Sample records for earth observatory satellite

  1. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  2. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  3. Sensor lighting considerations for earth observatory satellite missions

    NASA Technical Reports Server (NTRS)

    Cooley, J. L.

    1972-01-01

    Facets of sensor lighting conditions for Earth observatory satellite missions are considered. Assuming onboard sensors of a given width viewing perpendicular to the subsatellite ground track along sun-synchronous orbits with various nodes, the ground trace of the ends of the sensor coverage were found, as well as the variation in solar illumination on the ground across the line covered by the sensor during the day for any point along the orbit. The changes with season and variation during the year were also found.

  4. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  5. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  6. Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.

  7. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  8. Earth Observatory Satellite system definition study. Report no. 4: Management approach recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A management approach for the Earth Observatory Satellite (EOS) which will meet the challenge of a constrained cost environment is presented. Areas of consideration are contracting techniques, test philosophy, reliability and quality assurance requirements, commonality options, and documentation and control requirements. The various functional areas which were examined for cost reduction possibilities are identified. The recommended management approach is developed to show the primary and alternative methods.

  9. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  10. Instrument constraints and interface specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.

  11. A study to define meteorological uses and performance requirements for the Synchronous Earth Observatory Satellite

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.; Krauss, R. J.; Barber, D.; Levanon, N.; Martin, D. W.; Mclellan, D. W.; Sikdar, D. N.; Sromovsky, L. A.; Branch, D.; Heinricy, D.

    1973-01-01

    The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters.

  12. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.

  13. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report. Appendixes A through D

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.

  14. Earth Observatory Satellite system definition study. Report 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.

  15. Affordable Earth Observatories for Developing Countries

    NASA Astrophysics Data System (ADS)

    Meurer, R. H.

    Traditionally high cost has been the principal impediment to developing nations desiring to pursue space programs. More particularly, the benefits derivable from a space system have been less than adequate to justify the investment required. Chief among the causes has been the inability of the system to produce results with sufficient direct economic value to the peoples of their countries. Over the past 15 years, however, "the Microspace Revolution" has resulted in dramatic reductions in the cost of space systems, while at the same time technology has improved to provide greater capabilities in the smallest micro- and nano-class1 satellites. Because of these advances, it behooves developing nations to reevaluate space as an option for their national development. This paper summarizes two new micro-satellite concepts - NanoObservatoryTM and MicroObservatoryTM that offer the prom- ise of a dedicated Earth remote sensing capability at costs comparable to or less than simply buying data from the best known large systems, Landsat and SPOT. Each system is defined both by its observation capabilities and technical parameters of the system's design. Moreover, the systems are characterized in terms of the other potential benefits to developing economies, i.e., education of a technical workforce or applications of Earth imagery in solving national needs. Comparisons are provided with more traditional Earth observing satellites. NanoObservatoryTM is principally intended to serve as a developmental system to build general technical expertise space technology and Earth observation. MicroObservatoryTM takes the next step by focusing on a more sophisticated optical imag- ing camera while keeping the spacecraft systems simple and affordable. For both programs, AeroAstro is working with non- profit institutions to develop a corresponding program of technical participation with the nations that elect to pursue such programs. Dependent upon current capabilities, this might include

  16. Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.

  17. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  18. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  19. Earth Observatory Satellite system definition study. Report 4: Low cost management approach and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of low cost management approaches for the development of the Earth Observatory Satellite (EOS) is presented. The factors of the program which tend to increase costs are identified. The NASA/Industry interface is stressed to show how the interface can be improved to produce reduced program costs. Techniques and examples of cost reduction which can be applied to the EOS program are tabulated. Specific recommendations for actions to be taken to reduce costs in prescribed areas are submitted.

  20. Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.

  1. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  2. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  3. Earth resources applications of the Synchronous Earth Observatory Satellite (SEOS)

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Cook, J. J.

    1973-01-01

    The results are presented of a four month study to define earth resource applications which are uniquely suited to data collection by a geosynchronous satellite. While such a satellite could also perform many of the functions of ERTS, or its low orbiting successors, those applications were considered in those situations where requirements for timely observation limit the capability of ERTS or EOS. Thus, the application presented could be used to justify a SEOS.

  4. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  5. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 1. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A listing of the Earth Observatory Satellite (EOS) candidate missions is presented for use as a baseline in describing the EOS payloads. The missions are identified in terms of first, second, and third generation payloads. The specific applications of the EOS satellites are defined. The subjects considered are: (1) orbit analysis, (2) space shuttle interfaces, (3) thematic mapping subsystem, (4) high resolution pointable imager subsystem, (5) the data collection system, (6) the synthetic aperture radar, (7) the passive multichannel microwave radiometer, and (8) the wideband communications and handling equipment. Illustrations of the satellite and launch vehicle configurations are provided. Block diagrams of the electronic circuits are included.

  6. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  7. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 4: Mission peculiar spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) peculiar spacecraft segment and associated subsystems and modules are presented. The specifications considered include the following: (1) wideband communications subsystem module, (2) mission peculiar software, (3) hydrazine propulsion subsystem module, (4) solar array assembly, and (5) the scanning spectral radiometer.

  8. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  9. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  10. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  11. Earth Observatory Satellite system definition study. Report no. 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impacts of achieving compatibility of the Earth Observatory Satellite (EOS) with the space shuttle and the potential benefits of space shuttle utilization are discussed. Mission requirements and mission suitability, including the effects of multiple spacecraft missions, are addressed for the full spectrum of the missions. Design impact is assessed primarily against Mission B, but unique requirements reflected by Mission A, B, and C are addressed. The preliminary results indicated that the resupply mission had the most pronounced impact on spacecraft design and cost. Program costs are developed for the design changes necessary to achieve EOS-B compatibility with Space Shuttle operations. Non-recurring and recurring unit costs are determined, including development, test, ground support and logistics, and integration efforts. Mission suitability is addressed in terms of performance, volume, and center of gravity compatibility with both space shuttle and conventional launch vehicle capabilities.

  12. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  13. NASA's Earth Observatory: Success Story or Work in Progress?

    NASA Astrophysics Data System (ADS)

    Herring, D. D.

    2004-12-01

    After a series of failures and setbacks in a variety of public communications strategies explored, and then despite internal pressure not to build it, a prototype for NASA's Earth Observatory (http://earthobservatory.nasa.gov) was built in the spring of 1998. With no budget and roughly one full-time equivalent (FTE) in personnel, the site was launched in April 1999. Aimed primarily at the "science attentive public," the Earth Observatory is an interactive Web-based magazine focusing on the subjects of climatic and environmental change, with an emphasis on the use of satellite remote sensors to study our planet. Within one year after launch, the site was selected by Popular Science as one of the Web's 50 best, while subscriptions jumped to about 12,000 readers worldwide. Fast forward to 2004, the Earth Observatory core team has grown to 5.5 FTE and enjoys contributions from all across the agency as well as a number of NASA-affiliated agencies and institutions. The site's success hinges on the partnerships that have grown up around it over the years. As a testament to the outstanding content published today in the Earth Observatory, the site was also selected by Scientific American as one of the Web's 50 best, and has twice been nominated by the International Academy of the Digital Arts and Sciences for their annual Webby Awards--in both the "Education" and "Science" categories--winning the Webby once and the People's Voice Award twice. Still, the Earth Observatory is a work in progress as there remain some developmental goals it has yet to attain. In this talk, site founder and Chief Editor David Herring will give a brief tour of the site while elaborating on some of its developmental history, lessons learned along the way, and a brief look ahead at some exciting new developments on its horizon.

  14. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  15. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  16. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  17. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  18. Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.

    2017-12-01

    Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.

  19. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  20. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  1. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  2. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 6: Specification for EOS Central Data Processing Facility (CDPF)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications and functions of the Central Data Processing (CDPF) Facility which supports the Earth Observatory Satellite (EOS) are discussed. The CDPF will receive the EOS sensor data and spacecraft data through the Spaceflight Tracking and Data Network (STDN) and the Operations Control Center (OCC). The CDPF will process the data and produce high density digital tapes, computer compatible tapes, film and paper print images, and other data products. The specific aspects of data inputs and data processing are identified. A block diagram of the CDPF to show the data flow and interfaces of the subsystems is provided.

  3. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities carried out by the Smithsonian Astrophysical Observatory (SAO) are described. The SAO network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics. A major program in laser upgrading continued to improve ranging accuracy and data yield. This program includes an increase in pulse repetition rate from 8 ppm to 30 ppm, a reduction in laser pulse width from 6 nsec to 2 to 3 nsec, improvements in the photoreceiver and the electronics to improve daylight ranging, and an analog pulse detection system to improve range noise and accuracy. Data processing hardware and software are discussed.

  4. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  5. Some economic benefits of a synchronous earth observatory satellite

    NASA Technical Reports Server (NTRS)

    Battacharyya, R. K.; Greenberg, J. S.; Lowe, D. S.; Sattinger, I. J.

    1974-01-01

    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution.

  6. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  7. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system trade data. Part 2: System trade studies no. 9 - 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The relative merits of several international data acquisition (IDA) alternatives for the Earth Observatory Satellite (EOS) are established and rated on a cost effectiveness basis. The primary alternatives under consideration are: (1) direct transmission to foreign ground stations, (2) a wideband video tape recorder system for collection of foreign data and processing and distribution from the United States, and (3) a tracking and data relay satellite (TDRS) system for the relay of foreign data to the United States for processing and distribution. A requirements model is established for the analysis on the basis of the heaviest concentration of agricultural areas around the world. The model, the orbit path and the constraints of EOS and data volume summaries are presented. Alternative system descriptions and costs are given in addition to cost-performance summaries.

  8. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  9. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  10. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    NASA Astrophysics Data System (ADS)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  11. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  12. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system. Part 1: System trade studies no. 1 through 8

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design requirements and associated cost impacts for using the space shuttle to deliver the Earth Observatory Satellite (EOS) are identified. The additional impact of achieving full compatibility for resupply and retrieval is considered. Based on the results of the analysis, it is concluded that the EOS-Shuttle compatibility can be realized with reasonable spacecraft weight and cost penalties. Inherent space shuttle capabilities are adequate to meet the requirements of all missions except E and F. Mission E (Tiros 0) may be accommodated by either an EOS orbit transfer capability or a tug. The tug appears to be the only viable approach to satisfying the mission F (SEOS) requirements.

  13. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  14. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  15. The Earth Synchronous Satellite Carrier Rocket,

    DTIC Science & Technology

    1984-01-26

    FOREIGN TECHNOLOGY DIVISION 0 - THE EARTH SYNCHRONOUS SATELLITE CARRIER ROCKET jJ by Zhou Yiyun ’% AR 2 1984 Approved for public-release; 84 03 01 071...I - FTD-ID(RS)T-1787-83 EDITED TRANSLATION FTD-IDCRS)T-1787-83 26 January 1984 MICROFICHE NR: FTD-84-C-000094 THE EARTH SYNCHRONOUS SATELLITE CARRIER...quality copy available. / THE EARTH SYNCHRONOUS SATELLITE CARRIER ROCKET by Zhou Yiyun Last September, the fight for the champion of the Women’s World

  16. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  17. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  18. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  19. Optical data communication for Earth observation satellite systems

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Loecherbach, E.

    1991-10-01

    The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.

  20. Al Gore attends Fall Meeting session on Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  1. NASA's Earth Observatory: 16 Years of Communicating with and for Scientists

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.; Hansen, K.; Stevens, J.

    2015-12-01

    For the past 16 years NASA's Earth Observatory website has featured stories that are driven by strong visualization and in-depth reporting and storytelling. The Earth Observatory Image of the Day is published 365 days a year and is a syndication staple for major news outlets, science-related publications, blogs and social media outlets. The daily publication pace requires that we cover a wide range of topics within NASA's portfolio of Earth science research. To meet our deadlines, and to do so competently and with the authority that a NASA-branded publication warrants, we have developed relationships with scientists from throughout the agency who both provide us with ideas for stories and review our content for accuracy. This symbiotic relationship insures that the Earth Observatory has a quality product that is syndicated, repurposed and sourced throughout popular media, resulting in science content reaching the public that might not otherwise be reported. We will discuss how we have developed our relationships and processes over the years, how we work with scientists to see the potential stories in their data, and how we package and promote these stories and visualizations for maximum exposure and reuse.

  2. Discovery of a Satellite around a Near-Earth Asteroid

    NASA Astrophysics Data System (ADS)

    1997-07-01

    In the course of the major observational programme of asteroids by the Institute of Planetary Exploration of the German Aerospace Research Establishment (DLR) [1] in Berlin, two of the staff astronomers, Stefano Mottola and Gerhard Hahn , have discovered a small satellite (moon) orbiting the asteroid (3671) Dionysus. The new measurements were obtained with the DLR CCD Camera attached at the 60-cm Bochum telescope at the ESO La Silla Observatory in Chile. This is only the second known case of an asteroid with a moon. Moons and planets Until recently, natural satellites were only known around the major planets . The Moon orbits the Earth, there are two tiny moons around Mars, each of the giant planets Jupiter, Saturn, Uranus and Neptune has many more, and even the smallest and outermost, Pluto, is accompanied by one [2]. However, the new discovery now strengthens the belief of many astronomers that some, perhaps even a substantial number of the many thousands of minor planets (asteroids) in the solar system may also possess their own moons. The first discovery of a satellite orbiting an asteroid was made by the NASA Galileo spacecraft, whose imagery, obtained during a fly-by of asteroid (253) Ida in August 1993, unveiled a small moon that has since been given the name Dactyl. (3671) Dionysus: an Earth-crossing asteroid In the framework of the DLR asteroid monitoring programme, image sequences are acquired to measure an asteroid's brightness variations caused by the changing amount of sunlight reflected from the asteroid's illuminated surface as it spins, due to its irregular shape. The brightness variations may be used to derive the asteroid's rotational properties, such as speed of rotation and spin axis orientation. Asteroid Dionysus [3] was put on the observing list because it belongs to a special class of asteroids, the members of which occasionally come very close to the Earth and have a small, but non-negligible chance of colliding with our planet. Most of

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  4. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  5. Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Jamnejad, V.; Cesarone, R.

