bay and several lakes, including Apopka, Tohopekaliga, East Tahopekaliga, Harris, Cypress and a number of small reservoirs (33223); This is a north-easterly looking view toward California's Pacific Coast. The coastal area covered includes San Diego northward to Pismo Beach. Los Angeles is near center. The arc of the Temblor-Tehachapi-Sierra Nevada surrounds the San Joaquin Valley at left. The Mojave desert lies between the San Andres and Garlock Faults (33224); Mexico's Baja California and Sonora state are visible in the STS-4 frame. The islands of Angel de la Guardia and Tiburon stand out above and right of center. Low clouds

  11. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation

  12. Sherlock Holmes' or Don Quixote`s certainty? Interpretations of cropmarks on satellite imageries in archaeological investigation

    NASA Astrophysics Data System (ADS)

    Wilgocka, Aleksandra; RÄ czkowski, Włodzimierz; Kostyrko, Mikołaj; Ruciński, Dominik

    2016-08-01

    Years of experience in air-photo interpretations provide us to conclusion that we know what we are looking at, we know why we can see cropmarks, we even can estimate, when are the best opportunities to observe them. But even today cropmarks may be a subject of misinterpretation or wishful thinking. The same problems appear when working with aerial photographs, satellite imageries, ALS, geophysics, etc. In the paper we present several case studies based on data acquired for and within ArchEO - archaeological applications of Earth Observation techniques project to discuss complexity and consequences of archaeological interpretations. While testing usefulness of satellite imagery in Poland on various types of sites, cropmarks were the most frequent indicators of past landscapes as well as archaeological and natural features. Hence, new archaeological sites have been discovered mainly thanks to cropmarks. This situation has given us an opportunity to test not only satellite imageries as a source of data but also confront them with results of other non-invasive methods of data acquisition. When working with variety of data we have met several issues which raised problems of interpretation. Consequently, questions related to the cognitive value of remote sensing data appear and should be discussed. What do the data represent? To what extent the imageries, cropmarks or other visualizations represent the past? How should we deal with ambiguity of data? What can we learn from pitfalls in the interpretation of cropmarks, soilmarks etc. to share more Sherlock's methodology rather than run around Don Quixote's delusions?

  13. Earth Observation

    NASA Image and Video Library

    2013-08-29

    ISS036-E-038117 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.2 degrees west longitude.

  14. Earth Observation

    NASA Image and Video Library

    2013-08-29

    ISS036-E-038114 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.3 degrees west longitude.

  15. Earth Observations taken by the Expedition 39 Crew

    NASA Image and Video Library

    2014-04-10

    Earth observation taken by the Expedition 39 crew aboard the ISS. A portion of the docked Soyuz TMA-11M spacecraft is in view. Image was released by astronaut on Instagram and downlinked in folder: Personal photos and the Maldive islands.

  16. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    NASA Astrophysics Data System (ADS)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity

  17. Overall evaluation of LANDSAT (ERTS) follow on imagery for cartographic application

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. LANDSAT imagery can be operationally applied to the revision of nautical charts. The imagery depicts shallow seas in a form that permits accurate planimetric image mapping of features to 20 meters of depth where the conditions of water clarity and bottom reflection are suitable. LANDSAT data also provide an excellent simulation of the earth's surface, for such applications as aeronautical charting and radar image correlation in aircraft and aircraft simulators. Radiometric enhancement, particularly edge enhancement, a technique only marginally successful with aerial photographs has proved to be high value when applied to LANDSAT data.

  18. Earth observations taken during STS-79 mission

    NASA Image and Video Library

    1996-09-25

    STS079-785-103 (16-26 Sept. 1996) --- In this 70mm frame from the space shuttle Atlantis, the Brazilian state of Rondonia is featured. The photograph shows some of the major settlements and the habitat fragmentation caused by large agriculture programs in Brazil. The Rondonia state in southwestern Brazil is an area of about 240,000 square kilometers (92,000 square miles). Approximately 11.5% of the tropical forests in Rondonia have been cleared since 1970. There are indicators showing that roughly 20% of the cleared land is reverting back to scrub every year due to low fertility. Space Shuttle photography of this region has documented the forest clearing since the mid 1980's. This view adds to the large database of imagery, including other satellite-based imagery, and provides a natural color view of the region.

  19. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  20. Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area

    NASA Astrophysics Data System (ADS)

    Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.

    2018-04-01

    Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.

  1. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  2. Earth observations and photography experiment: Summary of significant results

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    Observation and photographic data from the Apollo Soyuz Test Project are analyzed. The discussion is structured according to the fields of investigation including: geology, desert studies, oceanography, hydrology, and meteorology. The data were obtained by: (1) visual observations of selected Earth features, (2) hand-held camera photography to document observations, and (3) stereo mapping photography of areas of significant scientific interest.

  3. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  4. Citizen Scientist Contributions to Observations Benefiting the Earth through the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Riebeek Kohl, H.; Murphy, A.; Butler, D. M.

