Sample records for earth observations neo

  1. NASA Earth Observations (NEO): Data Imagery for Education and Visualization

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2008-12-01

    NASA Earth Observations (NEO) has dramatically simplified public access to georeferenced imagery of NASA remote sensing data. NEO targets the non-traditional data users who are currently underserved by functionality and formats available from the existing data ordering systems. These users include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists. NEO currently serves imagery from 45 different datasets with daily, weekly, and/or monthly temporal resolutions, with more datasets currently under development. The imagery from these datasets is produced in coordination with several data partners who are affiliated either with the instrument science teams or with the respective data processing center. NEO is a system of three components -- website, WMS (Web Mapping Service), and ftp archive -- which together are able to meet the wide-ranging needs of our users. Some of these needs include the ability to: view and manipulate imagery using the NEO website -- e.g., applying color palettes, resizing, exporting to a variety of formats including PNG, JPEG, KMZ (Google Earth), GeoTIFF; access the NEO collection via a standards-based API (WMS); and create customized exports for select users (ftp archive) such as Science on a Sphere, NASA's Earth Observatory, and others.

  2. NASA Earth Observations (NEO): Data Access for Informal Education and Outreach

    NASA Technical Reports Server (NTRS)

    Ward, Kevin; Herring, David

    2005-01-01

    The NEO (NASA Earth Observations) web space is currently under development with the goal of significantly increasing the demand for NASA remote sensing data while dramatically simplifying public access to georeferenced images. NEO will target the unsophisticated, nontraditional data users who are currently underserved by the existing data ordering systems. These users will include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists and amateur Earth observers. Users will be able to view and manipulate georeferenced browse imagery and, if they desire, download directly or order the source HDF data from the data provider (e.g., NASA DAAC or science team) via a single, integrated interface. NE0 will accomplish this goal by anticipating users expectations and knowledge level, thus providing an interface that presents material to users in a more simplified manner, without relying upon the jargon/technical terminology that make even the identification of the appropriate data set a significant hurdle. NEO will also act as a gateway that manages users expectations by providing specific details about images and data formats, developing tutorials regarding the manipulation of georeferenced imagery and raw data, links to software tools and ensuring that users are able to get the image they want in the format they want as easily as possible.

  3. Strategy for NEO follow-up observations

    NASA Astrophysics Data System (ADS)

    Tichy, Milos; Honkova, Michaela; Ticha, Jana; Kocer, Michal

    2015-03-01

    The Near-Earth Objects (NEOs) belong to the most important small bodies in the solar system, having the capability of close approaches to the Earth and even possibility to collide with the Earth. In fact, it is impossible to calculate reliable orbit of an object from a single night observations. Therefore it is necessary to extend astrometry dataset by early follow-up astrometry. Follow-up observations of the newly discovered NEO candidate should be done over an arc of several hours after the discovery and should be repeated over several following nights. The basic service used for planning of the follow-up observations is the NEO Confirmation Page (NEOCP) maintained by the Minor Planet Center of the IAU. This service provides on-line tool for calculating geocentric and topocentic ephemerides and sky-plane uncertainty maps of these objects at the specific date and time. Uncertainty map is one of the most important information used for planning of follow-up observation strategy for given time, indicating also the estimated distance of the newly discovered object and including possibility of the impact. Moreover, observatories dealing with NEO follow-up regularly have prepared their special tools and systems for follow-up work. The system and strategy for the NEO follow-up observation used at the Klet Observatory are described here. Methods and techniques used at the Klet NEO follow-up CCD astrometric programme, using 1.06-m and 0.57-m telescopes, are also discussed.

  4. Accessible Near-Earth Objects (NEOs)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2015-01-01

    Near Earth Objects (NEOs) are asteroids and comets whose orbits are in close proximity to Earth's orbit; specifically, they have perihelia less than 1.3 astronomical units. NEOs particularly near Earth asteroids (NEAs) are identified as potential destinations for future human exploration missions. In this presentation I provide an overview of the current state of knowledge regarding the astrodynamical accessibility of NEAs according to NASA's Near Earth Object Human Space Flight Accessible Targets Study (NHATS). I also investigate the extremes of NEA accessibility using case studies and illuminate the fact that a space-based survey for NEOs is essential to expanding the set of known accessible NEAs for future human exploration missions.

  5. The ESA SSA NEO Coordination Centre contribution to NEO hazard monitoring and observational campaigns

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Borgia, Barbara; Drolshagen, Gerhard; Koschny, Detlef; Perozzi, Ettore

    2015-08-01

    The NEO Coordination Centre (NEOCC) has recently been established in Frascati, near Rome, within the framework of the ESA Space Situational Awareness (SSA) Programme. Among its tasks is the coordination of observational activities related to the NEO hazard, and the distribution of relevant and up-to-date information on NEOs to both the scientific community and general users through its web portal (http://neo.ssa.esa.int).On the observational side, the NEOCC is linked to an increasingly large worldwide network of collaborating observatories, ranging from amateurs observers to large professional telescopes. The Centre organizes observation campaigns, alerting the network to suggest urgent or high-priority observations, and providing them with observational support.The NEOCC is also directly obtaining astrometric observations of high-priority targets, especially Virtual Impactors (VIs), on challenging objects as faint as magnitude 26.5, thanks to successful collaborations with ESO VLT in Chile and the INAF-sponsored LBT in Arizona. In addition, the Centre carries out regular monthly runs dedicated to NEO follow-up, recovery and survey activities with the 1-meter ESA OGS telescope in Tenerife.From a service perspective, the NEO System hosted at the NEOCC collects data and information on NEOs produced by various European services (e.g. NEODyS, EARN) and makes them available to a variety of users, with a particular focus on objects with possible collision solutions with the Earth. Among the tools provided through the web portal are the Risk List (a table of all known NEOs with impact solutions), a table of recent and upcoming close approaches, a database of physical properties of NEOs and the so-called Priority List, which allows observers to identify NEOs in most urgent need of observations, and prioritise their observational activities accordingly.The results of our recent observation campaigns and some major recent improvements to the NEO System will presented and

  6. A NEO population generation and observation simulation software tool

    NASA Astrophysics Data System (ADS)

    Müller, Sven; Gelhaus, Johannes; Hahn, Gerhard; Franco, Raffaella

    One of the main targets of ESA's Space Situational Awareness (SSA) program is to build a wide knowledge base about objects that can potentially harm Earth (Near-Earth Objects, NEOs). An important part of this effort is to create the Small Bodies Data Centre (SBDC) which is going to aggregate measurement data from a fully-integrated NEO observation sensor network. Until this network is developed, artificial NEO measurement data is needed in order to validate SBDC algorithms. Moreover, to establish a functioning NEO observation sensor network, it has to be determined where to place sensors, what technical requirements have to be met in order to be able to detect NEOs and which observation strategies work the best. Because of this, a sensor simulation software was needed. This paper presents a software tool which allows users to create and analyse NEO populations and to simulate and analyse population observations. It is a console program written in Fortran and comes with a Graphical User Interface (GUI) written in Java and C. The tool can be distinguished into the components ``Population Generator'' and ``Observation Simulator''. The Population Generator component is responsible for generating and analysing a NEO population. Users can choose between creating fictitious (random) and synthetic populations. The latter are based on one of two models describing the orbital and size distribution of observed NEOs: The existing socalled ``Bottke Model'' (Bottke et al. 2000, 2002) and the new ``Granvik Model'' (Granvik et al. 2014, in preparation) which has been developed in parallel to the tool. Generated populations can be analysed by defining 2D, 3D and scatter plots using various NEO attributes. As a result, the tool creates the appropiate files for the plotting tool ``gnuplot''. The tool's Observation Simulator component yields the Observation Simulation and Observation Analysis functions. Users can define sensor systems using ground- or space-based locations as well as

  7. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  8. TMAP: A NEO follow-up program utilizing undergraduate observers

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Deaver, D.; Martinez, R.; Foster, J.; Kuang, L.; Ates, A.; Anderson, M.; Mijac, M.; Gillam, S.; Hicks, M. D.

    2000-10-01

    In the spring of 2000 we began TMAP (Table Mountain Astrometry Project), a program designed to provide timely astrometric followup of newly discovered near-Earth asteroids. Relying on undergraduate observers from the local California State Universities, we have to date been involved with the over 50 NEO and new comet discoveries. This is a significant fraction of all near-Earth asteroids discovered over the time period. All observations are performed at JPL's Table Mountain Facility near Wrightwood California using the 0.6-meter telescope equipped with a Photometrics LN cooled 1k CCD mounted at the cassegrain focus. With this system we can routinely detect objects to R=20.5. We have typically scheduled two runs per month on weekends bracketing the new moon. The student observers man the telescope are trained to select and obtain R-band images of candidates from the Minor Planet Center's NEO Confirmation Page (http://cfa-www.harvard.edu/cfa/ps/NEO/TheNEOPage.html). The astrometry is then reduced and submitted to the Minor Planet Center the following day. TMAP has proven to be an efficient way both to obtain much needed astrometric measurements of newly discovered small bodies as well as to involve undergraduate researchers in planetary research. The limiting magnitudes provided by the 0.6-meter partially fills the gap between the extremely helpful and dedicated amateur astromitrists and the followup that the NEO detection programs do themselves. This work is supported by NASA.

  9. The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    NASA Technical Reports Server (NTRS)

    Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.; hide

    2014-01-01

    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (<0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.

  10. The LCOGT Near Earth Object (NEO) Follow-up Network

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Gomez, Edward; Christensen, Eric; Larson, Steve

    2014-11-01

    Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network of over 35 telescopes at 6 locations in the northern and southern hemispheres. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network is now operating and observations are being executed remotely and robotically.I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS), NEOWISE and PanSTARRS (PS1). Over 600 NEO candidates have been targeted so far this year with 250+ objects reported to the MPC, including 70 confirmed NEOs. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. Recent results have included the first period determination for the Apollo 2002 NV16 and our first NEO spectrum from the FLOYDS spectrographs on the LCOGT 2m telescopes obtained for 2012 DA14 during the February 2013 closepass.

  11. Properties and evolution of NEO families created by tidal disruption at Earth

    NASA Astrophysics Data System (ADS)

    Schunová, Eva; Jedicke, Robert; Walsh, Kevin J.; Granvik, Mikael; Wainscoat, Richard J.; Haghighipour, Nader

    2014-08-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent ‘s-class’ disruption events where the largest remaining fragment after disruption and reaccumulation retains less than 50% of the parent’s mass. The resulting fragments have a ‘string of pearls’ configuration after their reaccummulation into gravitationally bound components (Richardson, D.C., Bottke, W.F., Love, S.G. [1998]. Icarus 134, 47-76). We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is ΔH∼1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10, for the fragments in the s-class families is steeper than the slope of the NEO population (Mainzer, A., et al. [2011]. Astrophys. J. 743, 156) in the same size range. The es remain coherent as statistically significant clusters of orbits within the NEO population for an average of τbarc=(14.7±0.6)×103 yr after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space-they are detectable with the techniques developed by Fu et al. and Schunová et al. (Fu, H., Jedicke, R., Durda, D.D., Fevig, R., Binzel, R.P. [2005]. Icarus 178(2), 434-449 and Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S. [2012]. Icarus 220, 1050-1063) for an average duration (τbardet) ranging from about 2000 to about 12,000 years for progenitors in the absolute magnitude (Hp) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is Hp,max=20

  12. Near-Earth Object (NEO) Hazard Background

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.

    2005-01-01

    The fundamental problem regarding NEO hazards is that the Earth and other planets, as well as their moons, share the solar system with a vast number of small planetary bodies and orbiting debris. Objects of substantial size are typically classified as either comets or asteroids. Although the solar system is quite expansive, the planets and moons (as well as the Sun) are occasionally impacted by these objects. We live in a cosmic shooting gallery where collisions with Earth occur on a regular basis. Because the number of smaller comets and asteroids is believed to be much greater than larger objects, the frequency of impacts is significantly higher. Fortunately, the smaller objects, which are much more numerous, are usually neutralized by the Earth's protective atmosphere. It is estimated that between 1000 and 10,000 tons of debris fall to Earth each year, most of it in the form of dust particles and extremely small meteorites. With no atmosphere, the Moon's surface is continuously impacted with dust and small debris. On November 17 and 18, 1999, during the annual Leonid meteor shower, several lunar surface impacts were observed by amateur astronomers in North America. The Leonids result from the Earth's passage each year through the debris ejected from Comet Tempel-Tuttle. These annual showers provide a periodic reminder of the possibility of a much more consequential cosmic collision, and the heavily cratered lunar surface acts a constant testimony to the impact threat. The impact problem and those planetary bodies that are a threat have been discussed in great depth in a wide range of publications and books, such as The Spaceguard Survey , Hazards Due to Comets and Asteroids, and Cosmic Catastrophes. This paper gives a brief overview on the background of this problem and address some limitations of ground-based surveys for detection of small and/or faint near-Earth objects.

  13. NEO follow-up, recovery and precovery campaigns at the ESA NEO Coordination Centre

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Koschny, Detlef; Drolshagen, Gerhard; Perozzi, Ettore; Borgia, Barbara

    2016-01-01

    The NEO Coordination Centre (NEOCC) has been established within the framework of the ESA Space Situational Awareness (SSA) Programme. Among its tasks are the coordination of observational activities and the distribution of up-to-date information on NEOs through its web portal. The Centre is directly involved in observational campaigns with various telescopes, including ESO's VLT and ESA's OGS telescope. We are also developing a network of collaborating observatories, with a variety of capabilities, which are alerted when an important observational opportunity arises. From a service perspective, the system hosted at the NEOCC collects information on NEOs produced by European services and makes it available to users, with a focus on objects with possible collisions with the Earth. Among the tools provided via our portal are the Risk List of all known NEOs with impact solutions, and the Priority List, which allows observers to identify NEOs in most urgent need of observations.

  14. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  15. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation considers the use of new launch vehicles in defense against near-Earth objects, building upon expertise in launch vehicle and spacecraft design, astronomy and planetary science and missile defense. This work also seeks to demonstrate the synergy needed between architectures for human/robotic exploration initiatives and planetary defense. Three different mitigation operations were baselined for this study--nuclear standoff explosion, kinetic interceptor, and solar collector--however, these are not the only viable options. The design and predicted performance of each of these methods is discussed and compared. It is determined that the nuclear interceptor option can deflect NEOs of smaller size (100-500 m) with 2 years or more time before impact, and larger NEOs with 5 or more years warning; kinetic interceptors may be effective for deflection of asteroids up to 300-400 m but require 8-10 years warning time; and, solar collectors may be able to deflect NEOs up to 1 km if issues pertaining to long operation can be overcome. Ares I and Ares V vehicles show sufficient performance to enable the development of a near-term categorization and mitigation architecture.

  16. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our

  17. Physical characterization of Warm Spitzer-observed near-Earth objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbó, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling, D.E. et al. [2010]. Astron. J. 140, 770-784. http://dx.doi.org/10.1088/0004-6256/140/3/770). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (˜0.7-2.5 μm) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with Band Area Ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a

  18. Relative 2-color Photometry Of Neo's

    NASA Astrophysics Data System (ADS)

    Shelus, P.; Gyorgyey-Ries, J.; Ricklefs, R.; Barker, E.

    We have been making Solar System small body positional observations at McDon- ald Observatory since the early 1970's. In 1994 we moved to a CCD-based, almost totally automated, astrometry system (Whipple et al, 1996, Astron. J., Vol. 112, p. 316). Our present observational effort is focussed upon Near Earth Objects (NEOs) as part of NASA's mission to discover and catalogue 90 percent of NEOs with diameters larger than 1 km by 2008. Observing 4 nights per lunation, we conduct observations to confirm newly discovered NEOs, filling in the night on a target-of-opportunnity basis, with observations of under-observed NEOs. Our major intent is to understand the overall hazard that these objects pose to Earth and their dynamical and physical characterization. We recently adopted the USNO-A2.0 catalogue to improve astromet- ric results and a number of up-grades to the end-to-end system have been developed (Barker et al, 2001, Bull. AAS, Vol. 33, p. 1116). The USNO catalog also provides stellar magnitudes in the standard Johnson R and B photometric bands. We have thus taken the opportunity to expand our observational efforts to regularly provide R mag- nitudes, in addition to astrometric positions. Our limiting magnitude in R is near 22. We are now furthering our photometric efforts by including B exposures as part of our standard observation triplet. We have already confirmed that switching filters between exposures on standard fields does not compromise the astrometric accurary. Thus, we plan to provide two color, sequential, relative photometry, (B-R), of newly discov- ered or under observed asteroids, as part of our routine observation process. The time interval between exposures is always less than 20 minutes, short compared to most asteroid rotation times. Consequently, a meaningful color index can be obtained in parallel with the astrometric positions. Although (B-R) is not the usual color index used in asteroid classification studies, we are testing whether we can

  19. Coordination of NEO Observers in South-America

    NASA Astrophysics Data System (ADS)

    Tancredi, G.

    At present the discovery of NEOs is concentrated in the Northern Hemisphere. None of the 6 existing survey programs can reach declinations below -30deg. Nevertheless, there are two small surveys ready to start in the near future in the southern hemisphere: an extension of the Catalina Sky Survey using the Uppsala Schmidt in Siding Spring and the Project BUSCA in Uruguay. Many of the NEOs discovered by the northern surveys could reach the southern sky, with declinations unreachable for a northern observer. Furthermore, the recovery of an asteroid in subsequent oppositions could come indistinctly in the northern and southern sky. A network of well-equipped observers in the southern region is then a must in a campaign to catalog the NEO population. In view of this situation, the Planetary Society, through its NEO grant, have already supported many observers in the Southern Hemisphere. The planetary science community in South America has considerably grown in the last 10 years. We have well-known research groups in Argentina, Brazil and Uruguay. Those groups have established many scientific links by exchanging graduate students and through several meetings. In particular, we have already hold two Workshop in Planetary Science in South America in 1999 (La Plata, Argentina) and 2000 (Montevideo, Uruguay) with more than 25 participants each. Recently, in February 2002, we organized a Workshop of NEO observers in Montevideo with the participation of more than 20 professional and amateurs observers from: Argentina: Obs. Ast. Felix Aguilar - Yale University (San Juan) and CRICYT (Mendoza); Brazil: Obs. Abraes de Moraes (San Pablo), Obs. Wykrota (Belo Horizonte) and Observatorio Nacional (Rio de Janeiro); Paraguay: Obs. Nacional de Asuncion and Sociedad de Estudios Astronómicos (Asunción) Uruguay: Depto. Astronomía - Fac. Ciencias, Obs. Ast. Los Molinos and Obs. Kappa Crucis (Montevideo). Among the resolutions of the Workshop, we highlight: * Creation of the "Asociaci

  20. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  1. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  2. NASA Space Missions to Asteroids: Protecting the Earth from NEO Impacts

    NASA Technical Reports Server (NTRS)

    Morrison, David; Berry, William E. (Technical Monitor)

    1996-01-01

    There is now a general recognition of the hazard of impacts on Earth by comets and asteroids, but there is yet no consensus concerning international actions that should be taken to protect the planet from such impacts. An essential step in the analysis of the situation involves estimating the relative hazard posed by comets and asteroids of different sizes and orbits. All recent studies agree that the larger impacts pose the greater danger, and that our primary concern from the perspective of total risk should be on impacts that are large enough to cause global ecological catastrophe. These global catastrophes are also of special interest, since they (alone among natural disasters) have the potential to destroy civilization. Studies of the sensitivity of the Earth's environment suggest that the energy threshold energy for causing a global catastrophe is at about 1 million megatons, corresponding to impactor diameters of 1.5 to 2 km. This information leads naturally to a strategy of concentrating on the larger NEOs, say those 1 km or more in diameter. This is the rationale for the Spaceguard Survey, which must be the highest priority in mitigation efforts. The second question concerns the value of developing standing defensive systems that could deflect or destroy an incoming NEO. In the case of the asteroids larger than 1 km in diameter, no such system is needed, since there will be ample time (at least several decades) between the discovery of the threatening object by Spaceguard and the requirement to take action against it. In the case of objects smaller than 1 km diameter, development of defensive systems is not cost-effective; there are many greater dangers to persons and property that are much more urgent. Only in the case of large long-period comets is there a rationale for standing defense systems. The question is also raised whether the risks inherent in developing and maintaining a defense system might be greater than the impact risks it is intended to

  3. The Economics OF NEOS

    NASA Technical Reports Server (NTRS)

    Schalkwyk, James D.

    2014-01-01

    NASA's Ames Research Center, in its role as partnerships lead for NASA asteroid redirect robotic missions and as a supporting Center for the Asteroid Grand Challenge, responded to increasing interest in near-Earth objects (NEOs) by holding a workshop entitled 'The Economics of NEOs' on the 6th and 7th of September 2014. The workshop was intended to serve as a catalyst for discussions and to foster collaborations between industry, academia and government. This document serves as a summary of the discussions which took place within three sessions and their respective table discussions; Session One: Background and Motivation; Session Two: Economics of NEOs; and Session Three: Policy and Legal Frameworks. This document is a collection of observations by individuals and does not express the consensus view of all participants; it does not express US Government or NASA policy.

  4. The LCOGT NEO Follow-up Network

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Gomez, Edward; Greenstreet, Sarah

    2015-08-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network of twelve 1-meter telescopes at 6 locations. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet is planned for 2016.I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and PanSTARRS (PS1) and several hundred targets are now being followed-up per year. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists in order to improve the orbits, determine the light curves and rotation periods and improve the characterization. This will be extended to obtain more light curves of other NEOs which could be targets. Recent results have included the first period determinations for several of the Goldstone-targeted NEOs. We are in the process of building a NEO Portal which will allow

  5. Towards Designing an Integrated Architecture for NEO Characterization, Mitigation, Scientific Evaluation, and Resource Utilization

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; LaPointe, Michael; Wilks, Rod; Allen, Brian

    2009-01-01

    This poster reviews the planning and design for an integrated architecture for characterization, mitigation, scientific evaluation and resource utilization of near earth objects. This includes tracks to observe and characterize the nature of the threat posed by a NEO, and deflect if a significant threat is posed. The observation stack can also be used for a more complete scientific analysis of the NEO.

  6. The observing campaign on the deep-space debris WT1190F as a test case for short-warning NEO impacts

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Buzzoni, Alberto; Koschny, Detlef; Drolshagen, Gerhard; Perozzi, Ettore; Hainaut, Olivier; Lemmens, Stijn; Altavilla, Giuseppe; Foppiani, Italo; Nomen, Jaime; Sánchez-Ortiz, Noelia; Marinello, Wladimiro; Pizzetti, Gianpaolo; Soffiantini, Andrea; Fan, Siwei; Frueh, Carolin

    2018-04-01

    On 2015 November 13, the small artificial object designated WT1190F entered the Earth atmosphere above the Indian Ocean offshore Sri Lanka after being discovered as a possible new asteroid only a few weeks earlier. At ESA's SSA-NEO Coordination Centre we took advantage of this opportunity to organize a ground-based observational campaign, using WT1190F as a test case for a possible similar future event involving a natural asteroidal body.

  7. Multiple NEO Rendezvous Using Solar Sails

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    Mission concept is to assess the feasibility of using solar sail propulsion to enable a robotic precursor that would survey multiple Near Earth Objects (NEOs) for potential future human visits. Single spacecraft will rendezvous with and image 3 NEOs within 6 years of launch

  8. The Mission Accessible Near-Earth Objects Survey (MANOS): spectroscopy results

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Moskovitz, Nicholas; Hinkle, Mary L.; Mommert, Michael; Polishook, David; Thirouin, Audrey; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca E.; Person, Michael J.; Trilling, David E.; Willman, Mark; Burt, Brian

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is an ongoing physical characterization survey to build a large, uniform catalog of physical properties including lightcurves and visible wavelength spectroscopy. We will use this catalog to investigate the global properties of the small NEO population and identify individual objects that can be targets of interest for future exploration. To accomplish our goals, MANOS uses a wide variety of telescopes (1-8m) in both the northern and southern hemispheres. We focus on targets that have been recently discovered and operate on a regular cadence of remote and queue observations to enable rapid characterization of small NEOs. Targets for MANOS are selected based on three criteria: mission accessibility, size, and observability. With our resources, we observe 5-10 newly discovered sub-km NEOs per month. MANOS has been operating for three years and we have observed over 500 near-Earth objects in that time.We will present results from the spectroscopy component of the MANOS program. Visible wavelength spectra are obtained using DeVeny on the Discovery Channel Telescope (DCT), Goodman on the Southern Astrophysical Research (SOAR) telescope, and GMOS on Gemini North and South. Over 300 NEO spectra have been obtained during our program. We will present preliminary results from our spectral sample. We will discuss the compositional diversity of the small NEO population and how the observed NEOs compare to the meteorite population.MANOS is funded by the NASA Near-Earth Object Observations program.

  9. Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.

    2001-11-01

    In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.

  10. The Exploration of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A

  11. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Arnold William; Baysinger, Mike; Crane, Tracie; Capizzo, Pete; Sutherlin, Steven; Dankanich, John; Woodcock, Gordon; Edlin, George; Rushing, Johnny; Fabisinski, Leo; hide

    2007-01-01

    This work documents the advancements in MSFC threat modeling and mitigation technology research completed since our last major publication in this field. Most of the work enclosed here are refinements of our work documented in NASA TP-2004-213089. Very long development times from start of funding (10-20 years) can be expected for any mitigation system which suggests that delaying consideration of mitigation technologies could leave the Earth in an unprotected state for a significant period of time. Fortunately there is the potential for strong synergy between architecture requirements for some threat mitigators and crewed deep space exploration. Thus planetary defense has the potential to be integrated into the current U.S. space exploration effort. The number of possible options available for protection against the NEO threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. A summary of the major lessons learned during this study is presented, as are recommendations for future work.

  12. Mapping Near-Earth Hazards

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  13. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  14. Near-Earth-Object identification over apparitions using n-body ranging

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Muinonen, Karri

    2007-05-01

    Earth-based telescopes can observe Near-Earth objects (NEOs) continuously for a few weeks or months during each apparition. Due to the usually complicated dynamics of the Sun-Earth-NEO triplet, the time interval between consecutive apparitions typically ranges from months to several years. On these timescales single-apparition sets of observations (SASs) having reasonably small observational time-intervals lead to substantial orbital uncertainties. The linking of SASs over apparitions thus becomes a nontrivial task. Of a total of roughly 4,100 NEO observation sets, or orbits, currently known, some 500 are SASs for which the observational time interval is less than 7 days. Either these SASs have not been observed at an apparition following the discovery apparition (some 40% of the above NEO SASs have been obtained in 2005 or later), or the linkage of SASs has failed, an option which should preferably be eliminated. As a continuation to our work on the short-arc linking problem at the discovery moment (Granvik and Muinonen, 2005, Icarus 179, p. 109), we have investigated the possibility of using a similar method for the linking of SASs over apparitions. Assuming that the observational time-interval for SASs of NEOs is typically at least one day (minimum requirement set by the Minor Planet Center), the orbital-element probability density function is constrained as compared to the typical short-arc case with an observational time interval of only a few tens of minutes. Because of the smaller orbital-element uncertainty, we can use the short-arc method (comparison in ephemeris space) for longer time spans, or even do the comparison directly in orbital-element space (Keplerian, equinoctial, etc.), thus allowing us to assess the problem of linking SASs of NEOs. We will present linking results by using both simulated and real NEO SASs.

  15. NEOs in the mid-infrared: from Spitzer to JWST

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  16. Preparing for LSST with the LCOGT NEO Follow-up Network

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Lister, Tim; Gomez, Edward

    2016-10-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) provides an ideal platform for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects. The LCOGT NEO Follow-up Network is using the LCOGT telescope network in addition to a web-based system developed to perform prioritized target selection, scheduling, and data reduction to confirm NEO candidates and characterize radar-targeted known NEOs.In order to determine how to maximize our NEO follow-up efforts, we must first define our goals for the LCOGT NEO Follow-up Network. This means answering the following questions. Should we follow-up all objects brighter than some magnitude limit? Should we only focus on the brightest objects or push to the limits of our capabilities by observing the faintest objects we think we can see and risk not finding the objects in our data? Do we (and how do we) prioritize objects somewhere in the middle of our observable magnitude range? If we want to push to faint objects, how do we minimize the amount of data in which the signal-to-noise ratio is too low to see the object? And how do we find a balance between performing follow-up and characterization observations?To help answer these questions, we have developed a LCOGT NEO Follow-up Network simulator that allows us to test our prioritization algorithms for target selection, confirm signal-to-noise predictions, and determine ideal block lengths and exposure times for observing NEO candidates. We will present our results from the simulator and progress on our NEO follow-up efforts.In the era of LSST, developing/utilizing infrastructure, such as the LCOGT NEO Follow-up Network and our web-based platform for selecting, scheduling, and reducing NEO observations, capable of handling the large number of detections expected to be produced on a daily basis by LSST will be critical to follow-up efforts. We hope our

  17. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  18. NEOPROP: A NEO Propagator for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Zuccarelli, Valentino; Bancelin, David; Weikert, Sven; Thuillot, William; Hestroffer, Daniel; Yabar Valle, Celia; Koschny, Detlef

    2013-09-01

    Analytical Module makes use of analytical algorithms in order to rapidly assess the impact risk of a NEO. It is responsible for the preliminary analysis. Orbit Determination algorithms, as the Gauss and the Linear Least Squares (LLS) methods, will determine the initial state (from MPC observations), along with its uncertainty, and the MOID of the NEO (analytically).2. The Numerical Module makes use of numerical algorithms in order to refine and to better assess the impact probabilities. The initial state provided by the orbit determination process will be used to numerically propagate the trajectory. The numerical propagation can be run in two modes: one faster ("fast analysis"), in order to get a fast evaluation of the trajectory and one more precise ("complete analysis") taking into consideration more detailed perturbation models. Moreover, a configurable number of Virtual Asteroids (VAs) will be numerically propagated in order to determine the Earth closest approach. This new "MOID" computation differs from the analytical one since it takes into consideration the full dynamics of the problem.

  19. Flagstaff Robotic Survey Telescope (FRoST): Rapid Response for NEOs

    NASA Astrophysics Data System (ADS)

    Avner, Louis Daniel; Trilling, David E.; Dunham, Edward W.