    2003-01-01

    Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.

  6. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.

  7. European X-ray observatory satellite (Exosat)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Initially planned to be launched on the Ariane L6, the 510 kilogram European X-Ray Observatory Satellite (EXOSAT) is to be placed into orbit from Space Launch Complex 2 West by NASA's Delta 3914 launch vehicle. Objectives of the mission are to study the precise position, structure, and temporal and spectral characteristics of known X-ray sources as well as search for new sources. The spacecraft is described as well as its payload, principal subsystems, and the stages of the Delta 3914. The flight sequence of events, land launch operations are discussed. The ESA management structure for EXOSAT, the NASA/industry team, and contractors are listed.

  8. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  9. Low-Earth orbit satellite servicing economics

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Cepollina, F. J.

    1982-01-01

    Servicing economics of low Earth orbit satellites were studied. The following topics are examined: the economic importance of the repair missions; comparison of mission cost as opposed to satellite modulation transfer functions over a 10 year period; the effect of satellite flight rate change due to changes in satellite failure rate; estimated satellite cost reduction with shuttle operation projects from the 1960's to the 1970's; design objectives of the multimission modular spacecraft; and the economic importance of the repair mission.

  10. Technical Note: Estimation of Micro-Watershed Topographic Parameters Using Earth Observatory Tools

    EPA Science Inventory

    The study set out to analyze the feasibility of using Earth observatory tools to derive elevations to characterize topographic parameters of slope gradient and area useful in predicting erosion and for natural resources engineering education and instruction. Earth obseravtory too...

  11. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  12. Atronomical CCD observations of the main Saturn's satellites at Pulkovo Observatory in 2004-2007

    NASA Astrophysics Data System (ADS)

    Khrutskaya, E. V.; Kiseleva, T. P.; Izmailov, I. S.; Khovrichev, M. Yu.; Berezhnoy, A. A.

    2009-08-01

    The results of astrometric observations of Saturn’s satellites (S1-S8) obtained using a 26-inch refractor and a normal astrograph at Pulkovo Observatory in 2004-2007 are given. High-accuracy equatorial coordinates of Saturn’s satellites in the system of the UCAC2 reference catalog and the relative “satellite-satellite” positions suitable for specifying their motion theories are obtained. The observations are compared with the DE405 + TASS1.7 and INPOP06 + TASS1.7 theories of motion. The root-mean-square errors of the obtained satellite positions lie within the range of 10-50 mas, as far as the intrinsic convergence is concerned, and 20-70 mas, as far as the extrinsic one is concerned. The observation results are included into the astrometrical database of the Pulkovo Observatory ( www.puldb.ru ).

  13. Satellite-tracking and earth-dynamics research programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The activities and progress in the satellite tracking and earth dynamics research during the first half of calendar year 1975 are described. Satellite tracking network operations, satellite geodesy and geophysics programs, GEOS 3 project support, and atmospheric research are covered.

  14. Satellite Gravity Drilling the Earth

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  15. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    NASA Technical Reports Server (NTRS)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  16. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  17. Recent advances in the Lesser Antilles observatories Part 1 : Seismic Data Acquisition Design based on EarthWorm and SeisComP

    NASA Astrophysics Data System (ADS)

    Saurel, Jean-Marie; Randriamora, Frédéric; Bosson, Alexis; Kitou, Thierry; Vidal, Cyril; Bouin, Marie-Paule; de Chabalier, Jean-Bernard; Clouard, Valérie

    2010-05-01

    Lesser Antilles observatories are in charge of monitoring the volcanoes and earthquakes in the Eastern Caribbean region. During the past two years, our seismic networks have evolved toward a full digital technology. These changes, which include modern three components sensors, high dynamic range digitizers, high speed terrestrial and satellite telemetry, improve data quality but also increase the data flows to process and to store. Moreover, the generalization of data exchange to build a wide virtual seismic network around the Caribbean domain requires a great flexibility to provide and receive data flows in various formats. As many observatories, we have decided to use the most popular and robust open source data acquisition systems in use in today observatories community : EarthWorm and SeisComP. The first is renowned for its ability to process real time seismic data flows, with a high number of tunable modules (filters, triggers, automatic pickers, locators). The later is renowned for its ability to exchange seismic data using the international SEED standard (Standard for Exchange of Earthquake Data), either by producing archive files, or by managing output and input SEEDLink flows. French Antilles Seismological and Volcanological Observatories have chosen to take advantage of the best features of each software to design a new data flow scheme and to integrate it in our global observatory data management system, WebObs [Beauducel et al., 2004]1, see the companion paper (Part 2). We assigned the tasks to the different softwares, regarding their main abilities : - EarthWorm first performs the integration of data from different heterogeneous sources; - SeisComP takes all this homogeneous EarthWorm data flow, adds other sources and produces SEED archives and SEED data flow; - EarthWorm is then used again to process this clean and complete SEEDLink data flow, mainly producing triggers, automatic locations and alarms; - WebObs provides a friendly human interface, both

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  19. Asteroid 2014 OL339: yet another Earth quasi-satellite

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2014-12-01

    Our planet has one permanently bound satellite - the Moon - a likely large number of mini-moons or transient irregular natural satellites, and three temporary natural retrograde satellites or quasi-satellites. These quasi-moons - (164207) 2004 GU9, (277810) 2006 FV35 and 2013 LX28 - are unbound companions to the Earth. The orbital evolution of quasi-satellites may transform them into temporarily bound satellites of our planet. Here, we study the dynamical evolution of the recently discovered Aten asteroid 2014 OL339 to show that it is currently following a quasi-satellite orbit with respect to the Earth. This episode started at least about 775 yr ago and it will end 165 yr from now. The orbit of this object is quite chaotic and together with 164207 are the most unstable of the known Earth quasi-satellites. This group of minor bodies is, dynamically speaking, very heterogeneous but three of them exhibit Kozai-like dynamics: the argument of perihelion of 164207 oscillates around -90°, the one of 277810 librates around 180° and that of 2013 LX28 remains around 0°. Asteroid 2014 OL339 is not currently engaged in any Kozai-like dynamics.

  20. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hyuk; Jo, Jung Hyun; Choi, Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Park, Jang-Hyun; Park, Eun-Seo; Park, Jong-Uk

    2011-12-01

    The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic

  1. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  2. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  3. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  4. Satellite measurements of the earth's crustal magnetic field

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  5. Observations of Near-Earth Asteroids at Abastumani Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Krugly, Yurij; Ayvazyan, Vova; Inasaridze, Raguli; Zhuzhunadze, Vasili; Molotov, Igor; Voropaev, Victor; Rumyantsev, Vasilij; Baransky, Alexander

    Over the past five years physical properties of near-Earth asteroids are investigated in the Kharadze Abastumani Astrophysical Observatory. The work was launched in the collaboration with Kharkiv Institute of Astronomy within the Memorandum on scientific cooperation between Ilia State University (Georgia) and V. N. Karazin Kharkiv National University (Ukraine) in 2011. In the framework of this study the regular observations of several dozen asteroids per year are carried out to determine the rotation periods, size and shape parameters of these celestial bodies. A broad international cooperation is involved in order to improve the efficiency of the study. Abastumani is included in the observatory network called the Gaia -FUN-SSO, which was created for the ground support of the ESA's Gaia space mission.

  6. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  7. Investigation of transient earth resources phenomena: Continuation study

    NASA Technical Reports Server (NTRS)

    Goldman, G. C.

    1974-01-01

    Calculated sensitivity requirements for an earth resource satellite in a geostationary orbit are reported. Radiance levels at the satellite sensor were computed for twenty top-priority Synchronous Earth Observatory Satellite (SEOS) applications. The observation requirements were reviewed and re-evaluated in terms of spectral band definition, spectral signatures of targets and backgrounds, observation time, and site location. With these data and an atmospheric attenuation and scattering model, the total radiances observed by the SEOS sensor were calculated as were the individual components contributed by the target, target variations, and the atmosphere.

  8. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  9. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  10. Astronomical Research at the U.S. Air Force Academy Observatory

    NASA Astrophysics Data System (ADS)

    Della-Rose, Devin J.; Carlson, Randall E.; Chun, Francis K.; Giblin, Timothy W.; Novotny, Steven J.; Polsgrove, Daniel E.

    2018-01-01

    The U.S. Air Force Academy (USAFA) Observatory houses 61-cm and 41-cm Ritchey-Chrétien (RC) reflecting telescopes, and serves as the hub for a world-wide network of 50-cm RC reflectors known as the Falcon Telescope Network (FTN). Since the 1970s, the USAFA Observatory has hosted a wide range of student and faculty research projects including variable star photometry, exoplanet light curve and radial velocity studies, near-Earth object astrometry, and “lucky imaging” of manmade spacecraft. Further, the FTN has been used extensively for LEO through GEO satellite photometry and spectroscopy, and for exoplanet photometry. Future capabilities of our observatory complex include fielding several new FTN observatory sites and the acquisition of a 1-meter RC fast-tracking telescope at the USAFA Observatory.

  11. Aqua Satellite Orbiting Earth Artist Concept

    NASA Image and Video Library

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  12. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  13. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  14. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  15. Comparison between the Juno Earth flyby magnetic measurements and the magnetometer package on the IRIS solar observatory

    NASA Astrophysics Data System (ADS)

    Merayo, J. M.; Connerney, J. E.; Joergensen, J. L.; Dougherty, B.

    2013-12-01

    In October 2013 the NASA's Juno New Frontier spacecraft will perform an Earth Flyby Gravity Assist. During this flyby, Juno will reach an altitude of about 600 km and the magnetometer experiment will measure the magnetic field with very high precision. In June 2013 the NASA's IRIS solar observatory was successfully launched. IRIS uses a very fine guiding telescope in order to maintain a high pointing accuracy, assisted by a very high accuracy star tracker and a science grade vector magnetometer. IRIS was placed into a Sun-synchronous orbit at about 600 km altitude by a Pegasus rocket from the Vandenberg Air Force Base in California. This platform will also allow to performing measurements of the Earth's magnetic field with very high precision, since it carries similar instrumentation as on the Swarm satellites (star trackers and magnetometer). The data recorded by the Juno magnetic experiment and the IRIS magnetometer will bring a very exciting opportunity for comparing the two experiments as well as for determining current structures during the flyby.

  16. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  17. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  18. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The major focus for operations during this period was the preliminary MERIT Campaign and its intensive tracking of LAGEOS for polar motion and Earth rotation studies. The data acquired from LAGEOS were used for other geophysical investigations, including studies of crustal dynamics, and Earth and ocean tides, and for the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and Earth's gravity field and for studies of solid Earth dynamics.

  19. Relativity mission with two counter-orbiting polar satellites. [nodal dragging effect on earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Van Patten, R. A.; Everitt, C. W. F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.

  20. Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.

  1. Lagrange Point Missions: the Key to Next-Generation Integrated Earth Observations. DSCOVR Innovation

    NASA Astrophysics Data System (ADS)

    Valero, F. P. J.

    2016-12-01

    From L-1 DSCOVR is capable of new, unique observations potentially conducive to a deeper scientific understanding of the Earth sciences. At L-1 and L-2 the net gravitational pull of the Earth and Sun equals the centripetal force required to orbit the Sun with the same period as the Earth. Satellites at or near L-1 and L-2 keep the same position relative to the Sun and the Earth. DSCOVR does not orbit the Earth but the Sun in synchronism with Earth, acts like a planetoid (orbits the Sun in the ecliptic plane) while acquiring integrated plus spatially and time resolved scientific data as Earth rotates around its axis. Because of the planet's axial tilt relative to the ecliptic plane, the Polar Regions are visible during local summer from L-1 and local winter from L-2 (Fig. 1). DSCOVR's synoptic and continuous observations solve most of the temporal and spatial limitations associated with low Earth (LEO) and Geostationary (GEO) orbits. Two observatories, one at L-1 (daytime) and one at L-2 (nighttime), would acquire minute-by-minute climate quality data for essentially every point on Earth. The integration of L-1, L-2, LEO, and GEO satellites plus the Moon offers new scientific tools and enriched data sets for Earth sciences. Lagrange points observatories are key to next-generation integrated Earth observations. For example, DSCOVR at L-1 views the Earth plus the Moon (a reference) and simultaneously, at one time or another, all LEO and GEO satellites. The L-1 and L-2 satellites would be the link between the Moon, LEO and GEO satellites while providing the data needed to build an integrated Earth observational system. The above properties are the bases for DSCOVR's innovation and scientific approach that systematically observes climate drivers (radiation, aerosols, ozone, clouds, water vapor, vegetation) from L-1 in a way not possible but synergistic with other satellites. Next step: more capable L-1 plus L-2 satellites. The way of the future.

  2. The effects of general relativity on near-earth satellites

    NASA Technical Reports Server (NTRS)

    Ries, J. C.; Watkins, M. M.; Tapley, B. D.; Huang, C.

    1990-01-01

    Whether one uses a solar system barycentric frame or a geocentric frame when including the general theory of relativity in orbit determination for near-earth satellites, the results should be equivalent to some limiting accuracy. The purpose of this paper is to clarify the effects of relativity in each frame and to demonstrate their equivalence through the analysis of three years of laser tracking data taken on the Lageos satellite. It is demonstrated that the simpler formulation in the geocentric frame is adequate for the purpose of near-earth satellite orbit determination. A correction to the conventional barycentric equations of motion is shown to be required.

  3. The Results of Observations of Mutual Phenomena of the Galilean Satellites of Jupiter in 2009 and 2015 IN Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Pomazan, A.; Maigurova, N.; Kryuchkovskiy, V.