    2017-12-01

    Citizen science has proliferated recently due to widespread use of the internet and mobile devices, but it has a long history (i.e., the Christmas Bird Count). Since the mid-1990s, the GLOBE Program has engaged participants at a global scale. Though initially focused on teachers and students in formal education settings, it quickly attracted interest from the public as well. In 2016, GLOBE formally launched an initiative to widely engage citizen scientists in its 117 countries through release of a mobile app called GLOBE Observer (GO). GO seeks to increase the number and distribution of participants by providing a simple, engaging - and fun - interface to collect and report data. Observations featured in the app are a carefully selected subset of 50+ GLOBE measurement protocols. They must leverage app features, require little to no equipment besides the mobile device, and have scientists or other stakeholders ready to use the data. The app is designed to minimize barriers to participation, but for those who want to do or know more GLOBE also offers on-line training to turn observers into community members with recognized certification in a protocol area. First released was a cloud observation protocol, supporting validation of a variety of Earth imaging sensors. Second was a mosquito habitat mapping protocol, poised to greatly increase the amount and distribution of local data to validate disease forecast models based on remotely sensed conditions, with additional focus on eliminating disease-carrying mosquito breeding sites. Next in development is a land cover protocol to obtain ground truth imagery for the Landsat science team. The app is also being leveraged for quick development of a short-term eclipse mini-app, to be used on August 21st only during the North American eclipse. This app is designed to make it easy for large numbers of people observing the eclipse, throughout North America, to take and record high time resolution observations of cloud cover and

  5. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  6. Earth Observation

    NASA Image and Video Library

    2014-07-25

    ISS040-E-081008 (25 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 225 nautical miles above Earth, photographed this image of the Tifernine dunes and the Tassili Najjer Mountains in Algeria. The area is about 800 miles south, southeast of Algiers, the capital of Algeria. The dunes are in excess of 1,000 feet in height.

  7. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  8. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  9. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-11-16

    ISS038-E-005515 (16 Nov. 2013) --- Activity at Kliuchevskoi Volcano on Kamchatka Peninsula in the Russian Federation is featured in this image photographed by an Expedition 38 crew member on the International Space Station. When viewing conditions are favorable, crew members onboard the space station can take unusual and striking images of Earth. This photograph provides a view of an eruption plume emanating from Kliuchevskoi Volcano, one of the many active volcanoes on the Kamchatka Peninsula. Nadir views – looking “straight down”—that are typical of orbital satellite imagery tend to flatten the appearance of the landscape by reducing the sense of three dimensions of the topography. In contrast, this image was taken from the ISS with a very oblique viewing angle that gives a strong sense of three dimensions, which is accentuated by the shadows cast by the volcanic peaks. This resulted in a view similar to what a person might see from a low-altitude airplane. The image was taken when the space station was located over a ground position more than 1,500 kilometers to the southwest. The plume – likely a combination of steam, volcanic gases, and ash – is extended to the east-southeast by prevailing winds; the dark region to the north-northwest of the plume is likely a product of both shadow and ash settling out. Several other volcanoes are visible in the image, including Ushkovsky, Tolbachik, Zimina, and Udina. To the south-southwest of Kliuchevskoi lies Bezymianny Volcano which appears to be emitting a small steam plume (visible at center).

  10. Earth Observations taken by the Expedition 14 crew

    NASA Image and Video Library

    2006-11-04

    ISS014-E-07258 (4 Nov. 2006) --- Galveston, Texas is featured in this image photographed by an Expedition 14 crewmember on the International Space Station (ISS). Mexico established a port of entry (known as Galveston) in 1825, and following the Texas Revolution it was the capital of the Republic of Texas during 1836. The modern-day city of Galveston was incorporated in 1839, and became the major trading seaport of Texas during the latter half of the 19th century. The city was largely destroyed in early September of 1900 by a powerful hurricane; this, coupled with construction of the Houston Ship Channel and discovery of oil in eastern Texas shifted the center of trade northwest to Houston. Many human footprints are easily observed from the vantage point of low Earth orbit. The eastern half of Galveston Island is dominated by the city of Galveston (gray-white region at center). A large seawall along the Gulf of Mexico (southern coastline of Galveston Island) protects most of the city. To the west of Galveston, coastal wetlands are largely submerged by regional subsidence--a result of ground water withdrawal by the petrochemical industry of Houston and Texas City. The entrance to Galveston Bay and the Houston Ship Channel is located between Galveston Island and the Bolivar Peninsula (upper right). Numerous ship wakes are visible along the Houston Ship Channel. Other visible features of the entrance to Galveston Bay include the five-mile long Texas City Dike, a structure that protects the Texas City channel and includes a fishing pier that extends 600 feet beyond the end of the Dike. Extensive petroleum processing facilities are located to the west of the Dike in Texas City. The Intracoastal Waterway runs through western Galveston Bay; new subdivisions built on dredge spoils are visible along the northern boundary of the Waterway. Geologists studying the ISS collection of down linked still imagery observe that complex estuarine sediment patterns are visible in this

  11. Near-Earth asteroids orbits using Gaia and ground-based observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2011-05-01

    Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error

  12. Earth Observation

    NASA Image and Video Library

    2014-07-26

    ISS040-E-080921 (26 June 2014) --- Dominican Republic and Haiti, Hispaniola, Caribbean are featured in this image photographed by an Expedition 40 crew member on the International Space Station. Looking east into a rising sun, the crew took this panorama of Hispaniola with the sun’s glint point illuminating the long western peninsula of Haiti. Several thunderheads throw shadows towards the camera (left). The plume from a very large wildfire stretches west (center). The Constanza Fire started in a national forest on the Dominican Republic growing to the extent that it threatened surrounding towns and prompting an International Disaster Charter activation, whereby requests for imagery were uplinked to the station crew as possible assistance to help firefighters on the ground. Hurricane Bertha tracked over the island a week later helping to douse the flames. The view looks hazy probably because of dust in the atmosphere. Dust blows across the Atlantic Ocean from Africa reaching the western hemisphere every month of the year. Despite the austere tone of the image, touches of color are blue waters of the Turks and Caicos Islands extending from under a large thundercloud (left) and the edge of a space station solar panel (top right).

  13. Earth Observations for Global Water Security

    NASA Technical Reports Server (NTRS)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  14. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    NASA Astrophysics Data System (ADS)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  15. Autonomic nervous system correlates in movement observation and motor imagery

    PubMed Central

    Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.

    2013-01-01

    The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623

  16. Decision-making contexts involving Earth observations in federal and state government agencies

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Thompson, A.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. One of the Consortium's activities is a set of Policy Briefs that document the use of Earth observations for decision making in federal and state government agencies. In developing these Policy Briefs, we pay special attention to documenting the entire information value chain associated with the use of Earth observations in government decision making, namely (a) the specific data product, modeling capability, or information system used by the agency, (b) the decision context that employs the Earth observation information and translates it into an agency action, (c) the outcomes that are realized as a result of the action, and (d) the beneficiaries associated with the outcomes of the decision. Two key examples include the use of satellite data for informing the US Drought Monitor (USDM), which is used to determine the eligibility of agricultural communities for drought disaster assistance programs housed at the US Department of Agriculture (USDA), and the use of satellite data by the Florida Department of Environmental Protection to develop numeric nutrient water quality standards and monitoring methods for chlorophyll-a, which is codified in Florida state code (62-302.532).

  17. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  18. Earth Observation

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too

  19. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  20. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 μm of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lackmore » of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.« less

  1. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-10

    ISS043E184521 (05/10/2015) --- NASA astronaut Terry Virts Expedition 43 Commander on the International Space Station tweeted this Earth observation image of South America with the following comment: "Salar de Uyuni in the #Bolivia desert #SouthAmerica. The world's largest salt flat".

  2. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  3. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  4. Landsat Celebrates 40 Years of Observing Earth

    NASA Image and Video Library

    2017-12-08

    An artist's rendition of the next Landsat satellite, the Landsat Data Continuity Mission (LDCM) that will launch in Feb. 2013. Credit: NASA The Landsat program is the longest continuous global record of Earth observations from space – ever. Since its first satellite went up in the summer of 1972, Landsat has been looking at our planet. The view of Earth that this 40-year satellite program has recorded allows scientists to see, in ways they never imagined, how the Earth's surface has transformed, over time. In the 1970s Landsat captured the first views from space of the Amazonian rainforest and continued to track the area year after year after year, giving the world an unprecedented view of systemic and rapid deforestation. This view from space let us see an activity that was taking place in an exceptionally remote part of our world. These now iconic-images of tropical deforestation spurred the global environmental community to rally in an unprecedented way, and resulted in worldwide attention and action. To read more go to: www.nasa.gov/mission_pages/landsat/news/landsat-history.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  6. Earth's Bow Shock: Elapsed-Time Observations by Two Closely Spaced Satellites.

    PubMed

    Greenstadt, E W; Green, I M; Colburn, D S

    1968-11-22

    Coordinated observations of the earth's bow shock were made as Vela 3A and Explorer 33 passed within 6 earth radii of each other. Elapsed time measurements of shock motion give directly determined velocities in the range 1 to 10 kilometers per second and establish the existence of two regions, one of large amplitude magnetic "shock" oscillations and another of smaller, sunward, upstream oscillations. Each region is as thick as 1 earth radius, or more.

  7. Earth Atmosphere Observations taken by the Expedition 35 Crew

    NASA Image and Video Library

    2013-04-03

    Earth atmosphere observation taken by the Expedition 35 crew aboard the ISS. The colors roughly denote the layers of the atmosphere (the orange troposphere, the white stratosphere, and the blue mesosphere).

  8. ESA's Earth observation priority research objectives and satellite instrument requirements

    NASA Astrophysics Data System (ADS)

    Reynolds, M. L.

    2018-04-01

    Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.

  9. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  10. Radar observations of near-Earth asteroids from Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  11. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  12. High Resolution Land Use Land Cover Classification using Landsat Earth Observation Data for the Continental Africa

    NASA Astrophysics Data System (ADS)

    Midekisa, A.; Bennet, A.; Gething, P. W.; Holl, F.; Andrade-Pacheco, R.; Savory, D. J.; Hugh, S. J.