    2016-10-01

    The Flagstaff Robotic Survey Telescope (FRoST) is a robotic 0.6m Schmidt telescope that will be used for instant follow-up observations of newly discovered Near Earth Objects (NEOs). Here, we present the progress being made on FRoST as well as the remaining tasks until the telescope is fully operational. With more than one thousand NEOs being found yearly, more telescopes are needed to carry out follow-up observations. Most NEOs are found at their peak brightness, meaning that these observations need to happen quickly before they fade. By using the Catalina Sky Survey Queue Manager, FRoST will be able to accept interruptions during the night and prioritize observations automatically, allowing instant follow-up observations. FRoST will help refine the orbit of these newly discovered objects while providing optical colors. We will ingest information from the NEOCP and JPL's Scout program at five minute intervals and observe newly discovered targets robotically, process the data automatically, and autonomously generate astrometry and colors. We estimate that will we provide essentially 100% recovery of objects brighter than V~20. This work was supported by the NSF MRI program as well as by NAU and Lowell Observatory.

  20. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  1. Nasa s near earth object program office

    NASA Astrophysics Data System (ADS)

    Yeomans, D.; Chamberlin, A.; Chesley, S.; Chodas, P.; Giorgini, J.; Keesey, M.

    In 1998, NASA formed the Near-Earth Object Program Office at JPL to provide a focal point for NASA's efforts to discover and monitor the motions of asteroids and comets that can approach the Earth. This office was charged with 1.) facilitating communication between the near-Earth object (NEO) community and the public, 2.) helping coordinate the search efforts for NEOs, 3.) monitoring the progress in finding NEOs at NASA -supported sites, and 4.) monitoring the future motions of all known NEOs and cataloging their orbits. There are far more near-Earth asteroids (NEAs) than near-Earth comets and one of the driving motivations for NASA's NEO Program is the Spaceguard Goal to find 90% of the NEAs larger than one kilometer by 2008. While the total population of NEAs is not clearly established, the consensus opinion seems to be that the total population of NEAs larger than one kilometer is about 1000 (with a range of perhaps 800 - 1200). By April 2002, nearly 60% of the total population of large NEAs had been discovered and while the discovery rate will likely drop off as the easy ones are found, these early discovery efforts are encouraging. The five NASA-supported NEO discovery teams are the Lincoln Laboratory Near-Earth Asteroid Research effort (LINEAR, Grant Stokes, Principal Investigator), the Near-Earth Asteroid Tracking team at JPL (NEAT, Eleanor Helin, P.I.), the Lowell Observatory Near-Earth Object Search (LONEOS, E. Bowell, P.I.), and two discovery teams near Tucson Arizona - the Spacewatch effort (R. McMillan, P.I.) and the Catalina Sky Survey group (S. Larson, P.I.). Mention should also be made of the Japanese Spaceguard discovery site at Bisei Japan (S. Isobe, P.I.). A substantial portion of the critical follow-up observations necessary to secure the orbits of NEOs and provide information on their physical characteristics is provided by a group of very sophisticated amateur astronomers who might better be described as unfunded professionals. After nearly two

  2. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  3. An High Resolution Near-Earth Objects Population Enabling Next-Generation Search Strategies

    NASA Technical Reports Server (NTRS)

    Tricaico, Pasquale; Beshore, E. C.; Larson, S. M.; Boattini, A.; Williams, G. V.

    2010-01-01

    Over the past decade, the dedicated search for kilometer-size near-Earth objects (NEOs), potentially hazardous objects (PHOs), and potential Earth impactors has led to a boost in the rate of discoveries of these objects. The catalog of known NEOs is the fundamental ingredient used to develop a model for the NEOs population, either by assessing and correcting for the observational bias (Jedicke et al., 2002), or by evaluating the migration rates from the NEOs source regions (Bottke et al., 2002). The modeled NEOs population is a necessary tool used to track the progress in the search of large NEOs (Jedicke et al., 2003) and to try to predict the distribution of the ones still undiscovered, as well as to study the sky distribution of potential Earth impactors (Chesley & Spahr, 2004). We present a method to model the NEOs population in all six orbital elements, on a finely grained grid, allowing us the design and test of targeted and optimized search strategies. This method relies on the observational data routinely reported to the Minor Planet Center (MPC) by the Catalina Sky Survey (CSS) and by other active NEO surveys over the past decade, to determine on a nightly basis the efficiency in detecting moving objects as a function of observable quantities including apparent magnitude, rate of motion, airmass, and galactic latitude. The cumulative detection probability is then be computed for objects within a small range in orbital elements and absolute magnitude, and the comparison with the number of know NEOs within the same range allows us to model the population. When propagated to the present epoch and projected on the sky plane, this provides the distribution of the missing large NEOs, PHOs, and potential impactors.

  4. The Mission Accessible Near-Earth Objects Survey (MANOS)

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Moskovitz, Nicholas; DeMeo, Francesca; Endicott, Thomas; Busch, Michael; Roe, Henry; Trilling, David; Thomas, Cristina; Willman, Mark; Grundy, Will; hide

    2013-01-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend

  5. Synoptic Observations for Physical Characterization of Fast Rotator NEOs

    NASA Astrophysics Data System (ADS)

    Kikwaya Eluo, Jean-Baptiste; Hergenrother, Carl W.

    2014-11-01

    NEOs can be studied not only dynamically, to learn about their impact hazard, but also physically, to establish various properties important both to better address their potential hazard and also to understand what they can tell us about the origin of the solar system and its ongoing processes.Taking advantage of the two-meter-class telescopes around Tucson, we plan to observe NEOs synoptically using telescopes at three different locations: VATT (Vatican Advanced Technology Telescope) at Mount Graham (longitude: -109.8719, latitude: 32.7016, elevation: 10469 feet), Bok 2.3 m at Kitt Peak (longitude: -111.6004, latitude: 31.9629, elevation: 6795 feet) and Kuiper 1.5-m at Mount Bigelow (longitude: -110.7345, latitude: 32.4165, elevation: 8235 feet). All three telescopes will aim simultaneously at the same object, each with a different instrument. The three telescopes will be part of the Arizona Robotic Telescope (ART) network, a University of Arizona initiative to provide near real-time observations of Target of Opportunity objects across the visible and near-infrared wavelengths. The VATT-4K optical imager mounted on the VATT has already been used for photometry. In the future we plan to utilize the BCSpec (Boller & Chivens Spectrograph) for visible spectroscopy on Bok 2.3 meter and a near-infrared instrument on Kuiper 1.5 meter. We report here the preliminary results of several NEOs whose rotation rate and color have been estimated using photometry with images recorded with VATT-4K. 2009 SQ104 has a rotation rate of 6.85+/- 0.03 h, 2014 AY28 has a rotation rate of 0.91 +/- 0.02 h, 2014 EC of 0.54 +/-0.04 h, 2014 FA44 of 3.45 +/- 0.05 h, and 2014 KS40 of 1.11 +/- 0.06 h.

  6. The DLR AsteroidFinder for NEOs

    NASA Astrophysics Data System (ADS)

    Mottola, Stefano; Kuehrt, Ekkehard; Michaelis, Harald; Hoffmann, Harald; Spietz, Peter; Jansen, Frank; Thimo Grundmann, Jan; Hahn, Gerhard; Montenegro, Sergio; Findlay, Ross; Boerner, Anko; Messina, Gabriele; Behnke, Thomas; Tschentscher, Matthias; Scheibe, Karsten; Mertens, Volker; Heidecke, Ansgar

    Potential Earth-impacting asteroids that spend most of their time interior to Earth's orbit are extremely difficult to be observed from the ground and remain largely undetected. Firstly, they are mostly located at small solar elongations, where the sky brightness and their faintness due to the large phase angle prevents their discovery. Secondly, these objects tend to have very long synodic orbital periods, which makes observation opportunities rare and impact warning times short. Because of these limitations, even the advent of next generation ground-based asteroid surveys is not likely to radically improve the situation (Veres et al. Icarus 203, p472, 2009). On the other hand, a small satellite with a suitable design can observe close to the Sun and detect these objects efficiently against a dark sky background. For this reason, DLR, the German Aerospace Center, has selected AsteroidFinder as the first experiment to be launched under its new compact satellite national program. The primary goal of the mission is to detect and characterize Near Earth Objects (NEOs), with a particular focus on the population of objects completely contained within Earth's orbit (IEOs or Inner Earth Objects). Current dynamical models predict the existence of more than 1000 such objects down to a size of 100m, of which, due to the abovementioned observation difficulties, only 10 have been discovered to date. Benefitting from the vantage point of a Low Earth Orbit (LEO), AsteroidFinder makes use of a small optical telescope to scan those regions of the sky that are close to the Sun, and therefore beyond the reach of ground based observatories. By estimating the population, the size and the orbital distribution of IEOs, AsteroidFinder will contribute to our knowledge of the inner Solar System, and to the assessment of the impact hazard for the Earth. A secondary goal of the mission is to demonstrate techniques that enable the space-based detection of space debris in the cm size range

  7. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  8. Near-Earth asteroids orbits using Gaia and ground-based observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2011-05-01

    Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error

  9. FIRST RESULTS FROM THE RAPID-RESPONSE SPECTROPHOTOMETRIC CHARACTERIZATION OF NEAR-EARTH OBJECTS USING UKIRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mommert, M.; Trilling, D. E.; Petersen, E.

    2016-04-15

    Using the Wide Field Camera for the United Kingdom Infrared Telescope (UKIRT), we measure the near-infrared colors of near-Earth objects (NEOs) in order to put constraints on their taxonomic classifications. The rapid-response character of our observations allows us to observe NEOs when they are close to the Earth and bright. Here we present near-infrared color measurements of 86 NEOs, most of which were observed within a few days of their discovery, allowing us to characterize NEOs with diameters of only a few meters. Using machine-learning methods, we compare our measurements to existing asteroid spectral data and provide probabilistic taxonomic classificationsmore » for our targets. Our observations allow us to distinguish between S-complex, C/X-complex, D-type, and V-type asteroids. Our results suggest that the fraction of S-complex asteroids in the whole NEO population is lower than the fraction of ordinary chondrites in the meteorite fall statistics. Future data obtained with UKIRT will be used to investigate the significance of this discrepancy.« less

  10. Properties and evolution of near-Earth-object families created by tidal disruption at the Earth

    NASA Astrophysics Data System (ADS)

    Schunova, E.; Walsh, K.; Granvik, M.; Jedicke, R.; Wainscoat, R.; Haghighipour, N.

    2014-07-01

    We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent 'S-class' disruption events and create a 'string of pearls' configuration of the resulting fragments after their reaccummulation into gravitationally bound components [3]. We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is Δ H ˜ 1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10^{(0.55±0.04) H}, for the fragments in the S-class families is steeper than the slope of the NEO population [2] in the same size range. The families remain coherent as statistically significant clusters of orbits within the NEO population for an average of barτ_c = (14.7±0.6)×10^3 years after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space -- they are detectable with the techniques developed by [1] and [4] for an average duration (barτ_{det}) ranging from about 2,000 to about 12,000 years for progenitors in the absolute magnitude (H_p) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is H_{p,max} = 20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1 m to 10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth's vicinity. These objects may be

  11. Search for Dormant Comets in Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Kim, Yoonyoung

    2013-06-01

    It is considered that comets have been injected into near-Earth space from outer region (e.g. Kuiper-belt region), providing rich volatile and organic compounds to the earth. Some comets are still active while most of them are dormant with no detectable tails and comae. Here we propose to make a multi-band photometric observation of near-Earth objects (NEOs) with comet-like orbits. We select our targets out of infrared asteroidal catalogs based on AKARI and WISE observations. With a combination of taxonomic types by Subaru observation and albedos by AKARI or WISE, we aim to dig out dormant comet candidates among NEOs. Our results will provide valuable information to figure out the dynamical evolution and fate of comets. We would like to emphasize that this is the first taxonomic survey of dormant comets to utilize the infrared data archive with AKARI and WISE.

  12. Small D-type asteroids in the NEO population: new targets for space missions

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.

    2018-06-01

    In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.

  13. The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark

    2015-08-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while

  14. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  15. Update on Spacewatch Observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa; McMillan, Robert S.; Bressi, Terry; Larsen, Jeff; Mastaler, Ron; Read, Mike; Scotti, Jim; Tubbiolo, Andrew

    2017-10-01

    Spacewatch performs targeted astrometric follow-up of near-Earth objects, primarily asteroids (NEAs), to improve knowledge of their orbits. We have a noteworthy history of asteroid and comet observations beginning in 1984 as the first survey to use CCDs to scan the sky for asteroids and comets. Currently, we measure simultaneous astrometry and photometry of observations during an average of 24 nights per lunation (dark and gray time) as the exclusive users of a 1.8-m telescope and a 0.9-m telescope on Kitt Peak. In addition, we use bright time on the 2.3-m Bok Telescope and the 4-m Mayall Telescope on Kitt Peak to chase fainter targets. Continued astrometric follow-up helps to prevent potentially hazardous objects and scientifically interesting NEAs from becoming lost.We prioritize virtual impactors, MPC confirmation page objects, potentially hazardous asteroids (PHAs) with close approaches within 0.03 AU in the next 30 years, upcoming radar targets with astrometry requests, Yarkovsky effect candidates, NEAs with existing characterization data (WISE, Spitzer, SMASS, MANOS), possible spacecraft destinations (NHATS), and requests from the community.In mid October 2015, we switched from survey mode to targeted astrometry on the 0.9-m telescope. From 2015 October 15 through 2017 June 29 (1.7yr), Spacewatch (observatory codes 291, 691, and ^695) had 20951 MPC-accepted NEO lines of astrometry corresponding to measurements of 2647 different NEOs. This includes 4801 PHA lines of astrometry corresponding to 426 different PHAs, of which 223 lines were at apparent magnitudes V>=22.5. We observed 43% of all NEAs and 52% of all unnumbered NEAs that were observed by any observatory during that period. We observed 50% of all PHAs and 64% of all unnumbered PHAs observed during that period. These statistics do not include submitted measurements of confirmation page objects that were not confirmed as NEAs.Support of Spacewatch is from NASA/NEOO grants, the Lunar and Planetary

  16. Optimization of deflection of a big NEO through impact with a small one.

    PubMed

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.

  17. Optimization of Deflection of a Big NEO through Impact with a Small One

    PubMed Central

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627

  18. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A Case Study of NEO 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.

    2015-01-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  19. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  20. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  1. Survey and Risk Assessment of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Zhao, H. B.

    2010-07-01

    In 1994, 21 fragments of comet Shoemaker-Levy 9 impacted Jupiter with a velocity of about 60 km/s, which is the first grand collision between celestial bodies observed by human beings. The impact makes us informed definitely that the earth is faced with the small but serious threat of Near Earth Objects (NEOs). Chinese scientists of Purple Mountain Observatory proposed a plan of Chinese Near Earth Object Survey (CNEOS) in the conference on NEOs held in the building of the World Headquarters of United Nations, New York in 1995. This project started in 1998. During the past 7 years, CNEOS proceeded in selecting observational site, manufacturing telescope and CCD detector, carrying out observation, reducing mass data, and assessing impact risk from NEOs. Will those so-called potential hazardous asteroids be the terminator of mankind? In 2007, NASA proposed the Spaceguard goal to detect, track, catalogue and characterize 90% of the potentially hazardous objects with diameters greater than 140 m. This dissertation reviews the current situation of research on asteroids and NEOs, which will greatly enhance our understanding of the planetary sciences. The project of CNEOS, including selecting observational site, manufacturing telescope and CCD detector, had been put in practice since 1998. The telescope of CNEOS is a 1.04/1.20/1.80 m Schmidt telescope, equipped with a 4096 by 4096 CCD detector which has drift-scanning function. In this dissertation, the advantage and disadvantage of drift-scanning and corresponding observational method are discussed. This dissertation discusses residential district of asteroids and distribution of visual magnitudes of asteroids. As a result, we draw three principles of observational plan. This dissertation also develops algorithms of pretreatment of astronomical image, extracting objects, and cross-identification, then discusses the methods of identifying and classifying of move objects, establishes software to realize the reduction of the

  2. The LCOGT NEO Follow-up Network

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.

    2016-10-01

    The LCOGT NEO Follow-up Network is using the telescopes of the Las Cumbres Observatory Global Telescope Network (LCOGT) and a web-based target selection, scheduling and data reduction system to confirm NEO candidates and characterize radar-targeted known NEOs. Starting in July 2014, the LCOGT NEO Follow-up Network has observed over 3,500 targets and reported more than 16,000 astrometric and photometric measurements to the Minor Planet Center (MPC).The LCOGT NEO Follow-up Network's main aims are to perform confirming follow-up of the large number of NEO candidates and to perform characterization measurements of radar targets to obtain light curves and rotation rates. The NEO candidates come from the NEO surveys such as Catalina, PanSTARRS, ATLAS, NEOWISE and others. In particular, we are targeting objects in the Southern Hemisphere, where the LCOGT NEO Follow-up Network is the largest resource for NEO observations.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to a site at Ali Observatory, Tibet is planned for 2017-2018.We have developed web-based software called NEOexchange which automatically downloads and aggregates NEO candidates from the Minor Planet Center's NEO Confirmation Page, the Arecibo and Goldstone radar target lists and the NASA ARM list. NEOexchange allows the planning and scheduling of observations on the LCOGT Telescope Network and the tracking of the resulting blocks and generated data. We have recently extended the NEOexchange software to include automated data reduction to re-compute the astrometric solution, determine the photometric zeropoint and find moving objects and present these results to the user via

  3. Catalog based two-color, relative photometry of NEOs at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Barker, E. S.; Györgyey Ries, J.; Shelus, P. J.; Ricklefs, R. L.

    2001-11-01

    The McDonald Observatory astrometry group has been involved in Solar System positional observations since the early 1970's. Since 1995, it has evolved to a CCD-based, almost totally automated, astrometry package. We are focusing our observational program on Near Earth Objects (NEOs) as part of NASA's mission to discover and catalogue 90 percent of NEOs with diameters larger than 1 km by 2008. We carry out confirmation observations of newly discovered objects and contribute to orbit improvements of under-observed objects. Understanding the overall hazard that these objects pose to Earth requires their dynamical and physical characterization. We recently adopted the USNO-A2.0 catalogue to improve our astrometric results. The catalog, however, also provides stellar magnitudes in the standard Johnson R and B photometric bands. After completing the night’s observing program, we now regularly provide the IAU with R magnitudes in addition to astrometric positions. Our limiting magnitude in R is near 22 in a 15 minute exposure over a 46 arcmin field on the 0.8m prime focus camera. Typically, we are scheduled for 4 nights each lunation, but our semi-automated, IRAF/ICE based program can be used by other 0.8m users. We are testing procedures that will include B and V exposures as part of our standard confirmation triplet. We have confirmed that switching filters between exposures on standard fields does not compromise the astrometric accurary. Thus, we should be able to provide two color, sequential, relative photometry of any newly discovered asteroid, as part of the confirmation process. The time interval between exposures is less than 20 minutes, short compared to most asteroid rotation times. Consequently, a meaningful color index can be obtained in parallel with the astrometric positions. Although B-R is not the usual color index used in asteroid classification studies, we are testing whether we can use it as a quick diagnostic tool to roughly classify newly

  4. Physical characterization of the near-Earth object population

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Mazzotta Epifani, E.; Perna, D.; Perozzi, E.; Micheli, M.

    2017-08-01

    The Near-Earth Object (NEO) population, being the remnants of the building blocks that originally formed our solar system, allows us to understand the initial conditions that were present in the protosolar nebula. Its investigation can provide crucial information on the origin and early evolution of the solar system, and shed light on the delivery of water and organic-rich material to the early Earth. Furthermore, the possible impact of NEOs poses a serious hazard to our planet. There is an urgent need to undertake a comprehensive physical characterization of the NEO population, particularly for the ones with the higher likelihood of catastrophic impact with the Earth. One of the main aims of the NEOShield-2 project (2015-2017), financed by the European Commission in the framework of the HORIZON 2020 program, is to undertake an extensive observational campaign and provide a physical and compositional characterization for a large number of NEOs in the < 300 m size range, retrieving in particular their mitigation-relevant properties (size, shape, albedo, diameter, composition, internal structure, ...) in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometric measurements for a sample of 158 uncharacterized NEOs. We also made use of visible and near-infrared spectroscopy to assess NEO composition and perform a mineralogical analysis. We found that carbonaceous C-complex asteroids deserve a special attention, since their physical structure ( e.g., primitive nature, porosity) and their orbital parameters (mainly the inclination) make at the moment challenging the design of a successful mitigation strategy. Indeed, the most advanced mitigation technique (the kinetic impactor) is less effective on these bodies, and the high inclination of some possible impactors require a launch vehicle capability beyond the one currently available.

  5. The Mission Accessible Near-Earth Object Survey (MANOS): Project Status

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Thirouin, Audrey; Mommert, Michael; Thomas, Cristina A.; Skiff, Brian; Polishook, David; Burt, Brian; Trilling, David E.; DeMeo, Francesca E.; Binzel, Richard P.; Christensen, Eric J.; Willman, Mark; Hinkle, Mary

    2017-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of sub-km, low delta-v, newly discovered near-Earth objects (NEOs). MANOS aims to collect astrometry, lightcurve photometry, and reflectance spectra for a representative sample of these important target of opportunity objects in a rarely observed size range. We employ a diverse set of large aperture (2-8 meter) telescopes and observing modes (queue, remote, classical) to overcome the challenge of observing faint NEOs moving at high non-sidereal rates with short observing windows. We target approximately 10% of newly discovered NEOs every month for follow-up characterization.The first generation MANOS ran from late 2013 to early 2017, using telescopes at Lowell Observatory, NOAO, and the University of Hawaii. This resulted in the collection of data for over 500 targets. These data are continuing to provide new insights into the NEO population as a whole as well as for individual objects of interest. Science highlights include identification of the four fastest rotating minor planets found to date with rotation periods under 20 seconds, constraints on the distribution of NEO morphologies as quantified by de-biased estimates for lightcurve-derived axis ratios, and the compositional distribution of NEOs at sizes under 100 meters.The second generation MANOS will begin in late 2017 and will employ much of the same strategies while continuing to build a comprehensive dataset of NEO physical properties. This will grow the MANOS sample to ~1000 objects and provide the means to better address key questions related to understanding the physical properties of NEOs, their viability as exploration mission targets, and their relationship to Main Belt asteroids and meteorites. This continuation of MANOS will include an increased focus on spectroscopic observations at near-IR wavelengths using a new instrument called NIHTS (the Near-Infrared High-Throughput Spectrograph) at Lowell

  6. Follow-up and Characterization of NEOs with the LCOGT Network

    NASA Astrophysics Data System (ADS)

    Lister, Tim

    2013-10-01

    Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network of over 35 telescopes at 6 locations in the northern and southern hemispheres. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects. LCOGT has completed the first phase of the deployment with the installation and commissioning of nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network is now operating and observations are being executed remotely and robotically. I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and PanSTARRS (PS1). An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. Recent results have included the first period determination for the Apollo 2002 NV16 and our first NEO spectrum from the FLOYDS spectrographs on the LCOGT 2m telescopes obtained for 2012 DA14 during the February 2013 closepass.

  7. Earth Observation

    NASA Image and Video Library

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  8. Earth Observation

    NASA Image and Video Library

    2011-08-02

    ISS028-E-020276 (2 Aug. 2011) --- This photograph of polar mesospheric clouds was acquired at an altitude of just over 202 nautical miles (about 322 kilometers) in the evening hours (03:19:54 Greenwich Mean Time) on Aug. 2, 2011, as the International Space Station was passing over the English Channel. The nadir coordinates of the station were 49.1 degrees north latitude and 5.5 degrees west longitude. Polar mesospheric clouds (also known as noctilucent, or ?night-shining? clouds) are transient, upper atmospheric phenomena that are usually observed in the summer months at high latitudes (greater than 50 degrees) of both the Northern and Southern Hemispheres. They appear bright and cloudlike while in deep twilight. They are illuminated by sunlight when the lower layers of the atmosphere are in the darkness of Earth?s shadow. The horizon of Earth appears at the bottom of the image, with some layers of the lower atmosphere already illuminated by the rising sun. The higher, bluish-colored clouds look much like wispy cirrus clouds, which can be found as high as 60,000 feet (18 kilometers) in the atmosphere. However noctilucent clouds, as seen here, are observed in the mesosphere at altitudes of 250,000 to 280,000 feet (about 76 to 85 kilometers). Astronaut observations of polar mesospheric clouds over northern Europe in the summer are not uncommon.

  9. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!

  10. The orbital distribution of Near-Earth Objects inside Earth's orbit

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Ngo, Henry; Gladman, Brett

    2012-01-01

    Canada's Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399-433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% of the steady-state NEO population. Vatiras are a previously undiscussed NEO population clearly defined in our integrations, whose orbits lie completely interior to that of Venus. Our integrations also uncovered the unexpected production of retrograde orbits from main-belt asteroid sources; this retrograde NEA population makes up ≃0.1% of the steady-state NEO population. The relative NEO impact rate onto Mercury, Venus, and Earth, as well as the normalized distribution of impact speeds, was calculated from the NEOSSat-1.0 orbital model under the assumption of a steady-state. The new model predicts a slightly higher Mercury impact flux.

  11. Synergistic Activities of Near-Earth Object Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to near-Earth asteroids by 2025. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. Information obtained from a human investigation of a NEO, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEO missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEOs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEOs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.

  12. Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Mink, Ronald G.; Adamo, Daniel R.; Alberding, Cassandra M.

    2011-01-01

    Near-Earth Asteroids (NEAs) have been identified by the Administration as potential destinations for human explorers during the mid-2020s. Planning such ambitious missions requires selecting potentially accessible targets from the growing known population of 8,008 NEAs. NASA is therefore conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS), in which the trajectory opportunities to all known NEAs are being systematically evaluated with respect to a set of defined constraints. While the NHATS algorithms have identified hundreds of NEAs which satisfy purposely inclusive trajectory constraints, only a handful of them offer truly attractive mission opportunities in the time frame of greatest interest. In this paper we will describe the structure of the NHATS algorithms and the constraints utilized in the study, present current study results, and discuss various mission design considerations for future human space flight missions to NEAs.

  13. The Mission Accessible Near-Earth Objects Survey (MANOS): First Photometric Results

    NASA Astrophysics Data System (ADS)

    Thirouin, A.; Moskovitz, N.; Binzel, R. P.; Christensen, E.; DeMeo, F. E.; Person, M. J.; Polishook, D.; Thomas, C. A.; Trilling, D.; Willman, M.; Hinkle, M.; Burt, B.; Avner, D.; Aceituno, F. J.

    2016-12-01

    The Mission Accessible Near-Earth Objects Survey aims to physically characterize sub-km near-Earth objects (NEOs). We report the first photometric results from the survey that began in 2013 August. Photometric observations were performed using 1-4 m class telescopes around the world. We present rotational periods and light curve amplitudes for 86 sub-km NEOs, though in some cases only lower limits are provided. Our main goal is to obtain light curves for small NEOs (typically, sub-km objects) and estimate their rotational periods, light curve amplitudes, and shapes. These properties are used for a statistical study to constrain overall properties of the NEO population. A weak correlation seems to indicate that smaller objects are more spherical than larger ones. We also report seven NEOs that are fully characterized (light curve and visible spectra) as the most suitable candidates for a future human or robotic mission. Viable mission targets are objects fully characterized, with Δv NHATS ≤ 12 km s-1, and a rotational period P > 1 hr. Assuming a similar rate of object characterization as reported in this paper, approximately 1230 NEOs need to be characterized in order to find 100 viable mission targets.

  14. Earth Observation

    NASA Image and Video Library

    2014-06-27

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.

  15. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. On crewmember's Flickr page - Look straight down into an aurora.

  16. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of a solar array is also visible.

  17. Post-Chelyabinsk Risk Assessment for Near Earth Objects (NEOs)

    NASA Astrophysics Data System (ADS)

    Boslough, M.; Harris, A. W.

    2014-12-01

    The widely-accepted NEO risk assessments published in the 1990s concluded that the largest asteroids (> 1 km) dominated the hazard. Even though large NEOs represent only a tiny fraction of the population because of a power-law size distribution, the potential for global catastrophe means that the contribution from these low-probability, high-consequence events is large. This conclusion led to the Spaceguard survey, which has now catalogued about 90% of these objects, none of which is on a collision course. The survey has reduced the assessed risk from this size range by more than an order of magnitude because completion is highest for the largest and most dangerous. The relative risk from objects tens of meters in diameter is therefore increasing.The absolute assessed risk from airbursts caused by objects of this size is also higher for two reasons. First, they may be more frequent than previously thought because of an underestimated population. Second, they are significantly more damaging than assumed in the original assessment because (in most cases) they more efficiently couple energy to the surface than nuclear explosions. Last year's half-megaton airburst over Chelyabinsk, Russia, appears to challenge the notion that such events are extremely rare—especially when also considering the 1908 Tunguska event along with decades of infrasound bolide data showing higher-than-expected numbers of large airbursts.We will present a new analysis of the risk based on updated estimates for the population of undiscovered NEOs, taking into account the enhanced damage potential of collisional airbursts. Merging the survey population estimates with the bolide frequency estimates suggests a population of tens-of-meters sized bodies that may be a factor of three or so greater than estimated from surveys alone. Uncertainty in the population of airburst-class NEOs remains quite large, and can only be unambiguously reduced by expanded surveys focused on objects in the tens

  18. Earth Observation

    NASA Image and Video Library

    2013-07-26

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Never tire of finding shapes in the clouds! These look very botanical to me. Simply perfect.

  19. The Mission Accessible Near-Earth Object Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow

  20. The Mission Accessible Near-Earth Object Survey (MANOS): Project Overview

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Polishook, David; Thomas, Cristina; Willman, Mark; DeMeo, Francesca; Mommert, Michael; Endicott, Thomas; Trilling, David; Binzel, Richard; Hinkle, Mary; Siu, Hosea; Neugent, Kathryn; Christensen, Eric; Person, Michael; Burt, Brian; Grundy, Will; Roe, Henry; Abell, Paul; Busch, Michael

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, for which little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Accessing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy is specifically designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits. MANOS will provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present an overview of the survey, progress to date, and early science highlights including: (1) an estimate of the taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied objects, (3) models for the dynamical evolution of the overall NEO population over the past 0.5 Myr, and (4) progress in developing a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data while providing a portal to facilitate coordination efforts within the small body observer community.MANOS is supported through telescope allocations from NOAO and Lowell Observatory. We acknowledge funding support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship to N. Moskovitz and NASA NEOO grant

  1. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  2. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  3. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  4. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  5. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: From southernmost point of orbit over the South Pacific- all clouds seemed to be leading to the South Pole.

  6. Earth Observation

    NASA Image and Video Library

    2013-07-21

    Earth observation taken during night pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message this is labeled as : Tehran, Iran. Lights along the coast of the Caspian Sea visible through clouds. July 21.