    The Earth and Jupiter once in 6 years have simultaneous passage of the ecliptic plane due to their orbital movement around the Sun. This makes it possible to observe the mutual occultations and eclipses in the Galilean satellites of Jupiter. We took part in the observational campaigns of the mutual phenomena in 2009 and 2014-15. The observations were made with a B/W CCD camera WAT-902H at the telescope MCT (D = 0.115 m, F = 2.0 m) of the Nikolaev Astronomical Observatory. The light curves of mutual phenomena in the satellites of Jupiter were obtained as a result of processing photometric observations. The exact moments of maximum phases and the amplitudes of the light variation have been determined from the analysis of the light curves. The data sets for the light curves have been sent in the IMCCE (Institute de Mecanique et de calcul des ephemerides, France) that coordinates the PHEMU campaigns.

  4. Computer programs for plotting spot-beam coverages from an earth synchronous satellite and earth-station antenna elevation angle contours

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Singh, J. P.

    1972-01-01

    A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.

  5. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  6. Role of light satellites in the high-resolution Earth observation domain

    NASA Astrophysics Data System (ADS)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  7. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gkolias, Ioannis; Gachet, Fabien; Daquin, Jérôme

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically,more » we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.« less

  8. From Order to Chaos in Earth Satellite Orbits

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  9. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  10. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  11. Problems in merging Earth sensing satellite data sets

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Goldberg, Michael J.

    1987-01-01

    Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented.

  12. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  13. JEOS. The JANUS earth observation satellite

    NASA Astrophysics Data System (ADS)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  14. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  15. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.

    PubMed

    Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari

    2018-06-08

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  16. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.

    2018-01-01

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  17. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (Principal Investigator)

    1981-01-01

    A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.

  18. Earth satellites: A first look by the United States Navy

    NASA Technical Reports Server (NTRS)

    Hall, R. C.

    1977-01-01

    Immediately following World War II, the U.S. Navy considered the possibility of launching an earth satellite for navigational, communications, and meteorological applications. The technical feasibility of the satellite was based on extensions of German V-2 technology.

  19. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  20. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  1. Estimating the Earth's gravity field using a multi-satellite SLR solution

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Stefka, Vojtech; Müller, Horst; Gerstl, Michael

    2013-04-01

    Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The obtained Stokes coefficients are compared to recent gravity field solutions and discussed in detail.

  2. Satellite View of the Americas on Earth Day

    NASA Image and Video Library

    2014-04-22

    Today, April 22, 2014 is Earth Day, and what better way to celebrate than taking a look at our home planet from space. NOAA's GOES-East satellite captured this stunning view of the Americas on Earth Day, April 22, 2014 at 11:45 UTC/7:45 a.m. EDT. The data from GOES-East was made into an image by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In North America, clouds associated with a cold front stretch from Montreal, Canada, south through the Tennessee Valley, and southwest to southern Texas bringing rain east of the front today. A low pressure area in the Pacific Northwest is expected to bring rainfall in Oregon, Washington, Idaho, stretching into the upper Midwest, according to NOAA's National Weather Service. That low is also expected to bring precipitation north into the provinces of British Columbia and Alberta, Canada. Another Pacific low is moving over southern Nevada and the National Weather Service expects rain from that system to fall in central California, Nevada, and northern Utah. Near the equator, GOES imagery shows a line of pop up thunderstorms. Those thunderstorms are associated with the Intertropical Convergence Zone (ITCZ). The ITCZ encircles the Earth near the equator. In South America, convective (rapidly rising air that condenses and forms clouds) thunderstorms pepper Colombia, Venezuela, Ecuador, Peru, Bolivia, Paraguay and northwestern and southeastern Brazil. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For more information about GOES satellites, visit: www.goes.noaa.gov/ or

  3. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  4. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  5. Visible and Ultraviolet Detectors for High Earth Orbit and Lunar Observatories

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    1989-01-01

    The current status of detectors for the visible and UV for future large observatories in earth orbit and the moon is briefly reviewed. For the visible, CCDs have the highest quantum efficiency, but are subject to contamination of the data by cosmic ray hits. For the moon, the level of hits can be brought down to that at the earth's surface by shielding below about 20 meters of rock. For high earth orbits above the geomagnetic shield, CCDs might be able to be used by combining many short exposures and vetoing the cosmic ray hits, otherwise photoemissive detectors will be necessary. For the UV, photoemissive detectors will be necessary to reject the visible; to use CCDs would require the development of UV-efficient filters which reject the visible by many orders of magnitude. Development of higher count rate capability would be desirable for photoemissive detectors.

  6. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  7. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  8. On the tidal effects in the motion of earth satellites and the love parameters of the earth

    NASA Technical Reports Server (NTRS)

    Musen, P.; Estes, R.

    1972-01-01

    The tidal effects in the motion of artificial satellites are studied to determine the elastic properties of the earth as they are observed from extraterrestrial space. Considering Love numbers, the disturbing potential is obtained as the analytical continuation of the tidal potential from the surface of the earth into-outer space, with parameters which characterize the earth's elastic response to tidal attraction by the moon and the sun. It is concluded that the tidal effects represent a superposition of a large number of periodic terms, and the rotation of the lunar orbital plane produces a term of 18 years period in tidal perturbations of the ascending node of the satellite's orbit.

  9. Satellite Detection of the Convection Generated Stresses in Earth

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Kolenkiewicz, Ronald; Li, Jin-Ling; Chen, Jiz-Hong

    2003-01-01

    We review research developments on satellite detection of the convection generated stresses in the Earth for seismic hazard assessment and Earth resource survey. Particular emphasis is laid upon recent progress and results of stress calculations from which the origin and evolution of the tectonic features on Earth's surface can be scientifically addressed. An important aspect of the recent research development in tectonic stresses relative to earthquakes is the implications for earthquake forecasting and prediction. We have demonstrated that earthquakes occur on the ring of fire around the Pacific in response to the tectonic stresses induced by mantle convection. We propose a systematic global assessment of the seismic hazard based on variations of tectonic stresses in the Earth as observed by satellites. This space geodynamic approach for assessing the seismic hazard is unique in that it can pinpoint the triggering stresses for large earthquakes without ambiguities of geological structures, fault geometries, and other tectonic properties. Also, it is distinct from the probabilistic seismic hazard assessment models in the literature, which are based only on extrapolations of available earthquake data.

  10. Systems definition summary. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A standard spacecraft bus for performing a variety of earth orbit missions in the late 1970's and 1980's is defined. Emphasis is placed on a low-cost, multimission capability, benefitting from the space shuttle system. The subjects considered are as follows: (1) performance requirements, (2) internal interfaces, (3) redundancy and reliability, (4) communications and data handling module design, (5) payload data handling, (6) application of the modular design to various missions, and (7) the verification concept.

  11. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  12. Space volcano observatory (SVO): a metric resolution system on-board a micro/mini-satellite

    NASA Astrophysics Data System (ADS)

    Briole, P.; Cerutti-Maori, G.; Kasser, M.

    2017-11-01

    1500 volcanoes on the Earth are potentially active, one third of them have been active during this century and about 70 are presently erupting. At the beginning of the third millenium, 10% of the world population will be living in areas directly threatened by volcanoes, without considering the effects of eruptions on climate or air-trafic for example. The understanding of volcanic eruptions, a major challenge in geoscience, demands continuous monitoring of active volcanoes. The only way to provide global, continuous, real time and all-weather information on volcanoes is to set up a Space Volcano Observatory closely connected to the ground observatories. Spaceborne observations are mandatory and implement the ground ones as well as airborne ones that can be implemented on a limited set of volcanoes. SVO goal is to monitor both the deformations and the changes in thermal radiance at optical wavelengths from high temperature surfaces of the active volcanic zones. For that, we propose to map at high resolution (1 to 1,5 m pixel size) the topography (stereoscopic observation) and the thermal anomalies (pixel-integrated temperatures above 450°C) of active volcanic areas in a size of 6 x 6 km to 12 x 12 km, large enough for monitoring most of the target features. A return time of 1 to 3 days will allow to get a monitoring useful for hazard mitigation. The paper will present the concept of the optical payload, compatible with a micro/mini satellite (mass in the range 100 - 400 kg), budget for the use of Proteus platform in the case of minisatellite approach will be given and also in the case of CNES microsat platform family. This kind of design could be used for other applications like high resolution imagery on a limited zone for military purpose, GIS, evolution cadaster…

  13. Satellite Sees Holiday Lights Brighten Cities - Istanbul

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Satellite Sees Holiday Lights Brighten Cities - Cairo

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    NASA Astrophysics Data System (ADS)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  16. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  17. The UNH Earth Systems Observatory: A Regional Application in Support of GEOSS Global-Scale Objectives

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Braswell, B.; Fekete, B.; Glidden, S.; Hartmann, H.; Magill, A.; Prusevich, A.; Wollheim, W.; Blaha, D.; Justice, D.; Hurtt, G.; Jacobs, J.; Ollinger, S.; McDowell, W.; Rock, B.; Rubin, F.; Schloss, A.

    2006-12-01

    The Northeast corridor of the US is emblematic of the many changes taking place across the nation's and indeed the world's watersheds. Because ecosystem and watershed change occurs over many scales and is so multifaceted, transferring scientific knowledge to applications as diverse as remediation of local ground water pollution, setting State-wide best practices for non-point source pollution control, enforcing regional carbon sequestration treaties, or creating public/private partnerships for protecting ecosystem services requires a new generation of integrative environmental surveillance systems, information technology, and information transfer to the user community. Geographically complex ecosystem interactions justify moving toward more integrative, regionally-based management strategies to deal with issues affecting land, inland waterways, and coastal waterways. A unified perspective that considers the full continuum of processes which link atmospheric forcings, terrestrial responses, watershed exports along drainage networks, and the final delivery to the coastal zone, nearshore, and off shore waters is required to adequately support the management challenge. A recent inventory of NOAA-supported environmental surveillance systems, IT resources, new sensor technologies, and management-relevant decision support systems shows the community poised to formulate an integrated and operational picture of the environment of New England. This paper presents the conceptual framework and early products of the newly-created UNH Earth Systems Observatory. The goal of the UNH Observatory is to serve as a regionally-focused yet nationally-prominent platform for observation-based, integrative science and management of the New England/Gulf of Maine's land, air, and ocean environmental systems. Development of the UNH Observatory is being guided by the principles set forth under the Global Earth Observation System of Systems and is cast as an end-to-end prototype for GEOSS

  18. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  19. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  20. Model of load distribution for earth observation satellite

    NASA Astrophysics Data System (ADS)

    Tu, Shumin; Du, Min; Li, Wei

    2017-03-01

    For the system of multiple types of EOS (Earth Observing Satellites), it is a vital issue to assure that each type of payloads carried by the group of EOS can be used efficiently and reasonably for in astronautics fields. Currently, most of researches on configuration of satellite and payloads focus on the scheduling for launched satellites. However, the assignments of payloads for un-launched satellites are bit researched, which are the same crucial as the scheduling of tasks. Moreover, the current models of satellite resources scheduling lack of more general characteristics. Referring the idea about roles-based access control (RBAC) of information system, this paper brings forward a model based on role-mining of RBAC to improve the generality and foresight of the method of assignments of satellite-payload. By this way, the assignment of satellite-payload can be mapped onto the problem of role-mining. A novel method will be introduced, based on the idea of biclique-combination in graph theory and evolutionary algorithm in intelligence computing, to address the role-mining problem of satellite-payload assignments. The simulation experiments are performed to verify the novel method. Finally, the work of this paper is concluded.

  1. An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor

    PubMed Central

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust. PMID:24250261

  2. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    PubMed

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  3. Data processing system for the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory-F (OGO-F) satellite

    NASA Technical Reports Server (NTRS)

    Cronin, A. G.; Delaney, J. R.

    1973-01-01

    The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system.

  4. Cloudy Earth

    NASA Image and Video Library

    2015-05-08

    Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds). Read more here: 1.usa.gov/1P6lbMU Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    NASA Astrophysics Data System (ADS)

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  6. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  7. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  8. Earth-viewing satellite perspectives on the Chelyabinsk meteor event.

    PubMed

    Miller, Steven D; Straka, William C; Bachmeier, A Scott; Schmit, Timothy J; Partain, Philip T; Noh, Yoo-Jeong

    2013-11-05

    Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.

  9. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  10. Satellite tracking and earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The SAO laser site in Arequipa continued routine operations throughout the reporting period except for the months of March and April when upgrading was underway. The laser in Orroral Valley was operational through March. Together with the cooperating stations in Wettzell, Grasse, Kootwikj, San Fernando, Helwan, and Metsahove the laser stations obtained a total of 37,099 quick-look observations on 978 passes of BE-C, Starlette, and LAGEOS. The Network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The Network performed regular tracking of BE-C and Starlette for refined determinations of station coordinate and the Earth's gravity field and for studies of solid earth dynamics. Monthly statistics of the passes and points are given by station and by satellite.

  11. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  12. The population of natural Earth satellites

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert

    2012-03-01

    We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

  13. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  14. Magsat - A new satellite to survey the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  15. Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. I - Uniform albedo

    NASA Technical Reports Server (NTRS)

    Lautman, D. A.

    1977-01-01

    A semianalytic method has been developed to calculate the radiation-pressure perturbations of a close-earth satellite due to sunlight reflected from the earth. The assumptions made are that the satellite is spherically symmetric and that the solar radiation is reflected from the earth according to Lambert's Law with uniform albedo. By using expressions for the components of the radiation-pressure force due to Lochry, the expressions for the perturbations of the elements were developed into series in the true anomaly. The perturbations within a given revolution can be obtained analytically by integrating with respect to v while holding all slowly varying quantities constant. The long-range perturbations are then obtained by accumulating the net perturbations at the end of each revolution.