    2016-12-01

    Spatially detailed and temporally dynamic land use land cover data is necessary to monitor the state of the land surface for various applications. Yet, such data at a continental to global scale is lacking. Here, we developed high resolution (30 meter) annual land use land cover layers for the continental Africa using Google Earth Engine. To capture ground truth training data, high resolution satellite imageries were visually inspected and used to identify 7, 212 sample Landsat pixels that were comprised entirely of one of seven land use land cover classes (water, man-made impervious surface, high biomass, low biomass, rock, sand and bare soil). For model validation purposes, 80% of points from each class were used as training data, with 20% withheld as a validation dataset. Cloud free Landsat 7 annual composites for 2000 to 2015 were generated and spectral bands from the Landsat images were then extracted for each of the training and validation sample points. In addition to the Landsat spectral bands, spectral indices such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used as covariates in the model. Additionally, calibrated night time light imageries from the National Oceanic and Atmospheric Administration (NOAA) were included as a covariate. A decision tree classification algorithm was applied to predict the 7 land cover classes for the periods 2000 to 2015 using the training dataset. Using the validation dataset, classification accuracy including omission error and commission error were computed for each land cover class. Model results showed that overall accuracy of classification was high (88%). This high resolution land cover product developed for the continental Africa will be available for public use and can potentially enhance the ability of monitoring and studying the state of the Earth's surface.

  13. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  14. Policy issues and data communications for NASA earth observation missions until 1985

    NASA Technical Reports Server (NTRS)

    Corte, A. B.; Warren, C. J.

    1975-01-01

    The series of LANDSAT sensors with the highest potential data rates of the missions were examined. An examination of LANDSAT imagery uses shows that relatively few require transmission of the full resolution data on a repetitive quasi real time basis. Accuracy of global crop size forecasting can possibly be improved through information derived from LANDSAT imagery. A current forecasting experiment uses the imagery for crop area estimation only, yield being derived from other data sources.

  15. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-11-09

    ISS018-E-008064 (9 Nov. 2008) --- Progressive forest clearing in Bolivia is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The eastern half of Bolivia is covered with tropical rainforest. In the 1990s, Bolivia initiated a large-scale effort to increase the rate of logging and create tracts of land for commercial agriculture (primarily soy and sugar cane, but also coca) on the Amazon Basin side of the Andean highlands. Today, the commercial fields are well-established and easily mapped from space as large, rectangular clearings in the forest. The agricultural developments are still growing today. The clearings start off as small rectangles arranged perpendicular to an access road; early clearings take on a herring-bone pattern when viewed from above. The uncleared (dark forest) areas are gradually logged and cultivated, filling in the pattern to make a larger cleared area. Astronauts aboard the space station routinely observe intensive land use and document their observations through imagery so that changes can be identified.

  16. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-11-09

    ISS018-E-008065 (9 Nov. 2008) --- Progressive forest clearing in Bolivia is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The eastern half of Bolivia is covered with tropical rainforest. In the 1990s, Bolivia initiated a large-scale effort to increase the rate of logging and create tracts of land for commercial agriculture (primarily soy and sugar cane, but also coca) on the Amazon Basin side of the Andean highlands. Today, the commercial fields are well-established and easily mapped from space as large, rectangular clearings in the forest. The agricultural developments are still growing today. The clearings start off as small rectangles arranged perpendicular to an access road; early clearings take on a herring-bone pattern when viewed from above. The uncleared (dark forest) areas are gradually logged and cultivated, filling in the pattern to make a larger cleared area. Astronauts aboard the space station routinely observe intensive land use and document their observations through imagery so that changes can be identified.

  17. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18086 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18087 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are just out of frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  18. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18087 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Silverwood Lake is visible at the bottom of the image. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  19. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18088 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18087 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are left and right, respectively, at bottom frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/] .

  20. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  1. Satellite Imagery Production and Processing Using Apache Hadoop

    NASA Astrophysics Data System (ADS)

    Hill, D. V.; Werpy, J.

    2011-12-01

    The United States Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center Land Science Research and Development (LSRD) project has devised a method to fulfill its processing needs for Essential Climate Variable (ECV) production from the Landsat archive using Apache Hadoop. Apache Hadoop is the distributed processing technology at the heart of many large-scale, processing solutions implemented at well-known companies such as Yahoo, Amazon, and Facebook. It is a proven framework and can be used to process petabytes of data on thousands of processors concurrently. It is a natural fit for producing satellite imagery and requires only a few simple modifications to serve the needs of science data processing. This presentation provides an invaluable learning opportunity and should be heard by anyone doing large scale image processing today. The session will cover a description of the problem space, evaluation of alternatives, feature set overview, configuration of Hadoop for satellite image processing, real-world performance results, tuning recommendations and finally challenges and ongoing activities. It will also present how the LSRD project built a 102 core processing cluster with no financial hardware investment and achieved ten times the initial daily throughput requirements with a full time staff of only one engineer. Satellite Imagery Production and Processing Using Apache Hadoop is presented by David V. Hill, Principal Software Architect for USGS LSRD.