  7. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of the U.S. Lab and PMM are also visible.

  8. Earth Observation

    NASA Image and Video Library

    2014-05-31

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: CEO - Arena de Sao Paolo. View used for Twitter message: Cloudy skies over São Paulo Brazil

  9. Debiased estimates for NEO orbits, absolute magnitudes, and source regions

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce T.; Bottke, William; Beshore, Edward C.; Vokrouhlicky, David; Nesvorny, David; Michel, Patrick

    2017-10-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies on individual NEOs as well as on more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis (a), eccentricity (e), inclination (i), and absolute magnitude (H). We calibrate the model using NEO detections by the 703 and G96 stations of the Catalina Sky Survey (CSS) during 2005-2012 corresponding to objects with 17observed distribution of NEOs and the predicted numbers, particularly for the larger NEOs, are in agreement with other contemporary estimates. Our model also provides updated estimates for the likelihood of the various source regions and escape routes as a function of NEO (a,e,i,H) parameters. We present the model and its predictions, and discuss them in the context of other contemporary estimates.

  10. Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Elsperman, M. S.; Cook, T.; Smith, D.

    2010-12-01

    We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). This two spacecraft mission mimics the likely architecture approach that human explorers will use: a “mother ship”(MS) designed to get from Earth to the NEO and a “Small Body Lander”(SBL) that performs in situ investigation on or close to the NEO’s surface. The MS carries the SBL to the target NEO. Once at the target NEO, the MS conducts an initial reconnaissance in order to produce a high resolution map of the surface. This map is used to identify coordinates of interest which are sent to the SBL. The SBL un-docks from the MS to rendezvous with the NEO and collect data. Landings are possible, though the challenges of anchoring to the NEO surface are significant. The SBL design is flexible and adaptable, enabling science data collection on or near the surface. After surface investigations are completed on the first NEO, the SBL will return and autonomously rendezvous and dock with the MS. The MS then goes to the next NEO target. During transit to the next NEO, the SBL could be refueled by the MS, a TRL8 capability demonstrated on the DARPA/NASA Orbital Express mission in 2007, or alternately sized to operate without requiring refueling depending on the mission profile. The mission goals are to identify surface hazards; quantify engineering boundary conditions for future human visits, and identify resources for future exploitation. The mission goals will be accomplished through the execution of key mission objectives: (1) high-resolution surface topography; (2) surface composition and mineralogy; (3) radiation environment near NEO; and (4) mechanical properties of the surface. Essential SBL instruments include: a) LIDAR (Obj. 1); b) 3D, high- resolution hyperspectral imaging cameras (Obj. 2); c) radiation sensor package (Obj. 3); and d) strain gauges (Obj. 4). Additional or alternative instruments could include: e) x-ray fluorescence

  11. Assessing the Universal Structure of Personality in Early Adolescence: The NEO-PI-R and NEO-PI-3 in 24 Cultures

    ERIC Educational Resources Information Center

    De Fruyt, Filip; De Bolle, Marleen; McCrae, Robert R.; Terracciano, Antonio; Costa, Paul T., Jr.

    2009-01-01

    The structure and psychometric characteristics of the NEO Personality Inventory-3 (NEO-PI-3), a more readable version of the Revised NEO Personality Inventory (NEO-PI-R), are examined and compared with NEO-PI-R characteristics using data from college student observer ratings of 5,109 adolescents aged 12 to 17 years from 24 cultures. Replacement…

  12. The Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; NEOCam Science Team

    2017-10-01

    The Near-Earth Object Camera (NEOCam) is a NASA mission in formulation designed to find, track, and provide basic physical characterization of asteroids and comets that make close approaches to Earth. Its goal is to reduce the risk of impacts from undetected near-Earth objects (NEOs) capable of causing global and regional disasters. NEOCam consists of a 50 cm telescope operating at two channels dominated by NEO thermal emission, 4.2-5.0um and 6-10um, in order to better constrain the objects' temperatures and diameters. Orbiting the Sun-Earth L1 Lagrange point, the mission would find hundreds of thousands of NEOs and would make significant progress toward the Congressional objective of discovering more than 90% of NEOs larger than 140 m during its five-year lifetime. The mission uses novel 2048x2048 HgCdTe detectors that extend the wavelength cutoff beyond 10um at an operating temperature of 40K (Dorn et al. 2016). Both the optical system and the detectors are cooled passively using radiators and thermal shields to enable long mission life and to avoid the complexity of cryocoolers or cryogens. NEOCam is currently in an extended Phase A.

  13. Lost Near-Earth Object Candidates

    NASA Astrophysics Data System (ADS)

    Veres, Peter; Farnocchia, Davide; Williams, Gareth; Keys, Sonia; Boardman, Ian; Holman, Matthew J.; Payne, Matthew J.

    2017-10-01

    The number of discovered Near-Earth Objects (NEOs) increases rapidly, currently exceeding 16,000 NEOs. 2016 was the most productive year ever with 1,888 NEO discoveries. The NEO discovery process typically begins with three to five detections of a previously unidentified object that are reported to the Minor Planet Center (MPC). According to the plane-of-sky motion, the MPC ranks all of the new candidate discoveries for the likelihood of being NEOs using the so-called digest score. If the digest score is greater than 65 the observations appear on the publicly accessible NEO Confirmation Page (NEOCP). Objects on the NEOCP are followed up in subsequent hours and days. When enough observations are collected to ensure that the object is real and that the orbit is determined, the NEO is officially announced with its new designation by a Minor Planet Electronic Circular. However, 14% of NEO candidates never get confirmed and are therefore lost due to the lack of follow-up observations. We analyzed the lost NEO candidates that appeared on NEOCP in 2013-2016 and investigated the reasons why they were not confirmed. In particular, we studied the properties of the lost NEO candidates with a digest score of 100 that were reported by the two most prolific discovery sites - Pan-STARRS1 (F51) and Mt. Lemmon Survey (G96). We derived their plane-of-sky positions and rates, brightness, and ephemeris uncertainties, and assessed correlations with the phase of the moon and seasonal effects apparent in the given observatory’s data. We concluded that lost NEO candidates typically have a larger rate of motion and larger uncertainties than those of confirmed objects. However, many of the lost candidates could be recovered. In fact, the 1-sigma plane-of-sky uncertainty was still within ±0.5 deg in 79% (F51) and 69% (G96) of the cases 24 hours after discovery and in 31% (F51) and 30% (G96) of the cases 48 hours after discovery. If all of the NEO candidates with a digest score of 100 had

  14. Earth Observations

    NASA Image and Video Library

    2014-11-18

    ISS042E006751 (11/08/2014) --- Earth observation taken from the International Space Station of the coastline of the United Arab Emirates. The large wheel along the coast center left is "Jumeirah" Palm Island, with a conference center, hotels, recreation areas and a large marine zoo.

  15. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  16. The population of natural Earth satellites

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert

    2012-03-01

    We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

  17. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  18. A concept for providing warning of earth impacts by small asteroids

    NASA Astrophysics Data System (ADS)

    Dunham, D. W.; Reitsema, H. J.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C.; Farquhar, R.; Ledkov, A. A.; Eismont, N. A.; Chumachenko, E.

    2013-07-01

    The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO's). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the "Chelyabinsk" asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2-4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO's, including those in orbits mostly inside the Earth's orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from

  19. Earth Observation

    NASA Image and Video Library

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  20. Exploration-driven NEO Detection Requirements

    NASA Astrophysics Data System (ADS)

    Head, J. N.; Sykes, M. V.

    2005-12-01

    The Vision for Space Exploration calls for use of in situ resources to support human solar system exploration goals. Focus has been on potential lunar polar ice, Martian subsurface water and resource extraction from Phobos. Near-earth objects (NEOs) offer easily accessible targets that may represent a critical component to achieving sustainable human operations, in particular small, newly discovered asteroids within a specified dynamical range having requisite composition and frequency. A minimum size requirement is estimated assuming CONOPs has an NEO harvester on station at L1. When the NEO launch window opens, the vehicle departs, rendezvousing within 30 days. Mining and processing operations ( 60 days) produces dirty water for the return trip ( 30 days) to L1 for final refinement into propellants. A market for propellant at L1 is estimated to be 700 mT /year: 250 mT for Mars missions, 100 mT for GTO services (Blair et al. 2002), 50 mT for L1 to lunar surface services, and 300 mT for bringing NEO-derived propellants to L1. Assuming an appropriate NEO has 5% recoverable water, exploited with 50% efficiency, 23000 mT/year must be processed. At 1500 kg/m3, this corresponds to one object per year with a radius of 15 meters, or two 5 m radius objects per month, of which it is estimated there are 10000 having delta-v < 4.2 km/s and 200/year of these available for short roundtrip missions to meet resource requirements (Jones et al. 2002). The importance of these potential resource objects should drive a requirement that next generation NEO detection systems (e.g., Pan-STARRS/LSST) be capable by 2010 of detecting dark NEOs fainter than V=24, allowing for identification 3 months before closest approach. Blair et al. 2002. Final Report to NASA Exploration Team, December 20, 2002. Jones et al. 2002. ASP Conf. Series Vol. 202 (M. Sykes, Ed.), pp. 141-154.

  1. The Mission Accessible Near-Earth Objects Survey (MANOS): photometric results

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, Nicholas; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca; Person, Michael J.; Polishook, David; Thomas, Cristina; Trilling, David E.; Willman, Mark; Hinkle, Mary L.; Burt, Brian; Avner, Dan

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near-Earth Objects (NEOs) to provide physical data for several hundred mission accessible NEOs across visible and near-infrared wavelengths. Using a variety of 1-m to 8-m class telescopes, we observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties and taxonomic class.Rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present results of the MANOS photometric survey for more than 200 NEOs. We report lightcurves from our first three years of observing and show objects with rotational periods from a couple of hours down to a few seconds. MANOS found the three fastest rotators known to date with rotational periods below 20s. A physical interpretation of these ultra-rapid rotators is that they are bound through a combination of cohesive and/or tensile strength rather than gravity. Therefore, these objects are important to understand the internal structure of NEOs. Rotational properties are used for statistical study to constrain overall properties of the NEO population. We also study rotational properties according to size, and dynamical class. Finally, we report a sample of NEOs that are fully characterized (lightcurve and visible spectra) as the most suitable candidates for a future robotic or human mission. Viable mission targets are objects with a rotational period >1h, and a delta-v lower than 12 km/s. Assuming the MANOS rate of object characterization, and the current NEO population estimates by Tricarico (2016), and by Harris and D'Abramo (2015), 10,000 to 1,000,000 NEOs with diameters between 10m and 1km are expected to be mission accessible. We acknowledge funding support from NASA NEOO grant number NNX14AN82G, and NOAO survey program.

  2. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  3. 2P/Encke, the Taurid complex NEOs and the Maribo and Sutter's Mill meteorites

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Michelsen, R.; Haack, H.; Böhnhardt, H.; Fitzsimmons, A.; Williams, I. P.

    2015-12-01

    Aims: 2P/Encke is a short period comet that was discovered in 1786 and has been extensively observed and studied for more than 200 years. The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even though the comet's activity is not strong enough to explain the number of observed meteors. Various small near-Earth objects (NEOs) have been discovered with orbits that can be linked to 2P/Encke and the Taurid meteoroid stream. Maribo and Sutter's Mill are CM type carbonaceous chondrite that fell in Denmark on January 17, 2009 and April 22, 2012, respectively. Their pre-atmospheric orbits place them in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P/Encke could be the parent body of CM chondrites. Methods: To investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs, and CM chondrites exists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P/Encke and 10 NEOs on August 2, 2011 with the FORS instrument at the 8.2 m Very Large Telescope on Cerro Paranal (Chile). Results: Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P/Encke and the NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydrated minerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at λ< 800 nm. Apart for 2003 QC10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible with that of 2P/Encke. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at λ> 800 nm, which is not seen in 2P/Encke, which suggests that they are not related. Conclusions: Despite similar orbits, we find no spectroscopic evidence for a link between 2P/Encke, the Taurid

  4. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.

  5. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  6. LINNAEUS: BOOSTING NEAR EARTH ASTEROID CHARACTERIZATION RATES

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Beeson, C.; Galache, J.; DeMeo, F.; Evans, I.; Evans, J.; Konidaris, N.; Najita, J.; Allen, L.; Christensen, E.; Spahr, T.

    2013-10-01

    Near Earth objects (NEOs) are being discovered at a rate of about 1000 per year, and this rate is set to double by 2015. However, the physical characterization of NEOs is only ~100 per year for each type of follow-up observation. We have proposed the LINNAEUS program to NASA to raise the characterization rate of NEOs to the rate of their discovery. This rate matching is necessary as any given NEO is only available for a relatively short time (days to weeks), and they are usually fainter on subsequent apparitions. Hence follow-up observations must be initiated rapidly, without time to cherry-pick the optimum objects. LINNAEUS concentrates on NEO composition. Optical spectra, preferably extending into the near-infrared, provide compositions that can distinguish major compositional classes of NEOs with reasonable confidence (Bus and Binzel 2002, DeMeo et al. 2009). Armed with a taxonomic type the albedo, pV, of an NEO is better constrained, leading to more accurate sizes and masses. Time-resolved spectroscopy can give indications of period, axial ratio and surface homogeneity. A reasonable program of spectroscopy could keep pace with the NEO discovery rate. A ground-based telescope can observe faint NEOs about 210 nights a year, due to time lost due to weather, bright time, and equipment downtime (e.g. Gemini), for a total of ~2000 hours/year. At 1 hour per NEO spectrum, a well-run, dedicated, telescope could obtain almost 2000 spectra per year, about the rate required. If near-IR spectra are required then a 4 m or larger telescope is necessary to reach 20. However, if the Bus-Binzel taxomonmy suffices then only optical spectra are needed and a 2 meter class telescope is sufficient. LINNAEUS would use 50% of the KPNO 2.1 m telescope with an IFU spectrometer, the SED-machine (Ben-Ami et al. 2013), to obtain time-resolved optical spectra of 1200-2000 NEOs/year, or 4200-7000 in 3.5 years observing in an NEOO program. Robust pipeline analysis will release taxonomic types

  7. Results from the LCOGT Near-Earth Object Follow-up Network

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Lister, Tim; Gomez, Edward; Christensen, Eric; Larson, Steve

    2015-11-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter and two 2-meter telescopes to five locations in the northern and southern hemispheres, with plans to extend to twelve 1-meter telescopes at 6 locations. The versitility and design of this network allows for rapid response to target of opportunity events as well as the long-term monitoring of slowly changing astronomical phenomena. The network's global coverage and the apertures of telescopes available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). This is complimented by the two 2-meter telescopes at Haleakala (Hawaii) and Siding Spring Observatory. The telescope network has been fully operational since May 2014, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016.The LCOGT near-Earth object group is using the network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS), PanSTARRS (PS1) and NEOWISE, with several hundred targets being followed per year. Follow-up astrometry and photometry of radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists are improving orbits, producing light curves and rotation periods, and better characterizing these NEOs. Recent results include the first period determinations for several of the Goldstone-targeted NEOs. In addition, we are in the process of building a NEO portal that will allow

  8. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  9. The Size Distribution of Near-Earth Objects Larger Than 10 m

    NASA Astrophysics Data System (ADS)

    Trilling, D. E.; Valdes, F.; Allen, L.; James, D.; Fuentes, C.; Herrera, D.; Axelrod, T.; Rajagopal, J.

    2017-10-01

    We analyzed data from the first year of a survey for Near-Earth Objects (NEOs) that we are carrying out with the Dark Energy Camera (DECam) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory. We implanted synthetic NEOs into the data stream to derive our nightly detection efficiency as a function of magnitude and rate of motion. Using these measured efficiencies and the solar system absolute magnitudes derived by the Minor Planet Center for the 1377 measurements of 235 unique NEOs detected, we directly derive, for the first time from a single observational data set, the NEO size distribution from 1 km down to 10 m. We find that there are {10}6.6 NEOs larger than 10 m. This result implies a factor of 10 fewer small NEOs than some previous results, though our derived size distribution is in good agreement with several other estimates.

  10. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  11. Astrometric Results of NEOs from the Characterization and Astrometric Follow-up Program at Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Nault, Kristie A.; Brucker, Melissa J.; Hammergren, Mark; Gyuk, Geza; Solontoi, Mike R.

    2015-11-01

    We present astrometric results of near-Earth objects (NEOs) targeted in fourth quarter 2014 and in 2015. This is part of Adler Planetarium’s NEO characterization and astrometric follow-up program, which uses the Astrophysical Research Consortium (ARC) 3.5-m telescope at Apache Point Observatory (APO). The program utilizes a 17% share of telescope time, amounting to a total of 500 hours per year. This time is divided up into two hour observing runs approximately every other night for astrometry and frequent half-night runs approximately several times a month for spectroscopy (see poster by M. Hammergren et. al.) and light curve studies (see poster by M. J. Brucker et. al.).Observations were made using Seaver Prototype Imaging Camera (SPIcam), a visible-wavelength, direct imaging CCD camera with 2048 x 2048 pixels and a field of view of 4.78’ x 4.78’. Observations were made using 2 x 2 binning.Special emphasis has been made to focus on the smallest NEOs, particularly around 140m in diameter. Targets were selected based on absolute magnitude (prioritizing for those with H > 25 mag to select small objects) and a 3σ uncertainty less than 400” to ensure that the target is in the FOV. Targets were drawn from the Minor Planet Center (MPC) NEA Observing Planning Aid, the JPL What’s Observable tool, and the Spaceguard priority list and faint NEO list.As of August 2015, we have detected 670 NEOs for astrometric follow-up, on point with our goal of providing astrometry on a thousand NEOs per year. Astrometric calculations were done using the interactive software tool Astrometrica, which is used for data reduction focusing on the minor bodies of the solar system. The program includes automatic reference star identification from new-generation star catalogs, access to the complete MPC database of orbital elements, and automatic moving object detection and identification.This work is based on observations done using the 3.5-m telescope at Apache Point Observatory

  12. The search for Near Earth Objects - why dark skies are critically important

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard

    2015-08-01

    Impact of Earth by asteroids is perhaps the only natural disaster that can be prevented. If an asteroid that will impact Earth can be identified sufficiently early, it is possible to modify its orbit to eliminate the impact. As a consequence, a major effort is presently underway to identify Near Earth Objects (NEOs) that may present a threat to Earth. The impact of a 20-meter diameter object near Chelyabinsk, Russia, provided a spectacular reminder of the threat that these objects present. Although no deaths were caused, injuries and a large amount of property damage were caused.The search for NEOs is mostly funded by NASA. The principal search telescopes are the Pan-STARRS telescopes, located on Haleakala, Maui, Hawaii, and the Catalina Sky Survey, located near Tucson, Arizona. Both of these locations are seriously threatened by light pollution. A new survey, ATLAS, will commence shortly, with one telescope located on Haleakala, Maui, and the other telescope located on Mauna Loa, Hawaii (which is less threatened).Artificial light (i.e., light pollution) at these observing sites raises the sky background, and makes faint objects harder or impossible to see.Searches for Near Earth Objects typically use very broad passbands in order to obtain the maximum amount of light. These passbands typically stretch from 400 to 820 nm. As such, they are very vulnerable to the changes in lighting that are occurring across the globe, with widespread introduction of blue-rich white lighting. It is critically important in all of these locations to limit the amount of blue light that is so readily scattered by the atmosphere.A network of followup telescopes, spread across the planet, play a crucial role in the discovery of NEOs. After a new NEO is identified by the survey telescopes such as Pan-STARRS and Catalina, additional observations must be secured to establish its orbit, and in order to determine whether it poses a threat to Earth. The majority of these followup telescopes are

  13. KLENOT Project - Near Earth Objects Follow-up Program

    NASA Astrophysics Data System (ADS)

    Tichy, Milos; Ticha, Jana; Kocer, Michal; Tichy, Milos

    2015-08-01

    Near Earth Object (NEO) research is important not only as a great challenge for science but also as an important challenge for planetary defense. Therefore NEO discoveries, astrometric follow-up, orbit computations as well as physical studies are of high interest both to science community and humankind.The KLENOT Project of the Klet Observatory, South Bohemia, Czech Republic pursued the confirmation, early follow-up, long-arc follow-up and recovery of NEOs since 2002. Tens of thousands astrometric measurements helped to make inventory of NEOs as well as to understand the NEO distribution. It ranked among the world most prolific professional NEO follow-up programmes during its first phase from 2002 to 2008.The fundamental improvement of the 1.06-m KLENOT Telescope was started in autumn 2008. The new computer controlled paralactic mount was built to substantially increase telescope-time efficiency, the number of observations, their accuracy and limiting magnitude. The testing observations of the KLENOT Telescope Next Generation were started in October 2011. The new more efficient CCD camera FLI ProLine 230 was installed in summer 2013.The original Klet Software Package has been continually upgraded over the past two decades of operation.Both the system and strategy for the NEO follow-up observation used in the framework of the KLENOT Project are described here, including methods for selecting useful and important targets for NEO follow-up astrometry.The modernized KLENOT System was put into full operation in September 2013. More than 8000 of minor planet and comet astrometric positions including NEA measurements were published from September 2013 to February 2015.The 1.06-m KLENOT telescope is still the largest telescope in continental Europe used exclusively for observations of asteroids and comets. Full observing time is dedicated to the KLENOT team. Considering our results and long-time experience obtained at the Klet Observatory, we have the large potential to

  14. Goals for Near-Earth-Object Exploration Examined

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    With Japan's Hayabusa space probe having returned a sample of the Itokawa asteroid this past June, and with NASA's Deep Impact spacecraft impactor having successfully struck comet Tempel 1 in 2006, among other recent missions, the study of near-Earth objects (NEOs) recently has taken some major steps forward. The recent discovery of two asteroids that passed within the Moon's distance of Earth on 8 September is a reminder of the need to further understand NEOs. During NASA's Exploration of Near-Earth Objects (NEO) Objectives Workshop, held in August in Washington, D. C., scientists examined rationales and goals for studying NEOs. Several recent documents have recognized NEO research as important as a scientific precursor for a potential mission to Mars, to learn more about the origins of the solar system, for planetary defense, and for resource exploitation. The October 2009 Review of Human Space Flight Plans Committee report (known as the Augustine report), for example, recommended a “flexible path ” for human exploration, with people visiting sites in the solar system, including NEOs. The White House's National Space Policy, released in June, indicates that by 2025, there should be “crewed missions beyond the moon, including sending humans to an asteroid.” In addition, NASA's proposed budget for fiscal year 2011 calls for the agency to send robotic precursor missions to nearby asteroids and elsewhere and to increase funding for identifying and cataloging NEOs.

  15. NEOShield-2 Project: Final Results on Compositional Characterization of small NEOs

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonieta; Perna, Davide; Fornasier, Sonia; Doressoundiram, Alain; Lantz, Cateline; Popescu, Marcel; Merlin, Frederic; Fulchignoni, Marcello

    2017-10-01

    NEOShield-2 project was selected in the framework of the European Commission H2020 program in answer to the call for “Access technologies and characterisation for Near Earth Objects (NEOs)”. NEOShield-2 project (2015-2017) is a follow-up of the first NEOShield (2012-2015) and includes 11 European Institutions and Industries. The main objectives of NEOShield-2 project are: i) technological development on techniques and instruments needed for GNC for possible asteroid missions and ii) characterization of NEOs of small sizes.Our team at LESIA is the leader of the entire observational program which involved complementary techniques to provide physical and compositional characterization of NEOs. Priority has been given to potential space-mission targets, optimized for mitigation or exploration missions. In this framework an agreement with the European Southern Observatory was signed to obtain Guaranteed Time Observations at the 3.6-meter NTT with an allocation of 30 nights to characterize by spectroscopy the composition of the smaller asteroids. The objects with an absolute magnitude larger than 20 were selected, with a priority for the very small newly discovered objects.We obtained more than 170 new spectra of NEOs. The observations were performed with EFOSC2 instrument. We covered the wavelength interval 0.4-0.92 microns, with a resolution of R=~200. The observed asteroids include 29 asteroids with diameters smaller than 100 meters and 71 with diameters between 100 and 300 m.The taxonomic type has been assigned for 137 individual objects. Our results on NEO mineralogical compositions provide a body of reference data directly applicable to the design and development of mitigation-relevant space missions. Within our survey, we found eight D-types with ΔV < 7 km/s, four of which with ΔV < 6 km/s. Among these, 2009 DL46 and (52381) 1993 HA, with a ΔV below 5.5 km/s and a diameter large enough to allow spacecraft operations in their proximity, represent the best

  16. Lunar impact flashes - tracing the NEO size distribution

    NASA Astrophysics Data System (ADS)

    Avdellidou, Chrysa; Koschny, Detlef; NELIOTA Team

    2017-10-01

    Almost 20 years ago, we started to monitor the lunar surface with small telescopes to detect light flashes resulting from the hypervelocity collisions of meteoroids. The initial purpose was to understand the flux of impactors on Earth. The estimation of the flux of near Earth Objects (NEOs) is important not only for the protection of the human civilisation (meter-sized, see Chelyabinsk event in 2013), but also for the protection of the space assets (cm-sized objects). Apart from the NEO flux, the lunar surface helps the study of the impact events per se. The European Space Agency (ESA) is directing and funding lunar observations at 1.2 m Kryoneri telescope in Peloponnese, Greece. This telescope is equipped with a dichroic beam-splitter that directs the light onto two sCMOS cameras, that observe in visible and infrared wavelengths, using Rc and Ic Cousin filters respectively. Currently it is the largest telescope in the world that performs dedicated lunar impact flashes observations. We present the first flash observations in two bands, allowing us to measure flash temperatures for the first time. We find that the temperatures have a range that agrees with the theoretical approaches. Since the temperature can now be calculated, we have a more accurate estimation of the impactor’s mass and the size of the radiated ejecta plume.Having the Moon as a large-scale laboratory, new horizons are set towards the understanding of the nature of impacts, the impactor's material type and the energy partitioning, that is a constant puzzle in impact studies. This can now happen as more impact parameters can be determined and combined, such as the impactor’s mass and speed, flash luminosity, radiating volume, crater size when applicable etc. Future statistics can determine the different lunar regolith properties at different impact sites, especially during a meteoroid stream where the impactors share a common origin and possibly composition.

  17. Threat Assessment of Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ryan, W.

    2010-09-01

    Researchers at the Magdalena Ridge Observatory’s (MRO) 2.4-meter telescope facility are in their third year of a program to derive physical characterization information on some of the smallest (less than 200 meters in diameter) objects in the Near-Earth Object (NEO) population. Tiny comets and asteroids are being discovered by survey programs on a routine basis, so targets available for study have been abundant. Our primary objective is to derive rotation rates for these objects, and to place the results in context with previous data to enhance our understanding of asteroid impact physics and better address the threat from NEOs having Earth-crossing orbits. Rotation rate can be used to infer internal structure, which is a physical property important to assessing the energy needed for object disruption or other forms of hazard mitigation. Since the existing database of rotational data derived from lightcurves of objects in this small size regime is sparse, collection of additional observational data is beneficial. Acquiring more knowledge about the physical nature of NEOs not only contributes to general scientific pursuits, but is important to planetary defense.

  18. Near-Earth Objects. Chapter 27

    NASA Technical Reports Server (NTRS)

    Harris, Alan W.; Drube, Line; McFadden, Lucy A.; Binzel, Richard P.

    2014-01-01

    A near-Earth object (NEO) is an asteroid or comet orbiting the Sun with a perihelion distance of less than 1.3 Astronomical Units (AU) (1 AU, an astronomical unit, is the mean distance between the Earth and the Sun, around 150 million kilometers). If the orbit of an NEO can bring it to within 0.05 AU of the Earth's orbit, and it is larger than about 120 meters, it is termed a potentially hazardous object (PHO); an object of this size is likely to survive passage through the atmosphere and cause extensive damage on impact. (The acronyms NEA and PHO are used when referring specifically to asteroids.)

  19. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  20. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  1. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  2. cyNeo4j: connecting Neo4j and Cytoscape

    PubMed Central

    Summer, Georg; Kelder, Thomas; Ono, Keiichiro; Radonjic, Marijana; Heymans, Stephane; Demchak, Barry

    2015-01-01

    Summary: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to utilize the performance and storage capacities Neo4j offers. We implemented a Neo4j NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a distributed setup of Cytoscape and Neo4j have. Availability and implementation: The app is available from the Cytoscape App Store at http://apps.cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and the community and commercial editions of Neo4j can be found at http://www.neo4j.com. Contact: georg.summer@gmail.com PMID:26272981

  3. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  4. Deep Space Earth Observations from DSCOVR

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Herman, J.

    2018-02-01

    The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.

  5. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  6. Near-Earth Object Survey Simulation Software

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  7. Earth Observing System Covariance Realism Updates

    NASA Technical Reports Server (NTRS)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  8. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  9. A Dedicated NEO Follow-up Program for the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    van Altena, W. F.; Bailyn, C. D.; Girard, T. M.; Rabinowitz, D.; Branham, R. L.; Hicks, M.; Lopez, C. E.

    2001-11-01

    We describe an ongoing program dedicated to the observation of NEOs found by the northern discovery programs and whose tracks carry them into the Southern Hemisphere. We are observing the NEOs, to determine their positions, compute improved orbits and submit them to the Minor Planet Center over the Internet. Alerts of needed observations are monitored on relevant Web pages and e-mail messages from our collaborators at the northern discovery programs. The observations are made at the Cesco Observatory at El Leoncito, Argentina with the 0.5-meter double astrograph and/or at CTIO with the 1.0-meter YALO telescope, depending on the magnitude of the NEO and the photometric requirements for the specific NEO. The double astrograph at El Leoncito observes simultaneous CCD B and V photometry and astrometry for those NEO's brighter than 20, while the YALO observes those brighter than 21.5. YALO also provides simultaneous V and IR photometry and astrometry. All YALO observations are ftp'd to San Juan for astrometric reduction and then a revised orbit is computed from the new and existing observations in Mendoza and a decision is made to retarget our observations if necessary. If so, the El Leoncito and/or YALO observers are notified and provided with an improved ephemeris. The final positions and photometry are then forwarded to the MPC, MPEC and our collaborators. To date, we have reported the positions of over 2000 asteroids, 61 comets and 142 NEOs.