  16. Satellite Sees Holiday Lights Brighten Cities - Saudi Arabia

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Satellite Attitude Control Utilizing the Earth's Magnetic Field

    NASA Technical Reports Server (NTRS)

    White, John S.; Shigemoto, Fred H.; Bourquin, Kent

    1961-01-01

    A study was conducted to determine the feasibility of a satellite attitude fine-control system using the interaction of the earth's magnetic field with current-carrying coils to produce torque. The approximate intensity of the earth's magnetic field was determined as a function of the satellite coordinates. Components of the magnetic field were found to vary essentially sinusoidally at approximately twice orbital frequency. Amplitude and distortion of the sinusoidal components were a function of satellite orbit. Two systems for two-axis attitude control evolved from this study, one using three coils and the other using two coils. The torques developed by the two systems differ only when the component of magnetic field along the tracking line is zero. For this case the two-coil system develops no torque whereas the three-coil system develops some effective torque which allows partial control. The equations which describe the three-coil system are complex in comparison to those of the two-coil system and require the measurement of all three components of the magnetic field as compared with only one for the two-coil case. Intermittent three-axis torquing can also be achieved. This torquing can be used for coarse attitude control, or for dumping the stored momentum of inertia reaction wheels. Such a system has the advantage of requiring no fuel aboard the satellite. For any of these magnetic torquing schemes the power required to produce the magnetic moment and the weight of the coil seem reasonable.

  18. Improvement of the Earth's gravity field from terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1992-01-01

    The determination of the Earth's gravitational potential can be done through the analysis of satellite perturbations, the analysis of surface gravity data, or both. The combination of the two data types yields a solution that combines the strength of each method: the longer wavelength strength in the satellite analysis with the better high frequency information from surface gravity data. Since 1972, Ohio State has carried out activities that have provided surface gravity data to a number of organizations who have developed combination potential coefficient models that describe the Earth's gravitational potential.

  19. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  20. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  1. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1972-01-01

    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.

  2. The survey on data format of Earth observation satellite data at JAXA.

    NASA Astrophysics Data System (ADS)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  3. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  4. A Web-based Google-Earth Coincident Imaging Tool for Satellite Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Killough, B. D.; Chander, G.; Gowda, S.

    2009-12-01

    The Group on Earth Observations (GEO) is coordinating international efforts to build a Global Earth Observation System of Systems (GEOSS) to meet the needs of its nine “Societal Benefit Areas”, of which the most demanding, in terms of accuracy, is climate. To accomplish this vision, satellite on-orbit and ground-based data calibration and validation (Cal/Val) of Earth observation measurements are critical to our scientific understanding of the Earth system. Existing tools supporting space mission Cal/Val are often developed for specific campaigns or events with little desire for broad application. This paper describes a web-based Google-Earth based tool for the calculation of coincident satellite observations with the intention to support a diverse international group of satellite missions to improve data continuity, interoperability and data fusion. The Committee on Earth Observing Satellites (CEOS), which includes 28 space agencies and 20 other national and international organizations, are currently operating and planning over 240 Earth observation satellites in the next 15 years. The technology described here will better enable the use of multiple sensors to promote increased coordination toward a GEOSS. The CEOS Systems Engineering Office (SEO) and the Working Group on Calibration and Validation (WGCV) support the development of the CEOS Visualization Environment (COVE) tool to enhance international coordination of data exchange, mission planning and Cal/Val events. The objective is to develop a simple and intuitive application tool that leverages the capabilities of Google-Earth web to display satellite sensor coverage areas and for the identification of coincident scene locations along with dynamic menus for flexibility and content display. Key features and capabilities include user-defined evaluation periods (start and end dates) and regions of interest (rectangular areas) and multi-user collaboration. Users can select two or more CEOS missions from a

  5. Applications of neural network methods to the processing of earth observation satellite data.

    PubMed

    Loyola, Diego G

    2006-03-01

    The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.

  6. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  7. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  8. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  9. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  10. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  11. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  12. How Long Does It Take for a Satellite to Fall to Earth?

    ERIC Educational Resources Information Center

    Lira, Antonio

    2015-01-01

    The purpose of this paper is to introduce students of science and engineering to the orbital lifetimes of satellites in circular low Earth orbits. It is only necessary to know about classical mechanics for this calculation. The orbital decay of satellites is due to the interaction of the satellite with the surrounding gas, atmospheric drag.…

  13. Geosynchronous earth orbit/low earth orbit space object inspection and debris disposal: A preliminary analysis using a carrier satellite with deployable small satellites

    NASA Astrophysics Data System (ADS)

    Crockett, Derick

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous satellite, perform a proximity inspection mission, and transfer back to the carrier platform in a nearby orbit is determined. Convex optimization and traditional optimization techniques are explored, determining minimum propellant trajectories. Propellant is measured by the total required change in velocity, delta-v. The trajectories were modeled in a relative reference frame using the Clohessy-Wiltshire equations. Mass estimations for the carrier platform and the SmallSat were determined by using the rocket equation. The mass estimates were compared to the mass of a single, non-refuelable satellite performing the same geosynchronous satellite inspection missions. From the minimum delta-v trajectories and the mass analysis, it is determined that using refuelable SmallSats and a carrier platform in a nearby orbit can be more efficient than using a single non-refuelable satellite to perform multiple geosynchronous satellite inspections.

  14. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  15. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  16. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  17. The first Earth Resources Technology Satellite (ERTS-1)

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1973-01-01

    The first Earth Resources Technology Satellite (ERTS-1) makes images of the earth's surface in four portions of the electromagnetic spectrum with sufficient spatial resolution and with a minimum of geometric distortions, so that these images may be applied experimentally to the study of geophysical processes relating to earth resources, to the exploration and conservation of these resources, and to the assessments of environmental stresses. During the first six months of operation, ERTS-1 has imaged 6.5 million square kilometers of the earth's surface every day, covering most major land masses and coastal zones as well as both polar regions of this planet. These images as well as the results of their analyses are available to all people throughout the world. Scientific investigators of all countries have been invited to participate in the utilization of ERTS-1 observations. Many of them have already demonstrated the great efficiency, economy, and reliability of making earth surveys from space.

  18. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  19. The precision of today's satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  20. The precision of today's satellite laser ranging systems

    NASA Technical Reports Server (NTRS)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-01-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  1. Understanding Super-Earths with MINERVA-Australis at USQ's Mount Kent Observatory

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert; Horner, Jonathan; Kane, Stephen; Plavchan, Peter; Ciardi, David; Eastman, Jason; Johnson, John Asher; Wright, Jason; McCrady, Nate; MINERVA Collaboration

    2018-01-01

    Super Earths, planets between 5-10 Earth masses, are the most common types of planets known, yet are completely absent from our Solar system. As a result, their detailed properties, compositions, and formation mechanisms are poorly understood. NASA's Transiting Exoplanet Survey Satellite (TESS) will identify hundreds of Super-Earths orbiting bright stars, for the first time allowing in-depth characterisation of these planets. At the University of Southern Queensland, we are host to the MINERVA-Australis project, dedicated wholly to the follow-up characterisation and mass measurement of TESS planets. We give an update on the status of MINERVA-Australis and our expected performance. We also present results from the fully operational Northern MINERVA array, with the primary mission of discovering rocky planets orbiting 80 nearby bright stars.

  2. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).

  3. The Virtual Earth-Solar Observatory of the SCiESMEX

    NASA Astrophysics Data System (ADS)

    De la Luz, V.; Gonzalez-Esparza, A.; Cifuentes-Nava, G.

    2015-12-01

    The Mexican Space Weather Service (SCiESMEX, http://www.sciesmex.unam.mx) started operations in October 2014. The project includes the Virtual Earth-Solar Observatory (VESO, http://www.veso.unam.mx). The VESO is a improved project wich objetive is integrate the space weather instrumentation network from the National Autonomous University of Mexico (UNAM). The network includes the Mexican Array Radiotelescope (MEXART), the Callisto receptor (MEXART), a Neutron Telescope, a Cosmic Ray Telescope. the Schumann Antenna, the National Magnetic Service, and the mexican GPS network (TlalocNet). The VESO facility is located at the Geophysics Institute campus Michoacan (UNAM). We offer the service of data store, real-time data, and quasi real-time data. The hardware of VESO includes a High Performance Computer (HPC) dedicated specially to big data storage.

  4. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  5. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    NASA Astrophysics Data System (ADS)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  6. Morphology of the southern African geomagnetic field derived from observatory and repeat station survey observations: 2005-2014

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Korte, M.

    2016-02-01

    Geomagnetic field data from four observatories and annual field surveys between 2005 and 2015 provide a detailed description of Earth's magnetic field changes over South Africa, Namibia and Botswana on time scales of less than 1 year. The southern African area is characterized by rapid changes in the secular variation pattern and lies in close proximity to the South Atlantic Anomaly (SAA) where the geomagnetic field intensity is almost 30 % weaker than in other regions at similar latitudes around the globe. Several geomagnetic secular acceleration (SA) pulses (geomagnetic jerks) around 2007, 2010 and 2012 could be identified over the last decade in southern Africa. We present a new regional field model for declination and horizontal and vertical intensity over southern Africa (Southern African REGional (SAREG)) which is based on field survey and observatory data and covering the time interval from 2005 to 2014, i.e. including the period between 2010 and 2013 when no low Earth-orbiting vector field satellite data are available. A comparative evaluation between SAREG and global field models like CHAOS-5, the CHAMP, Orsted and SAC-C model of the Earth's magnetic field and International Geomagnetic Reference Field (IGRF-12) reveals that a simple regional field model based on a relatively dense ground network is able to provide a realistic representation of the geomagnetic field in this area. We particularly note that a global field model like CHAOS-5 does not always indicate similar short-period patterns in the field components as revealed by observatory data, while representing the general secular variation reasonably well during the time interval without near-Earth satellite vector field data. This investigation further shows the inhomogeneous occurrence and distribution of secular variation impulses in the different geomagnetic field components and at different locations in southern African.

  7. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  8. Using EarthScope Construction of the Plate Boundary Observatory to Provide Locally Based Experiential Education and Outreach

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Eriksson, S.; Barbour, K.; Venator, S.; Mencin, D.; Prescott, W.

    2006-12-01

    EarthScope is an NSF-funded, national science initiative to explore the structure and evolution of the North American continent and to understand the physical processes controlling earthquakes and volcanoes. This large-scale experiment provides locally based opportunities for education and outreach which engage students at various levels and the public. UNAVCO is responsible for the Plate Boundary Observatory (PBO) component of EarthScope. PBO includes the installation and operations and maintenance of large networks of Global Positioning Satellite (GPS), strainmeter, seismometer, and tiltmeter instruments and the acquisition of satellite radar imagery, all of which will be used to measure and map the smallest movements across faults, the magma movement inside active volcanoes and the very wide areas of deformation associated with plate tectonic motion. UNAVCO, through its own education and outreach activities and in collaboration with the EarthScope E&O Program, uses the PBO construction activities to increase the understanding and public appreciation of geodynamics, earth deformation processes, and their relevance to society. These include programs for public outreach via various media, events associated with local installations, a program to employ students in the construction of PBO, and development of curricular materials by use in local schools associated with the EarthScope geographic areas of focus. PBO provides information to the media to serve the needs of various groups and localities, including interpretive centers at national parks and forests, such as Mt. St. Helens. UNAVCO staff contributed to a television special with the Spanish language network Univision Aquí y Ahora program focused on the San Andreas Fault and volcanoes in Alaska. PBO participated in an Education Day at the Pathfinder Ranch Science and Outdoor Education School in Mountain Center, California. Pathfinder Ranch hosts two of the eight EarthScope borehole strainmeters in the Anza

  9. Requirements and concept design for large earth survey telescope for SEOS

    NASA Technical Reports Server (NTRS)

    Mailhot, P.; Bisbee, J.

    1975-01-01

    The efforts of a one year program of Requirements Analysis and Conceptual Design for the Large Earth Survey Telescope for the Synchronous Earth Observatory Satellite is summarized. A 1.4 meter aperture Cassegrain telescope with 0.6 deg field of view is shown to do an excellent job in satisfying the observational requirements for a wide range of earth resources and meteorological applications. The telescope provides imagery or thermal mapping in ten spectral bands at one time in a field sharing grouping of linear detector arrays. Pushbroom scanning is accomplished by spacecraft slew.

  10. Tisserand's polynomials and inclination functions in the theory of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Aksenov, E. P.

    1986-03-01

    The connection between Tisserand's polynomials and inclination functions in the theory of motion of artificial earth satellites is established in the paper. The most important properties of these special functions of celestial mechanics are presented. The problem of expanding the perturbation function in satellite problems is discussed.

  11. Re-Evaluating Satellite Solar Power Systems for Earth

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Solar Power Satellite System is a concept to collect solar power in space, and then transport it to the surface of the Earth by microwave (or possibly laser) beam, where if is converted into electrical power for terrestrial use. The recent increase in energy costs, predictions of the near-term exhaustion of oil, and prominence of possible climate change due to the "greenhouse effect" from burning of fossil fuels has again brought alternative energy sources to public attention, and the time is certainly appropriate to reexamine the economics of space based power. Several new concepts for Satellite Power System designs were evaluated to make the concept more economically feasible.

  12. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  13. Data Dissemination System Status and Plan for Jaxa's Earth Observation Satellite Data

    NASA Astrophysics Data System (ADS)

    Fuda, M.; Miura, S.