  2. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  3. The Network Structure Underlying the Earth Observation Assessment

    NASA Astrophysics Data System (ADS)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  4. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  5. Application of ERTS-1 imagery in mapping and managing soil and range resources in the Sand Hills region of Nebraska

    NASA Technical Reports Server (NTRS)

    Seevers, P. M.; Lewis, D. T.; Drew, J. V.

    1974-01-01

    Interpretations of imagery from the Earth Resources Technology Satellite (ERTS-1) indicate that soil associations and attendant range sites can be identified on the basis of vegetation and topography using multi-temporal imagery. Optical density measurements of imagery from the visible red band of the multispectral scanner (MSS band 5) obtained during the growing season were related to field measurements of vegetative biomass, a factor that closely parallels range condition class on specific range sites. ERTS-1 imagery also permitted inventory and assessment of center-pivot irrigation systems in the Sand Hills region in relation to soil and topographic conditions and energy requirements.

  6. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  7. VenSAR on EnVision: Taking earth observation radar to Venus

    NASA Astrophysics Data System (ADS)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  8. Google Earth Engine derived areal extents to infer elevation variation of lakes and reservoirs

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, Anthony; May, Jack; Dartevelle, Sebastien; Griffin, Sean; Miller, Justin; Tetrault, Robert; Birkett, Charon; Lucero, Eileen; Russo, Tess; Zentner, Matthew

    2017-04-01

    Monitoring water supplies is important for identifying potential national security issues before they begin. As a means to estimate lake and reservoir storage for sites without reliable water stage data, this study defines correlations between water body levels from hypsometry curves based on in situ gauge station and altimeter data (i.e. TOPEX/Poseidon, Jason series) and sensor areal extents observed in historic multispectral (i.e. MODIS and Landsat TM/ETM+/OLI) imagery. Water levels measured using in situ observations and altimeters, when in situ data were unavailable, were used to estimate the relationship between water elevation and surface area for 18 sites globally. Altimeters were generally more accurate (RMSE: 0.40 - 0.49 m) for estimating in situ lake elevations from Iraq and Afghanistan than the modeled elevation data using multispectral sensor areal extents: Landsat (RMSE: 0.25 - 1.5 m) and MODIS (RMSE 0.53 - 3.0 m). Correlations between altimeter data and Landsat imagery processed with Google Earth Engine confirmed similar relationships exists for a broader range of lakes without reported in situ data across the globe (RMSE: 0.24 - 1.6 m). Thus, while altimetry is still preferred to an areal extent model, lake surface area derived with Google Earth Engine can be used as a reasonable proxy for lake storage, expanding the number of observable lakes beyond the current constellation of altimeters and in situ gauges.

  9. The Role of Earth Observations in "Valuing" Resources and the Environment

    NASA Astrophysics Data System (ADS)

    MacAuley, M.

    2007-12-01

    A wide range of decisionmakers and analysts, including government and industry resource managers, financial lenders and insurers, ecologists, conservationists, and economists have long struggled with how to ascribe "value" to environmental resources. Despite other differences among these experts, all agree that accurate measures of the physical status of resources are essential as a basis for valuation. Earth observations from space offer some of these measures and as a result, are becoming an essential component of valuation-oriented resource management. This paper illustrates the use of earth observations in two growing applications: payments for environmental services and index insurance for livestock and agriculture. These applications are taking place both in the United States and in an increasing number of other countries. The paper also highlights issues of concern about these uses of earth observations, including short- and long-term availability of data and quality of data. These concerns call into question the viability of building valuation approaches upon a mere assumption of data supply.

  10. Earth Observations taken by the Expedition 14 crew

    NASA Image and Video Library

    2006-11-07

    ISS014-E-07480 (11 Nov. 2006) --- Dyess Air Force Base is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Dyess Air Force Base, located near the central Texas city of Abilene, is the home of the 7th Bomb Wing and 317th Airlift Groups of the United States Air Force. The Base also conducts all initial Air Force combat crew training for the B-1B Lancer aircraft. The main runway is approximately 5 kilometers in length to accommodate the large bombers and cargo aircraft at the base -- many of which are parked in parallel rows on the base tarmac. Lieutenant Colonel William E. Dyess, for whom the base is named, was a highly decorated pilot, squadron commander, and prisoner of war during World War II. The nearby town of Tye, Texas was established by the Texas and Pacific Railway in 1881, and expanded considerably following reactivation of a former air field as Dyess Air Force Base in 1956. Airfields and airports are useful sites for astronauts to hone their long camera lens photographic technique to acquire high resolution images. The sharp contrast between highly reflective linear features, such as runways, with darker agricultural fields and undisturbed land allows fine focusing of the cameras. This on-the-job training is key for obtaining high resolution imagery of Earth, as well as acquiring inspection photographs of space shuttle thermal protection tiles during continuing missions to the International Space Station.

  11. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  12. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  13. Earth Observations

    NASA Image and Video Library

    2011-05-28

    ISS028-E-006059 (28 May 2011) --- One of the Expedition 28 crew members, photographing Earth images onboard the International Space Station while docked with the space shuttle Endeavour and flying at an altitude of just under 220 miles, captured this frame of the Salton Sea. The body of water, easily identifiable from low orbit spacecraft, is a saline, endorheic rift lake located directly on the San Andreas Fault. The agricultural area is within the Coachella Valley.