  10. Assessing the universal structure of personality in early adolescence: The NEO-PI-R and NEO-PI-3 in 24 cultures.

    PubMed

    De Fruyt, Filip; De Bolle, Marleen; McCrae, Robert R; Terracciano, Antonio; Costa, Paul T

    2009-09-01

    The structure and psychometric characteristics of the NEO Personality Inventory-3 (NEO-PI-3), a more readable version of the Revised NEO Personality Inventory (NEO-PI-R), are examined and compared with NEO-PI-R characteristics using data from college student observer ratings of 5,109 adolescents aged 12 to 17 years from 24 cultures. Replacement items in the PI-3 showed on average stronger item-total correlations and slightly improved facet reliabilities compared with the NEO-PI-R in both English- and non-English-speaking samples. NEO-PI-3 replacement items did not substantially affect scale means compared with the original scales. Analyses across and within cultures confirmed the intended factor structure of both versions when used to describe young adolescents. The authors discuss implications of these cross-cultural findings for the advancement of studies in adolescence and personality development across the lifespan.

  11. COMS normal operation for Earth Observation mission

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  12. The U.S. National Plan for Civil Earth Observations

    NASA Astrophysics Data System (ADS)

    Stryker, T.; Clavin, C.; Gallo, J.

    2014-12-01

    Globally, the United Sates Government is one of the largest providers of environmental and Earth-system data. As the nation's Earth observation capacity has grown, so have the complexity and challenges associated with managing Earth observation systems and related data holdings. In July 2014, the White House Office of Science and Technology Policy released the first-ever National Plan for Civil Earth Observations to address these challenges. The Plan provides a portfolio management-based framework for maximizing the value of Federal Earth observations. The Plan identifies Federal priorities for Earth observations and improved management of their data. Through routine assessments, expanding data management efforts, interagency planning, and international collaboration, OSTP and its partner agencies will seek ensure the continued provision of and access to key Earth observation data, which support a broad range of public services and research programs. The presenters will provide a detailed review of the components of the National Plan, its impacts across the Federal agencies involved in Earth observations, and associated efforts to enable interagency coordination.

  13. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    NASA Astrophysics Data System (ADS)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on

  14. Distribution of the near-earth objects

    NASA Astrophysics Data System (ADS)

    Emel'Yanenko, V. V.; Naroenkov, S. A.; Shustov, B. M.

    2011-12-01

    This paper analyzes the distribution of the orbits of near-Earth minor bodies from the data on more than 7500 objects. The distribution of large near-Earth objects (NEOs) with absolute magnitudes of H < 18 is generally consistent with the earlier predictions (Bottke et al., 2002; Stuart, 2003), although we have revealed a previously undetected maximum in the distribution of perihelion distances q near q = 0.5 AU. The study of the orbital distribution for the entire sample of all detected objects has found new significant features. In particular, the distribution of perihelion longitudes seriously deviates from a homogeneous pattern; its variations are roughly 40% of its mean value. These deviations cannot be stochastic, which is confirmed by the Kolmogorov-Smirnov test with a more than 0.9999 probability. These features can be explained by the dynamic behavior of the minor bodies related to secular resonances with Jupiter. For the objects with H < 18, the variations in the perihelion longitude distribution are not so apparent. By extrapolating the orbital characteristics of the NEOs with H < 18, we have obtained longitudinal, latitudinal, and radial distributions of potentially hazardous objects in a heliocentric ecliptic coordinate frame. The differences in the orbital distributions of objects of different size appear not to be a consequence of observational selection, but could indicate different sources of the NEOs.

  15. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  16. Astrometric and Photometric Follow-Up of Faint Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Spahr, Timothy

    2004-01-01

    During the last year, the Near-Earth Object (NEO) follow-up program at Mt. Hopkins funded by the Near-Earth Object Observations (NEOO) program continued to improve. The Principal Investigator was again granted all the requested observing time. In addition to the requested time on the 4 8 in. telescope, 2 nights were also granted on the MMT for observations of extremely faint main-belt asteroids and NEOs. It is expected that the MMT can easily reach V = 25 over a 24 X 24 arcminute field of view. Improvements in the last year included more tweaks to the automatic astrometric routine for higher-quality astrometric fits. Use of the new USNO-B1.0 reference catalog has allowed the PI to push the average RMS of reference star solutions below 0.2 in.. Shift-and- stack techniques are used to improve the signal-to-noise ratio of the target objects. The 48 in. telescope at Mt. Hopkins is completely automated, and can be run remotely from either the Principal Investigator's office at SAO, or even his study at home. Most observing runs are now done remotely.

  17. Characterization of NEOs from the Policy Perspective: Implications from Problem and Solution Definitions

    NASA Astrophysics Data System (ADS)

    Lindquist, E.

    2015-12-01

    The characterization of near-Earth-objects (NEOs) in regard to physical attributes and potential risk and impact factors presents a complex and complicates scientific and engineering challenge. The societal and policy risks and impacts are no less complex, yet are rarely considered in the same context as material properties or related factors. The objective of this contribution is to position the characterization of NEOs within the public policy process domain as a means to reflect on the science-policy nexus in regard to risks associated with NEOs. This will be accomplished through, first, a brief overview of the science-policy nexus, followed by a discussion of several policy process frameworks, such as agenda setting and the multiple streams model, focusing events, and punctuated equilibrium, and their application and appropriateness to the problem of NEOs. How, too, for example, does NEO hazard and risk compare with other low probability, high risk, hazards in regard to public policy? Finally, we will reflect on the implications of alternative NEO "solutions" and the characterization of the NEO "problem," and the political and public acceptance of policy alternatives as a way to link NEO science and policy in the context of the overall NH004 panel.

  18. Earth Observation

    NASA Image and Video Library

    2016-04-20

    ISS047e069406 (04/20/2016) ---Earth observation image taken by the Expedition 47 crew aboard the International Space Station. This is an oblique south-looking view of the main Bahama island chain. Cuba is across the entire top of the image, the Florida Peninsula on the right margin. In the Bahamas, the main Andros island is just distinguishable under cloud upper left of center. Under less cloud is the Abaco Islands in the foreground (middle of pic nearest camera left of center.)

  19. Near-Earth Asteroids Astrometry with Gaia and Beyond

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2010-05-01

    Gaia is an astrometric mission from the European Space Agency (ESA) that will be launched in Spring 2012. The Gaia telescope and spectrometer will operate in the visible wavelength scanning the whole sky during 5 years (nominal mission duration). It will observe about one billion stars and QSOs but also a large number of solar system bodies, mainly asteroids, and a few comets and planetary satellites. The unprecedented accuracy of the measures both astrometric and photometric (note that the spectroscopic observations are of little scientific value for Solar System objects science) will enable to significantly improve the knowledge of the dynamics and physical properties for a large number of asteroids. With a relatively limiting magnitude somewhat reduced to V≤20 (compared to other future or ongoing surveys) Gaia will mainly oserve main-belt asteroids (MBAs), and very few TNOs or Centaurs. The Gaia telescope will also be able to observe several thousands of Near- Earth Objects (NEOs) down to low solar elongation (observation of solar system objects are performed with elongation 45° ≤ L ≤ 135°). Gaia will not be a ''big'' NEO discover, however it can possibly discover inner-Earth orbiting objects (IEOs) or sub-Atens, from atmosphereless low solar-elongation observations. In the case of discovering a new NEO target, ground-based observations in network could be needed to avoid confusion in identifying the object in the database, or loss of the target. We are aiming to generate VO-alert for such eventuality. Ground-based observations of NEOs would also more generally enter into the operational centre in construction at the IMCCE that will deal with data mining, astrometric reduction, orbit computation, alerts, etc. On the other hand, in the framework of ESA Space Situational Awareness (SSA), ground-based astrometry, possibly complemented by Gaia data, is needed to refine the orbits and collision assessment of PHAs. High accuracy astrometric and colour

  20. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  1. Connecting Earth observation to high-throughput biodiversity data.

    PubMed

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W

    2017-06-22

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

  2. Survey of Technologies Relevant to Defense From Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R.; Bonometti, J.; Chapman, J.; Fincher, S.; Hopkins, R.; Kalkstein, M.; Polsgrove, T.; Statham, G.; White, S.

    2004-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This Technical Publication reviews the historical impact record and current understanding of the number and location of near-Earth objects (NEOs) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are given of a Marshall Space Flight Center-led study intended to develop and assess various candidate systems for protection of the Earth against NEOs. Details of analytical tools, trajectory tools, and a tool that was created to model both the undeflected inbound path of an NEO as well as the modified, postdeflection path are given. A representative selection of these possible options was modeled and evaluated. It is hoped that this study will raise the level of attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  3. Identifying Potentially Hazardous Co-orbiting Material of Known NEOs Using Magnetic Signatures Produced in Destructive Collisions

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Jia, Yingdong; Wei, Hanying; Connors, Martin

    2015-04-01

    It is estimated that over 99% of near-Earth objects (NEOs) with diameters of about tens of meters are undiscovered. However, simulations show that they result in the most damage per year. Many of these bodies, produced in non-destructive collisions with larger well-characterized NEOs, are co-orbiting with their parent objects. Thereafter, scattering will occur due to gravitational perturbations when the co-orbiters have close encounters to any planets. Such gravitational scattering may not affect the orbits of the parent body. Therefore "safe" NEOs which have negligible impact probability with the Earth may be accompanied by potentially hazardous co-orbiting material. Those co-orbitals do reveal their existence in collisions with meteoroids, which are numerous and can be as small as tens of centimeters in diameter. Clouds of fine dust/gas particles released in such collisions become charged after generation and interact coherently with the solar wind electromagnetically. The interplanetary magnetic field is then perturbed. The resultant structures have been called interplanetary field enhancements (IFEs). They are readily identified when they pass spacecraft equipped with magnetometers. Although the co-orbitals responsible for the IFEs were disrupted in collisions, they are valid samples of the remaining co-orbiting material. Therefore, we can use IFEs to identify the spatial and mass distribution of such co-orbitals. With statistical studies of IFE occurrence, we identified asteroid 2201 Oljato and asteroid 138175 to have such co-orbiting material. The mass of the co-orbitals can be inferred by combining the results from observations and MHD simulations. Multi-spacecraft simultaneous observations measure the dimensions of the magnetic perturbations and the forces lifting them away from the Sun, while multi-fluid simulations give the accelerations of the perturbations. In summary, our technique not only helps us to identify which NEOs are accompanied by hazardous

  4. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  5. A New and Improved Model of the Near-Earth Object Population

    NASA Astrophysics Data System (ADS)

    Bottke, W. F., Jr.; Granvik, M.; Morbidelli, A.; Jedicke, R.; Bolin, B.; Beshore, E. C.; Vokrouhlicky, D.; Nesvorny, D.; Michel, P.

    2014-12-01

    This is a golden age for near-Earth Object (NEO) research. We have discovered some 90% of the most threatening NEOs, while ongoing surveys are finding many sub-km NEOs as well. NEO physical characterization studies by missions, space- and ground-based observatories are also revolutionizing our ideas about what NEOs are like. President Obama announced on April 15, 2010 that NASA would send astronauts to an NEA by 2025; this remains Administration policy. The Feb. 15, 2013 explosion of an NEO over Chelyabinsk, Russia, has further boosted interest in NEOs. This increasing interest, and a vast array of new data, have led us to re-investigate the debiased orbital and absolute magnitude distribution of the NEO population. Such models are asboluetly needed to make accurate predictions about NEOs that are likely exploration targets for human and robotic spacecraft. Using the methods of Bottke et al. (2002), we numerically tracked a large unbiased sample of asteroids escaping the main belt and TNO populations in order to locate all possible NEO source regions. From here, we recorded the orbital evolution of the bodies that entering the NEO region; their evolutionary pathways were used to create so-called NEO residence-time distributions. They were combined with the calculated observational selection effects for the Catalina Sky Survey, with the model fit to 4,550 NEOs (15 < H < 25) detected by the Catalina Sky Survey's Mt. Lemmon (G96) and Catalina (703) stations between 2005-2012. Our best fit case beautifully reproduces observations and provides us with a new and improved NEO model population. We find our results are in good agreement with the Bottke et al. (2002) model, but we also find many intriguing differences as well: (i) There is an increasing preference for small NEOs to come from the central main belt; (ii) Many low-perihelion-distance NEOs are apparently missing -- we suspect many were removed by a physical destruction mechanism; (iii) We are largely complete in

  6. Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth

    NASA Astrophysics Data System (ADS)

    Kandel, Robert S.

    1994-06-01

    Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.

  7. Near-Earth object hazardous impact: A Multi-Criteria Decision Making approach.

    PubMed

    Sánchez-Lozano, J M; Fernández-Martínez, M

    2016-11-16

    The impact of a near-Earth object (NEO) may release large amounts of energy and cause serious damage. Several NEO hazard studies conducted over the past few years provide forecasts, impact probabilities and assessment ratings, such as the Torino and Palermo scales. These high-risk NEO assessments involve several criteria, including impact energy, mass, and absolute magnitude. The main objective of this paper is to provide the first Multi-Criteria Decision Making (MCDM) approach to classify hazardous NEOs. Our approach applies a combination of two methods from a widely utilized decision making theory. Specifically, the Analytic Hierarchy Process (AHP) methodology is employed to determine the criteria weights, which influence the decision making, and the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is used to obtain a ranking of alternatives (potentially hazardous NEOs). In addition, NEO datasets provided by the NASA Near-Earth Object Program are utilized. This approach allows the classification of NEOs by descending order of their TOPSIS ratio, a single quantity that contains all of the relevant information for each object.

  8. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  9. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  10. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  11. Earth Observing System, Conclusions and Recommendations

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  12. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  13. Assessing the Universal Structure of Personality in Early Adolescence: The NEO-PI-R and NEO-PI-3 in 24 Cultures

    PubMed Central

    De Fruyt, Filip; De Bolle, Marleen; McCrae, Robert R.; Terracciano, Antonio; Costa, Paul T.

    2010-01-01

    The structure and psychometric characteristics of the NEO-PI-3, a more readable version of the NEO-PI-R, are examined and compared with NEO-PI-R characteristics using data from college student observer ratings of 5,109 adolescents aged 12 to 17 from 24 cultures. Replacement items in the PI-3 showed on average stronger item/total correlations and slightly improved facet reliabilities compared with the NEO-PI-R in both English- and non-English-speaking samples. NEO-PI-3 replacement items did not substantially affect scale means compared with the original scales. Analyses across and within cultures confirmed the intended factor structure of both versions when used to describe young adolescents. We discuss implications of these cross-cultural findings for the advancement of studies in adolescence and personality development across the lifespan. PMID:19419953

  14. The Large Synoptic Survey Telescope: Projected Near-Earth Object Discovery Performance

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Veres, Peter

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is a large-aperture, wide-field survey that has the potential to detect millions of asteroids. LSST is under construction with survey operations slated to begin in 2022. We describe an independent study to assess the performance of LSST for detecting and cataloging near-Earth objects (NEOs). A significant component of the study will be to assess the survey's ability to link observations of a single object from among the large numbers of false detections and detections of other objects. We also will explore the survey's basic performance in terms of fraction of NEOs discovered and cataloged, both for the planned baseline survey, but also for enhanced surveys that are more carefully tuned for NEO search, generally at the expense of other science drivers. Preliminary results indicate that with successful linkage under the current baseline survey LSST would discover approximately 65% of NEOs with absolute magnitude H is less than 22, which corresponds approximately to 140m diameter.

  15. The NASA Space Shuttle Earth Observations Office

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Wood, Charles A.

    1989-01-01

    The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.

  16. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  17. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    NASA Technical Reports Server (NTRS)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    spacecraft was designed to support rendezvous with a range of candidate asteroid targets and could easily be launched with one of several NASA launch vehicles. The Falcon 9 launch vehicle supports a Next Gen NEAR launch to target many near-Earth asteroids under consideration that could be reached with a C3 of 18 km2/sec2 or less, and the Atlas V-401 provides added capability supporting launch to NEAs that require more lift capacity while at the same time providing such excess lift capability that another payload of opportunity could be launch in conjunction with Next Gen NEAR. Next Gen NEAR will measure and interact with the target surface in ways never undertaken at an asteroid, and will prepare for first human precursor mission by demonstrating exploration science operations at an accessible NEO. This flexible mission and spacecraft design concept supports target selection based on upcoming Earth-based observations and also provides opportunities for co-manifest & international partnerships. JHU/APL has demonstrated low cost, low risk, high impact missions and this mission will help to prepare NASA for human NEO exploration by combining the best of NASA s human and robotic exploration capabilities.

  18. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  19. Ground-based Characterization of Earth Quasi Satellite (469219) 2016 HO3

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Kuhn, Olga; Thirouin, Audrey; Conrad, Al; Malhotra, Renu; Sanchez, Juan A.; Veillet, Christian

    2017-10-01

    (469219) 2016 HO3 is a small, <100 meter-size, near-Earth object (NEO) that while orbiting the Sun, also appears to circle around the Earth just beyond the Hill sphere as a Earth quasi-satellite. Only five quasi-satellites have been discovered so far, but 2016 HO3 is the most stable of them. The provenance of this object is unknown. On timescales of many centuries, 2016 HO3 remains within 38-100 lunar distance from us making it a prime target for future robotic and human exploration, provided it can be established it is indeed a natural object. In an effort to constrain its rotation period and surface composition, we observed 2016 HO3 on April 14 and 18 2017 (UTC) with the Large Binocular Telescope (LBT) and the Discovery Channel Telescope (DCT). We derive a rotation period of about 28 minutes based on our lightcurve observations. We obtained low-resolution (R ˜ 150 - 500) spectra of 2016 HO3 on 2017 April 14 (UTC) using the pair of MODS spectrographs mounted at the direct Gregorian foci of the LBT, obtaining the entire spectrum from 0.39-0.97 microns simultaneously. The visible wavelength spectrum shows a sharp rise in reflectance between 0.4-0.65 microns with a broad plateau beyond. The scatter near 0.8 microns makes it challenging to confirm the presence of a silicate absorption band at ~1 micron. Color ratios derived from the spectrum all suggest an S taxonomic type. We also derive an updated diameter of 36 meters for 2016 HO3 using an absolute magnitude of 24.3 and S-type albedo of 0.25. The derived rotation period and the spectrum are not uncommon amongst small NEOs, suggesting that 2016 HO3 is a natural object of similar provenance to other small NEOs. NASA Near-Earth Object Observations Program Grant NNX17AJ19G (PI: Reddy) funded parts of this work.

  20. Scientific Contributions to GEO Global Earth Observation Priorities

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Ledrew, E.

    2009-12-01

    Numerous counties and non-governmental organizations have produced documents, held workshops, and published reports in the past decade that identify Earth observation needs to meet their particular objectives. The Group on Earth Observations (GEO) has conducted a review of these documents, workshops, and reports to identify the priority observations common to many societal benefit areas. GEO has made a concerted effort to include materials from a broad range of user types, including scientific researchers, resource managers, and policy makers. GEO has also sought an international breadth in the materials reviewed, including observation priorities from developing countries. The activity will help GEO optimize the observations in GEOSS that are most likely to provide societal benefits, and GEO members will use the results of this meta-analysis to support investment decisions. The Earth observations in GEOSS serve scientific research and applications endeavors. As a primary user of ground-based, airborne, in situ, and space-based observations of the Earth, the scientific community has a significant voice and vested interest in the observations offered through GEOSS. Furthermore, the science and technology community will have opportunities to identify critical scientific/technological advances needed to produce any observations that are needed yet not currently available. In this paper, we will discuss this GEO effort to identify Earth observations priorities. We will present initial findings for some societal benefit areas and the overall meta-analysis. We will also discuss possible roles for the science and technology community to contribute to those priorities, such as scientific advances needed to achieve the observations or to realize societal benefits from the observations.

  1. The global impact distribution of Near-Earth objects

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter M.

    2016-02-01

    Asteroids that could collide with the Earth are listed on the publicly available Near-Earth object (NEO) hazard web sites maintained by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The impact probability distribution of 69 potentially threatening NEOs from these lists that produce 261 dynamically distinct impact instances, or Virtual Impactors (VIs), were calculated using the Asteroid Risk Mitigation and Optimization Research (ARMOR) tool in conjunction with OrbFit. ARMOR projected the impact probability of each VI onto the surface of the Earth as a spatial probability distribution. The projection considers orbit solution accuracy and the global impact probability. The method of ARMOR is introduced and the tool is validated against two asteroid-Earth collision cases with objects 2008 TC3 and 2014 AA. In the analysis, the natural distribution of impact corridors is contrasted against the impact probability distribution to evaluate the distributions' conformity with the uniform impact distribution assumption. The distribution of impact corridors is based on the NEO population and orbital mechanics. The analysis shows that the distribution of impact corridors matches the common assumption of uniform impact distribution and the result extends the evidence base for the uniform assumption from qualitative analysis of historic impact events into the future in a quantitative way. This finding is confirmed in a parallel analysis of impact points belonging to a synthetic population of 10,006 VIs. Taking into account the impact probabilities introduced significant variation into the results and the impact probability distribution, consequently, deviates markedly from uniformity. The concept of impact probabilities is a product of the asteroid observation and orbit determination technique and, thus, represents a man-made component that is largely disconnected from natural processes. It is important to consider impact

  2. The LCO Follow-up and Characterization Network and AgentNEO Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.

    2017-10-01

    The LCO NEO Follow-up Network is using the telescopes of the Las Cumbres Observatory (LCO) and a web-based target selection, scheduling and data reduction system to confirm NEO candidates and characterize radar-targeted known NEOs. Starting in July 2014, the LCO NEO Follow-up Network has observed over 4,500 targets and reported more than 25,000 astrometric and photometric measurements to the Minor Planet Center.The LCO NEO Follow-up Network's main aims are to perform confirming follow-up of the large number of NEO candidates and to perform characterization measurements of radar targets to obtain light curves and rotation rates. The NEO candidates come from the NEO surveys such as Catalina, PanSTARRS, ATLAS, NEOWISE and others. In particular, we are targeting objects in the Southern Hemisphere, where the LCO NEO Follow-up Network is the largest resource for NEO observations.The first phase of the LCO Network comprises nine 1-meter and seven 0.4-meter telescopes at site at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Additional 0.4-meter telescopes will be deployed in 2017 and 2x1-meter telescopes for a site at Ali Observatory, Tibet are planned for 2018-2019.We have developed web-based software called NEOexchange which automatically downloads and aggregates NEO candidates from the Minor Planet Center's NEO Confirmation Page, the Arecibo and Goldstone radar target lists and the NASA lists. NEOexchange allows the planning and scheduling of observations on the LCO Telescope Network and the tracking of the resulting blocks and generated data. We have extended the NEOexchange software to include automated scheduling and moving object detection, with the results presented to the user via the website.We will present results from the LCO NEO Follow-up Network and from the development of the

  3. Planetary Defense. Department of Defense Cost for the Detection, Exploration, and Rendezvous Mission of Near-Earth Objects

    DTIC Science & Technology

    1997-01-01

    or even impact the Earth. In the past 15 years, research on NEOs has dra­ mati cally increased as astrono mers and ge­ olo gists real ize the Earth...fig. 7). In 1989, astrono mers discov ered an aster­ oid labeled 1989FC after its closest approach to Earth. This illus trates a disturb ing fact...Cur rently only astrono mers on shoestring, aca demic budgets are trying to locate and track NEOs, making esti mates of NEO popu­ la tions very impre

  4. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  5. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  6. International program for Earth observations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail.

  7. Earth Observation

    NASA Image and Video Library

    2011-07-06

    ISS028-E-014782 (6 July 2011) --- The Shoemaker (formerly Teague) Impact Structure, located in Western Australia in a drainage basin south of the Waldburg Range, presents an other-worldly appearance in this detailed photograph recorded from onboard the International Space Station on July 6. The Shoemaker impact site is approximately 30 kilometers in diameter, and is clearly defined by concentric ring structures formed in sedimentary rocks (brown to dark brown, image center) that were deformed by the impact event approximately 1630 million years ago, according to the Earth Impact Database. Several saline and ephemeral lakes?Nabberu, Teague, Shoemaker, and numerous smaller ponds?occupy the land surface between the concentric ring structures. Differences in color result from both water depth and suspended sediments, with some bright salt crusts visible around the edges of smaller ponds (image center The Teague Impact Structure was renamed Shoemaker in honor of the late Dr. Eugene M. Shoemaker, a pioneer in the field of impact crater studies and planetary geology, and founder of the Astrogeology Branch of the United States Geological Survey. The image was recorded with a digital still camera using a 200 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

  8. Earth Observations

    NASA Image and Video Library

    2010-09-11

    ISS024-E-014233 (11 Sept. 2010) --- A smoke plume near the northern Caspian Sea, Kazakhstan is featured in this image photographed by an Expedition 24 crew member on the International Space Station. This broad view of the north coast of the Caspian Sea shows a smoke plume (left) and two river deltas (bottom and lower right). The larger delta is that of the Volga River which appears prominently here in sunglint (light reflected off a water surface back towards the observer), and the smaller less prominent delta is that of the Ural River. Wide angle, oblique views ? taken looking outward at an angle, rather than straight down towards Earth ? such as this give an excellent impression of how crew members onboard the space station view Earth. For a sense of scale, the Caucasus Mts. (across the Caspian, top right) are approximately 1,100 kilometers to the southwest of the International Space Station?s nadir point location ? the point on Earth directly underneath the spacecraft ? at the time this image was taken. The smoke plume appears to be sourced in the dark-toned coastal marsh vegetation along the outer fringe of the Ural River delta, rather than in a city or at some oil storage facility. Although even small fires produce plumes that are long and bright and thus easily visible from space, the density of the smoke in this plume, and its 350-kilometer length across the entire north lobe of the Caspian Sea, suggest it was a significant fire. The smoke was thick enough nearer the source to cast shadows on the sea surface below. Lines mark three separate pulses of smoke, the most recent, nearest the source, extending directly south away from the coastline (lower left). With time, plumes become progressively more diffuse. The oldest pulse appears to be the thinnest, casting no obvious shadows (center left).

  9. Dynamical evolution of near-Earth asteroid 1991 VG

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2018-01-01

    The discovery of 1991 VG on 1991 November 6 attracted an unprecedented amount of attention as it was the first near-Earth object (NEO) ever found on an Earth-like orbit. At that time, it was considered by some as the first representative of a new dynamical class of asteroids, while others argued that an artificial (terrestrial or extraterrestrial) origin was more likely. Over a quarter of a century later, this peculiar NEO has been recently recovered and the new data may help in confirming or ruling out early theories about its origin. Here, we use the latest data to perform an independent assessment of its current dynamical status and short-term orbital evolution. Extensive N-body simulations show that its orbit is chaotic on time-scales longer than a few decades. We confirm that 1991 VG was briefly captured by Earth's gravity as a minimoon during its previous fly-by in 1991-1992; although it has been a recurrent transient co-orbital of the horseshoe type in the past and it will return as such in the future, it is not a present-day co-orbital companion of the Earth. A realistic NEO orbital model predicts that objects like 1991 VG must exist and, consistently, we have found three other NEOs - 2001 GP2, 2008 UA202 and 2014 WA366 - which are dynamically similar to 1991 VG. All this evidence confirms that there is no compelling reason to believe that 1991 VG is not natural.

  10. Human and Robotic Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2010-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the

  11. A Potpourri of Near-Earth Asteroid Observations

    NASA Astrophysics Data System (ADS)

    Tholen, David J.; Ramanjooloo, Yudish; Fohring, Dora; Hung, Denise; Micheli, Marco

    2016-10-01

    Ongoing astrometric follow-up of near-Earth asteroids has yielded a variety of interesting results. In the limited space of a DPS abstract, three recently observed objects are worth mentioning.2008 HU4 is among the most accessible asteroids for a human space flight mission. We successfully recovered this object at a second opposition on 2016 April 26 despite the large ephemeris uncertainty. The small size of this asteroid makes it relatively easy to detect the departure from purely gravitational motion caused by solar radiation pressure, which can be used to estimate the density of the object. At the time of this writing, the object remains bright enough for additional observations, so we expect to improve on our five-sigma detection of a relatively low density (roughly similar to water, indicating a high porosity) between now and the DPS meeting.2016 HO3 is a newly-discovered co-orbital with the Earth. Our 2016 May 10-11 observations extended the observational arc by enough to permit backward extrapolation that led to prediscovery observations by Pan-STARRS in 2015, and then annually back to 2011, and ultimately to Sloan DSS observations in 2004. The 12-year arc is sufficient to examine the dynamical behavior of the object, which shows how it will remain in the vicinity of the Earth for decades, if not centuries. Our observations also revealed a rapid rotation (less than a half hour) with large brightness variation (in excess of 1 magnitude), which helps to explain why this object eluded discovery until this year.2011 YV62 is among the top 20 largest near-Earth asteroids with Earth impact solutions (in 2078 and 2080). At the time of this writing, the object is flagged as being "lost", but a re-examination of observations made in 2013 and 2015 finally yielded a successful recovery at a magnitude fainter than 24. We expect the new observations to eliminate the impact possibilities. The story behind this difficult recovery is fascinating.

  12. NEOShield - A global approach to NEO Impact Threat Mitigation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-03-01

    NEOShield is a European-Union funded project coordinated by the German Aero-space Center, DLR, to address near-Earth object (NEO) impact hazard mitigation issues. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The project is funded for a period of 3.5 years from January 2012 with a total of 5.8 million euros. The primary aim of the project is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated. The NEOShield work plan consists of scientific investigations into the nature of the impact hazard and the physical properties of NEOs, and technical and engineering studies of practical means of deflecting NEOs. There exist many ideas for asteroid deflection techniques, many of which would require considerable scientific and technological development. The emphasis of NEOShield is on techniques that are feasible with current technology, requiring a minimum of research and development work. NEOShield aims to provide detailed designs of feasible mitigation demonstration missions, targeting NEOs of the kind most likely to trigger the first space-based mitigation action. Most of the asteroid deflection techniques proposed to date require physical contact with the threatening object, an example being the kinetic impactor. NEOShield includes research into the mitigation-relevant physical properties of NEOs on the basis of remotely-sensed astronomical data and the results of rendezvous missions, the observational techniques required to efficiently gather mitigation-relevant data on the dynamical state and physical properties of a threatening NEO, and laboratory investigations using gas guns to fire projectiles into

  13. Cost-Effective NEO Characterization Using Solar Electric Propulsion (SEP)

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Reinert, R.; Mitchell, S.