    2012-12-01

    1. INTRODUCTION JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit, and is involved in many more advanced missions, such as asteroid exploration and possible manned exploration of the Moon. Since 1978, JAXA started to disseminate earth observation data acquired by satellites to researchers and those data scene became more than two Million scenes in 2011. This paper focuses on the status and future plan for JAXA's Data Dissemination System for those data. 2. STATUS JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit. In October 1978, JAXA opened the Earth Observation Center (EOC) and started to archive and disseminate earth observation data acquired by multiple satellites. 2.1. Target data Currently, the disseminated data includes "JAXA's satellite/sensor data" and "non-JAXA's satellite/sensor data", as shown in Table 2-1. In 2011, the total disseminated data scene became more than two Million scenes. 2.2. Data Dissemination Guideline The JAXA basic data dissemination guideline is a free for researchers and specific agencies. JAXA has two approaches for dissemination. One is that the data is distributed for specific agencies by Mission Operation Systems (MOS). Each project has its own MOS, for example, GCOM-W1 has a GCOM-W1 MOS. Another is that the data is disseminated for many researchers by Data Distribution Systems. Now JAXA has three Data Distribution systems, EOIS, AUIG and GCOM-W1DPSS. Table 2-1 : Disseminated earth observation data from JAXA's facility Satellite Sensor Processing Level ALOS AVNIR-2 Level 1 PRISM Level 1 PALSAR Level 1 TRMM PR Level 1, 2, 3 CMB Level 1, 2, 3 TMI Level 1, 2, 3 VIR Level 1, 2, 3 Aqua AMSR-E Level 1, 2, 3 ADEOS-II AMSR Level 1, 2, 3 GLI-1km Level 1, 2, 3 GLI-250m Level 1, 2, 3 JERS-1 OSW Level 0, 1, 2 OVN Level 0, 1, 2, 5 SAR Level 1, 2 ADEOS AVNIR Level 1 OCTS

  14. Enhancement of the Natural Earth Satellite Population Through Meteoroid Aerocapture

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.

    2014-01-01

    The vast majority of meteoroids either fall to the ground as meteorites or ablate completely in the atmosphere. However, large meteoroids have been observed to pass through the atmosphere and reenter space in a few instances. These atmosphere-grazing meteoroids have been characterized using ground-based observation and satellite-based infrared detection. As these methods become more sensitive, smaller atmospheregrazing meteoroids will likely be detected. In anticipation of this increased detection rate, we compute the frequency with which centimeter-sized meteoroids graze and exit Earth's atmosphere. We characterize the post-atmosphere orbital characteristics of these bodies and conduct numerical simulations of their orbital evolution under the perturbing influence of the Sun and Moon. We find that a small subset of aerocaptured meteoroids are perturbed away from immediate atmospheric reentry and become temporary natural Earth satellites.

  15. How to Communicate Near Earth Objects with the Public - Klet Observatory Experience

    NASA Astrophysics Data System (ADS)

    Ticha, Jana; Tichy, Milos; Kocer, Michal

    2015-08-01

    Near-Earth Object (NEO) research is counted among the most popular parts of communicating astronomy with the public. Increasing research results in the field of Near-Earth Objects as well as impact hazard investigations cause growing interest among general public and media. Furthermore NEO related issues have outstanding educational value. So thus communicating NEO detection, NEO characterization, possible impact effects, space missions to NEOs, ways of mitigation and impact warnings with the public and media belong to the most important tasks of scientists and research institutions.Our institution represents an unique liaison of the small professional research institution devoted especially to NEO studies (the Klet Observatory, Czech Republic) and the educational and public outreach branch (the Observatory and Planetarium Ceske Budejovice, Czech Republic). This all has been giving us an excellent opportunity for bringing NEO information to wider audience. We have been obtaining a wide experience in communicating NEOs with the public more than twenty years.There is a wide spectrum of public outreach tools aimed to NEO research and hazard. As the most useful ones we consider two special on-line magazines (e-zins) devoted to asteroids (www.planetky.cz) and comets (www.komety.cz) in Czech language, educational multimedia presentations for schools at different levels in planetarium, summer excursions for wide public just at the Klet Observatory on the top of the Klet mountain, public lectures, meetings and exhibitions. It seems to be very contributing and favoured by public to have opportunities for more or less informal meetings just with NEO researchers from time to time. Very important part of NEO public outreach consists of continuous contact with journalists and media including press releases, interviews, news, periodical programs. An increasing role of social media is taken into account through Facebook and Twitter profiles.The essential goal of all mentioned NEO

  16. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  17. Satellite probes plasma processes in earth orbit

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.; Reasoner, David L.

    1992-01-01

    The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.

  18. Estimating the Earth's geometry, rotation and gravity field using a multi-satellite SLR solution

    NASA Astrophysics Data System (ADS)

    Stefka, V.; Blossfeld, M.; Mueller, H.; Gerstl, M.; Panafidina, N.

    2012-12-01

    Satellite Laser Ranging (SLR) is the unique technique to determine station coordinates, Earth Orientation Parameter (EOP) and Stokes coefficients of the Earth's gravity field in one common adjustment. These parameters form the so called "three pillars" (Plag & Pearlman, 2009) of the Global Geodetic Observing System (GGOS). In its function as official analysis center of the International Laser Ranging Service (ILRS), DGFI is developing and maintaining software to process SLR observations called "DGFI Orbit and Geodetic parameter estimation Software" (DOGS). The software is used to analyze SLR observations and to compute multi-satellite solutions. To take benefit of different orbit performances (e.g. inclination and altitude), a solution using ten different spherical satellites (ETALON1/2, LAGEOS1/2, STELLA, STARLETTE, AJISAI, LARETS, LARES, BLITS) covering the period of 12 years of observations is computed. The satellites are relatively weighted using a variance component estimation (VCE). The obtained weights are analyzed w.r.t. the potential of the satellite to monitor changes in the Earths geometry, rotation and gravity field. The estimated parameters (station coordinates and EOP) are validated w.r.t. official time series of the IERS. The Stokes coefficients are compared to recent gravity field solutions.

  19. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  20. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  1. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  2. Using Deep Space Climate Observatory Measurements to Study the Earth as an Exoplanet

    NASA Astrophysics Data System (ADS)

    Jiang, Jonathan H.; Zhai, Albert J.; Herman, Jay; Zhai, Chengxing; Hu, Renyu; Su, Hui; Natraj, Vijay; Li, Jiazheng; Xu, Feng; Yung, Yuk L.

    2018-07-01

    Even though it was not designed as an exoplanetary research mission, the Deep Space Climate Observatory ( DSCOVR ) has been opportunistically used for a novel experiment in which Earth serves as a proxy exoplanet. More than 2 yr of DSCOVR Earth images were employed to produce time series of multiwavelength, single-point light sources in order to extract information on planetary rotation, cloud patterns, surface type, and orbit around the Sun. In what follows, we assume that these properties of the Earth are unknown and instead attempt to derive them from first principles. These conclusions are then compared with known data about our planet. We also used the DSCOVR data to simulate phase-angle changes, as well as the minimum data collection rate needed to determine the rotation period of an exoplanet. This innovative method of using the time evolution of a multiwavelength, reflected single-point light source can be deployed for retrieving a range of intrinsic properties of an exoplanet around a distant star.

  3. Solar Radiation and Climate Experiment (SORCE) Satellite

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  4. Design description report for a photovoltaic power system for a remote satellite earth terminal

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  5. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

  6. The Grace Mission: The Challenges of Using Micron-Level Satellite-to-Satellite Ranging to Measure the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Watkins, M.; Bettadpur, S.

    2000-01-01

    The GRACE Mission, to be launched in mid-2001, will provide an unprecedented map of the Earth's gravity field every month. In this paper, we outline the challenges associated with this micron-level satellite-to-satellite ranging, the solutions used by the GRACE project, and the expected science applications of the data.

  7. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  8. Application of China-Brazil Earth resources satellite in China

    NASA Astrophysics Data System (ADS)

    Qiao, Yuliang; Zhao, Shangmin; Zhen, Liu; Bei, Jia

    2009-03-01

    The launch and successful operation of Chinese-Brazil Earth resources satellite (CBERS-1) in China has accelerated the application of space technology in China. These applications include agriculture, forestry, water conservation, land resources, city planning, environment protection and natural hazards monitoring and so on. The result of these applications provides a scientific basis for government decision making and has created great economic and social benefits in Chinese national economy construction. In this paper we present examples and provide auxiliary documentation of additional applications of the data from Earth resource monitoring.

  9. Design definition study of the Earth radiation budget satellite system

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Wallschlaeger, W. H.

    1978-01-01

    Instruments for measuring the radiation budget components are discussed, and the conceptual design of instruments for the Earth Radiation Budget Satellite System (ERBSS) are reported. Scanning and nonscanning assemblies are described. The ERBSS test program is also described.

  10. The Role of Satellite Earth Observation Data in Monitoring and Verifying International Environmental Treaties

    NASA Technical Reports Server (NTRS)

    Johnston, Shaida

    2004-01-01

    The term verification implies compliance verification in the language of treaty negotiation and implementation, particularly in the fields of disarmament and arms control. The term monitoring on the other hand, in both environmental and arms control treaties, has a much broader interpretation which allows for use of supporting data sources that are not necessarily acceptable or adequate for direct verification. There are many ways that satellite Earth observation (EO) data can support international environmental agreements, from national forest inventories to use in geographic information system (GIs) tools. Though only a few references to satellite EO data and their use exist in the treaties themselves, an expanding list of applications can be considered in support of multilateral environmental agreements (MEAs). This paper explores the current uses of satellite Earth observation data which support monitoring activities of major environmental treaties and draws conclusions about future missions and their data use. The scope of the study includes all phases of environmental treaty fulfillment - development, monitoring, and enforcement - and includes a multinational perspective on the use of satellite Earth observation data for treaty support.

  11. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  12. Earth-viewing satellite perspectives on the Chelyabinsk meteor event

    PubMed Central

    Miller, Steven D.; Straka, William C.; Bachmeier, A. Scott; Schmit, Timothy J.; Partain, Philip T.; Noh, Yoo-Jeong

    2013-01-01

    Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37–54]), although rare in recorded history, give sobering testimony to civilization’s inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth’s atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194–212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations. PMID:24145398

  13. Near-Earth asteroid satellite spins under spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, Shantanu P.; Margot, Jean-Luc

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less

  14. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  15. The Study of Effects of Time Variations in the Earth's Gravity Field on Geodetic Satellites

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    1998-01-01

    The temporal variations in the Earth's gravity field are the consequences of complex interactions between atmosphere, ocean, solid Earth, hydrosphere and cryosphere. The signal ranges from several hours to 18.6 years to geological time scale. The direct and indirect consequences of these variations are manifested in such phenomena as changes in the global sea level and in the global climate pattern. These signals produce observable geodetic satellites. The primary objectives of the proposed effects on near-Earth orbiting investigation include (1) the improved determination of the time-varying gravity field parameters (scale from a few hour to 18.6 year and secular) using long-term satellite laser rs ranging (SLR) observations to multiple geodetic satellites, and (2) the enhanced understanding of these variations with their associated meteorological and geophysical consequences.

  16. High resolution earth observation satellites and services in the next decade a European perspective

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  17. Clouds and the Earth's Radiant Energy System (CERES) Visualization Single Satellite Footprint (SSF) Plot Generator

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.

    1995-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched in 1997 to collect data on the Earth's radiation budget. The data retrieved from the satellite will be processed through twelve subsystems. The Single Satellite Footprint (SSF) plot generator software was written to assist scientists in the early stages of CERES data analysis, producing two-dimensional plots of the footprint radiation and cloud data generated by one of the subsystems. Until the satellite is launched, however, software developers need verification tools to check their code. This plot generator will aid programmers by geolocating algorithm result on a global map.

  18. Experimental quasi-single-photon transmission from satellite to earth.

    PubMed

    Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-08-26

    Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.

  19. CM5, a Pre-Swarm Comprehensive Geomagnetic Field Model Derived from Over 12 Yr of CHAMP, Orsted, SAC-C and Observatory Data

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2014-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  20. The integration of the motion equations of low-orbiting earth satellites using Taylor's method

    NASA Astrophysics Data System (ADS)

    Krivov, A. V.; Chernysheva, N. A.

    1990-04-01

    A method for the numerical integration of the equations of motion for a satellite is proposed, taking the earth's oblateness and atmospheric drag into account. The method is based on Taylor's representation of the solution to the corresponding polynomial system. The algorithm for choosing the integration step and error estimation is constructed. The method is realized as a subrouting package. The method is applied to a low-orbiting earth satellite and the results are compared with those obtained using Everhart's method.

  1. Study of effects of space power satellites on life support functions of the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Douglas, M.; Laquey, R.; Deforest, S. E.; Lindsey, C.; Warshaw, H.

    1977-01-01

    The effects of the Satellite Solar Power System (SSPS) on the life support functions of the earth's magnetosphere were investigated. Topics considered include: (1) thruster effluent effects on the magnetosphere; (2) biological consequences of SSPS reflected light; (3) impact on earth bound astronomy; (4) catastrophic failure and debris; (5) satellite induced processes; and (6) microwave power transmission. Several impacts are identified and recommendations for further studies are provided.

  2. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  3. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  4. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  5. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data

    NASA Astrophysics Data System (ADS)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2015-03-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  6. Navigation study for low-altitude Earth satellites

    NASA Technical Reports Server (NTRS)

    Pastor, P. R.; Fang, B. T.; Yee, C. P.

    1985-01-01

    This document describes several navigation studies for low-altitude Earth satellites. The use of Global Positioning System Navigation Package data for LANDSAT-5 orbit determination is evaluated. In addition, a navigation analysis for the proposed Tracking and Data Aquisition System is presented. This analysis, based on simulations employing one-way Doppler data, is used to determine the agreement between the Research and Development Goddard Trajectory Determination System and the Sequential Error Analysis Program results. Properties of several geopotential error models are studied and an exploratory study of orbit smoother process noise is presented.