  14. ESIAC: A data products system for ERTS imagery (time-lapse viewing and measuring)

    NASA Technical Reports Server (NTRS)

    Evans, W. E.; Serebreny, S. M.

    1974-01-01

    An Electronic Satellite Image Analysis Console (ESIAC) has been developed for visual analysis and objective measurement of earth resources imagery. The system is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The unique feature of the system is the capability to time-lapse the ERTS imagery and/or analytic displays of the imagery. Data products have included quantitative measurements of distances and areas, brightness profiles, and movie loops of selected themes. The applications of these data products are identified and include such diverse problem areas as measurement of snowfield extent, sediment plumes from estuary dicharge, playa inventory, phreatophyte and other vegetation changes. A comparative ranking of the electronic system in terms of accuracy, cost effectiveness and data output shows it to be a viable means of data analysis.

  15. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  16. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  17. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  18. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  19. Extending Value of Information Methods to Include the Co-Net Benefits of Earth Observations

    NASA Astrophysics Data System (ADS)

    Macauley, M.

    2015-12-01

    The widening relevance of Earth observations information across the spectrum of natural and environmental resources markedly enhances the value of these observations. An example is observations of forest extent, species composition, health, and change; this information can help in assessing carbon sequestration, biodiversity and habitat, watershed management, fuelwood potential, and other ecosystem services as well as inform the opportunity cost of forest removal for alternative land use such as agriculture, pasture, or development. These "stacked" indicators or co- net benefits add significant value to Earth observations. In part because of reliance on case studies, much previous research about the value of information from Earth observations has assessed individual applications rather than aggregate across applications, thus tending to undervalue the observations. Aggregating across applications is difficult, however, because it requires common units of measurement: controlling for spatial, spectral, and temporal attributes of the observations; and consistent application of value of information techniques. This paper will discuss general principles of co-net benefit aggregation and illustrate its application to attributing value to Earth observations.

  20. Collation of earth resources data collected by ERIM airborne sensors

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1975-01-01

    Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.

  1. The complex of robotic telescopes for observation of Earth's artificial satellites and near-Earth objects

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.; Kozyrev, E. S.; Kovalchuk, A. N.; Chernozub, V. M.; Sibiryakova, E. S.; Bochkarev, A. B.; Lopachenko, V. V.; Ryhalsky, V. V.

    2010-05-01

    Modern tasks for orbit control of the Earth artificial satellites and objects approaching the Earth define high requirements to ground-based telescopes, which have to be equipped with fast objectives, CCD cameras with a chip size not less than two inches. The CCD camera has to work in different modes. The telescopes must be fully robotized, and have a control system with remote operation and alert mode. In cooperation between RI NAO and NSFCTC, the upgrade of the AZT-8 classical telescope, belonging to NSFCTC, was made. Two telescopes of original design, namely the Fast Robotic Telescope (FRT) and the Mobile Telescope (MobiTel) were made in RI NAO. The telescopes are equipped with absolute angle encoders, CCD cameras with Kodak KAF-09000 chips, GPS time service, robotic drives and an automatic control system. The telescope features, such as a telescope name, f-number, chip name and operating modes, pixel numbers, field of view, pixel sizes, pixel scale, limiting magnitude, the standard deviation are given in the following list: 1) AZT-8(NSFCTC), 0.7/2.8 m, FLI PL09000 stare, 3056x3056, 45x45', 12x12 μm, 0.9"/pix, 20m, 0.05"/0.15"; 2) FRT (NAO), 0.3/1.5 m, Alta U9000stare and drift-scan, 3056x3056, 1°24'x1°24', 12x12 μm, 1.6"/pix, 18m, 0.15"/0.40"; 3) MobiTel-0.5(NAO), 0.5/3.0 m, Alta U9000stare and drift-scan,3056x3056, 42x42, 12x12μm, 0.8"/pix, 19m,0.0"05"/0".15"; 4) MobiTel-0.3(NAO), 0.3/0.75 m, Alta U9000 stare and drift-scan, 3056x3056, 2°48x2°48', 12x12 μm, 3.2"/pix, 18 m, 0.20"/0.45". The telescopes are actively used for control of the near-Earth space as well as for the solution of problems connected with thepotentially hazardous asteroids and comets approaching the Earth. Combination of classical and original methods of observations allows us to carry out virtually any observing programme. Considering objects at geostationary orbits and at highly elliptical orbits, we are able to carry out the following types of observations: massive