    2003-05-01

    We present a cost-effective multiple NEO rendezvous mission design optimized around the capabilities of Ball's 200-kg NEOX Solar Electric Propelled microsatellite. The NEOX spacecraft is 3-axis stabilized with better-than 1 milliradian pointing accuracy to serve as an excellent imaging platform; its DSN compatible telecommunications subsystem can support a 6.4-kbps downlink rate at 3 AU earth range. The spacecraft mass is <200kg at launch to allow launch as a cost-effective secondary payload. It uses proven SEP technology to provide 12km/s of Delta-V, which enables multiple rendezvous' in a single mission. Cost-effectiveness is optimized by launch as a secondary payload (e.g., Ariane-5 ASAP) or as a multiple manifest on a single dedicated launch vehicle (e.g., 4 on a Delta-II 2925). Following separation from the LV, we describe a candidate mission profile that minimizes cost by using the spacecraft's 12km/s of SEP Delta-V to allow orbiting up to 4 separate NEO's. Orbiting as opposed to flying by augments the mission's science return by providing the NEO mass and by allowing multiple phase angle imaging. The NEOX Spacecraft has the capability to support a 20kg payload drawing 100W average during SEP cruise, with >1kW available during the NEO orbital phase when the SEP thrusters are not powered. We will present a candidate payload suite that includes a visible/NIR imager, a laser altimeter, and a set of small, self-righting surface probes that can be used to assess the geophysical state of the object surface and near-surface environments. The surface probe payload notionally includes a set of cameras for imaging the body surface at mm-scale resolution, an accelerometer package to measure surface mechanical properties upon probe impact, a Langmuir probe to measure the electrostatic gradient immediately above the object surface, and an explosive charge that can be remotely detonated at the end of the surface mission to excavate an artificial crater that can be remotely

  14. Optical data communication for Earth observation satellite systems

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Loecherbach, E.

    1991-10-01

    The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.

  15. Patterns of molecular evolution of an avian neo-sex chromosome.

    PubMed

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs.

  16. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  17. Earth observation image data format

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1976-01-01

    A flexible format for computer compatable tape (CCT) containing multispectral earth observation sensor data is described. The driving functions which comprise the data format requirements are summarized and general data format guidelines are discussed.

  18. JEOS. The JANUS earth observation satellite

    NASA Astrophysics Data System (ADS)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  19. The Common Framework for Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T. S.; Sherman, R.

    2016-12-01

    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  20. Constraining central Neo-Tethys Ocean reconstructions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Nerlich, Rainer; Colli, Lorenzo; Ghelichkhan, Siavash; Schuberth, Bernhard; Bunge, Hans-Peter

    2017-04-01

    A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.

  1. Constraining central Neo-Tethys Ocean reconstructions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Nerlich, Rainer; Colli, Lorenzo; Ghelichkhan, Siavash; Schuberth, Bernhard; Bunge, Hans-Peter

    2016-09-01

    A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.

  2. The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mommert, Michael; Harris, Alan W.; Hora, Joseph L.

    The near-Earth object (NEO) population, which mainly consists of fragments from collisions between asteroids in the main asteroid belt, is thought to include contributions from short-period comets as well. One of the most promising NEO candidates for a cometary origin is near-Earth asteroid (3552) Don Quixote, which has never been reported to show activity. Here we present the discovery of cometary activity in Don Quixote based on thermal-infrared observations made with the Spitzer Space Telescope in its 3.6 and 4.5 μm bands. Our observations clearly show the presence of a coma and a tail in the 4.5 μm but notmore » in the 3.6 μm band, which is consistent with molecular band emission from CO{sub 2}. Thermal modeling of the combined photometric data on Don Quixote reveals a diameter of 18.4{sub −0.4}{sup +0.3} km and an albedo of 0.03{sub −0.01}{sup +0.02}, which confirms Don Quixote to be the third-largest known NEO. We derive an upper limit on the dust production rate of 1.9 kg s{sup –1} and derive a CO{sub 2} gas production rate of (1.1 ± 0.1) × 10{sup 26} molecules s{sup –1}. Spitzer Infrared Spectrograph spectroscopic observations indicate the presence of fine-grained silicates, perhaps pyroxene rich, on the surface of Don Quixote. Our discovery suggests that CO{sub 2} can be present in near-Earth space over a long time. The presence of CO{sub 2} might also explain that Don Quixote's cometary nature remained hidden for nearly three decades.« less

  3. Optical MEMS for earth observation payloads

    NASA Astrophysics Data System (ADS)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  4. Earth Observation

    NASA Image and Video Library

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  5. Analysis of Critical Earth Observation Priorities for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  6. Catalogs of Space Shuttle earth observations photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A review is presented of postflight cataloging and indexing activities of mission data obtained from Space Shuttle earth observations photography. Each Space Shuttle mission acquires 1300-4400 photographs of the earth that are reviewed and interpreted by a team of photointerpreters and cataloging specialists. Every photograph's manual and electronic set of plots is compared for accuracy of its locational coordinates. This cataloging activity is a critical and principal part of postflight activity and ensures that the database is accurate, updated and consequently made meaningful for further utilization in the applications and research communities. A final product in the form of a Catalog of Space Shuttle Earth Observations Handheld Photography is published for users of this database.

  7. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  8. Neo-Darwinists and Neo-Aristotelians: how to talk about natural purpose.

    PubMed

    Woodford, Peter

    2016-12-01

    This paper examines the points of disagreement between Neo-Darwinian and recent Neo-Aristotelian discussions of the status of purposive language in biology. I discuss recent Neo-Darwinian "evolutionary" treatments and distinguish three ways to deal with the philosophical status of teleological language of purpose: teleological error theory, methodological teleology, and Darwinian teleological realism. I then show how "non-evolutionary" Neo-Aristotelian approaches in the work of Michael Thompson and Philippa Foot differ from these by offering a view of purposiveness grounded in life-cycle patterns, rather than in long-term evolutionary processes or natural selection. Finally, I argue that the crucial difference between Neo-Darwinian and Neo-Aristotelian approaches regards the question of whether or not reproduction deserves the status of an "ultimate" aim of organisms. I offer reasons to reject the concept of an "ultimate" aim in evolutionary biology and to reject the notion that reproduction serves a purpose. I argue that evolutionary biology is not in the position to determine what the "ultimate" explanation of natural purpose is.

  9. An Evolving Model for Capacity Building with Earth Observation Imagery

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  10. Physical Characterization of the Near-Earth Object Population

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    2003-01-01

    This program seeks to address the fundamental question: What are the relationships between asteroids, comets, and meteorites? To answer this question, we are studying the population of asteroids near the Earth which likely contain both asteroids and extinct comets and which is the immediate source for meteorites. An analysis of new and existing visible wavelength spectral data for more than 100 (Near-Earth Objects) NEOs, and Keck albedo data for more than 20 NEOs is underway. New asteroid-meteorite links are being found, the NEO population and hazard is being characterized, and the extinct comet component is being constrained. These results are contained within the following publication work during the current period: 1 book, 2 book chapters, 1 published paper, 2 papers submitted, 2 papers in preparation, 1 Ph. D. thesis in preparation, and 7 meeting abstracts/presentations.

  11. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  12. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  13. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  14. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  15. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  16. Klenot Project - Near Earth Objects Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Tichý, Miloš; Tichá, Jana; Kočer, Michal

    2016-01-01

    NEO research is a great challenge just now - for science, for exploration and for planetary defence. Therefore NEO discoveries, astrometric follow-up, orbit computations as well as physical studies are of high interest both to science community and humankind. The KLENOT Project of the Klet Observatory, South Bohemia, Czech Republic pursued the confirmation, early follow-up, long-arc follow-up and recovery of Near Earth Objects since 2002. Tens of thousands astrometric measurements helped to make inventory of NEOs as well as to understand the NEO population. It ranked among the world most prolific professional NEO follow-up programmes during its first phase from 2002 to 2008. The fundamental improvement of the 1.06-m KLENOT Telescope was started in autumn 2008. The new computer controlled paralactic mount was built to substantially increase telescope-time efficiency, the number of observations, their accuracy and limiting magnitude. The testing observations of the KLENOT Telescope Next Generation (NG) were started in October 2011. The new more efficient CCD camera FLI ProLine 230 was installed in summer 2013. The original Klet Software Package has been continually upgraded over the past two decades of operation. Along with huge hardware changes we have decided for essential changes in software and the whole KLENOT work-flow. Using the current higher computing power available, enhancing and updating our databases and astrometry program, the core of our software package, will prove highly beneficial. Moreover, the UCAC4 as the more precise astrometric star catalog was implemented. The modernized KLENOT System was put into full operation in September 2013. This step opens new possibilities for the KLENOT Project, the long-term European Contribution to Monitoring and Cataloging Near Earth Objects. KLENOT Project Goals are confirmatory observations of newly discovered fainter NEO candidates, early follow-up of newly discovered NEOs, long-arc follow-up astrometry of NEOs

  17. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  18. STS-43 Earth observation of a colorful sunrise

    NASA Image and Video Library

    1991-08-11

    STS-43 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, captures the Earth's limb at sunrise with unusual cloud patterns silhouetted by the sunlight and rising into the terminator lines.

  19. Earth Observations taken by Expedition 44 crewmember

    NASA Image and Video Library

    2015-06-20

    ISS044E002419 (06/20/2015) --- This Earth observation of Iran was taken by members of Expedition 44 on the International Space Station on June 20, 2015. Described as "Earth Art" it is the western shore of Lake Urmia near Gülmanxana, Iran (~36.6N, 45.3E).

  20. The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) List of Near-Earth Asteroids: Identifying Potential Targets for Future Exploration

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Barbee, B. W.; Mink, R. G.; Adamo, D. R.; Alberding, C. M.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Drake, B. G.; Friedensen, V. P.

    2012-10-01

    Introduction: Much attention has recently been focused on human exploration of near-Earth asteroids (NEAs). Detailed planning for deep space exploration and identification of potential NEA targets for human space flight requires selecting objects from the growing list of known NEAs. NASA therefore initiated the Near-Earth Object Human Space Flight Accessible Target Study (NHATS), which uses dynamical trajectory performance constraints to identify potentially accessible NEAs. Accessibility Criteria: Future NASA human space flight capability is being defined while the Orion Multi-Purpose Crew Vehicle and Space Launch System are under development. Velocity change and mission duration are two of the most critical factors in any human spaceflight endeavor, so the most accessible NEAs tend to be those with orbits similar to Earth’s. To be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution satisfying purposely inclusive constraints, including total mission change in velocity ≤ 12 km/s, mission duration ≤ 450 days (with at least 8 days at the NEA), Earth departure between Jan 1, 2015 and Dec 31, 2040, Earth departure C3 ≤ 60 km2/s2, and Earth return atmospheric entry speed ≤ 12 km/s. Monitoring and Updates: The NHATS list of potentially accessible targets is continuously updated as NEAs are discovered and orbit solutions for known NEAs are improved. The current list of accessible NEAs identified as potentially viable for future human exploration under the NHATS criteria is available to the international community via a website maintained by NASA’s NEO Program Office (http://neo.jpl.nasa.gov/nhats/). This website also lists predicted optical and radar observing opportunities for each NHATS-compliant NEA to facilitate acquisition of follow-up observations. Conclusions: This list of NEAs will be useful for analyzing robotic mission opportunities, identifying optimal round trip human space flight trajectories, and

  1. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  2. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  3. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley; Olson, V.; Trenchard, M.; Willis, K.; Baskin, P.

    2006-01-01

    This viewgraph presentation asks the question "Is the observation of earth from the ISS a positive (salutogenic) experience for crew members?"All images are distributed to the public via the "Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov. The objectives of the study are (1) Mine the dataset of Earth Observation photography--What can it tell us about the importance of viewing the Earth as a positive experience for the crewmembers? (2) Quantify extent to which photography was self-initiated (not requested by scientists) (3) Identify patterns photography activities versus scientific requested photography.

  4. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  5. Continuity of Earth Radiation Budget Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  6. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  7. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  8. Newtonian-Machian analysis of the neo-Tychonian model of planetary motions

    NASA Astrophysics Data System (ADS)

    Popov, Luka

    2013-03-01

    The calculation of the trajectories in the Sun-Earth-Mars system is performed using two different models, both in the framework of Newtonian mechanics. The first model is the well-known Copernican system, which assumes that the Sun is at rest and that all the planets orbit around it. The second is a less well-known model, developed by Tycho Brahe (1546-1601), according to which the Earth stands still, the Sun orbits around the Earth, and the other planets orbit around the Sun. The term ‘neo-Tychonian system’ refers to the assumption that orbits of distant masses around the Earth are synchronized with the Sun's orbit. It is the aim of this paper to show the kinematical and dynamical equivalence of these systems, under the assumption of Mach's principle.

  9. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  10. Physical Characterization of the Near-Earth Object Population

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    2004-01-01

    Many pieces of the puzzle must be brought together in order to have a clear picture of the near-Earth object (NEO) population. Four of the pieces that can be described include: i) the taxonomic distribution of the population as measured by observational sampling, ii) the determination of albedos that can be associated with the taxonomic distribution, iii) discovery statistics for the NE0 population, and iv) the debiasing of the discovery statistics using the taxonomic and albedo information. Support from this grant enables us to address three of these four pieces. Binzel et al. (2004, submitted) presents the first piece, detailing the observations and observed characteristics of the NE0 and Mars-crossing (MC) population. For the second piece, a complementary program of albedo measurements is pursued at the Keck Observatory (Binzel, P. I.) with first results published in Delbo et al. (2003). For the third piece, the most extensive NE0 discovery statistics are provided by the LINEAR survey. Binzel has supervised the MIT Ph. D. thesis work of Stuart (2003) to bring the fourth piece, submitted for publication by Stuart and Binzel (2004). Our results provide new constraints for the NE0 population and progress for the Spaceguard Survey, illuminate asteroid and comet source regions for the NEOs, and provide new evidence for space weathering processes linking asteroids and meteorites. Further, we are identifying top priority near-Earth spacecraft mission candidates based on their spectral properties and inferred compositions.

  11. A Low Risk Strategy for the Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Landis, Rob R.

    2011-01-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the U.S. Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human accessible targets. The majority of the NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing such a catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades. This initial step of a space-based NEO survey first is the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from 1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), 2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and 3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  12. ESA Earth Observation missions at the service of geoscience

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2017-04-01

    The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development

  13. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  14. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  15. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  16. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  17. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability

  18. Physical characterization of fast rotator NEOs

    NASA Astrophysics Data System (ADS)

    Kikwaya Eluo, Jean-Baptiste; Hergenrother, Carl W.

    2015-08-01

    Understanding the physical characteristics of fast rotator NEOs (sub-km sizes with H > 22) is important for two reasons: to establish properties that can constraint models of their potential hazard, and to learn about the origin and the evolution of the solar system. Technically it is difficult to cover different ranges of wavelengths using one telescope with one instrument. Setting up a network of telescopes with different instruments observing simultaneously the same object will efficiently contribute to the characterization of NEOs.ART (Arizona Robotic Telescope) is a University of Arizona initiative whose goal is to use local 2-m size telescopes to provide near real-time observations of Target of Opportunity objects covering the visible and the near- infrared wavelengths. We plan to use three telescopes of the ART project to observe fast rotator NEOs: 1) VATT (Vatican Advanced Technology Telescope) at Mount Graham (longitude: -109.8719, latitude: 32.7016, elevation: 10469 feet) with VATT-4K optical imager for photometry to estimate colors, lightcurves to get the rotation rate, and estimate the phase angle function of NEOs, 2) Bok 2.3 m at Kitt Peak (longitude: -111.6004, latitude: 31.9629, elevation: 6795 feet) with BCSpec (Boller & Chivens Spectrograph) for visible spectroscopy, and 3) Kuiper 1.5-m at Mount Bigelow (longitude: -110.7345, latitude: 32.4165, elevation: 8235 feet) with a near-infrared instrument.We report here the preliminary results of several NEOs whose rotation rate, color, and type have been estimated using photometry with images recorded with VATT-4K. 2009 SQ104 has a rotation rate of 6.85+/- 0.03 h, 2014 AY28 has a rotation rate of 0.91 +/- 0.02 h, 2014 EC of 0.54 +/-0.04 h, 2014 FA44 of 3.45 +/- 0.05 h, 2014 KS40 of 1.11 +/- 0.06 h, 2011 PT of 0.17 +/- 0.05 h, 2014 SC324 of 0.36 +/- 0.43 h, 2014 WF201 of 1.00 +/- 0.03 h. Of these objects, 2014 HM2, 2014 FA, 2014 SB145, 2011 PT fall among X-type asteroids; 2014 KS, 2014 WF are likely to be

  19. Earth Observations from Space: The First 50 Years of Scientific Achievements

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  20. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  1. Earth observation mission operation of COMS during in-orbit test

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2011-11-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionality and the performance of many aspects of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The Earth observation mission operation of COMS during the IOT phase is introduced in terms of mission operation characteristics, mission planning, and mission operation results for the missions of meteorological observation and ocean monitoring, respectively.

  2. Are 2P/Encke, the Taurid complex NEOs and CM chondrites related?

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Michelsen, R.; Haack, H.; Fitzsimmons, A.; Williams, I.; Boehnhardt, H.

    2013-09-01

    Comet 2P/Encke is a short-period comet that was discovered in 1786 and has been extensively observed and studied for more than 200 years. It has an orbital period of 3.3 years and its orbit is dynamically decoupled from Jupiter's control due to gravitational interaction with terrestrial planets [6]. It is the only comet known on such an orbit, making it unique. Capture from the outer solar system onto its current orbit is very unlikely and even a continuous smooth dynamical evolution has a low probability as this requires a continuous period when it is dormant in order to avoid the volatiles from the nucleus becoming exhausted and making the current observed activity impossible. An origin in the asteroid belt is a possibility especially in view of the recently discovered main belt comets. The nucleus of 2P/Encke is dark (geometric albedo of 0.047 ± 0.023 [3]), has an effective radius of 2.4 ± 0.3 km [3] and it has polarimetric properties that are unique compared to other measured types of solar system objects, such as asteroids, TNOs, cometary dust, Centaurs [2]. The colors of 2P/Encke's nucleus are typical for comets, but no spectra of the nucleus in the visible wavelength range exist so far. The Taurid meteoroid stream has long been linked with 2P/Encke, but the activity of the comet is not strong enough to explain the number of observed meteors. It has been suggested that the meteoroid stream was caused by the break up of a larger parent body, which left comet 2P/Encke and other various small bodies along with a stream of dust. Various small near-Earth objects (NEOs) have been discovered with orbits that can be linked with 2P/Encke and the Taurid meteoroid stream [1]. Though many of the associations are spurious due to the low inclination of 2P/Encke's orbit, many NEO's have evolved in a similar way to 2P/Encke overa period of 5000 years [8] suggesting some relationship. In addition to dynamical properties, common taxonomic properties can also provide an

  3. Near-Earth Object Astrometric Interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Martin R.

    2005-01-01

    Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.

  4. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  5. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  6. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo (D.); Jones (T.); Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; hide

    2007-01-01

    The concept of a crewed mission to a Near-Earth Object (NEO) has been analyzed in depth in 1989 as part of the Space Exploration Initiative. Since that time two other studies have investigated the possibility of sending similar missions to NEOs. A more recent study has been sponsored by the Advanced Programs Office within NASA's Constellation Program. This study team has representatives from across NASA and is currently examining the feasibility of sending a Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure for the Vision for Space Exploration (VSE) and Exploration Systems Architecture Study (ESAS) in the run up to the lunar sorties at the end of the next decade (approx.2020). Sending a human expedition to a NEO, within the context of the VSE and ESAS, demonstrates the broad utility of the Constellation Program s Orion (CEV) crew capsule and Ares (CLV) launch systems. This mission would be the first human expedition to an interplanetary body outside of the cislunar system. Also, it will help NASA regain crucial operational experience conducting human exploration missions outside of low Earth orbit, which humanity has not attempted in nearly 40 years.

  7. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning

    NASA Technical Reports Server (NTRS)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred

    2007-01-01

    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  8. Near Earth Objects - a threat and an opportunity

    NASA Astrophysics Data System (ADS)

    Tate, Jonathan R.

    2003-05-01

    In the past decade the hazard posed to the Earth by Near Earth Objects (NEOs) has generated considerable scientific and public interest. A number of major films, television programmes and media reports have brought the issue to public attention. From an educational perspective an investigation into NEOs and the effects of impacts on the Earth forms a topical and dynamic basis for study in a huge range of subjects, not just scientific. There are clear routes to chemistry, physics, mathematics and biology, but history, psychology, geography, palaeontology and geology are just a selection of other subjects involved. A number of projects have been established, mainly in the USA, to determine the extent of the hazard, and to develop ways of countering it, but the present situation is far from satisfactory. Current detection and follow-up programmes are underfunded and lack international coordination.

  9. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  10. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation.

    PubMed

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf

    2017-06-01

    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Earth Observations

    NASA Image and Video Library

    2010-09-09

    ISS024-E-014071 (9 Sept. 2010) --- This striking panoramic view of the southwestern USA and Pacific Ocean is an oblique image photographed by an Expedition 24 crew member looking outwards at an angle from the International Space Station (ISS). While most unmanned orbital satellites view Earth from a nadir perspective?in other words, collecting data with a ?straight down? viewing geometry?crew members onboard the space station can acquire imagery at a wide range of viewing angles using handheld digital cameras. The ISS nadir point (the point on Earth?s surface directly below the spacecraft) was located in northwestern Arizona, approximately 260 kilometers to the east-southeast, when this image was taken. The image includes parts of the States of Arizona, Nevada, Utah, and California together with a small segment of the Baja California, Mexico coastline at center left. Several landmarks and physiographic features are readily visible. The Las Vegas, NV metropolitan area appears as a gray region adjacent to the Spring Mountains and Sheep Range (both covered by white clouds). The Grand Canyon, located on the Colorado Plateau in Arizona, is visible (lower left) to the east of Las Vegas with the blue waters of Lake Mead in between. The image also includes the Mojave Desert, stretching north from the Salton Sea (left) to the Sierra Nevada mountain range. The Sierra Nevada range is roughly 640 kilometers long (north-south) and forms the boundary between the Central Valley of California and the adjacent Basin and Range. The Basin and Range is so called due to the pattern of long linear valleys separated by parallel linear mountain ranges ? this landscape, formed by extension and thinning of Earth?s crust, is particularly visible at right.

  12. The role of GPS in precise earth observation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Lindal, Gunnar F.; Liu, Chao-Han

    1988-01-01

    The potential of the Global Positioning System (GPS) for precise earth observation is evaluated. It is projected that soon GPS will be utilized to track remote-sensing satellites with subdecimeter accuracy. The first will be Topex/Poseidon, a US/French ocean altimetry mission to be launched in 1991. In addition, it is suggested that developments planned for future platforms may push orbit accuracy near 1 cm within a decade. GPS receivers on some platforms will track the signals down to the earth limb to observe occultation by intervening media. This will provide comprehensive information on global temperature and climate and help detect the possible onset of a greenhouse effect. It is also projected that dual-frequency observations will be used to trace the flow of energy across earth systems through detection of ionospheric gravity waves, and to map the structure of the ionosphere by computer tomography.

  13. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  14. Observing Coronal Mass Ejections from the Sun-Earth L5 Point

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; St Cyr, O. C.

    2013-12-01

    Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere and are known to be responsible for severe space weather. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). The STEREO mission viewed CMEs from points away from the Sun-Earth line and demonstrated the importance of such observations in understanding the three-dimensional structure of CMEs and their true kinematics. In this paper, we show that it is advantageous to observe CMEs from the Sun-Earth L5 point in studying CMEs that affect Earth. In particular, these observations are important in identifying that part of the CME that is likely to arrive at Earth. L5 observations are critical for several aspects of CME studies such as: (i) they can also provide near-Sun space speed of CMEs, which is an important input for modeling Earth-arriving CMEs, (ii) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, and (iii) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, which may not be possible from the Sun-Earth line. We also discuss how the L5 vantage point compares with the Sun-Earth L4 point for observing Earth-affecting CMEs. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C., MacDowall, R. J., Maksimovic, M., Sittler, E., et al. (2011b), Earth-Affecting Solar Causes Observatory (EASCO): a mission at

  15. The Group on Earth Observations (GEO) through 2025

    NASA Astrophysics Data System (ADS)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  16. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.

  17. Understanding USGS user needs and Earth observing data use for decision making

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2016-12-01

    US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.

  18. A New Approach on the Long Term Dynamics of NEO's Under Yarkovsky Effect.

    NASA Astrophysics Data System (ADS)

    Peláez, Jesús; Urrutxua, Hodei; Bombardelli, Claudio; Perez-Grande, Isabel

    2011-12-01

    A classical approach to the many-body problem is that of using special perturbation methods. Nowadays and due to the availability of high-speed computers is an essential tool in Space Dynamics which exhibits a great advantage: it is applicable to any orbit involving any number of bodies and all sorts of astrodynamical problems, especially when these problems fall into regions in which general perturbation theories are absent. One such case is, for example, that Near Earth Objects (NEO's) dynamics. In this field, the Group of Tether Dynamics of UPM (GDT) has developed a new regularisation scheme - called DROMO - which is characterised by only 8 ODE. This new regularisation scheme allows a new approach to the dynamics of NEO's in the long term, specially appropriated to consider the influence of the anisotropic thermal emission (Yarkovsky and YORP effects) on the dynamics. A new project, called NEODROMO, has been started in GDT that aims to provide a reliable tool for the long term dynamics of NEO's.

  19. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  20. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  1. Earth rotation excitation mechanisms derived from geodetic space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  2. Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.

    2004-01-01

    The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.

  3. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  4. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  5. Value of Earth Observation for Risk Mitigation

    NASA Astrophysics Data System (ADS)

    Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.

    2017-12-01

    Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.

  6. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project

  7. Space-based infrared near-Earth asteroid survey simulation

    NASA Astrophysics Data System (ADS)

    Tedesco, Edward F.; Muinonen, Karri; Price, Stephan D.

    2000-08-01

    We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth's orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth's Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish

  8. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  9. How to Communicate Near Earth Objects with the Public - Klet Observatory Experience

    NASA Astrophysics Data System (ADS)

    Ticha, Jana; Tichy, Milos; Kocer, Michal

    2015-08-01

    Near-Earth Object (NEO) research is counted among the most popular parts of communicating astronomy with the public. Increasing research results in the field of Near-Earth Objects as well as impact hazard investigations cause growing interest among general public and media. Furthermore NEO related issues have outstanding educational value. So thus communicating NEO detection, NEO characterization, possible impact effects, space missions to NEOs, ways of mitigation and impact warnings with the public and media belong to the most important tasks of scientists and research institutions.Our institution represents an unique liaison of the small professional research institution devoted especially to NEO studies (the Klet Observatory, Czech Republic) and the educational and public outreach branch (the Observatory and Planetarium Ceske Budejovice, Czech Republic). This all has been giving us an excellent opportunity for bringing NEO information to wider audience. We have been obtaining a wide experience in communicating NEOs with the public more than twenty years.There is a wide spectrum of public outreach tools aimed to NEO research and hazard. As the most useful ones we consider two special on-line magazines (e-zins) devoted to asteroids (www.planetky.cz) and comets (www.komety.cz) in Czech language, educational multimedia presentations for schools at different levels in planetarium, summer excursions for wide public just at the Klet Observatory on the top of the Klet mountain, public lectures, meetings and exhibitions. It seems to be very contributing and favoured by public to have opportunities for more or less informal meetings just with NEO researchers from time to time. Very important part of NEO public outreach consists of continuous contact with journalists and media including press releases, interviews, news, periodical programs. An increasing role of social media is taken into account through Facebook and Twitter profiles.The essential goal of all mentioned NEO

  10. Looking at Earth observation impacts with fresh eyes: a Landsat example

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoting; Snyder, Greg; Quirk, Bruce; Stensaas, Greg; Vadnais, Carolyn; Babcock, Michael; Dale, Erin; Doucette, Peter

    2016-05-01

    The U. S. Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) activity in the Land Remote Sensing (LRS) program to provide a structured approach to collect, store, maintain, and analyze user requirements and Earth observing system capabilities information. RCA-EO enables the collection of information on current key Earth observation products, services, and projects, and to evaluate them at different organizational levels within an agency, in terms of how reliant they are on Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. Within the USGS, RCA-EO has engaged over 500 subject matter experts in this assessment, and evaluated the impacts of more than 1000 different Earth observing data sources on 345 key USGS products and services. This paper summarizes Landsat impacts at various levels of the organizational structure of the USGS and highlights the feedback of the subject matter experts regarding Landsat data and Landsat-derived products. This feedback is expected to inform future Landsat mission decision making. The RCA-EO approach can be applied in a much broader scope to derive comprehensive knowledge of Earth observing system usage and impacts, to inform product and service development and remote sensing technology innovation beyond the USGS.

  11. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  12. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070412 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 panorama featuring wildfires which are plaguing the Northwest and causing widespread destruction. (Note: south is at the top of the frame). The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Parts of Oregon and Washington are included in the scene. Mt. Jefferson, Three Sisters and Mt. St. Helens are all snow-capped and visible in the photo, and the Columbia River can also be delineated.

  13. Earth observation

    NASA Image and Video Library

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  14. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  15. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  16. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  17. The space shuttle payload planning working groups. Volume 7: Earth observations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Earth Observations working group of the space shuttle payload planning activity are presented. The objectives of the Earth Observation experiments are: (1) establishment of quantitative relationships between observable parameters and geophysical variables, (2) development, test, calibration, and evaluation of eventual flight instruments in experimental space flight missions, (3) demonstration of the operational utility of specific observation concepts or techniques as information inputs needed for taking actions, and (4) deployment of prototype and follow-on operational Earth Observation systems. The basic payload capability, mission duration, launch sites, inclinations, and payload limitations are defined.

  18. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  19. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  20. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  1. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  2. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  3. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  4. The Operations Security Concept for Future ESA Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bargellini, P.; Merri, M.

    2008-08-01

    Next-generation European earth observation missions will play a critical role in public safety and security infrastructures. This makes it necessary for ESA to protect the communication infrastructure of these missions in order to guarantee their service availability. In this paper, we discuss the development process for a generic earth observation security concept. This concept has been developed as part of a GMES Flight Operation Segment security study with the objective to analyse and select a number of high level security requirements for the missions. Further, we studied the impact of an implementation for these requirements on the operational infrastructure of current earth observation missions.

  5. Earth Science Observations from the International Space Station: An Overview (Invited)

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2013-12-01

    The International Space Station (ISS) provides a unique and valuable platform for observing the Earth. With its mid-inclination (~51 degree) orbit, it provides the opportunity to view most of the Earth, with data acquisition possible over a full range of local times, in an orbit that nicely complements the polar sun-synchronous orbits used for much of space-based Earth observation, and can draw on a heritage of mid-inclination observations from both free flying satellites and the Space Shuttle program. The ISS, including its component observing modules supplied by NASA's international partners, can provide needed resources and viewing opportunities by a broad range of Earth-viewing scientific instruments. In this talk, the overall picture of Earth viewing from ISS will be presented, with examples from a range of past, current, and projected sensors being shared; talks on the ISS implementation for a subset of current and projected payload will be presented in individual talks presented by their their respective teams.