  7. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  8. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  9. The Earth Observatory Natural Event Tracker (EONET): An API for Matching Natural Events to GIBS Imagery

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2015-12-01

    Hidden within the terabytes of imagery in NASA's Global Imagery Browse Services (GIBS) collection are hundreds of daily natural events. Some events are newsworthy, devastating, and visibly obvious at a global scale, others are merely regional curiosities. Regardless of the scope and significance of any one event, it is likely that multiple GIBS layers can be viewed to provide a multispectral, dataset-based view of the event. To facilitate linking between the discrete event and the representative dataset imagery, NASA's Earth Observatory Group has developed a prototype application programming interface (API): the Earth Observatory Natural Event Tracker (EONET). EONET supports an API model that allows users to retrieve event-specific metadata--date/time, location, and type (wildfire, storm, etc.)--and web service layer-specific metadata which can be used to link to event-relevant dataset imagery in GIBS. GIBS' ability to ingest many near real time datasets, combined with its growing archive of past imagery, means that API users will be able to develop client applications that not only show ongoing events but can also look at imagery from before and after. In our poster, we will present the API and show examples of its use.

  10. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  11. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  12. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  13. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  14. Deriving a Core Magnetic Field Model from Swarm Satellite Data

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Rother, M.; Wardinski, I.

    2014-12-01

    A model of the Earth's core magnetic field has been built using Swarm satellite mission data and observatory quasi-definitive data. The satellite data processing scheme, which was used to derive previous satellite field models (i.e. GRIMM series), has been modified to handle discrepancies between the satellite total intensity data derived from the vector fluxgate magnetometer and the absolute scalar instrument. Further, the Euler angles, i.e. the angles between the vector magnetometer and the satellite reference frame, have been recalculated on a series of 30-day windows to obtain an accurate model of the core field for 2014. Preliminary derivations of core magnetic field and SV models for 2014 present the same characteristics as during the CHAMP era. The acceleration (i.e. the field second time derivative) has shown a rapid evolution over the last few years, and is present in the current model, which confirms previous observations.

  15. Remote observatory access via the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Anderson, Kurt; Georghiou, Georghios

    1992-01-01

    An investigation of the potential for using the ACTS to provide the data distribution network for a distributed set of users of an astronomical observatory has been conducted. The investigation consisted of gathering the data and interface standards for the ACTS network and the observatory instrumentation and telecommunications devices. A simulation based on COMNET was then developed to test data transport configurations for real-time suitability. The investigation showed that the ACTS network should support the real-time requirements and allow for growth in the observatory needs for data transport.

  16. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  17. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  18. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  19. Satellite-to-Ground Entanglement-Based Quantum Key Distribution.

    PubMed

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Ren, Ji-Gang; Liao, Sheng-Kai; Zhang, Liang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Ming; Huang, Yong-Mei; Deng, Lei; Li, Li; Zhang, Qiang; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-11-17

    We report on entanglement-based quantum key distribution between a low-Earth-orbit satellite equipped with a space borne entangled-photon source and a ground observatory. One of the entangled photons is measured locally at the satellite, and the other one is sent via a down link to the receiver in the Delingha ground station. The link attenuation is measured to vary from 29 dB at 530 km to 36 dB at 1000 km. We observe that the two-photon entanglement survives after being distributed between the satellite and the ground, with a measured state fidelity of ≥0.86. We then perform the entanglement-based quantum key distribution protocol and obtain an average final key rate of 3.5  bits/s at the distance range of 530-1000 km.

  20. Satellite and earth science data management activities at the U.S. geological survey's EROS data center

    USGS Publications Warehouse

    Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.

    1991-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.

  1. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  2. The International Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  3. Analyses of earth radiation budget data from unrestricted broadband radiometers on the ESSA 7 satellite

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; House, F. B.

    1979-01-01

    Six months of data from the wide-field-of-view low resolution infrared radiometers on the Environmental Science Services Administration (ESSA) 7 satellite were analyzed. Earth emitted and earth reflected irradiances were computed at satellite altitude using data from a new in-flight calibration technique. Flux densitites and albedos were computed for the top of the earth's atmosphere. Monthly averages of these quantities over 100 latitude zones, each hemisphere, and the globe are presented for each month analyzed, and global distributions are presented for typical months. Emitted flux densities are generally lower and albedos higher than those of previous studies. This may be due, in part, to the fact that the ESSA 7 satellite was in a 3 p.m. Sun-synchronous orbit and some of the comparison data were obtained from satellites in 12 noon sun-synchronous orbits. The ESSA 7 detectors seem to smooth out spatial flux density variations more than scanning radiometers or wide-field-of-view fixed-plate detectors. Significant longitudinal and latitudinal variations of emitted flux density and albedo were identified in the tropics in a zone extending about + or - 25 deg in latitude.

  4. Improvement of the Earth's gravity field from terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The terrestrial gravity data base was updated. Studies related to the Geopotential Research Mission (GRM) have primarily considered the local recovery of gravity anomalies on the surface of the Earth based on satellite to satellite tracking or gradiometer data. A simulation study was used to estimate the accuracy of 1 degree-mean anomalies which could be recovered from the GRM data. Numerous procedures were developed for the intent of performing computations at the laser stations in the SL6 system to improve geoid undulation calculations.

  5. Determination of Earth outgoing radiation using a constellation of satellites

    NASA Astrophysics Data System (ADS)

    Gristey, Jake; Chiu, Christine; Gurney, Robert; Han, Shin-Chan; Morcrette, Cyril

    2017-04-01

    The outgoing radiation fluxes at the top of the atmosphere, referred to as Earth outgoing radiation (EOR), constitute a vital component of the Earth's energy budget. This EOR exhibits strong diurnal signatures and is inherently connected to the rapidly evolving scene from which the radiation originates, so our ability to accurately monitor EOR with sufficient temporal resolution and spatial coverage is crucial for weather and climate studies. Despite vast improvements in satellite observations in recent decades, achieving these criteria remains challenging from current measurements. A technology revolution in small satellites and sensor miniaturisation has created a new and exciting opportunity for a novel, viable and sustainable observation strategy from a constellation of satellites, capable of providing both global coverage and high temporal resolution simultaneously. To explore the potential of a constellation approach for observing EOR we perform a series of theoretical simulation experiments. Using the results from these simulation experiments, we will demonstrate a baseline constellation configuration capable of accurately monitoring global EOR at unprecedented temporal resolution. We will also show whether it is possible to reveal synoptic scale, fast evolving phenomena by applying a deconvolution technique to the simulated measurements. The ability to observe and understand the relationship between these phenomena and changes in EOR is of fundamental importance in constraining future warming of our climate system.

  6. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  7. Properties of the moon, Mars, Martian satellites, and near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Taylor, Jeffrey G.

    1989-01-01

    Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.

  8. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  9. 75 FR 7975 - Procedures to Govern the Use of Satellite Earth Stations on Board Vessels in the 5925-6425 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Govern the Use of Satellite Earth Stations on Board Vessels in the 5925-6425 MHz/3700-4200 MHz Bands and... on Reconsideration, In the Matter of Procedures to Govern the Use of Satellite Earth Stations on...: December 31, 2012. Title: Earth Stations on Board Vessels (ESV). Form No.: Not applicable. Type of Review...

  10. Limitations imposed by ionospheric turbulence on satellite-to-satellite Doppler measurement accuracy. [of earth gravity field

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.

    1982-01-01

    For some time the possibility has been considered to perform an accurate survey from orbit of the earth gravity field by making use of low-low, satellite-to-satellite Doppler tracking with a radio link which operates in the frequency band in the range from 50 to 100 GHz. It is, therefore, of interest to discuss the upper bound in Doppler measurement accuracy imposed by the effects of ionospheric turbulence. The present investigation is concerned with the measurement error induced by ionospheric turbulence. The assumptin is made that the so-called ionospheric refractive 'bias' can be removed with one of the multifrequency methods of the current practice.

  11. The role of geomagnetic observatory data during the Swarm mission

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria; Macmillan, Susan; Beggan, Ciaran

    2014-05-01

    The scientific use of Swarm magnetic data and Swarm-derived products is greatly enhanced through combination with observatory data and indices. The strength of observatory data is their long-term accuracy, with great care being taken to ensure temperature control and correction, platform stability and magnetic cleanliness at each site. Observatory data are being distributed with Swarm data as an auxiliary product. We describe the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. Existing collaborations, such as INTERMAGNET and the World Data Centres for Geomagnetism, are proving invaluable for this. We also discuss how observatory measurements are being used to ground-truth Swarm data as part of the Calibration/Validation effort. Recent efforts to improve the coverage and timeliness of observatory data have been encouraged and now over 60 INTERMAGNET observatories and several other high-quality observatories are providing close-to-definitive data within 3 months of measurement. During the Calibration/Validation period these data are gathered and homogenised on a regular basis by BGS. We then identify measurements collected during overhead passes of the Swarm satellites. For each pass, we remove an estimate of the main field from both the data collected at altitude and that collected on the ground. Both sets of data are then normalised relative to the data variance during all passes in the Calibration/Validation period. The absolute differences of the two sets of normalised data can be used as a metric of satellite data quality relative to observatory data quality. This can be examined by universal time, local time, disturbance level and geomagnetic latitude, for example. A preliminary study of CHAMP data, using definitive minute mean observatory data, has shown how this approach can provide a baseline for detecting abnormalities at all

  12. The Smithsonian Earth Physics Satellite (SEPS) definition study, volumes 1 through 4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A limited Phase B study was undertaken to determine the merit and feasibility of launching a proposed earth physics satellite with Apollo-type hardware. The study revealed that it would be feasible to launch this satellite using a S-IB stage, a S-IVB with restart capability, an instrument unit, a SLA for the satellite shroud, and a nose cone (AS-204 configuration). A definition of the proposed satellite is provided, which is specifically designed to satisfy the fundamental requirement of providing an orbiting benchmark of maximum accuracy. The satellite is a completely passive, solid 3628-kg sphere of 38.1-cm radius and very high mass-to-area ratio (7980 kg sq mi). In the suggested orbit of 55 degrees inclination, 3720 km altitude, and low eccentricity, the orbital lifetime is extremely long, so many decades of operation can be expected.

  13. A view finder control system for an earth observation satellite

    NASA Astrophysics Data System (ADS)

    Steyn, H.

    2004-11-01

    A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.

  14. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  15. Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position

    NASA Technical Reports Server (NTRS)

    Skopinski, T. H.; Johnson, Katherine G.

    1960-01-01

    Expressions are presented for relating the satellite position in the orbital plane with the projected latitude and longitude on a rotating earth surface. An expression is also presented for determining the azimuth angle at a given burnout position on the basis of a selected passage position on the earth's surface. Examples are presented of a satellite launched eastward and one launched westward, each passing over a selected position sometime after having completed three orbits. Incremental changes from the desired latitude and longitude due to the earth's oblateness are included in the iteration for obtaining the azimuth angles of the two examples. The results for both cases are then compared with those obtained from a computing program using an oblate rotating earth. Changes from the selected latitude and longitude resulting from incremental changes from the burn-out azimuth angle and latitude are also analyzed.

  16. Performance analysis of rain attenuation on earth-to-satellite microwave links design in Libya

    NASA Astrophysics Data System (ADS)

    Rafiqul Islam, Md; Hussein Budalal, Asma Ali; Habaebi, Mohamed H.; Badron, Khairayu; Fadzil Ismail, Ahmad

    2017-11-01

    Performances of earth-to-satellite microwave links operating in Ku, Ka, and V-bands are degraded by the environment and strongly attenuated by rain. Rain attenuation is the most significant consideration and challenge to design a reliable earth-to-satellite microwave links for these frequency bands. Hence, it is essential for satellite link designer to take into account rain fade margin accurately before system implementation. Rain rate is the main measured parameter to predict of rain attenuation. Rainfall statistical data measured and recorded in Libya for the period of 30 years are collected from 5 locations. The prediction methods require one minute integration time rain intensity. Therefore, collected data were analyzed and processed to convert into one-minute rain rate cumulative distribution in Libya. The model proposed by ITU-R is used to predict and investigate rain fade based on converted 1-minute rain rate data. Rain fade predicted at two locations are used for performance analysis in terms of link spectral efficiency and throughput. V-band downlink shows that 99.99% availability is possible in all the Southern part stations in Libya at 0.29 bps/Hz spectral efficiency and 20.74 Mbps throughput when 72 MHz transponder band width is used which is not feasible in Northern part. Results of this paper will be a very useful resource to design highly reliable earth-to-satellite communication links in Libya.

  17. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.

    PubMed

    Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-06-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

  18. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations

    PubMed Central

    Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-01-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116

  19. Satellite Sees Holiday Lights Brighten Cities - Atlanta

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Satellite Sees Holiday Lights Brighten Cities - Florida

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Auxiliary subprograms for calculating the navigational parameters of artificial Earth satellites. FORTRAN IV

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1981-01-01

    Subprograms for transforming coordinates and time, for determining the position of the Moon and Sun, and for calculating the atmosphere and disturbances, which are specified by anomalies of the Earth's gravitational field are described. The subprograms are written in FORTRAN IV and form a major part of the package of applied programs for calculating the navigational parameters of artificial Earth satellites.

  2. The motion of an Earth satellite after imposition of a non-holonomic third-order constraint

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.; Soltakhanov, Sh. Kh.; Yushkov, M. P.

    2018-05-01

    We consider the motion of an Earth satellite in the case when, starting from a certain instant of time, the magnitude of its acceleration remains unchanged. This requirement is equivalent to a second-order nonlinear non-holonomic constraint imposed to the satellite motion. The results of calculations are given for the motion of three Soviet satellites, two of which are located on highly elliptical orbits.

  3. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data

  4. Performance of DS-CDMA with imperfect power control operating over a low earth orbiting satellite link

    NASA Astrophysics Data System (ADS)

    Vojcic, Branimir R.; Pickholtz, Raymond L.; Milstein, Laurence B.