  2. Photogrammetry of the Viking-Lander imagery.

    USGS Publications Warehouse

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  3. Earth Observation

    NASA Image and Video Library

    2013-06-17

    ISS036-E-009405 (17 June 2013) --- One of the Expedition 36 crew members aboard the International Space Station, some 240 miles above Earth, used a 50mm lens to record this oblique nighttime image of a large part of the nation’s second largest state in area, including the four largest metropolitan areas in population. The extent of the metropolitan areas is easily visible at night due to city and highway lights. The largest metro area, Dallas-Fort Worth, often referred to informally as the Metroplex, is the heavily cloud-covered area at the top center of the photo. Neighboring Oklahoma, on the north side of the Red River, less than 100 miles to the north of the Metroplex, appears to be experiencing thunderstorms. The Houston metropolitan area, including the coastal city of Galveston, is at lower right. To the east near the Texas border with Louisiana, the metropolitan area of Beaumont-Port Arthur appears as a smaller blotch of light, also hugging the coast of the Texas Gulf. Moving inland to the left side of the picture one can delineate the San Antonio metro area. The capital city of Austin can be seen to the northeast of San Antonio. This and hundreds of thousands of other Earth photos taken by astronauts and cosmonauts over the past 50 years are available on http://eol.jsc.nasa.gov

  4. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  5. The view from the Shuttle Orbiter - Observing the oceans from manned space flights

    NASA Technical Reports Server (NTRS)

    Kaltenbach, J. L.; Helfert, M. R.; Wells, G. L.

    1984-01-01

    Examples of earth-looking hand-held photography and orbital sensor imagery of ocean features and phenomena in the framework of the Space Shuttle Earth Observations Project are presented. These include images of a floating substance in Capricorn Channel off northeastern Queensland, Australia; atolls in the central Maldive Islands; a spiral eddy and probable oil slick in the Caribbean Sea north of Aruba; and spiral eddies recorded in sun glint over the Mozambique Channel. It is concluded that the observation of the world's oceans during Shuttle missions with the trained eyes of the crewmen and documentation with hand-held photography add a significant dimension to the remote sensing of the ocean.

  6. Near-Earth Asteroid Physical Observations: 1993-1995

    NASA Astrophysics Data System (ADS)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  7. Earth Observation

    NASA Image and Video Library

    2014-07-15

    ISS040-E-063578 (15 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, flying some 225 nautical miles above the Caribbean Sea in the early morning hours of July 15, photographed this north-looking panorama that includes parts of Cuba, the Bahamas and Florida, and even runs into several other areas in the southeastern U.S. The long stretch of lights to the left of center frame gives the shape of Miami.

  8. STS-34 earth observations

    NASA Image and Video Library

    1989-10-20

    STS034-44-023 (20 Oct. 1989) --- The Southern Lights or Aurora Australis were photographed by the STS-34 crewmembers aboard the Earth-orbiting Space Shuttle Atlantis. From the Shuttle astronauts can photograph expanses of auroras, an advantage over scientists on Earth who can only get small sections at a time in a frame of photography. The space position allows for large-scale changes. This scene was one of 26 shown to the press by the five STS-34 crewmembers at their post-flight press conference.

  9. Possible Hydrovolcanic Landforms Observed in MOC NA Imagery: A Preliminary Survey

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Gaddis, L. R.; Blundell, S.

    2001-01-01

    In a preliminary survey of MOC NA imagery, a number of features resembling table mountains, tuff rings, and near craters have been identified. Their locations and geologic significance will be discussed. Additional information is contained in the original extended abstract.

  10. Geological applications of LANDSAT-1 imagery to the Great Salt Lake area

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Smith, A. F.

    1975-01-01

    The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.

  11. BOREAS Level-1B TIMS Imagery: At-sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.; Chernobieff, Sonia

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. For BOREAS, the Thermal Infrared Multispectral Scanner (TIMS) imagery, along with other aircraft images, was collected to provide spatially extensive information over the primary study areas. The Level-1b TIMS images cover the time periods of 16 to 20 Apr 1994 and 06 to 17 Sep 1994. The system calibrated images are stored in binary image format files. The TIMS images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. Earth observation taken by the Expedition 43 crew.

    NASA Image and Video Library

    2015-03-13

    Earth observation taken during a day pass by the Expedition 43 crew aboard the International Space Station (ISS). Sent as part of Twitter message: #HappyStPatrickDay with best wishes from the #E43 crew! From space you can see the “Emerald Isle” is very green!

  13. Accessing Earth Science Data Visualizations through NASA GIBS & Worldview

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Wong, M. M.; King, B. A.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting nearly 15 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This poster will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We invite discussion on how the visualizations can be used or improved for educational purposes.

  14. Public Participation in Earth Science from the ISS

    NASA Technical Reports Server (NTRS)

    Willis, Kimberly J.; Runco, Susan K.; Stefanov, William L.

    2010-01-01

    The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960 s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been "cataloged" (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.

  15. Public Participation in Earth Science from the Iss

    NASA Astrophysics Data System (ADS)

    Willis, K. J.; Runco, S.; Stefanov, W. L.

    2010-12-01

    The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut’s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960’s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been “cataloged” (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.