  6. Earth Observation

    NASA Image and Video Library

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  7. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    PubMed

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. New Technologies and Strategies to Exploit Near Earth Asteroids for Breakthrough Space Development

    NASA Astrophysics Data System (ADS)

    Rather, John; Powell, James; Maise, George

    2010-01-01

    The past two decades have brought a profound expansion of knowledge of near earth objects (NEO). If creatively exploited, NEOs can significantly increase human safety while reducing costs of exploration and development of the moon, Mars and the solar system. Synergistically, the ability to defend the Earth from devastating impacts will become very effective. A spherical volume having a radius equivalent to the moon's orbit, 400,000 km, is visited every day by approximately ten NEOs having diameters of ~10 meters, while ~30 meter diameter encounters occur about once per month. Because these objects are usually very faint and only within detectable range for a few days, they require specialized equipment to discover them with high probability of detection and to enable accurate determination of orbital parameters. Survey systems are now being implemented that are cataloging many thousands of objects larger than 30 meters, but numerous advantages will result from extending the complete NEO census down to 10 meter diameters. The typical compositions of such NEOs will range from ~80% that are low density dust & rock ``rubble piles'' to perhaps 2% containing heavy metals-properties well known from meteorite samples. It is quite possible that there will also be some fragments of short period comets that are rich in water ice and other volatile components. In this paper we will propose a set of new technologies and strategies for exploiting NEO resources that can yield important space development breakthroughs at much lower costs than existing concepts. Solar powered ``Tugboats'' deployed at the space station can rendezvous with carefully selected NEOs and steer them into captured orbits in the lunar L4 & L5 regions. Robotic equipment will then modify them for a plethora of benefits. Notably, the problem of radiation shielding against the Van Allen belts, solar flares and cosmic rays will be solved. Free transportation from low earth orbit to the moon and beyond will be

  9. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-26

    ISS043E142265 (04/26/2015) --- NASA astronaut Scott Kelly on the International Space Station Apr.26, 2015 tweeted this image out of an Earth observation as part of his Space Geo contest "name this location" with this remark and clue: "This frozen body of water is the world's oldest (25 million years) and deepest basin on Earth. Name it!"

  10. The LCOGT near-Earth-object follow-up network

    NASA Astrophysics Data System (ADS)

    Lister, T.

    2014-07-01

    Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network that will eventually consist of over 35 telescopes at 6 locations in the northern and southern hemispheres [1]. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make the LCOGT network ideal for follow-up and characterization of a wide range of solar-system objects (e.g. asteroids, Kuiper-belt objects, comets) and in particular near-Earth objects (NEOs). There are 3 classes to the telescope resources: 2-meter aperture, 1-meter aperture and 0.4-meter aperture. We have been operating our two 2-meter telescopes since 2005 and began a specific program of NEO follow-up for the Pan-STARRS survey in October 2010. The combination of all-sky access, large aperture, rapid response, robotic operation and good site conditions allows us to provide time-critical follow-up astrometry and photometry on newly discovered objects and faint objects as they recede from the Earth, allowing the orbital arc to be extended and preventing loss of objects. These telescope resources have greatly increased as LCOGT has completed the first phase of the deployment, designated as ''Version 1.0'', with the installation, commissioning and ongoing operation of nine 1-meter telescopes. These are distributed among four sites with one 1-meter at McDonald Observatory (Texas), three telescopes at Cerro Tololo (Chile), three telescopes at SAAO (South Africa) and the final two telescope at Siding Spring Observatory (Australia). In addition to the 1-meter network, the scheduling and control system for the two 2-meter telescopes have been upgraded and unified with that of the 1-meter network to provide a coherent robotic telescopic network. The telescope network is now operating and observations are being executed remotely and

  11. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  12. International Space Station Earth Observations Working Group

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  13. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  14. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo, D.; Jones, T.; Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; hide

    2007-01-01

    The concept of a crewed mission to a near-Earth object (NEO) has been previously analyzed several times in the past. A more in depth feasibility study has been sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the ability of a Crew Exploration Vehicle (CEV) to support a mission to a NEO. The national mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day mission, which would include a 7 to 14 day stay for proximity operations at the target NEO.

  15. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  16. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.

    2014-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  17. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  18. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070439 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above a point on Earth located at 48.0 degrees north latitude and 116.9 degrees west longitude when the image was exposed. The state of Washington is especially affected by the fires, many of which have been blamed on lightning. This particular fire was part of the Carlton Complex Fire, located near the city of Brewster in north central Washington. The reservoir visible near the center of the image is Banks Lake.

  19. Earth Observations taken by Expedition 47 Crewmember.

    NASA Image and Video Library

    2016-03-26

    ISS047e022293 (03/26/2016) --- This Earth Observation image from the International Space Station is of a large extinct volcano in the lower southwest African Brukkaros Mountain in the country of Namibia.

  20. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  1. STS-59 crewmembers in training for onboard Earth observations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  2. Sky-plane discovery rates for Near Earth Object discoveries from Pan-STARRS1 - implications for future search strategies

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.; Chambers, Kenneth C.; Chastel, Serge; Denneau, Larry; Lilly Schunova, Eva; Micheli, Marco; Weryk, Robert J.

    2016-10-01

    The Pan-STARRS1 telescope has been spending most of its time for the last 2.5 years searching the sky for Near Earth Objects (NEOs). The surveyed area covers the entire northern sky and extends south to -49 degrees declination. Because Pan-STARRS1 has a large field-of-view, it has been able survey large areas of the sky, and we are now able to examine NEO discovery rates relative to ecliptic latitude.Most contemporary searches, including Pan-STARRS1, have been spending large amounts of their observing time during the dark moon period searching for NEOs close to the ecliptic. The rationale for this is that many objects have low inclination, and all objects in orbit around the Sun must cross the ecliptic. New search capabilities are now available, including Pan-STARRS2, and the upgraded camera in Catalina Sky Survey's G96 telescope. These allow NEO searches to be conducted over wider areas of the sky, and to extend further from the ecliptic.We have examined the discovery rates relative to location on the sky for new NEOs from Pan-STARRS1, and find that the new NEO discoveries are less concentrated on the ecliptic than might be expected. This finding also holds for larger objects. The southern sky has proven to be very productive in new NEO discoveries - this is a direct consequence of the major NEO surveys being located in the northern hemisphere.Our preliminary findings suggest that NEO searches should extend to at least 30 degrees from the ecliptic during the more sensitive dark moon period. At least 6,000 deg2 should therefore be searched each lunation. This is possible with the newly augmented NEO search assets, and repeat coverage will be needed in order to recover most of the NEO candidates found. However, weather challenges will likely make full and repeated coverage of such a large area of sky difficult to achieve. Some simple coordination between observing sites will likely lead to improvement in efficiency.

  3. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  4. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  5. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  6. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  7. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  8. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  9. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  10. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley J.; Olson, Valerie A.; Trenchard, Mike; Willis, Kim; Baskin, Pam; Ritsher, Jennifer Boyd

    2006-01-01

    To provide for the well-being of crewmembers on future exploration missions, understanding how space station crewmembers handle the inherently stressful isolation and confinement during long-duration missions is important. A recent retrospective survey of previously flown astronauts found that the most commonly reported psychologically enriching aspects of spaceflight had to do with their Perceptions of Earth. Crewmembers onboard the International Space Station (ISS) photograph Earth through the station windows. Some of these photographs are in response to requests from scientists on the ground through the Crew Earth Observations (CEO) payload. Other photographs taken by crewmembers have not been in response to these formal requests. The automatically recorded data from the camera provides a dataset that can be used to test hypotheses about factors correlated with self-initiated crewmember photography. The present study used objective in-flight data to corroborate the previous questionnaire finding and to further investigate the nature of voluntary Earth-Observation activity. We examined the distribution of photographs with respect to time, crew, and subject matter. We also determined whether the frequency fluctuated in conjunction with major mission events such as vehicle dockings, and extra-vehicular activities (EVAs, or spacewalks), relative to the norm for the relevant crew. We also examined the influence of geographic and temporal patterns on frequency of Earth photography activities. We tested the hypotheses that there would be peak photography intensity over locations of personal interest, and on weekends. From December 2001 through October 2005 (Expeditions 4-11) crewmembers took 144,180 photographs of Earth with time and date automatically recorded by the camera. Of the time-stamped photographs, 84.5% were crew-initiated, and not in response to CEO requests. Preliminary analysis indicated some phasing in patterns of photography during the course of a

  11. Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent; Mink, Ronald; Adamo, Daniel

    2011-01-01

    Near-Earth Asteroids (NEAs) have been identified by the current administration as potential destinations for human explorers during the mid-2020s. While the close proximity of these objects' orbits to Earth's orbit creates a risk of highly damaging or catastrophic impacts, it also makes some of these objects particularly accessible to spacecraft departing Earth, and this presents unique opportunities for solar system science and humanity's first ventures beyond cislunar space. Planning such ambitious missions first requires the selection of potentially accessible targets from the growing population of nearly 7,800 NEAs. To accomplish this, NASA is conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS). Phase I of the NHATS was executed during September of 2010, and Phase II was completed by early March of 2011. The study is ongoing because previously undetected NEAs are being discovered constantly, which has motivated an effort to automate the analysis algorithms in order to provide continuous monitoring of NEA accessibility. The NHATS analysis process consists of a trajectory filter and a minimum maximum estimated size criterion. The trajectory filter employs the method of embedded trajectory grids to compute all possible ballistic round-trip mission trajectories to every NEA in the Jet Propulsion Laboratory (JPL) Small-Body Database (SBDB) and stores all solutions that satisfy the trajectory filter criteria. An NEA must offer at least one qualifying trajectory solution to pass the trajectory filter. The Phase II NHATS filter criteria were purposely chosen to be highly inclusive, requiring Earth departure date between January 1st, 2015 and December 31st, 2040, total round-trip flight time <= 450 days, stay time at the NEA >= 8 days, Earth departure C(sub 3) energy <= 60 km(exp 2)/s(exp 2), total mission delta-v <= 12 km/s (including an Earth departure maneuver from a 400 km altitude circular parking orbit), and a maximum

  12. "New Space Explosion" and Earth Observing System Capabilities

    NASA Astrophysics Data System (ADS)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  13. Finding Long Lost Lexell's Comet: The Fate of the First Discovered Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    2018-04-01

    Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000. This finding remains valid even if a moderate non-gravitational effect is imposed. Messier’s observations also suggest that the comet is one of the largest known near-Earth comets, with a nucleus of ≳10 km in diameter. This implies that the comet should have been detected by contemporary NEO surveys regardless of its activity level if it has remained in the inner solar system. We identify asteroid 2010 JL33 as a possible descendant of D/Lexell, with a 0.8% probability of chance alignment, but a direct orbital linkage of the two bodies has not been successfully accomplished. We also use the recalculated orbit to investigate the meteors potentially originating from D/Lexell. While no associated meteors have been unambiguously detected, we show that meteor observations can be used to better constrain the orbit of D/Lexell despite the comet being long lost.

  14. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  15. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case

  16. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data

  17. Aspiring to Spectral Ignorance in Earth Observation

    NASA Astrophysics Data System (ADS)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  18. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  19. Earth Observation from Space: Competition or Cooperation?

    DTIC Science & Technology

    1992-04-01

    or remote sensing from space (2). Earth observations or remote sensing includes all forms of observation by sensors borne by a space object including...3). The capabilities of remote sensing are as varied as the sensors that are built and put in orbit, but =- • I •1 capabilities fall into two...adversary or ally. For example, the ability of one nation to observe and study another through space-borne sensors permits strategic assessment of a

  20. Earth Observation

    NASA Image and Video Library

    2014-06-07

    ISS040-E-008174 (7 June 2014) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  1. Earth observations from space: History, promise, and reality. Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  2. STS-45 Earth observation of the Aurora Australis or Southern Lights

    NASA Image and Video Library

    1992-04-02

    STS-45 Earth observation taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the Aurora Australis or Southern Lights. The green appearing auroral activity engulfs the thin blue line on the Earth's limb. Aurorae were observed and photographed throughout the STS-45 nine-day mission.

  3. STS-45 Earth observation of the Aurora Australis or Southern Lights

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Earth observation taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the Aurora Australis or Southern Lights. The green appearing auroral activity engulfs the thin blue line on the Earth's limb. Aurorae were observed and photographed throughout the STS-45 nine-day mission.

  4. Global Partnership in Global Earth Observations

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Obersteiner, M.

    2007-12-01

    The emergence of a global partnership on earth observations will crucially drive the configuration of future observing systems and consequently shape how socio-economic benefits are generated. In this paper we take a game-theoretical approach to model cooperation on building global earth observation systems. We consider several societies whose economies are subject to shocks mimicking major natural disasters. Economies operate optimally and lead to the best possible expected value for the social welfares in the future. In order to increase its welfare even more society can make a decision to invest into a global alerting system which lowers the risk of disasters. We start our investigation from a single-society case and show conditions under which benefits of such investment can be reaped. The propensity to invest increases with economic affluence and degree of vulnerability to natural disasters. We find that for poor and/or less vulnerable countries it is better to forbear from investment. If to consider a situation of multiple societies a strategic gaming situation emerges motivated by the fact that every society will benefit from a global system regardless of whether they invested or not. Our analysis of possible equilibrium solutions shows that similar to the formation of trading blocks (e.g. EU, NAFTA) only in the case of similar societies we will observe cooperation behavior (when all invest) and otherwise we will observe free-riding. This insight, that we might face a prisoners dilemma problem in the formation of a GEOSS, has important implications for the GEO process.

  5. A powerful new southern hemisphere survey for near-Earth objects

    NASA Astrophysics Data System (ADS)

    Christensen, E.; Lister, T.; Larson, S.; Gibbs, A.; Grauer, A.; Hill, R.; Johnson, J.; Kowalski, R.; Sanders, R.; Shelly, F.

    2014-07-01

    For nearly a decade, the Catalina Sky Survey (CSS) operated the Siding Spring Survey (SSS) in partnership with the Australian National University. The SSS was the only professional, full-time NEO survey in the Southern Hemisphere during this period. The SSS ceased operations in July of 2013, and the lack of a full-time, state-of-the-art survey in the Southern Hemisphere leaves a significant blind spot in NASA's ongoing effort to identify and track near-Earth objects (NEOs) that may pose a hazard to the Earth, or that may be appropriate destinations for robotic or human missions. The CSS and the Las Cumbres Observatory Global Telescope Network (LCOGT) are partnering to fill this gap, by rapidly building, deploying and operating a network of three dedicated 1.0-meter survey telescopes at Cerro Tololo, one of the premiere astronomical sites in the Southern Hemisphere. The partnership between CSS and LCOGT provides a fast-track, low-risk, and cost-effective survey capability that will be fully dedicated to the NEO discovery effort. The first of three survey telescopes will be operational ˜18 months after the start of funding, with the second and third telescopes coming online within an additional ˜12 months. Our joint survey will be a powerful new NEO survey capability. The telescopes are based on the field-tested LCOGT 1.0-m design, modified to feature a faster f/1.8 primary and a prime focus camera that will deliver an 8.6 deg^2 field of view (FOV), with a resolution of 1.0 arcseconds per pixel. The three co-located telescopes will offer the operational flexibility to survey together (acting as a 1.7-m telescope), or separately (effectively delivering a 25+ deg^2 FOV), and will have no competing science goals to compromise from the primary mission of NEO discovery. The telescopes will be robotically operated, and the data will be processed, validated, and reported in near real-time from the CSS headquarters in Tucson. Same-night and subsequent night astrometric

  6. A Neo-Cognitive Dimension.

    ERIC Educational Resources Information Center

    Suarez, E. M.

    1988-01-01

    Responds to Mahoney and Lyddon's review of constructivism in previous article by focusing on developments emerged from work with Neo-Cognitive Psychotherapy that add new and necessary dimension to issues of agency and constructivism. Presents neo-cognitive view of thought and discusses the evolution of understanding. (NB)

  7. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  8. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  9. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  10. The Pan-STARRS search for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.; Weryk, Robert; Chambers, Kenneth

    2018-01-01

    The Pan-STARRS1 telescope on Haleakala, Hawaii has become the leading discovery telescope for Near-Earth Objects (NEOs), and is now responsible for discovering almost half of all new NEOs, more than half of all larger NEOs, and more than half of all new comets. The survey routinely reaches depths of V=22 or fainter (in dark sky conditions) over an area of approximately 1,000 square degrees per night. The survey strategy will be described. The survey will soon be augmented by the addition of the Pan-STARRS2 telescope, which has similar optics and an improved camera, and which will roughly double the survey power. A sample of the important recent solar system discoveries made by the Pan-STARRS survey will be summarized.

  11. NEOview: Near Earth Object Data Discovery and Query

    NASA Astrophysics Data System (ADS)

    Tibbetts, M.; Elvis, M.; Galache, J. L.; Harbo, P.; McDowell, J. C.; Rudenko, M.; Van Stone, D.; Zografou, P.

    2013-10-01

    Missions to Near Earth Objects (NEOs) figure prominently in NASA's Flexible Path approach to human space exploration. NEOs offer insight into both the origins of the Solar System and of life, as well as a source of materials for future missions. With NEOview scientists can locate NEO datasets, explore metadata provided by the archives, and query or combine disparate NEO datasets in the search for NEO candidates for exploration. NEOview is a software system that illustrates how standards-based interfaces facilitate NEO data discovery and research. NEOview software follows a client-server architecture. The server is a configurable implementation of the International Virtual Observatory Alliance (IVOA) Table Access Protocol (TAP), a general interface for tabular data access, that can be deployed as a front end to existing NEO datasets. The TAP client, seleste, is a graphical interface that provides intuitive means of discovering NEO providers, exploring dataset metadata to identify fields of interest, and constructing queries to retrieve or combine data. It features a powerful, graphical query builder capable of easing the user's introduction to table searches. Through science use cases, NEOview demonstrates how potential targets for NEO rendezvous could be identified by combining data from complementary sources. Through deployment and operations, it has been shown that the software components are data independent and configurable to many different data servers. As such, NEOview's TAP server and seleste TAP client can be used to create a seamless environment for data discovery and exploration for tabular data in any astronomical archive.

  12. On the existence of near-Earth-object meteoroid complexes producing meteorites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J.; Madiedo, J.; Williams, I.

    2014-07-01

    It is generally thought that meteorites are formed as a result of collisions within the main belt of asteroids [1]. They are delivered onto Earth-crossing orbits because of the effects of orbital resonances, primarily with Jupiter. About 15 meteorites are known where their passage through the atmosphere was observed and recorded, allowing the parameters of the pre-encounter orbit to be derived [2]. The cosmic-ray-exposure ages (CREAs) are suggesting that most meteorites have been exposed to cosmic rays for tens of millions of years (Myrs) [3], re-enforcing the belief that the process of modifying the orbit from being near-circular in the main belt to highly elliptical as an Earth-crossing orbit was a gradual process like the effects of resonance. However, there is growing evidence that some meteorite could originate directly from the near-Earth-object (NEO) population. A good example of this is the recent discovery of rare primitive groups in the Antarctic, an example being Elephant Moraine (EET) 96026: a C4/5 carbonaceous chondrite with a measured cosmic ray exposure age of only 0.28 Ma [4]. Here, we focus on recent dynamic links that have been established between meteorite-dropping bolides and NEOs that support the idea of short-life meteoroid streams that can generate meteoroids on Earth. The fact that such streams can exist allows rocky material from potentially-hazardous asteroids (PHA) to be sampled and investigated in the laboratory. The existence of meteoroid streams capable of producing meteorites has been proposed following the determination of accurate meteoroid orbits of fireballs obtained by the Canadian Meteorite Observation and Recovery Project (MORP) [5]. Some asteroids in the Earth's vicinity are undergoing both dynamical and collisional evolution on very short timescales [6]. Many of these objects are crumbly bodies that originated from the collisions between main-belt asteroids during their life-time. An obvious method of forming these complexes

  13. Earth Observation

    NASA Image and Video Library

    2014-06-02

    ISS040-E-006817 (2 June 2014) --- Intersecting the thin line of Earth's atmosphere, International Space Station solar array wings are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  14. Search for Near-Earth Objects with Small Aphelion Distances

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    2004-01-01

    Progress for the period 13 July 2003 through 11 August 2004 is reported. Report topics include personnel, NEO follow-up astrometry, and the continued search for near-Earth asteroids with small aphelion distances.

  15. Planning for the Global Earth Observation System of Systems (GEOSS)

    USGS Publications Warehouse

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Geodetic Earth Observation

    NASA Astrophysics Data System (ADS)

    Rothacher, Markus

    2017-04-01

    Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.

  17. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  18. On NEO Threat Mitigation (Preprint)

    DTIC Science & Technology

    2007-10-15

    Yucatan event is at least a major contributor, if not the direct cause of the extinction of the dinosaurs . Moreover, it is clear that NEO impacts can... extinction of the human race. The probability of these events decreases with the severity of the impact, and size (mass) of the NEO. Figure 1 and Table 1...thus, it is more reasonable to infer that all the large NEOs can be catalogued within a reasonable time, while smaller and less consequential

  19. Earth Observation

    NASA Image and Video Library

    2013-05-19

    ISS036-E-002224 (21 May 2013) --- The sun is captured in a "starburst" mode over Earth's horizon by one of the Expedition 36 crew members as the orbital outpost was above a point in southwestern Minnesota on May 21, 2013.

  20. Effects of positive impression management on the NEO Personality Inventory--Revised in a clinical population.

    PubMed

    Ballenger, J F; Caldwell-Andrews, A; Baer, R A

    2001-06-01

    Sixty adults in outpatient psychotherapy completed the NEO Personality Inventory--Revised (NEO PI-R, P. T. Costa & R. R. McCrae, 1992a). Half were instructed to fake good and half were given standard instructions. All completed the Interpersonal Adjective Scale--Revised, Big Five (J. S. Wiggins & P. D. Trapnell, 1997) under standard instructions, and their therapists completed the observer rating form of the NEO Five-Factor Inventory. A comparison group of 30 students completed the NEO PI-R under standard instructions. Standard and fake-good participants obtained significantly different NEO PI-R domain scores. Correlations between the NEO PI-R and criterion measures were significantly lower for faking than for standard patients. Validity scales for the NEO PI-R (J. A. Schinka, B. N. Kinder, & T. Kremer, 1997) were moderately accurate in discriminating faking from standard patients, but were only marginally accurate in discriminating faking patients from students.

  1. How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max

    2015-08-01

    The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current

  2. Feasibility study for near-earth-object tracking by a piggybacked micro-satellite with penetrators

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Leung, W.; Yung, K. L.

    2010-05-01

    As of August 2007, over 5000 near-earth-objects (NEO) have been discovered. Some already represent a potential danger to the Earth while others might become hazards in the future. The Planetary Society organised in 2007 the "Apophis Mission Design Competition" in response to this potential threat with the objective to identify promising concepts to track NEOs; the asteroid 99942 Apophis was taken as the study case. This paper describes the "Houyi" proposal which was evaluated by the competition jury as an innovative approach to this problem. Instead of launching a large satellite for NEO tracking, this novel concept proposes a miniaturized satellite that is piggybacked onto a larger (scientific) mission. Such mission design would drastically reduce the costs for NEO surveillance. The presented scenario uses the ESA's SOLO mission as a design baseline for the piggyback option. This paper summarizes the architecture of this CubeSat towards Apophis and extends the previous study by focusing on the feasibility of a piggybacked mission in terms of propulsion requirements.

  3. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  4. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  5. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  6. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2013-02-14

    ISS034-E-48455 (14 Feb. 2013) --- Looking out at Earth?s surface from the International Space Station (ISS), astronauts and cosmonauts frequently observe sunglint highlighting both ocean and inland water surfaces. The Atlantic Ocean, including Cape Cod Bay and Buzzards Bay, along the coastlines of Massachusetts and Rhode Island, has a burnished, mirror-like appearance in this image. This is due to sunlight reflected off the water surface back towards the station crew member who took the photo. The peak reflection point is towards the right side of the image, lending the waters of Long Island Sound and the upper Massachusetts coastline an even brighter appearance. Sunglint also illuminates the surface waters of Chesapeake Bay, located over 400 kilometers (250 miles) to the southwest of the tip of Long Island. This suggests that the Sun was low on the horizon due to the observed extent of the sunglint effect. The time of image acquisition, approximately 4:26 p.m. Eastern Standard Time, was about one hour before local sunset. There is little in this image to indicate that the region was still recovering from a major winter storm that dropped almost one meter (three feet) of snow over much of the northeastern USA less than a week earlier. The high viewing angle from the space station also allows Earth?s curvature, or limb, to be seen; blue atmospheric layers gradually fade into the darkness of space across the top part of the image. Low clouds near Cape Cod, Long Island, and further down the Atlantic coastline cast shadows over the water surfaces, reducing the sunglint in some areas.

  7. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trilling, David E.; Mommert, Michael; Hora, Joseph

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. Wemore » present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.« less

  8. Visible Wavelength Reflectance Spectra and Taxonomies of Near-Earth Objects from Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Brucker, Melissa J.; Nault, Kristie A.; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    Near-Earth Objects (NEOs) are interesting to scientists and the general public for diverse reasons: their impacts pose a threat to life and property; they present important albeit biased records of the formation and evolution of the Solar System; and their materials may provide in situ resources for future space exploration and habitation.In January 2015 we began a program of NEO astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our 500 hours of annual observing time are split into frequent, short astrometric runs (see poster by K. A. Nault et. al), and half-night runs devoted to physical characterization (see poster by M. J. Brucker et. al for preliminary rotational lightcurve results). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph (DIS) instrument. As of August 25, 2015, including testing runs during fourth quarter 2014, we have obtained reflectance spectra of 68 unique NEOs, ranging in diameter from approximately 5m to 8km.In addition to investigating the compositions of individual NEOs to inform impact hazard and space resource evaluations, we may examine the distribution of taxonomic types and potential trends with other physical and orbital properties. For example, the Yarkovsky effect, which is dependent on asteroid shape, mass, rotation, and thermal characteristics, is believed to dominate other dynamical effects in driving the delivery of small NEOs from the main asteroid belt. Studies of the taxonomic distribution of a large sample of NEOs of a wide range of sizes will test this hypothesis.We present a preliminary analysis of the reflectance spectra obtained in our survey to date, including taxonomic classifications and potential trends with size.Acknowledgements: Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which

  9. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  10. Quantifying the risk posed by potential Earth impacts

    NASA Technical Reports Server (NTRS)

    Chesley, S. R.; Chodas, P. W.; Harris, A. W.; Milani, A.; Valsecchi, G. B.; Yeomans, D. K.

    2001-01-01

    Predictions of future potential Earth impacts by near-Earth objects (NEOs) have become commonplace in recent years, and the rate of these detections is likely to accelerate as asteroid survey efforts continue to mature. In this paper we describe the metrics introduced, and we give numerous examples of their application. This enables us to establish in rough terms the levels at which events become interesting to various parties.

  11. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  12. Earth observing system - Concepts and implementation strategy

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  13. US data policy for Earth observation from space

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    Distribution of data from U.S. Earth observations satellites is subject to different data policies and regulations depending on whether the systems in question are operational or experimental. Specific laws, regulations, and policies are in place for the distribution of satellite data from the National Oceanic and Atmospheric Administration (NOAA) operational environmental satellites and from NASA experimental systems. There is a government wide policy for exchange of data for global change research. For the Earth Observing System (EOS) and its international partner programs, a set of data exchange principles is nearing completion. The debate over the future of the LANDSAT program in the U.S. will impact policy for the programs, but the outcome of the debate is not yet known.

  14. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015342 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  15. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015335 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  16. A sample return mission to a pristine NEO submitted to ESA CV 2015-2025

    NASA Astrophysics Data System (ADS)

    Michel, P.; Barucci, A.

    2007-08-01

    ESA Cosmic Vision 2015-2025 aims at furthering Europe's achievements in space science, for the benefit of all mankind. ESA' multinational Space Science Advisory Committee prepared the final plan, which contains a selection of themes and priorities. In the theme concerning how the Solar System works, a Near-Earth Object (NEO) sample return mission is indicated among the priorities. Indeed, small bodies, as primitive leftover building blocks of the Solar System formation process, offer clues to the chemical mixture from which the planets formed some 4.6 billion years ago. The Near Earth Objects (NEOs) are representative of the population of asteroids and dead comets and are thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets. NEOs are thus fundamentally interesting and highly accessible targets for scientific research and space missions. A sample return space mission to a pristine NEO has thus been proposed in partnership with the Japanese Space Agency JAXA, involving a large European community of scientists. The principal objectives are to obtained crucial information about 1) the properties of the building blocks of the terrestrial planets; 2) the major events (e.g. agglomeration, heating, ... .) which ruled the history of planetesimals; 3) the properties of primitive asteroids which may contain presolar material unknown in meteoritic samples; 4) the organics in primitive materials; 5) the initial conditions and evolution history of the solar nebula; and 6) on the potential origin of molecules necessary for life. This project appears clearly to have the potential to revolutionize our understanding of primitive materials. It involves a main spacescraft which will allow the determination of important physical properties of the target (shape, mass, crater distribution . . . ) and which will take samples by a touch-and-go procedure, a Lander for in-situ investigation of the sampling site, and sampling depending on

  17. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  18. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  19. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  20. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015355 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at bottom center) were recorded in a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  1. Earth Observation

    NASA Image and Video Library

    2013-06-13

    ISS036-E-007619 (13 June 2013) --- To a crew member aboard the International Space Station, the home planet is seen from many different angles and perspectives, as evdenced by this Expedition 36 image of Earth's atmophere partially obscured by one of the orbital outpost's solar panels.

  2. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  3. Neo-oogenesis in mammals.

    PubMed

    Porras-Gómez, Tania Janeth; Moreno-Mendoza, Norma

    2017-08-01

    Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.

  4. NextGEOSS: The Next Generation Data Hub For Earth Observations

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  5. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  6. Lagrange Point Missions: the Key to Next-Generation Integrated Earth Observations. DSCOVR Innovation

    NASA Astrophysics Data System (ADS)

    Valero, F. P. J.