    1994-05-01

    The analysis of both performance and capacity of direct sequence CDMA in terrestrial cellular systems has been addressed in the technical literature. It has been suggested that CDMA be used as a multiple access method for satellite systems as well, in particular for multispot beam Low Earth Orbit Satellites (LEOS). One is tempted to argue that since CDMA works well on terrestrial links, it will nominally work as well on satellite links. However, because there are fundamental differences in the characteristics of the two channels, such as larger time delays from the mobile to the base station and smaller multipath delay spreads on the satellite channels, the performance of CDMA on satellite links cannot always be accurately predicted from its performance on terrestrial channels. In this paper, we analytically derive the performance of a CDMA system which operates over a low earth orbiting satellite channel. We incorporate such effects as imperfect power control and dual-order diversity to obtain the average probability of error of a single user.

  5. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using approximately 55 kg of Xenon) and hydrazine (approximately 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025. The mission can be readily extended for another solar cycle to get a solar-cycle worth of data on Earth

  6. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  7. Linking Satellites Via Earth "Hot Spots" and the Internet to Form Ad Hoc Constellations

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stu; Grosvenor, Sandra; Ingram, Mary Ann; Langley, John; Miranda, Felix; Lee, Richard Q.; Romanofsky, Robert; Zaman, Afoz; Popovic, Zoya

    2004-01-01

    As more assets are placed in orbit, opportunities emerge to combine various sets of satellites in temporary constellations to perform collaborative image collections. Often, new operations concepts for a satellite or set of satellites emerge after launch. To the degree with which new space assets can be inexpensively and rapidly integrated into temporary or "ad hoc" constellations, will determine whether these new ideas will be implemented or not. On the Earth Observing 1 (EO-1) satellite, a New Millennium Program mission, a number of experiments were conducted and are being conducted to demonstrate various aspects of an architecture that, when taken as a whole, will enable progressive mission autonomy. In particular, the target architecture will use adaptive ground antenna arrays to form, as close as possible, the equivalent of wireless access points for low earth orbiting satellites. Coupled with various ground and flight software and the Internet. the architecture enables progressive mission autonomy. Thus, new collaborative sensing techniques can be implemented post-launch. This paper will outline the overall operations concept and highlight details of both the research effort being conducted in satellites. Keywords: collaborative remote sensing smart antennas, adaptive antenna arrays, sensor webs. ad hoc constellations, mission autonomy and

  8. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  9. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    NASA Technical Reports Server (NTRS)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  10. Improving the Transition of Earth Satellite Observations from Research to Operations

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  11. A multi-scale automatic observatory of soil moisture and temperature served for satellite product validation in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tang, S.; Dong, L.; Lu, P.; Zhou, K.; Wang, F.; Han, S.; Min, M.; Chen, L.; Xu, N.; Chen, J.; Zhao, P.; Li, B.; Wang, Y.

    2016-12-01

    Due to the lack of observing data which match the satellite pixel size, the inversion accuracy of satellite products in Tibetan Plateau(TP) is difficult to be evaluated. Hence, the in situ observations are necessary to support the calibration and validation activities. Under the support of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) projec a multi-scale automatic observatory of soil moisture and temperature served for satellite product validation (TIPEX-III-SMTN) were established in Tibetan Plateau. The observatory consists of two regional scale networks, including the Naqu network and the Geji network. The Naqu network is located in the north of TP, and characterized by alpine grasslands. The Geji network is located in the west of TP, and characterized by marshes. Naqu network includes 33 stations, which are deployed in a 75KM*75KM region according to a pre-designed pattern. At Each station, soil moisture and temperature are measured by five sensors at five soil depths. One sensor is vertically inserted into 0 2 cm depth to measure the averaged near-surface soil moisture and temperature. The other four sensors are horizontally inserted at 5, 10, 20, and 30 cm depths, respectively. The data are recorded every 10 minutes. A wireless transmission system is applied to transmit the data in real time, and a dual power supply system is adopted to keep the continuity of the observation. The construction of Naqu network has been accomplished in August, 2015, and Geji network will be established before Oct., 2016. Observations acquired from TIPEX-III-SMTN can be used to validate satellite products with different spatial resolution, and TIPEX-III-SMTN can also be used as a complementary of the existing similar networks in this area, such as CTP-SMTMN (the multiscale Soil Moistureand Temperature Monitoring Network on the central TP) . Keywords: multi-scale soil moisture soil temperature, Tibetan Plateau Acknowledgments: This work was jointly

  12. New Earth-Observing Small Satellite Missions on This Week @NASA – November 11, 2016

    NASA Image and Video Library

    2016-11-11

    NASA this month is scheduled to launch the first of six next-generation, Earth-observing small satellites. They’ll demonstrate innovative new approaches for measuring hurricanes, Earth's energy budget – which is essential to understanding greenhouse gas effects on climate, aerosols, and other atmospheric factors affecting our changing planet. These small satellites range in size from a loaf of bread to a small washing machine, and weigh as little as a few pounds to about 400 pounds. Their size helps keeps development and launch costs down -- because they often hitchhike to space as a “secondary payload” on another mission’s rocket. Small spacecraft and satellites are helping NASA advance scientific and human exploration, test technologies, reduce the cost of new space missions, and expand access to space. Also, CYGNSS Hurricane Mission Previewed, Expedition 50-51 Crew Prepares for Launch in Kazakhstan, and Orion Underway Recovery Test 5 Completed!

  13. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  14. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    NASA Astrophysics Data System (ADS)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  15. Dual view Geostationary Earth Radiation Budget from the Meteosat Second Generation satellites.

    NASA Astrophysics Data System (ADS)

    Dewitte, Steven; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Moreels, Johan

    2017-04-01

    The diurnal cycle of the radiation budget is a key component of the tropical climate. The geostationary Meteosat Second Generation (MSG) satellites carrying both the broadband Geostationary Earth Radiation Budget (GERB) instrument with nadir resolution of 50 km and the multispectral Spinning Enhanced VIsible and InfraRed Imager (SEVIRI) with nadir resolution of 3 km offer a unique opportunity to observe this diurnal cycle. The geostationary orbit has the advantage of good temporal sampling but the disadvantage of fixed viewing angles, which makes the measurements of the broadband Top Of Atmosphere (TOA) radiative fluxes more sensitive to angular dependent errors. The Meteosat-10 (MSG-3) satellite observes the earth from the standard position at 0° longitude. From October 2016 onwards the Meteosat-8 (MSG-1) satellite makes observations from a new position at 41.5° East over the Indian Ocean. The dual view from Meteosat-8 and Meteosat-10 allows the assessment and correction of angular dependent systematic errors of the flux estimates. We demonstrate this capability with the validation of a new method for the estimation of the clear-sky TOA albedo from the SEVIRI instruments.

  16. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  17. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  18. Comparison and testing of extended Kalman filters for attitude estimation of the Earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad

    1990-01-01

    The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.

  19. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  20. An Overview of Geodetic and Astrometric VLBI at the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    de Witt, A.; Gaylard, M.; Quick, J.; Combrinck, L.

    2013-08-01

    For astronomical Very Long Baseline Interferometry (VLBI), the Hartebeesthoek Radio Astronomy Observatory (HartRAO), in South Africa operates as part of a number of networks including the European and Australian VLBI networks, global arrays and also space VLBI. HartRAO is the only African representative in the international geodetic VLBI network and participates in regular astrometric and geodetic VLBI programmes. HartRAO will play a major role in the realization of the next generation full-sky celestial reference frame, especially the improvement of the celestial reference frame in the South. The observatory also provides a base for developing the African VLBI Network (AVN), a project to convert redundant satellite Earth-station antennas across Africa to use for radio astronomy. The AVN would greatly facilitate VLBI observations of southern objects. We present an overview of the current capabilities as well as future opportunities for astrometric and geodetic VLBI at HartRAO.

  1. A high-fidelity satellite ephemeris program for Earth satellites in eccentric orbits

    NASA Technical Reports Server (NTRS)

    Simmons, David R.

    1990-01-01

    A program for mission planning called the Analytic Satellite Ephemeris Program (ASEP), produces projected data for orbits that remain fairly close to the Earth. ASEP does not take into account lunar and solar perturbations. These perturbations are accounted for in another program called GRAVE, which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structural programming techniques to make the program more understandable and reliable. GRAVE was revised, and a new program called ORBIT was developed. It is divided into three major phases: initialization, integration, and output. Results of the program development are presented.

  2. Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

    NASA Astrophysics Data System (ADS)

    Park, Maru; Jo, Jung Hyun; Cho, Sungki; Choi, Jin; Kim, Chun-Hwey; Park, Jang-Hyun; Yim, Hong-Suh; Choi, Young-Jun; Moon, Hong-Kyu; Bae, Young-Ho; Park, Sun-Youp; Kim, Ji-Hye; Roh, Dong-Goo; Jang, Hyun-Jung; Park, Young-Sik; Jeong, Min-Ji

    2015-12-01

    By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.

  3. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  4. Low earth orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, R. E.; Gardiner, J. G.

    1993-01-01

    Digital cellular mobile 'second generation' systems are now gradually being introduced into service; one such example is GSM, which will provide a digital voice and data service throughout Europe. Total coverage is not expected to be achieved until the mid '90's, which has resulted in several proposals for the integration of GSM with a geostationary satellite service. Unfortunately, because terrestrial and space systems have been designed to optimize their performance for their particular environment, integration between a satellite and terrestrial system is unlikely to develop further than the satellite providing a back-up service. This lack of system compatibility is now being addressed by system designers of third generation systems. The next generation of mobile systems, referred to as FPLMTS (future public land mobile telecommunication systems) by CCIR and UMTS (universal mobile telecommunication system) in European research programs, are intended to provide inexpensive, hand-held terminals that can operate in either satellite, cellular, or cordless environments. This poses several challenges for system designers, not least in terms of the choice of multiple access technique and power requirements. Satellite mobile services have been dominated by the geostationary orbital type. Recently, however, a number of low earth orbit configurations have been proposed, for example Iridium. These systems are likely to be fully operational by the turn of the century, in time for the implementation of FPLMTS. The developments in LEO mobile satellite service technology were recognized at WARC-92 with the allocation of specific frequency bands for 'big' LEO's, as well as a frequency allocation for FPLMTS which included a specific satellite allocation. When considering integrating a space service into the terrestrial network, LEO's certainly appear to have their attractions: they can provide global coverage, the round trip delay is of the order of tens of milliseconds, and

  5. Effect of limb darkening on earth radiation incident on a spherical satellite

    NASA Technical Reports Server (NTRS)

    Katzoff, S.; Smith, G. L.

    1974-01-01

    The thermal radiation from the earth incident on a spherical satellite depends on the angular distribution of earth-emitted radiation. An analysis is presented of this dependency, and calculated results are given, based on a published limb-darkening curve for the earth. The curve was determined from Tiros data, and is a statistical average over the entire globe between 75 deg latitude. The computed effect of limb darkening was 1.8 percent at 900 km altitude, 2.5 percent at 500 km altitude, and 3.0 percent at 300 km altitude. Below 300 km, it increased rapidly with decreasing altitude. Discussion is included of various other problems inherent in the use of orbiting spheres and stabilized flat plates to measure the heat radiated from the earth.

  6. Wisconsin's Role in the First Orbiting Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Code, A.

    2005-12-01

    The Orbiting Astronomical Observatory (OAO-II) launched on December 7, 1968, was the first optical observatory to be operated above the earth's atmosphere. It contained two major instruments, the Smithsonian Celescope and the Wisconsin Experiment Package (WEP), composed of ultraviolet photometers and spectrometers. In 1957 the Soviet "Sputnik" Satellite started the race to space. The National Academy of Science circulated a letter drafted by Lloyd Berkner soliciting suggestions for scientific payloads for a 100 lb satellite. The University of Wisconsin was one of the organizations that responded with a proposal for an ultraviolet photometer. Shortly afterwards when NASA came into existence Wisconsin was one of those that received funding for a study of a 100 lb UV photometric telescope. By the time our preliminary design was completed NASA had developed a plan for an astronomical platform to support all varieties of experiments requiring pointing, power and command and data capability and payload weights over 1000 lbs. To adapt to this new dimension we clustered our telescopes and shared the volume with the four telescope of the Smithsonian Celescope. Celescope would look out one end of the spacecraft and the Wisconsin Experiment Package WEP would look out the other end. Since no one had ever done this before both NASA and ourselves had a lot to learn. One feature of our design was redundancy. The clustering contributed to this approach but there was both hardware and software redundancy throughout. This paper will describe elements of the origin of WEP, it's fabrication, operation and scientific yield

  7. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    NASA Technical Reports Server (NTRS)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  8. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  9. Satellite Sees Holiday Lights Brighten Cities - United States

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Satellite Sees Holiday Lights Brighten Cities - United States

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Satellite Sees Holiday Lights Brighten Cities - Los Angeles

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Aquarius Principal Investigator with Observatory

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius Principal Investigator Gary Lagerloef photographed in front of the Aquarius/SAC-D satellite observatory as it is being readied for transportation from Brazil to Vandenberg Air Force Base in California for a June 2011 launch.

  13. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).

  14. Measuring the Earth to within an inch using GPS satellites

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey

    1992-01-01

    A recently developed technique for “measuring the Earth” was demonstrated in 1991 using data from an experiment involving a world-wide network of receivers that track satellites of the Global Positioning System (GPS). Recent results indicate that distances between points separated by as much as 10,000 km on the surface of the Earth can be determined at the 2 cm level, and that the position of the pole of rotation at the Earth's surface can be estimated daily to better than 2 cm. Achieving this level of accuracy in a reliable, economical way is an important step towards building our understanding of the Earth as a rotating, deforming body.Funded by NASA's Solid Earth Science Program, the Jet Propulsion Laboratory coordinated participation of many international institutions in a 3-week experiment in January-February 1991 called GPS for International Earth Rotation Service (IERS) and Geodynamics '91 (GIG'91). Twenty-one receivers developed by J PL and scores of commercial receivers were simultaneously deployed. Several independent groups around the world analyzed the data and presented results at meetings in the summer and fall of 1991.