  16. Earth's colour unchanged since 1967: results from earthshine observations

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Flynn, Chris; Gleisner, Hans; Schwarz, Henriette

    2014-05-01

    The colour of Earthlight is a function of atmospheric, surface and ocean conditions because each scatters light in a characteristic way. The colour of Earth can in principle be determined and monitored from satellites - but geostationary satellites do not observe in multiple visual bands, and low Earth orbit platforms do not provide instantaneous colour pictures of the terrestrial disc. Observations of the dark side of the Moon - illuminated by earthlight - can be used to determine the terrestrial colour, and was done accurately in 1967 with astronomical photometric techniques. Until now, such techniques have not been re-applied. We report on multi-band visual photometry of the earthshine in 2011/2012. Scattered light in the atmosphere and the equipment is a difficult issue to circumvent - but for a unique pair of observations in the Johnson B and V bands we have a situation where scattered light cancels closely and thus we can estimate the Johnson B-V colours of the earthshine itself. By arguing on the basis of changes in reflected sunlight we can estimate the colour of the earthlight striking the Moon - and hence the colour of the Earth at that particular time. We find good agreement with the a measurement performed 47 years previously, and broad agreement with historic measurements from the 1920s and 30s. This similarity has fundamental consequences for the climate system feedback mechanisms, discussed in this poster.

  17. Direct estimation of tidally induced Earth rotation variations observed by VLBI

    NASA Astrophysics Data System (ADS)

    Englich, S.; Heinkelmann, R.; BOHM, J.; Schuh, H.

    2009-09-01

    The subject of our study is the investigation of periodical variations induced by solid Earth tides and ocean tides in Earth rotation parameters (ERP: polar motion, UT1)observed by VLBI. There are two strategies to determine the amplitudes and phases of Earth rotation variations from observations of space geodetic techniques. The common way is to derive time series of Earth rotation parameters first and to estimate amplitudes and phases in a second step. Results obtained by this means were shown in previous studies for zonal tidal variations (Englich et al.; 2008a) and variations caused by ocean tides (Englich et al.; 2008b). The alternative method is to estimate the tidal parameters directly within the VLBI data analysis procedure together with other parameters such as station coordinates, tropospheric delays, clocks etc. The purpose of this work was the application of this direct method to a combined VLBI data analysis using the software packages OCCAM (Version 6.1, Gauss-Markov-Model) and DOGSCS (Gerstl et al.; 2001). The theoretical basis and the preparatory steps for the implementation of this approach are presented here.

  18. Measuring the Carolina Bays Using Archetype Template Overlays on the Google Earth Virtual Globe; Planform Metrics for 25,000 Bays Extracted from LiDAR and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Davias, M. E.; Gilbride, J. L.

    2011-12-01

    Aerial photographs of Carolina bays taken in the 1930's sparked the initial research into their geomorphology. Satellite Imagery available today through the Google Earth Virtual Globe facility expands the regions available for interrogation, but reveal only part of their unique planforms. Digital Elevation Maps (DEMs), using Light Detection And Ranging (LiDAR) remote sensing data, accentuate the visual presentation of these aligned ovoid shallow basins by emphasizing their robust circumpheral rims. To support a geospatial survey of Carolina bay landforms in the continental USA, 400,000 km2 of hsv-shaded DEMs were created as KML-JPEG tile sets. A majority of these DEMs were generated with LiDAR-derived data. We demonstrate the tile generation process and their integration into Google Earth, where the DEMs augment available photographic imagery for the visualization of bay planforms. While the generic Carolina bay planform is considered oval, we document subtle regional variations. Using a small set of empirically derived planform shapes, we created corresponding Google Earth overlay templates. We demonstrate the analysis of an individual Carolina bay by placing an appropriate overlay onto the virtually globe, then orientating, sizing and rotating it by edit handles such that it satisfactorily represents the bay's rim. The resulting overlay data element is extracted from Google Earth's object directory and programmatically processed to generate metrics such as geographic location, elevation, major and minor axis and inferred orientation. Utilizing a virtual globe facility for data capture may result in higher quality data compared to methods that reference flat maps, where geospatial shape and orientation of the bays could be skewed and distorted in the orthographic projection process. Using the methodology described, we have measured over 25k distinct Carolina bays. We discuss the Google Fusion geospatial data repository facility, through which these data have been

  19. GEOCAB Portal: A gateway for discovering and accessing capacity building resources in Earth Observation

    NASA Astrophysics Data System (ADS)

    Desconnets, Jean-Christophe; Giuliani, Gregory; Guigoz, Yaniss; Lacroix, Pierre; Mlisa, Andiswa; Noort, Mark; Ray, Nicolas; Searby, Nancy D.

    2017-02-01

    The discovery of and access to capacity building resources are often essential to conduct environmental projects based on Earth Observation (EO) resources, whether they are Earth Observation products, methodological tools, techniques, organizations that impart training in these techniques or even projects that have shown practical achievements. Recognizing this opportunity and need, the European Commission through two FP7 projects jointly with the Group on Earth Observations (GEO) teamed up with the Committee on Earth observation Satellites (CEOS). The Global Earth Observation CApacity Building (GEOCAB) portal aims at compiling all current capacity building efforts on the use of EO data for societal benefits into an easily updateable and user-friendly portal. GEOCAB offers a faceted search to improve user discovery experience with a fully interactive world map with all inventoried projects and activities. This paper focuses on the conceptual framework used to implement the underlying platform. An ISO19115 metadata model associated with a terminological repository are the core elements that provide a semantic search application and an interoperable discovery service. The organization and the contribution of different user communities to ensure the management and the update of the content of GEOCAB are addressed.

  20. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.