    2016-12-01

    From L-1 DSCOVR is capable of new, unique observations potentially conducive to a deeper scientific understanding of the Earth sciences. At L-1 and L-2 the net gravitational pull of the Earth and Sun equals the centripetal force required to orbit the Sun with the same period as the Earth. Satellites at or near L-1 and L-2 keep the same position relative to the Sun and the Earth. DSCOVR does not orbit the Earth but the Sun in synchronism with Earth, acts like a planetoid (orbits the Sun in the ecliptic plane) while acquiring integrated plus spatially and time resolved scientific data as Earth rotates around its axis. Because of the planet's axial tilt relative to the ecliptic plane, the Polar Regions are visible during local summer from L-1 and local winter from L-2 (Fig. 1). DSCOVR's synoptic and continuous observations solve most of the temporal and spatial limitations associated with low Earth (LEO) and Geostationary (GEO) orbits. Two observatories, one at L-1 (daytime) and one at L-2 (nighttime), would acquire minute-by-minute climate quality data for essentially every point on Earth. The integration of L-1, L-2, LEO, and GEO satellites plus the Moon offers new scientific tools and enriched data sets for Earth sciences. Lagrange points observatories are key to next-generation integrated Earth observations. For example, DSCOVR at L-1 views the Earth plus the Moon (a reference) and simultaneously, at one time or another, all LEO and GEO satellites. The L-1 and L-2 satellites would be the link between the Moon, LEO and GEO satellites while providing the data needed to build an integrated Earth observational system. The above properties are the bases for DSCOVR's innovation and scientific approach that systematically observes climate drivers (radiation, aerosols, ozone, clouds, water vapor, vegetation) from L-1 in a way not possible but synergistic with other satellites. Next step: more capable L-1 plus L-2 satellites. The way of the future.

  7. Earth Observation

    NASA Image and Video Library

    2013-07-04

    ISS036-E-015354 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at lower left) were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  8. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  9. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  10. Observations of Near-Earth Asteroids in Polarized Light

    NASA Astrophysics Data System (ADS)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  11. Earth Observation

    NASA Image and Video Library

    2014-06-14

    ISS040-E-011868 (14 June 2014) --- The dark waters of the Salton Sea stand out against neighboring cultivation and desert sands in the middle of the Southern California desert, as photographed by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station on June 14, 2014.

  12. Physical characterization of Near Earth Objects with Spitzer

    NASA Astrophysics Data System (ADS)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  13. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  14. PôDET: A Centre for Earth Dynamical Environment

    NASA Astrophysics Data System (ADS)

    Hestroffer, D.; Deleflie, F.

    2013-11-01

    The monitoring of the Earth space environment has gained some importance these last decades, in particular at the European level, partly because the phenomenon which origin come from space can have socio-economic consequences; and also because our understanding of those phenomenon - their associated prediction and risks - is still limited. For instance, the Space Situational Awareness programme (SSA) at ESA has set up in 2013 a centre and network for aspects connected to space debris (SST), to space weather (SW), and to near-Earth objects (NEO). At IMCCE, the Pôle sur la dynamique de l'environnement terrestre} (PODET, \\url{podet.imcce.fr}) for the Earth dynamical environment is studying effects and prediction for natural and artificial objects gravitating in the Earth vicinity. These studies englobe near-Earth objects, asteroids, comets, meteoroids, meteorite streams, and space debris. For all object types that are concerned, a general scheme of a functional analysis has been developed. It encompasses data acquisition with dedicated observations--essentially astrometric--or database queries, orbit determination or adjustment, prediction and ephemerides, and eventually impact probability computation and data dissemination. We develop here the general context of this action, the PôDET project, its scientific objectives, interaction with other disciplines, and the development in progress for dedicated tools.

  15. Role of light satellites in the high-resolution Earth observation domain

    NASA Astrophysics Data System (ADS)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  16. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  17. The orbit and size distribution of small Solar System objects orbiting the Sun interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Zavodny, Maximilian; Jedicke, Robert; Beshore, Edward C.; Bernardi, Fabrizio; Larson, Stephen

    2008-12-01

    We present the first observational measurement of the orbit and size distribution of small Solar System objects whose orbits are wholly interior to the Earth's (Inner Earth Objects, IEOs, with aphelion <0.983 AU). We show that we are able to model the detections of near-Earth objects (NEO) by the Catalina Sky Survey (CSS) using a detailed parameterization of the CSS survey cadence and detection efficiencies as implemented within the Jedicke et al. [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.M., Bottke, W.F., 2003. Icarus 161, 17-33] survey simulator and utilizing the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] model of the NEO population's size and orbit distribution. We then show that the CSS detections of 4 IEOs are consistent with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] IEO model. Observational selection effects for the IEOs discovered by the CSS were then determined using the survey simulator in order to calculate the corrected number and H distribution of the IEOs. The actual number of IEOs with H<18 (21) is 36±26 ( 530±240) and the slope of the H magnitude distribution ( ∝10) for the IEOs is α=0.44-0.22+0.23. The slope is consistent with previous measurements for the NEO population of α=0.35±0.02 [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and α=0.39±0.013 [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311]. Based on the agreement between the predicted and observed IEO orbit and absolute magnitude distributions there is no indication of any non-gravitational effects (e.g. Yarkovsky, tidal disruption) affecting the known IEO population.

  18. Earth Observation

    NASA Image and Video Library

    2013-07-03

    ISS036-E-015292 (3 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 3-4 by the Expedition 36 crew members aboard the International Space Station. This image was recorded on July 3.

  19. An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Barbee, Brent W.

    2015-01-01

    This paper presents the results of a NASA Innovative Advanced Concept (NIAC) Phase 2 study entitled "An Innovative Solution to NASA's Near-Earth Object (NEO) Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development." This NIAC Phase 2 study was conducted at the Asteroid Deflection Research Center (ADRC) of Iowa State University in 2012-2014. The study objective was to develop an innovative yet practically implementable mitigation strategy for the most probable impact threat of an asteroid or comet with short warning time (< 5 years). The mitigation strategy described in this paper is intended to optimally reduce the severity and catastrophic damage of the NEO impact event, especially when we don't have sufficient warning times for non-disruptive deflection of a hazardous NEO. This paper provides an executive summary of the NIAC Phase 2 study results. Detailed technical descriptions of the study results are provided in a separate final technical report, which can be downloaded from the ADRC website (www.adrc.iastate.edu).

  20. ASTER, a multinational Earth observing concept

    NASA Technical Reports Server (NTRS)

    Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.

    1993-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.

  1. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  2. Earth observation taken by the Expedition 42 crew

    NASA Image and Video Library

    2015-03-02

    ISS042E311037 (03/02/2015) --- A waning sun, splayed its light across the planet and created this serene scene. US astronauts aboard the International Space Station snapped this Earth Observation on Mar 2, 2015.

  3. Towards a Preservation Content Standard for Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Lowe, Dawn; Murphy, Kevin

    2017-01-01

    Information from Earth observing missions (remote sensing with airborne and spaceborne instruments, and in situ measurements such as those from field campaigns) is proliferating in the world. Many agencies across the globe are generating important datasets by collecting measurements from instruments on board aircraft and spacecraft, globally and constantly. The data resulting from such measurements are a valuable resource that needs to be preserved for the benefit of future generations. These observations are the primary record of the Earths environment and therefore are the key to understanding how conditions in the future will compare to conditions today. Earth science observational data, derived products and models are used to answer key questions of global significance. In the near-term, as long as the missions data are being used actively for scientific research, it continues to be important to provide easy access to the data and services commensurate with current information technology. For the longer term, when the focus of the research community shifts toward new missions and observations, it is essential to preserve the previous mission data and associated information. This will enable a new user in the future to understand how the data were used for deriving information, knowledge and policy recommendations and to repeat the experiment to ascertain the validity and possible limitations of conclusions reached in the past and to provide confidence in long term trends that depended on data from multiple missions. Organizations that collect, process, and utilize Earth observation data today have a responsibility to ensure that the data and associated content continue to be preserved by them or are gathered and handed off to other organizations for preservation for the benefit of future generations. In order to ensure preservation of complete content necessary for understanding and reusing the data and derived digital products from todays missions, it is

  4. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2016-12-01

    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  5. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  7. Earth Observation Research for GMES Initial Operations

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  8. Debiased orbit and absolute-magnitude distributions for near-Earth objects

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Beshore, Edward; Vokrouhlický, David; Nesvorný, David; Michel, Patrick

    2018-09-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies of individual NEOs and more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis, eccentricity, inclination, and absolute magnitude H in the range 17 < H < 25. The modeling approach improves upon the methodology originally developed by Bottke et al. (2000, Science 288, 2190-2194) in that it is, for example, based on more realistic orbit distributions and uses source-specific absolute-magnitude distributions that allow for a power-law slope that varies with H. We divide the main asteroid belt into six different entrance routes or regions (ER) to the NEO region: the ν6, 3:1J, 5:2J and 2:1J resonance complexes as well as Hungarias and Phocaeas. In addition we include the Jupiter-family comets as the primary cometary source of NEOs. We calibrate the model against NEO detections by Catalina Sky Surveys' stations 703 and G96 during 2005-2012, and utilize the complementary nature of these two systems to quantify the systematic uncertainties associated to the resulting model. We find that the (fitted) H distributions have significant differences, although most of them show a minimum power-law slope at H ∼ 20. As a consequence of the differences between the ER-specific H distributions we find significant variations in, for example, the NEO orbit distribution, average lifetime, and the relative contribution of different ERs as a function of H. The most important ERs are the ν6 and 3:1J resonance complexes with JFCs contributing a few percent of NEOs on average. A significant contribution from the Hungaria group leads to notable changes compared to the predictions by Bottke et al. in, for example, the orbit distribution and average lifetime of NEOs. We predict that there are 962-56+52 (802-42+48

  9. Earth Observation

    NASA Image and Video Library

    2014-08-10

    ISS040-E-091158 (10 Aug. 2014) --- One of the Expedition 40 crew members 225 nautical miles above Earth onboard the International Space Station used a 200mm lens to record this image of Hawke's Bay, New Zealand on Aug. 10, 2014. Napier and the bay area's most populous area are at bottom center of the frame.

  10. Earth Observations taken by Expedition 47 Crewmember

    NASA Image and Video Library

    2016-03-14

    ISS047e007765 (03/14/2016) --- Using special cameras and Chronophotography aboard the International Space Station, crew members of Expedition 47 during Earth observations capture awesome beauty . This nighttime image shows an approaching lightning storm on the left. The gold and red aurora act as a frame to this display of natures wonders.

  11. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  12. Sharing Earth Observation Data When Health Management

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2015-12-01

    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  13. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  14. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  15. Asteroid Redirect Mission - Next Major stepping-stone to Human Exploration of NEOs and beyond

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalia

    2016-07-01

    In response to NASA's Asteroid Initiative, an Asteroid Redirect and Robotic Mission (ARRM) is being studied by a NASA cohort, led by JPL, to enable the capture a multi-ton boulder from the surface of a Near-Earth Asteroid and return it to cislunar space for subsequent human and robotic exploration. The mission would boost our understanding of NEOs and develop technological capabilities for Planetary Defense, shall a NEO come up on a collision course. The benefits of this mission can extend our capabilities to explore farther into space, as well as create a new commercial sector in Space Mining, which would make materials in Space available for our use. ARRM would leverage and advance current knowledge of higher-efficiency propulsion systems with a new Solar Electric Propulsion demonstration (similar to that on the Dawn spacecraft) to be incorporated into future Mars Missions.

  16. STS-4 earth observations from space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 earth observations from space. Views include both Florida coasts, with Cape Canaveral visible at the center of the frame. The photo was exposed through the aft window on the flight deck of the Columbia. The vertical tail and both orbital maneuvering systems (OMS) pods are visible in the foreground. Other features on the Earth which are visible include Tampa Bay and several lakes, including Apopka, Tohopekaliga, East Tahopekaliga, Harris, Cypress and a number of small reservoirs (33223); This is a north-easterly looking view toward California's Pacific Coast. The coastal area covered includes San Diego northward to Pismo Beach. Los Angeles is near center. The arc of the Temblor-Tehachapi-Sierra Nevada surrounds the San Joaquin Valley at left. The Mojave desert lies between the San Andres and Garlock Faults (33224); Mexico's Baja California and Sonora state are visible in the STS-4 frame. The islands of Angel de la Guardia and Tiburon stand out above and right of center. Low clouds

  17. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2017-12-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  18. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.; hide

    2017-01-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  19. Earth Observation

    NASA Image and Video Library

    2013-08-29

    ISS036-E-038117 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.2 degrees west longitude.

  20. Earth Observation

    NASA Image and Video Library

    2013-08-29

    ISS036-E-038114 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.3 degrees west longitude.

  1. Earth Observations taken by the Expedition 39 Crew

    NASA Image and Video Library

    2014-04-10

    Earth observation taken by the Expedition 39 crew aboard the ISS. A portion of the docked Soyuz TMA-11M spacecraft is in view. Image was released by astronaut on Instagram and downlinked in folder: Personal photos and the Maldive islands.

  2. Project NEO Specific Impulse Testing Solutions

    NASA Technical Reports Server (NTRS)

    Baffa, Bill

    2018-01-01

    The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.

  3. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  4. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Earth observations and photography experiment: Summary of significant results

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    Observation and photographic data from the Apollo Soyuz Test Project are analyzed. The discussion is structured according to the fields of investigation including: geology, desert studies, oceanography, hydrology, and meteorology. The data were obtained by: (1) visual observations of selected Earth features, (2) hand-held camera photography to document observations, and (3) stereo mapping photography of areas of significant scientific interest.

  6. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  7. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small

  8. Near-Earth Asteroids Astrometry with Gaia

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2011-05-01

    Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error

  9. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  10. Earth Observation

    NASA Image and Video Library

    2014-07-25

    ISS040-E-081008 (25 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 225 nautical miles above Earth, photographed this image of the Tifernine dunes and the Tassili Najjer Mountains in Algeria. The area is about 800 miles south, southeast of Algiers, the capital of Algeria. The dunes are in excess of 1,000 feet in height.

  11. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  12. Earth Observations for Global Water Security

    NASA Technical Reports Server (NTRS)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  13. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    NASA Astrophysics Data System (ADS)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  14. Decision-making contexts involving Earth observations in federal and state government agencies

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Thompson, A.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. One of the Consortium's activities is a set of Policy Briefs that document the use of Earth observations for decision making in federal and state government agencies. In developing these Policy Briefs, we pay special attention to documenting the entire information value chain associated with the use of Earth observations in government decision making, namely (a) the specific data product, modeling capability, or information system used by the agency, (b) the decision context that employs the Earth observation information and translates it into an agency action, (c) the outcomes that are realized as a result of the action, and (d) the beneficiaries associated with the outcomes of the decision. Two key examples include the use of satellite data for informing the US Drought Monitor (USDM), which is used to determine the eligibility of agricultural communities for drought disaster assistance programs housed at the US Department of Agriculture (USDA), and the use of satellite data by the Florida Department of Environmental Protection to develop numeric nutrient water quality standards and monitoring methods for chlorophyll-a, which is codified in Florida state code (62-302.532).

  15. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  16. Earth Observation

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too

  17. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  18. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-10

    ISS043E184521 (05/10/2015) --- NASA astronaut Terry Virts Expedition 43 Commander on the International Space Station tweeted this Earth observation image of South America with the following comment: "Salar de Uyuni in the #Bolivia desert #SouthAmerica. The world's largest salt flat".

  19. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  20. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  1. Landsat Celebrates 40 Years of Observing Earth

    NASA Image and Video Library

    2017-12-08

    An artist's rendition of the next Landsat satellite, the Landsat Data Continuity Mission (LDCM) that will launch in Feb. 2013. Credit: NASA The Landsat program is the longest continuous global record of Earth observations from space – ever. Since its first satellite went up in the summer of 1972, Landsat has been looking at our planet. The view of Earth that this 40-year satellite program has recorded allows scientists to see, in ways they never imagined, how the Earth's surface has transformed, over time. In the 1970s Landsat captured the first views from space of the Amazonian rainforest and continued to track the area year after year after year, giving the world an unprecedented view of systemic and rapid deforestation. This view from space let us see an activity that was taking place in an exceptionally remote part of our world. These now iconic-images of tropical deforestation spurred the global environmental community to rally in an unprecedented way, and resulted in worldwide attention and action. To read more go to: www.nasa.gov/mission_pages/landsat/news/landsat-history.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  3. Earth's Bow Shock: Elapsed-Time Observations by Two Closely Spaced Satellites.

    PubMed

    Greenstadt, E W; Green, I M; Colburn, D S

    1968-11-22

    Coordinated observations of the earth's bow shock were made as Vela 3A and Explorer 33 passed within 6 earth radii of each other. Elapsed time measurements of shock motion give directly determined velocities in the range 1 to 10 kilometers per second and establish the existence of two regions, one of large amplitude magnetic "shock" oscillations and another of smaller, sunward, upstream oscillations. Each region is as thick as 1 earth radius, or more.

  4. Earth Atmosphere Observations taken by the Expedition 35 Crew

    NASA Image and Video Library

    2013-04-03

    Earth atmosphere observation taken by the Expedition 35 crew aboard the ISS. The colors roughly denote the layers of the atmosphere (the orange troposphere, the white stratosphere, and the blue mesosphere).

  5. ESA's Earth observation priority research objectives and satellite instrument requirements

    NASA Astrophysics Data System (ADS)

    Reynolds, M. L.

    2018-04-01

    Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.

  6. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  7. Radar observations of near-Earth asteroids from Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  8. Properties of Earth's temporarily-captured flybys

    NASA Astrophysics Data System (ADS)

    Fedorets, Grigori; Granvik, Mikael

    2014-11-01

    In addition to the Moon, a population of small temporarily-captured NEOs is predicted to orbit the Earth. The definition of a natural Earth satellite is that it is on an elliptic geocentric orbit within 0.03 au from the Earth. The population is further divided into temporarily-captured orbiters (TCOs, or minimoons, making at least one full revolution around the Earth in a coordinate system co-rotating with the Sun) and temporarily-captured flybys (TCFs) which fail to make a full revolution, but are temporarily on an elliptic orbit around the Earth. Only one minimoon has been discovered to date, but it is expected that next generation surveys will be able to detect these objects regularly.Granvik et al. (2012) performed an extensive analysis of the behaviour of these temporarily-captured objects. One of the main results was that at any given moment there is at least one 1-meter-diameter minimoon in orbit around the Earth. However, the results of Granvik et al. (2012) raised questions considering the NES population such as the bimodality of the capture duration distribution and a distinctive lack of test particles within Earth's Hill sphere, which requires investigating the statistical properties also of the TCF population.In this work we confirm the population characteristics for minimoons described by Granvik et al. (2012), and extend the analysis to TCFs. For the calculations we use a Bulirsch-Stoer integrator implemented in the OpenOrb software package (Granvik et al. 2009). We study, e.g., the capture statistics, residence-time distributions, and steady-state properties of TCFs. Our preliminary results indicate that TCFs may be suitable targets for asteroid-redirect missions. More detailed knowledge of the TCF population will also improve our understanding of the link between temporarily-captured objects and NEOs in general.References: Granvik et al. (2009) MPS 44(12), 1853-1861; Granvik et al. (2012) Icarus 218, 262-277.

  9. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  10. Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Veres, Peter

    2017-01-01

    This report describes the methodology and results of an assessment study of the performance of the Large Synoptic Survey Telescope (LSST) in its planned efforts to detect and catalog near-Earth objects (NEOs).

  11. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  12. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18086 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18087 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are just out of frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  13. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18087 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Silverwood Lake is visible at the bottom of the image. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  14. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18088 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18087 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are left and right, respectively, at bottom frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/] .

  15. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  16. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  17. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  18. The Network Structure Underlying the Earth Observation Assessment

    NASA Astrophysics Data System (ADS)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  19. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  20. Physical characterization of (333358) 2001 WN1: a large, possibly water-rich, low delta-V near-Earth asteroid.

    NASA Astrophysics Data System (ADS)

    Hicks, M.; Dombroski, D.

    2012-12-01

    The near-Earth asteroid (333358) 2001 WN1 was discovered on 2001 November 17 by the LINEAR NEO survey (MPEC 2001-W30). We obtained one night of Bessel BVRI on 2012 November 25 at the JPL Table Mountain Observatory (TMO) 0.6-m telescope. The observational circumstances are summarized in Table 1, with heliocentric, geocentric, solar phase angle, lunar elongation, and expected V magnitude as computed by the JPL HORIZONS ephemeris service.

  1. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  2. VenSAR on EnVision: Taking earth observation radar to Venus

    NASA Astrophysics Data System (ADS)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  3. The Role of Earth Observations in "Valuing" Resources and the Environment

    NASA Astrophysics Data System (ADS)

    MacAuley, M.

    2007-12-01

    A wide range of decisionmakers and analysts, including government and industry resource managers, financial lenders and insurers, ecologists, conservationists, and economists have long struggled with how to ascribe "value" to environmental resources. Despite other differences among these experts, all agree that accurate measures of the physical status of resources are essential as a basis for valuation. Earth observations from space offer some of these measures and as a result, are becoming an essential component of valuation-oriented resource management. This paper illustrates the use of earth observations in two growing applications: payments for environmental services and index insurance for livestock and agriculture. These applications are taking place both in the United States and in an increasing number of other countries. The paper also highlights issues of concern about these uses of earth observations, including short- and long-term availability of data and quality of data. These concerns call into question the viability of building valuation approaches upon a mere assumption of data supply.

  4. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  5. Earth Observations

    NASA Image and Video Library

    2011-05-28

    ISS028-E-006059 (28 May 2011) --- One of the Expedition 28 crew members, photographing Earth images onboard the International Space Station while docked with the space shuttle Endeavour and flying at an altitude of just under 220 miles, captured this frame of the Salton Sea. The body of water, easily identifiable from low orbit spacecraft, is a saline, endorheic rift lake located directly on the San Andreas Fault. The agricultural area is within the Coachella Valley.

  6. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  7. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  8. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  9. Extending Value of Information Methods to Include the Co-Net Benefits of Earth Observations

    NASA Astrophysics Data System (ADS)

    Macauley, M.

    2015-12-01

    The widening relevance of Earth observations information across the spectrum of natural and environmental resources markedly enhances the value of these observations. An example is observations of forest extent, species composition, health, and change; this information can help in assessing carbon sequestration, biodiversity and habitat, watershed management, fuelwood potential, and other ecosystem services as well as inform the opportunity cost of forest removal for alternative land use such as agriculture, pasture, or development. These "stacked" indicators or co- net benefits add significant value to Earth observations. In part because of reliance on case studies, much previous research about the value of information from Earth observations has assessed individual applications rather than aggregate across applications, thus tending to undervalue the observations. Aggregating across applications is difficult, however, because it requires common units of measurement: controlling for spatial, spectral, and temporal attributes of the observations; and consistent application of value of information techniques. This paper will discuss general principles of co-net benefit aggregation and illustrate its application to attributing value to Earth observations.

  10. The complex of robotic telescopes for observation of Earth's artificial satellites and near-Earth objects

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.; Kozyrev, E. S.; Kovalchuk, A. N.; Chernozub, V. M.; Sibiryakova, E. S.; Bochkarev, A. B.; Lopachenko, V. V.; Ryhalsky, V. V.

    2010-05-01

    Modern tasks for orbit control of the Earth artificial satellites and objects approaching the Earth define high requirements to ground-based telescopes, which have to be equipped with fast objectives, CCD cameras with a chip size not less than two inches. The CCD camera has to work in different modes. The telescopes must be fully robotized, and have a control system with remote operation and alert mode. In cooperation between RI NAO and NSFCTC, the upgrade of the AZT-8 classical telescope, belonging to NSFCTC, was made. Two telescopes of original design, namely the Fast Robotic Telescope (FRT) and the Mobile Telescope (MobiTel) were made in RI NAO. The telescopes are equipped with absolute angle encoders, CCD cameras with Kodak KAF-09000 chips, GPS time service, robotic drives and an automatic control system. The telescope features, such as a telescope name, f-number, chip name and operating modes, pixel numbers, field of view, pixel sizes, pixel scale, limiting magnitude, the standard deviation are given in the following list: 1) AZT-8(NSFCTC), 0.7/2.8 m, FLI PL09000 stare, 3056x3056, 45x45', 12x12 μm, 0.9"/pix, 20m, 0.05"/0.15"; 2) FRT (NAO), 0.3/1.5 m, Alta U9000stare and drift-scan, 3056x3056, 1°24'x1°24', 12x12 μm, 1.6"/pix, 18m, 0.15"/0.40"; 3) MobiTel-0.5(NAO), 0.5/3.0 m, Alta U9000stare and drift-scan,3056x3056, 42x42, 12x12μm, 0.8"/pix, 19m,0.0"05"/0".15"; 4) MobiTel-0.3(NAO), 0.3/0.75 m, Alta U9000 stare and drift-scan, 3056x3056, 2°48x2°48', 12x12 μm, 3.2"/pix, 18 m, 0.20"/0.45". The telescopes are actively used for control of the near-Earth space as well as for the solution of problems connected with thepotentially hazardous asteroids and comets approaching the Earth. Combination of classical and original methods of observations allows us to carry out virtually any observing programme. Considering objects at geostationary orbits and at highly elliptical orbits, we are able to carry out the following types of observations: massive

  11. Earth Observation

    NASA Image and Video Library

    2013-06-17

    ISS036-E-009405 (17 June 2013) --- One of the Expedition 36 crew members aboard the International Space Station, some 240 miles above Earth, used a 50mm lens to record this oblique nighttime image of a large part of the nation’s second largest state in area, including the four largest metropolitan areas in population. The extent of the metropolitan areas is easily visible at night due to city and highway lights. The largest metro area, Dallas-Fort Worth, often referred to informally as the Metroplex, is the heavily cloud-covered area at the top center of the photo. Neighboring Oklahoma, on the north side of the Red River, less than 100 miles to the north of the Metroplex, appears to be experiencing thunderstorms. The Houston metropolitan area, including the coastal city of Galveston, is at lower right. To the east near the Texas border with Louisiana, the metropolitan area of Beaumont-Port Arthur appears as a smaller blotch of light, also hugging the coast of the Texas Gulf. Moving inland to the left side of the picture one can delineate the San Antonio metro area. The capital city of Austin can be seen to the northeast of San Antonio. This and hundreds of thousands of other Earth photos taken by astronauts and cosmonauts over the past 50 years are available on http://eol.jsc.nasa.gov

  12. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  13. Near-Earth Asteroid Physical Observations: 1993-1995

    NASA Astrophysics Data System (ADS)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  14. Earth Observation

    NASA Image and Video Library

    2014-07-15

    ISS040-E-063578 (15 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, flying some 225 nautical miles above the Caribbean Sea in the early morning hours of July 15, photographed this north-looking panorama that includes parts of Cuba, the Bahamas and Florida, and even runs into several other areas in the southeastern U.S. The long stretch of lights to the left of center frame gives the shape of Miami.

  15. Optimal Fragmentation and Dispersion of Hazardous Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2012-01-01

    The complex problem of protecting the Earth from the possibility of a catastrophic impact by a hazardous near-Earth object (NEO) has been recently reassessed in [1]. In a letter on NEOs from the White House Office of Science and Technology Policy (OSTP) to the U.S. Senate and Congress in 2010, the White House OSTP strongly recommended that NASA take the lead in conducting research activities for NEO detection, characterization, and deflection technologies. Furthermore, President Obama's new National Space Policy specifically directs NASA to "pursue capabilities, in cooperation with other departments, agencies, and commercial partners, to detect, track, catalog, and characterize NEOs to reduce the risk of harm to humans from an unexpected impact on our planet." The Planetary Defense Task Force of the NASA Advisory Council also recommended that the NASA Office of the Chief Technologist (OCT) begin efforts to investigate asteroid deflection techniques. With national interest growing in the United States, the NEO threat detection and mitigation problem was recently identified as one of NASA's Space Technology Grand Challenges. An innovative solution to NASA's NEO Impact Threat Mitigation Grand Challenge problem was developed through a NIAC Phase I study (9/16/11 - 9/15/12), and it will be further investigated for a NIAC Phase II study (9/10/12 - 9/9/14). Various NEO deflection technologies, including nuclear explosions, kinetic impactors, and slow-pull gravity tractors, have been proposed and examined during the past two decades. Still, there is no consensus on how to reliably deflect or disrupt hazardous NEOs in a timely manner. It is expected that the most probable mission scenarios will have a mission lead time much shorter than 10 years, so the use of nuclear explosives becomes the most feasible method for planetary defense. Direct intercept missions with a short warning time will result in arrival closing velocities of 10-30 kilometers per second with respect to

  16. STS-34 earth observations

    NASA Image and Video Library

    1989-10-20

    STS034-44-023 (20 Oct. 1989) --- The Southern Lights or Aurora Australis were photographed by the STS-34 crewmembers aboard the Earth-orbiting Space Shuttle Atlantis. From the Shuttle astronauts can photograph expanses of auroras, an advantage over scientists on Earth who can only get small sections at a time in a frame of photography. The space position allows for large-scale changes. This scene was one of 26 shown to the press by the five STS-34 crewmembers at their post-flight press conference.

  17. Earth observation taken by the Expedition 43 crew.

    NASA Image and Video Library

    2015-03-13

    Earth observation taken during a day pass by the Expedition 43 crew aboard the International Space Station (ISS). Sent as part of Twitter message: #HappyStPatrickDay with best wishes from the #E43 crew! From space you can see the “Emerald Isle” is very green!

  18. Earth's colour unchanged since 1967: results from earthshine observations

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Flynn, Chris; Gleisner, Hans; Schwarz, Henriette

    2014-05-01

    The colour of Earthlight is a function of atmospheric, surface and ocean conditions because each scatters light in a characteristic way. The colour of Earth can in principle be determined and monitored from satellites - but geostationary satellites do not observe in multiple visual bands, and low Earth orbit platforms do not provide instantaneous colour pictures of the terrestrial disc. Observations of the dark side of the Moon - illuminated by earthlight - can be used to determine the terrestrial colour, and was done accurately in 1967 with astronomical photometric techniques. Until now, such techniques have not been re-applied. We report on multi-band visual photometry of the earthshine in 2011/2012. Scattered light in the atmosphere and the equipment is a difficult issue to circumvent - but for a unique pair of observations in the Johnson B and V bands we have a situation where scattered light cancels closely and thus we can estimate the Johnson B-V colours of the earthshine itself. By arguing on the basis of changes in reflected sunlight we can estimate the colour of the earthlight striking the Moon - and hence the colour of the Earth at that particular time. We find good agreement with the a measurement performed 47 years previously, and broad agreement with historic measurements from the 1920s and 30s. This similarity has fundamental consequences for the climate system feedback mechanisms, discussed in this poster.

  19. Direct estimation of tidally induced Earth rotation variations observed by VLBI

    NASA Astrophysics Data System (ADS)

    Englich, S.; Heinkelmann, R.; BOHM, J.; Schuh, H.

    2009-09-01

    The subject of our study is the investigation of periodical variations induced by solid Earth tides and ocean tides in Earth rotation parameters (ERP: polar motion, UT1)observed by VLBI. There are two strategies to determine the amplitudes and phases of Earth rotation variations from observations of space geodetic techniques. The common way is to derive time series of Earth rotation parameters first and to estimate amplitudes and phases in a second step. Results obtained by this means were shown in previous studies for zonal tidal variations (Englich et al.; 2008a) and variations caused by ocean tides (Englich et al.; 2008b). The alternative method is to estimate the tidal parameters directly within the VLBI data analysis procedure together with other parameters such as station coordinates, tropospheric delays, clocks etc. The purpose of this work was the application of this direct method to a combined VLBI data analysis using the software packages OCCAM (Version 6.1, Gauss-Markov-Model) and DOGSCS (Gerstl et al.; 2001). The theoretical basis and the preparatory steps for the implementation of this approach are presented here.

  20. GEOCAB Portal: A gateway for discovering and accessing capacity building resources in Earth Observation

    NASA Astrophysics Data System (ADS)

    Desconnets, Jean-Christophe; Giuliani, Gregory; Guigoz, Yaniss; Lacroix, Pierre; Mlisa, Andiswa; Noort, Mark; Ray, Nicolas; Searby, Nancy D.

    2017-02-01

    The discovery of and access to capacity building resources are often essential to conduct environmental projects based on Earth Observation (EO) resources, whether they are Earth Observation products, methodological tools, techniques, organizations that impart training in these techniques or even projects that have shown practical achievements. Recognizing this opportunity and need, the European Commission through two FP7 projects jointly with the Group on Earth Observations (GEO) teamed up with the Committee on Earth observation Satellites (CEOS). The Global Earth Observation CApacity Building (GEOCAB) portal aims at compiling all current capacity building efforts on the use of EO data for societal benefits into an easily updateable and user-friendly portal. GEOCAB offers a faceted search to improve user discovery experience with a fully interactive world map with all inventoried projects and activities. This paper focuses on the conceptual framework used to implement the underlying platform. An ISO19115 metadata model associated with a terminological repository are the core elements that provide a semantic search application and an interoperable discovery service. The organization and the contribution of different user communities to ensure the management and the update of the content of GEOCAB are addressed.

  1. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  2. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  3. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18082 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18078, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  4. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18078 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18082, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  5. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    NASA Astrophysics Data System (ADS)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  6. Using Earth Observation to Forecast Human and Animal Vector-Borne Disease Outbreaks

    USDA-ARS?s Scientific Manuscript database

    Earth observing technologies, including data from with earth-orbiting satellites, coupled with new investigations and a better understanding of the impact of environmental factors on transmission dynamics of mosquito-borne diseases permitted us to forecast Rift Valley fever (RVF) outbreaks in animal...

  7. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  8. NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2017-12-01

    Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.

  9. Earth Observation

    NASA Image and Video Library

    2012-07-10

    ISS032-E-006129 (10 July 2012) --- Flooding in Krymsk in the Krasnodar region of southern Russia is featured in this image photographed by an Expedition 32 crew member on the International Space Station. On the night of July 7, 2012 a major storm dumped more than a foot of water on the southern Russian area of Krasnodar, near the Black Sea. The resulting flood was likened to a tsunami, and to date, more than 170 people died, most from the city of Krymsk. The Moscow times reports that more than 19,000 people lost everything. This image taken by cosmonauts aboard the space station shows the city of Krymsk. The tan-colored areas indicate some of the regions that were flooded; the color is probably due to the mud and debris that were left by the floodwaters. Krymsk is located in the western foothills on the northern slope of the Caucasus Mountains?a range that stretches between the Black Sea and the Caspian Sea. The vast amount of rain quickly overwhelmed the small river channels that flow northward from the mountains to the Russian lowlands and the Kuban River; Krymsk, located on one of those tributaries, was directly in the pathway of the flash flood. As part of the international partner agreement to use the International Space Station to benefit humanity, crew members and other Earth observing instruments provide best-effort support to the International Disaster Charter (IDC) when it is activated by collecting imagery of areas on the ground impacted by natural events such as the flooding in Krymsk. This image was acquired July 10, 2012 in response to the IDC activation.

  10. Observations of the earth using nighttime visible imagery

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1983-01-01

    The earth as viewed from space in visible light at night reveals some features not easily discernible during the day such as aurora, forest fires, city lights and gas flares. In addition, those features having a high albedo such as snow and ice can be identified on many moonlit nights nearly as well as they can in sunlight. The Air Force DMSP satellites have been operating in the visible wavelengths at night since the mid 1960s. Most all other satellites having optical sensors are incapable of imaging at night. Imaging systems having improved light sensitivity in the visible portion of the spectrum should be considered when planning future earth resources satellite missions in order to utilize nighttime as well as daytime visual observations.

  11. Current NEO surveys

    NASA Astrophysics Data System (ADS)

    Larson, Stephen

    2007-05-01

    The state and discovery rate of current NEO surveys reflects incremental improvements in a number of areas, such as detector size and sensitivity, computing capacity and availability of larger apertures. The result has been an increased discovery rate even with the expected reduction of objects left to discover. There are currently about 10 telescopes ranging in size from 0.5 - 1.5-meters carrying out full or part-time, regular surveying in both hemispheres. The sky is covered between 1-2 times per lunation to V~19, with a band near the ecliptic to V~20.5. We review the current survey programs and their contribution towards the Spaceguard goal of discovering at least 90% of the NEOs larger than 1 km.

  12. Earth Observations taken during mission STS-111 UF-2

    NASA Image and Video Library

    2002-06-15

    STS111-367-014 (5-19 June 2002) --- This view featuring Canadian forest fires was photographed by the STS-111 crewmembers aboard the Space Shuttle Endeavour. It represents an oblique view northward of one of the numerous fires observed and reported burning in the dry boreal forests of Saskatchewan and Manitoba during the month of June. The location of this one is roughly between Candle Lake, Saskatchewan and Lake Winnepegosis, Manitoba. The Gateway to Astronaut Photography of Earth (link to http://eol.jsc.nasa.gov/sseop/) provides searchable access to other photographs of Earth taken by astronauts.

  13. Analysis of ejecta fate from proposed man-made impactors into near-Earth objects --- a NEOShield study

    NASA Astrophysics Data System (ADS)

    Schwartz, S.; Michel, P.; Jutzi, M.

    2014-07-01

    Asteroids measuring 100 meters across tend to impact the Earth once every 5,000 years on average [1]. Smaller bodies enter into the Earth's atmosphere more frequently, but may detonate before reaching the surface. Conversely, impacts from larger bodies are more rare [2], but can come with devastating global consequences to living species. In 2005, a United States Congressional mandate called for NASA to detect, by 2020, 90 percent of near-Earth objects (NEOs) having diameters of 140 meters or greater [3]. One year prior, ESA's Near-Earth Object Mission Advisory Panel (NEOMAP) recommended the study of a kinetic impactor mission as a priority in the framework of NEO risk assessment [4]. A ''Phase-A'' study of such a mission, Don Quixote, took place at ESA until 2007. In accordance with NEOMAP and with the Target NEO Global Community's recommendations in 2011 [5], the NEOShield Project is being funded for 3.5 years by the European Commission in its FP7 program. NEOShield began in 2012 and is primarily, but not exclusively, a European consortium of research institutions and engineering industries that aims to analyze promising mitigation options and provide solutions to the critical scientific and technical obstacles involved in confronting threats posed by the small bodies in the neighborhood of the Earth's orbit [6]. To further explore the NEO threat mitigation via the strategy of kinetic impact, building upon the Don Quixote study, the idea is to target a specific NEO for impact and attempt to quantify the response. How long do ejecta remain aloft and where do they end up? Fragments that are ejected at high speeds escape, but what about material moving at or near the escape speed of the NEO or that suffer energy-dissipating collisions after being ejected? Where would be a ''safe'' location for an observing spacecraft during and subsequent to the impact? Here, we outline the early phases of an ongoing numerical investigation of the fate of the material ejected from a

  14. Neo-Liberalism in Crisis? Educational Dimensions

    ERIC Educational Resources Information Center

    Small, David

    2011-01-01

    Until the global financial crisis, neo-liberalism had appeared invincible. This article examines the global rise of neo-liberalism and its impact on education, particularly its treatment of the social democratic ideal of equality. Drawing on examples from education and other socio-political factors, it considers whether the financial crisis is…

  15. Observations of low-energy electrons upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Observations of electron fluxes with a lunar-based electron spectrometer when the moon was upstream of the earth have shown that a subset of observed fluxes are strongly controlled by the interplanetary magnetic field direction. The fluxes occur only when the IMF lines connect back to the earth's bow shock. Observed densities and temperatures were in the ranges 2-4 x 0,001/cu cm and 1.7-2.8 x 1,000,000 K. It is shown that these electrons can account for increases in effective solar wind electron temperatures on bow-shock connected field lines which have been observed previously by other investigators. It is further shown that if a model of the bow shock with an electrostatic potential barrier is assumed, the potential can be estimated to be 500 volts.

  16. Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.

  17. Nimbus earth resources observations

    NASA Technical Reports Server (NTRS)

    Sabatini, R. R.; Rabchevsky, G. A.; Sissala, J. E.

    1971-01-01

    The potential for utilizing data gathered by Nimbus satellites to study the earth surface and its physical properties is illustrated. The Nimbus data applicable to investigations of the earth and its resources, and to the problems of resolution and cloud cover are described. Geological, hydrological, and oceanographic applications are discussed. Applications of the data to other fields, such as cartography, agriculture, forestry, and urban analysis are presented. Relevant information is also given on the Nimbus orbit and experiments; surface and atmospheric effects on HRIR and THIR radiation measurements; and noise problems in the AVCS, IDCS, HRIR, and THIR data.

  18. Semantics-enabled knowledge management for global Earth observation system of systems

    NASA Astrophysics Data System (ADS)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.

    2007-10-01

    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  19. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  20. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    NASA Astrophysics Data System (ADS)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  1. Determining the Location, Number Density and Temporal Evolution of Streams of Hazardous Near-Earth Objects Using the Magnetic Signatures Produced in Destructive Collisions

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Wei, H.; Delzanno, G. L.; Connors, M. G.

    2014-12-01

    Near-Earth objects (NEOs) of tens of meters in diameter are difficult to detect by optical methods from the Earth but they result in the most damage per year. Many of these bodies are produced in non-destructive collisions with larger well-characterized NEOs. After generation, the debris spreads forward and backward in a cocoon around the orbit of the parent body. Thereafter, scattering will occur due to gravitational perturbations when the debris stream passes near a planet even when the parent body has no such close approaches. Therefore "safe" NEOs which have no close encounters to the Earth for thousands of years may be accompanied by potentially hazardous co-orbiting debris. We have developed a technique to identify co-orbiting debris by detecting the magnetic signature produced when some of the debris suffers destructive collisions with meteoroids, which are numerous and can be as small as tens of centimeters in diameter. Clouds of nanoscale dust/gas particles released in such collisions can interact coherently with the solar wind electromagnetically. The resultant magnetic perturbations are readily identified when they pass spacecraft equipped with magnetometers. We can use such observations to obtain the spatial and size distribution as well as temporal variation of the debris streams. A test of this technique has been performed and debris streams both leading and trailing asteroid 138175 have been identified. There is a finite spread across the original orbit and most of the co-orbitals were tens of meters in diameter before the disruptive collisions. We estimate that there were tens of thousands of such co-orbiting objects, comprising only 1% of the original mass of the parent asteroid but greatly increasing the impact hazard. A loss of the co-orbitals since 1970s has been inferred from observations with a decay time consistent with that calculated from the existing collisional model [Grün et al., 1985]. Therefore disruptive collisions are the main loss

  2. Using Item Response Theory to Develop a 60-Item Representation of the NEO PI-R Using the International Personality Item Pool: Development of the IPIP-NEO-60.

    PubMed

    Maples-Keller, Jessica L; Williamson, Rachel L; Sleep, Chelsea E; Carter, Nathan T; Campbell, W Keith; Miller, Joshua D

    2017-10-31

    Given advantages of freely available and modifiable measures, an increase in the use of measures developed from the International Personality Item Pool (IPIP), including the 300-item representation of the Revised NEO Personality Inventory (NEO PI-R; Costa & McCrae, 1992a ) has occurred. The focus of this study was to use item response theory to develop a 60-item, IPIP-based measure of the Five-Factor Model (FFM) that provides equal representation of the FFM facets and to test the reliability and convergent and criterion validity of this measure compared to the NEO Five Factor Inventory (NEO-FFI). In an undergraduate sample (n = 359), scores from the NEO-FFI and IPIP-NEO-60 demonstrated good reliability and convergent validity with the NEO PI-R and IPIP-NEO-300. Additionally, across criterion variables in the undergraduate sample as well as a community-based sample (n = 757), the NEO-FFI and IPIP-NEO-60 demonstrated similar nomological networks across a wide range of external variables (r ICC = .96). Finally, as expected, in an MTurk sample the IPIP-NEO-60 demonstrated advantages over the Big Five Inventory-2 (Soto & John, 2017 ; n = 342) with regard to the Agreeableness domain content. The results suggest strong reliability and validity of the IPIP-NEO-60 scores.

  3. A survey and assessment of the capabilities of Cubesats for Earth observation

    NASA Astrophysics Data System (ADS)

    Selva, Daniel; Krejci, David

    2012-05-01

    In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.

  4. Experimenting with Sensor Webs Using Earth Observing 1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2004-01-01

    The New Millennium Program (NMP) Earth Observing 1 ( EO-1) satellite was launched November 21, 2000 as a one year technology validation mission. After an almost flawless first year of operations, EO-1 continued to operate in a test bed d e to validate additional technologies and concepts that will be applicable to future sensor webs. A sensor web is a group of sensors, whether space-based, ground-based or air plane-based which act in a collaborative autonomous manner to produce more value than would otherwise result from the individual observations.

  5. Earth observations during Space Shuttle flight STS-35 - Columbia's Mission to Planet Earth, December 2-10, 1990

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Evans, Cynthia A.; Helfert, Michael R.; Brand, Vance D.; Gardner, Guy S.; Lounge, John M.; Hoffman, Jeffery A.; Parker, Robert A.; Durrance, Samuel T.; Parise, Ronald A.

    1991-01-01

    Some of the most significant earth-viewing imagery obtained during Space Shuttle Columbia's flight STS-35, December 2-10, 1990, is reviewed with emphasis on observations of the Southern Hemisphere. In particular, attention is given to environmental observations in areas of Madagascar, Brazil, and Persian Gulf; observation of land resources (Namibia, offshore Australia); and observations of ocean islands (Phillipines, Indonesia, and Reunion). Some of the photographs are included.

  6. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  7. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Momary, Thomas; Bolton, Scott; Levin, Steven; Hansen, Candice; Janssen, Michael; Adriani, Alberto; Gladstone, G. Randall; Bagenal, Fran; Ingersoll, Andrew

    2017-04-01

    The Juno mission has promoted and coordinated a network of Earth-based observations, including both Earth-proximal and ground-based facilities, to extend and enhance observations made by the Juno mission. The spectral region and timeline of all of these observations are summarized in the web site: https://www.missionjuno.swri.edu/planned-observations. Among the earliest of these were observation of Jovian auroral phenomena at X-ray, ultraviolet and infrared wavelengths and measurements of Jovian synchrotron radiation from the Earth simultaneously with the measurement of properties of the upstream solar wind. Other observations of significance to the magnetosphere measured the mass loading from Io by tracking its observed volcanic activity and the opacity of its torus. Observations of Jupiter's neutral atmosphere included observations of reflected sunlight from the near-ultraviolet through the near-infrared and thermal emission from 5 μm through the radio region. The point of these measurements is to relate properties of the deep atmosphere that are the focus of Juno's mission to the state of the "weather layer" at much higher atmospheric levels. These observations cover spectral regions not included in Juno's instrumentation, provide spatial context for Juno's often spatially limited coverage of Jupiter, and they describe the evolution of atmospheric features in time that are measured only once by Juno. We will summarize the results of measurements during the approach phase of the mission that characterized the state of the atmosphere, as well as observations made by Juno and the supporting campaign during Juno's perijoves 1 (2016 August 27), 3 (2016 December 11), 4 (2017 February 2) and possibly "early" results from 5 (2017 March 27). Besides a global network of professional astronomers, the Juno mission also benefited from the enlistment of a network of dedicated amateur astronomers who provided a quasi-continuous picture of the evolution of features observed by

  8. Building Capacity for Earth Observations in Support of the United Nations Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Blevins, B.; Prados, A. I.; Hook, E.

    2017-12-01

    The Group on Earth Observations (GEO) looks to build a future where the international community uses Earth observations to make better, informed decisions. This includes application in international agreements such as the UN Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction, and the Convention on Biological Diversity. To do this, decision makers first need to build the necessary skills. NASA's Applied Remote Sensing Training program (ARSET) seeks to build capacity through remote sensing training. In-person and online trainings raise awareness, enable data access, and demonstrate applications of Earth observations. Starting in 2017, ARSET began offering training focused on applying Earth data to the UN SDGs. These trainings offer insight into applications of satellite data in support of implementing, monitoring, and evaluating the SDGs. This presentation will provide an overview of the use of NASA satellite data to track progress towards increased food security, disaster risk reduction, and conservation of natural resources for societal benefit. It will also include a discussion on capacity building best practices and lessons learned for using Earth observations to meet SDG targets, based on feedback from engaging over 800 participants from 89 nations and 580 organizations in ARSET SDG trainings.

  9. An Information Architect's View of Earth Observations for Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Moe, K.; Evans, J. D.; Cappelaere, P. G.; Frye, S. W.; Mandl, D.; Dobbs, K. E.

    2014-12-01

    Satellite observations play a significant role in supporting disaster response and risk management, however data complexity is a barrier to broader use especially by the public. In December 2013 the Committee on Earth Observation Satellites Working Group on Information Systems and Services documented a high-level reference model for the use of Earth observation satellites and associated products to support disaster risk management within the Global Earth Observation System of Systems context. The enterprise architecture identified the important role of user access to all key functions supporting situational awareness and decision-making. This paper focuses on the need to develop actionable information products from these Earth observations to simplify the discovery, access and use of tailored products. To this end, our team has developed an Open GeoSocial API proof-of-concept for GEOSS. We envision public access to mobile apps available on smart phones using common browsers where users can set up a profile and specify a region of interest for monitoring events such as floods and landslides. Information about susceptibility and weather forecasts about flood risks can be accessed. Users can generate geo-located information and photos of local events, and these can be shared on social media. The information architecture can address usability challenges to transform sensor data into actionable information, based on the terminology of the emergency management community responsible for informing the public. This paper describes the approach to collecting relevant material from the disasters and risk management community to address the end user needs for information. The resulting information architecture addresses the structural design of the shared information in the disasters and risk management enterprise. Key challenges are organizing and labeling information to support both online user communities and machine-to-machine processing for automated product generation.

  10. Earth Observation

    NASA Image and Video Library

    2014-05-29

    ISS040-E-005979 (29 May 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 200mm lens to photograph this image from 222 nautical miles above Earth showing Harris County and Galveston County, Texas plus several other surrounding counties, including a long stretch along the Gulf of Mexico (bottom left). The entirety of Galveston Bay is visible at bottom center. Just below center lies the 1625-acre site of NASA's Johnson Space Center, one of the training venues for all space station crew members and the nearby long-time area of residence for NASA astronauts.

  11. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  12. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-14

    ISS043E120523 (04/14/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this earth observation image out on Apr. 14, 2015 as part of his Space Geo contest of "name this location": Scott tweeted this comment and clue: "#SpaceGeo! In 1962, former Astronaut John Glenn's Friendship 7 Mercury landed in this vicinity. Name it!"

  13. Earth observation taken by the Expedition 46 crew

    NASA Image and Video Library

    2016-01-23

    ISS046e021993 (01/23/2016) --- Earth observation of the coast of Oman taken during a night pass by the Expedition 46 crew aboard the International Space Station. NASA astronaut Tim Kopra tweeted this image out with this message: "Passing over the Gulf of #Oman at night -- city lights of #Muscat #Dubai #AbuDhabi and #Doha in the distance".

  14. STS-56 ESC Earth observation of New Zealand (South Island)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows New Zealand (South Island) as recorded on the 45th orbit of Discovery, Orbiter Vehicle (OV) 103. Westport is easily delineated in the image, which was recorded by the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates are 41.836 degrees south latitude and 171.641 degrees east longitude. (300mm lens, no filter). Digital file name is ESC07007.IMG.

  15. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-21

    ISS043E128768 (04/21/2015) --- NASA astronaut Scott Kelly on the International Space Station May 6, 2015 tweeted this image out of an Earth observation as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo! A serpent is known for deceptive traits, but don’t let this snake pull the wool over your eyes. Name it!” Congratulations to @splinesmith for correctly identifying this image first, : #BighornRiver Montana/Wyoming named in 1805 for Bighorn sheep along its banks. He will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: http://www.nasa.gov/feature/where-over-the-world-is-astronaut-scott-kelly

  16. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  17. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  18. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  19. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  20. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  1. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  2. Information Requirements for Integrating Spatially Discrete, Feature-Based Earth Observations

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Hsu, L.; Song, L.; Zaslavsky, I.; Valentine, D. L.

    2014-12-01

    Several cyberinfrastructures have emerged for sharing observational data collected at densely sampled and/or highly instrumented field sites. These include the CUAHSI Hydrologic Information System (HIS), the Critical Zone Observatory Integrated Data Management System (CZOData), the Integrated Earth Data Applications (IEDA) and EarthChem system, and the Integrated Ocean Observing System (IOOS). These systems rely on standard data encodings and, in some cases, standard semantics for classes of geoscience data. Their focus is on sharing data on the Internet via web services in domain specific encodings or markup languages. While they have made progress in making data available, it still takes investigators significant effort to discover and access datasets from multiple repositories because of inconsistencies in the way domain systems describe, encode, and share data. Yet, there are many scenarios that require efficient integration of these data types across different domains. For example, understanding a soil profile's geochemical response to extreme weather events requires integration of hydrologic and atmospheric time series with geochemical data from soil samples collected over various depth intervals from soil cores or pits at different positions on a landscape. Integrated access to and analysis of data for such studies are hindered because common characteristics of data, including time, location, provenance, methods, and units are described differently within different systems. Integration requires syntactic and semantic translations that can be manual, error-prone, and lossy. We report information requirements identified as part of our work to define an information model for a broad class of earth science data - i.e., spatially-discrete, feature-based earth observations resulting from in-situ sensors and environmental samples. We sought to answer the question: "What information must accompany observational data for them to be archivable and discoverable within

  3. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  4. Coordinating an Autonomous Earth-Observing Sensorweb

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth; hide

    2006-01-01

    A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

  5. Earth Observation from Space - The Issue of Environmental Sustainability

    NASA Technical Reports Server (NTRS)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  6. Revised NEO Personality Inventory normative data for police officer selection.

    PubMed

    Detrick, Paul; Chibnall, John T

    2013-11-01

    The Revised NEO Personality Inventory (NEO PI-R) has demonstrated utility in the personnel selection context. Its use in police officer selection has been relatively limited, in part, because there are no published normative data for the NEO PI-R for police officer applicants. The authors present normative data on NEO PI-R domain and facet scores for a large sample (N = 288) of police officer applicants in a large, urban, Midwestern police department who completed the NEO PI-R as part of a preemployment psychological evaluation. Applicants reported low levels of Neuroticism and high levels of Extraversion and Conscientiousness. Neuroticism and Conscientiousness scores were strongly and consistently correlated with the Positive Presentation Management (PPM) research validity scale of the NEO PI-R. Extraversion and Agreeableness scores were moderately and less consistently correlated with PPM. These data may serve as a normative comparison group for professionals and researchers who use or may want to use the NEO PI-R in the police officer selection context.

  7. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  8. Assessing adolescents' personality with the NEO PI-R.

    PubMed

    De Fruyt, F; Mervielde, I; Hoekstra, H A; Rolland, J P

    2000-12-01

    The suitability of the Revised NEO Personality Inventory (NEO PI-R) to assess adolescents' personality traits was investigated in an unselected heterogeneous sample of 469 adolescents aged 12 to 17 years. They were further administered the Hierarchical Personality Inventory for Children (HiPIC) to allow an examination of convergent and discriminant validity. The adult NEO PI-R factor structure proved to be highly replicable in the sample of adolescents, with all facet scales primarily loading on the expected factors, independent of the age group. Domain and facet internal consistency coefficients were comparable to those obtained in adult samples, with less than 12% of the items showing corrected item-facet correlations below absolute value .20. Although, in general, adolescents reported few difficulties with the comprehensibility of the items, they tend to report more problems with the Openness to Ideas (05) and Openness to Values (06) items. Correlations between NEO PI-R and HiPIC scales underscored the convergent and discriminant validity of the NEO facets and HiPIC scales. It was concluded that the NEO PI-R in its present form is useful for assessing adolescents' traits at the primary level, but additional research is necessary to infer the most appropriate facet level structure.

  9. Earth Observation

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018729 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are just below center frame on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  10. Earth Observation

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018725 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring most of the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are in lower right portion of the image on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  11. Earth Observation

    NASA Image and Video Library

    2013-07-31

    ISS036-E-027014 (31 July 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station, as it was passing over Eastern Europe on July 31, 2013, took this night picture looking toward the Mediterranean Sea, which almost blends into the horizon. Also visible are the Aegean Sea, Adriatic Sea and Mediterranean Sea. Parts of the following countries are among those visible as well: Greece, Italy, Sicily, Bulgaria, Serbia, Croatia and Albania. The high oblique 50mm lens shot includes a number of stars in the late July sky. A solar array panel is visible in the darkness on the right side of the frame.

  12. A decision analysis approach for risk management of near-earth objects

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Jones, Thomas D.; Chapman, Clark R.

    2014-10-01

    timing of informing the public. The analytical aspects of decision analysis center on estimation of the expected value (i.e. utility) of different alternatives. The expected value of an alternative is a function of the probability-weighted consequences, estimated using Bayesian calculations in a decision tree or influence diagram model. The result is a set of expected-value estimates for all alternatives evaluated that enables a ranking; the higher the expected value, the more preferred the alternative. A common way to include resource limitations is by framing the decision analysis in the context of economics (e.g., cost-effectiveness analysis). An important aspect of decision analysis in the NEO risk management case is the ability, known as sensitivity analysis, to examine the effect of parameter uncertainty upon decisions. The simplest way to evaluate uncertainty associated with the information used in a decision analysis is to adjust the input values one at a time (or simultaneously) to examine how the results change. Monte Carlo simulations can be used to adjust the inputs over ranges or distributions of values; statistical means then are used to determine the most influential variables. These techniques yield a measure known as the expected value of imperfect information. This value is highly informative, because it allows the decision-maker with imperfect information to evaluate the impact of using experiments, tests, or data collection (e.g. Earth-based observations, space-based remote sensing, etc.) to refine judgments; and indeed to estimate how much should be spent to reduce uncertainty.

  13. Russian-Cuban Colocation Station for Radio Astronomical Observation and Monitoring of Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Uratsuka, M.-R.; Ipatov, A. V.; Marshalov, D. A.; Shuygina, N. V.; Vasilyev, M. V.; Gayazov, I. S.; Ilyin, G. N.; Bondarenko, Yu. S.; Melnikov, A. E.; Suvorkin, V. V.

    2018-04-01

    The article presents the main possibilities of using the projected Russian-Cuban geodynamic colocation station on the basis of the Institute of Geophysics and Astronomy of the Ministry of Science, Technology and the Environment of the Republic of Cuba to carry out radio observations and monitoring the near-Earth space. Potential capabilities of the station are considered for providing various observational programs: astrophysical observations; observations by space geodesy methods using radio very long baselines interferometers, global navigation satellite systems, laser rangers, and various Doppler systems, as well as monitoring of artificial and natural bodies in the near-Earth and deep space, including the ranging of asteroids approaching the Earth. The results of modeling the observations on the planned station are compared with that obtained on the existing geodynamic stations. The efficiency of the projected Russian-Cuban station for solving astronomical tasks is considered.

  14. Earth Observations taken by Expedition 47 Crewmember.

    NASA Image and Video Library

    2016-03-26

    ISS047e022280 (03/26/2016) --- This interesting Earth observation image from the International Space Station seems an abstract painting but is really the outskirts of the Namib Desert in southwest Africa. One of the oldest and largest deserts in the world, the Namib stretches inland from the Atlantic Ocean, covering large swathes of Namibia and parts of Angola and South Africa. This arid hotspot surprisingly supports a diverse number of plants and animals, some of which are found nowhere else in the world.

  15. Earth observation archive activities at DRA Farnborough

    NASA Technical Reports Server (NTRS)

    Palmer, M. D.; Williams, J. M.

    1993-01-01

    Space Sector, Defence Research Agency (DRA), Farnborough have been actively involved in the acquisition and processing of Earth Observation data for over 15 years. During that time an archive of over 20,000 items has been built up. This paper describes the major archive activities, including: operation and maintenance of the main DRA Archive, the development of a prototype Optical Disc Archive System (ODAS), the catalog systems in use at DRA, the UK Processing and Archive Facility for ERS-1 data, and future plans for archiving activities.

  16. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  17. The Catalina Sky Survey for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Christensen, E.

    The Catalina Sky Survey (CSS) specializes in the detection of the closest transients in our transient universe: near-Earth objects (NEOs). CSS is the leading NEO survey program since 2005, with a discovery rate of 500-600 NEOs per year. This rate is set to substantially increase starting in 2014 with the deployment of wider FOV cameras at both survey telescopes, while a proposed 3-telescope system in Chile would provide a new and significant capability in the Southern Hemisphere beginning as early as 2015. Elements contributing to the success of CSS may be applied to other surveys, and include 1) Real-time processing, identification, and reporting of interesting transients; 2) Human-assisted validation to ensure a clean transient stream that is efficient to the limits of the system (˜ 1σ); 3) an integrated follow-up capability to ensure threshold or high-priority transients are properly confirmed and followed up. Additionally, the open-source nature of the CSS data enables considerable secondary science (i.e. CRTS), and CSS continues to pursue collaborations to maximize the utility of the data.

  18. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  19. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  20. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.