  15. Revisiting the South Atlantic Anomaly after 3 years of Swarm satellite mission

    NASA Astrophysics Data System (ADS)

    Pavón-Carrasco, F. Javier; Campuzano, Saioa A.; De Santis, Angelo

    2017-04-01

    Covering part of Southern America and the South Atlantic Ocean, the South Atlantic Anomaly (SAA) is nowadays one of the most important and largest features of the geomagnetic field at the Earth's surface. It is characterized by lower intensity values than expected for those geomagnetic latitudes. Thanks to the global geomagnetic models, the spatial and temporal geometry of the Earth's magnetic field can be defined at the core-mantle boundary, showing the origin of the SAA as a reversal polarity patch that is growing with a pronounced rate of -2.54ṡ105 nT per century and with western drift. Since the Swarm satellite mission of the European Space Agency was launched at the end of 2013, the three twin satellites are picking up the most accurate values of the geomagnetic field up to now. In this work, we use the satellite magnetic data from Swarm mission along with the observatory ground data of surrounding areas to evaluate the spatial and temporal evolution of the SAA during the Swarm-life.

  16. Potential fields & satellite missions: what they tell us about the Earth's core?

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  17. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  18. International two-way satellite time transfers using INTELSAT space segment and small Earth stations

    NASA Technical Reports Server (NTRS)

    Veenstra, Lester B.

    1990-01-01

    The satellite operated by the International Telecommunications Satellite Organization (INTELSAT) provides new and unique capabilities for the coordinates of international time scales on a world wide basis using the two-way technique. A network of coordinated clocks using small earth stations collocated with the scales is possible. Antennas as small as 1.8 m at K-band and 3 m at C-band transmitting powers of less than 1 W will provide signals with time jitters of less than 1 ns existing spread spectrum modems. One way time broadcasting is also possible, under the INTELSAT INTELNET system, possibly using existing international data distribution (press and financial) systems that are already operating spread spectrum systems. The technical details of the satellite and requirements on satellite earth stations are given. The resources required for a regular operational international time transfer service are analyzed with respect to the existing international digital service offerings of the INTELSAT Business Service (IBS) and INTELNET. Coverage areas, typical link budgets, and a summary of previous domestic and international work using this technique are provided. Administrative procedures for gaining access to the space segment are outlined. Contact information for local INTELSAT signatories is listed.

  19. Observing the earth radiation budget from satellites - Past, present, and a look to the future

    NASA Technical Reports Server (NTRS)

    House, F. B.

    1985-01-01

    Satellite measurements of the radiative exchange between the planet earth and space have been the objective of many experiments since the beginning of the space age in the late 1950's. The on-going mission of the Earth Radiation Budget (ERB) experiments has been and will be to consider flight hardware, data handling and scientific analysis methods in a single design strategy. Research and development on observational data has produced an analysis model of errors associated with ERB measurement systems on polar satellites. Results show that the variability of reflected solar radiation from changing meteorology dominates measurement uncertainties. As an application, model calculations demonstrate that measurement requirements for the verification of climate models may be satisfied with observations from one polar satellite, provided there is information on diurnal variations of the radiation budget from the ERBE mission.

  20. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  1. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  2. Satellite missions, global environment, and the concept of a global satellite observation information network. The role of the committee on Earth observation satellites (CEOS)

    NASA Astrophysics Data System (ADS)

    Smith, D. Brent; Williams, David F.; Fujita, Akihiro

    The paper traces the development of the Committee on Earth Observation Satellites (CEOS) since its November 1990 Plenary: its restructuring to include major intergovernmental user and international scientific organizational affiliates; its focus on data sharing issues and completion of a CEOS resolution guaranteeing global change researchers access to satellite data at the cost of filling a user request; unfolding of a CEOS-associated initiative of the UK Prime Minister reporting to UNCED delegations on the relevance of satellite missions to the study of the global environment; development of a "Dossier" providing detailed information on all CEOS agency satellite missions, including sensor specifications, ground systems, standard data products, and other information relevant to users; creation of a permanent CEOS Secretariat; and efforts currently underway to assess the feasibility of a global satellite observation information network. Of particular relevance to developing countries, the paper will discuss CEOS efforts to assure broad user access and to foster acceptance of applications in such important areas as disaster monitoring and mitigation, land cover change, weather forecasting, and long-term climate modeling.

  3. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    NASA Astrophysics Data System (ADS)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  4. ESA's Earth observation priority research objectives and satellite instrument requirements

    NASA Astrophysics Data System (ADS)

    Reynolds, M. L.

    2018-04-01

    Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.

  5. Global Earth Outgoing Radiation From A Constellation Of Satellites: Proof-Of-Concept Study

    NASA Astrophysics Data System (ADS)

    Gristey, J. J.; Chiu, J. Y. C.; Gurney, R. J.; Han, S. C.; Morcrette, C. J.

    2017-12-01

    The flux of radiation exiting at the top of the atmosphere, referred to as Earth Outgoing Radiation (EOR), constitutes a vital component of the Earth's energy budget. Since EOR is inherently connected to the rapidly evolving scene from which the radiation originates and exhibits large regional variations, it is of paramount importance that we can monitor EOR at a sufficient frequency and spatial scale for weather and climate studies. Achieving these criteria remains challenging using traditional measurement techniques. However, explosive development in small satellite technology and sensor miniaturisation has paved a viable route for measurements to be made from a constellation of satellites in different orbits. This offers an exciting new opportunity to make observations of EOR with both global coverage and high temporal resolution for the first time. To assess the potential of the constellation approach for observing EOR we perform a series of observing system simulation experiments. We will outline a baseline constellation configuration capable of sampling the Earth with unprecedented temporal resolution. Using this configuration and a sophisticated deconvolution technique, we demonstrate how to recover synoptic-scale global EOR to the accuracy required to understand Earth's global energy budget. Finally, we will reveal the impact of various modifications to the constellation configuration and provide recommendations for the community.

  6. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    NASA Astrophysics Data System (ADS)

    Brantley, Susan L.; McDowell, William H.; Dietrich, William E.; White, Timothy S.; Kumar, Praveen; Anderson, Suzanne P.; Chorover, Jon; Lohse, Kathleen Ann; Bales, Roger C.; Richter, Daniel D.; Grant, Gordon; Gaillardet, Jérôme

    2017-12-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these

  7. Searching the Heavens and the Earth: This History of Jesuit Observatories

    NASA Astrophysics Data System (ADS)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  8. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  9. Study on networking issues of medium earth orbit satellite communications systems

    NASA Technical Reports Server (NTRS)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  10. A Low Earth Orbit satellite marine communication system demonstration

    NASA Technical Reports Server (NTRS)

    Elms, T. Keith; Butt, Kenneth A.; Asmus, Ken W.

    1995-01-01

    An application of Low Earth Orbit (LEO) satellite communications technology was investigated during a joint Canadian/American scientific expedition to the north pole in the summer of 1994. The Canadian ice breaker involved, was equipped with a store-and-forward LEO satellite terminal which was linked to a ground station in St. John's, Newfoundland, via the near-polar-orbiting satellite, HealthSat-l. The objective was to evaluate the performance of such a system while providing an alternate means of communications in the far north. The system performed well, given its inherent limitations. All 151 attempts to send data files to the ship were successful. Only two (2) of the 35 attempts to send files from the ship were unsuccessful. The files ranged in size from 0.1 to 60 Kbytes. In the high arctic, above 80 deg north, this system often provided the only practical means of data communications. This experiment demonstrated the potential of such a system for not-real-time communications with remote and/or mobile stations, and highlighted the many issues involved. This paper describes the project objectives, system configuration and experimental procedure used, related technical issues, trial results, future work, and conclusions.

  11. Meteorological factors in Earth-Satellite propagation

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Damon, E. K.; Lin, K. T.; Weller, A. E., III

    1984-01-01

    A 5-meter paraboloidal antenna operated at 28 GHz showed gain changes of 2 dB due to rain. While precise estimation of the corresponding angle of arrival changes is difficult, they appear to have been on the order of 0.02 degrees. The attenuation at 28.6 GHz inferred from radiometry agreed well with that measured simultaneously over a satellite/Earth link at the same frequency. The radiometers so calibrated have been used to add to the available site diversity data base using a 9 km baseline. An improved empirical model of site diversity gain was obtained by applying regression techniques to available published data. A brief review of the literature has led to suggestions for two experimental programs, one dealing with multifrequency radiometry and the other with the effects of the stochastic properties of precipitation on wideband data transmission.

  12. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  13. Reducing Formation-Keeping Maneuver Costs for Formation Flying Satellites in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Hamilton, Nicholas

    2001-01-01

    Several techniques are used to synthesize the formation-keeping control law for a three-satellite formation in low-earth orbit. The objective is to minimize maneuver cost and position tracking error. Initial reductions are found for a one-satellite case by tuning the state-weighting matrix within the linear-quadratic-Gaussian framework. Further savings come from adjusting the maneuver interval. Scenarios examined include cases with and without process noise. These results are then applied to a three-satellite formation. For both the one-satellite and three-satellite cases, increasing the maneuver interval yields a decrease in maneuver cost and an increase in position tracking error. A maneuver interval of 8-10 minutes provides a good trade-off between maneuver cost and position tracking error. An analysis of the closed-loop poles with respect to varying maneuver intervals explains the effectiveness of the chosen maneuver interval.

  14. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  15. The next Landsat satellite; the Landsat Data Continuity Mission

    USGS Publications Warehouse

    Irons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Interior United States Geological Survey (USGS) are developing the successor mission to Landsat 7 that is currently known as the Landsat Data Continuity Mission (LDCM). NASA is responsible for building and launching the LDCM satellite observatory. USGS is building the ground system and will assume responsibility for satellite operations and for collecting, archiving, and distributing data following launch. The observatory will consist of a spacecraft in low-Earth orbit with a two-sensor payload. One sensor, the Operational Land Imager (OLI), will collect image data for nine shortwave spectral bands over a 185 km swath with a 30 m spatial resolution for all bands except a 15 m panchromatic band. The other instrument, the Thermal Infrared Sensor (TIRS), will collect image data for two thermal bands with a 100 m resolution over a 185 km swath. Both sensors offer technical advancements over earlier Landsat instruments. OLI and TIRS will coincidently collect data and the observatory will transmit the data to the ground system where it will be archived, processed to Level 1 data products containing well calibrated and co-registered OLI and TIRS data, and made available for free distribution to the general public. The LDCM development is on schedule for a December 2012 launch. The USGS intends to rename the satellite "Landsat 8" following launch. By either name a successful mission will fulfill a mandate for Landsat data continuity. The mission will extend the almost 40-year Landsat data archive with images sufficiently consistent with data from the earlier missions to allow long-term studies of regional and global land cover change.

  16. Satellite Sees Holiday Lights Brighten Cities - Texas and Louisiana

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  18. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  19. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  20. On analytic modeling of lunar perturbations of artificial satellites of the earth

    NASA Astrophysics Data System (ADS)

    Lane, M. T.

    1989-06-01

    Two different procedures for analytically modeling the effects of the moon's direct gravitational force on artificial earth satellites are discussed from theoretical and numerical viewpoints. One is developed using classical series expansions of inclination and eccentricity for both the satellite and the moon, and the other employs the method of averaging. Both solutions are seen to have advantages, but it is shown that while the former is more accurate in special situations, the latter is quicker and more practical for the general orbit determination problem where observed data are used to correct the orbit in near real time.

  1. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  2. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  3. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  4. Development of bubble memory recorder onboard Japan Earth Resources Satellite-1

    NASA Astrophysics Data System (ADS)

    Araki, Tsunehiko; Ishida, Chu; Ochiai, Kiyoshi; Nozue, Tatsuhiro; Tachibana, Kyozo; Yoshida, Kazutoshi

    The Bubble Memory Recorder (BMR) developed for use on the Earth Resources Satellite is described in terms of its design, capabilities, and functions. The specifications of the BMR are given listing memory capacity, functions, and interface types for data, command, and telemetry functions. The BMR has an emergency signal interface to provide contingency recording, and a satellite-separation signal interface can be turned on automatically by signal input. Data are stored in a novolatile memory device so that the memory is retained during power outages. The BMR is characterized by a capability for random access, nonvolatility, and a solid-state design that is useful for space operations since it does not disturb spacecraft attitude.

  5. Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A

    NASA Technical Reports Server (NTRS)

    Freden, S. C. (Compiler); Mercanti, E. P. (Compiler); Becker, M. A. (Compiler)

    1974-01-01

    Papers presented at the Third Symposium on Significant Results Obtained from the first Earth Resources Technology Satellite covered the areas of: agriculture, forestry, range resources, land use, mapping, mineral resources, geological structure, landform surveys, water resources, marine resources, environment surveys, and interpretation techniques.

  6. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  7. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  8. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    ERIC Educational Resources Information Center

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  9. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  10. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2017-12-08

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Time synchronization via the transit satellite at Mizusawa

    NASA Technical Reports Server (NTRS)

    Hara, J.; Sato, K. H.

    1978-01-01

    Time signals emitted from Transit satellites and received by the NAVICODE type receiver at Mizusawa, Japan are presented. The International Latitude Observatory of Mizusawa and the U. S. Naval Observatory were compared using the time signals. Propagation delays, a receiver delay, effects of relative motion of satellites, and effects of the ionosphere are discussed.

  13. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  14. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  15. Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.

    2013-12-01

    An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).

  16. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (Principal Investigator)

    1981-01-01

    Model simulations show that induction in a spherical Earth by distant magnetospheric sources can contribute magnetic field fluctuations at MAGSAT altitudes which are 30 to 40 percent of the external field amplitudes. When the characteristic dimensions (e.g. depth of penetration, etc) of a particular situations are small compared with the Earth's radius, the Earth can be approximated by a plane horizontal half space. In this case, electromagnetic energy is reflected with close to 100 percent efficiency from the Earth's surface. This implies that the total horizontal field is twice the source field when the source is above the satellite, but is reduced to values which are much smaller than the source field when the source is below the satellite. This latter effect tends to enhance the signature of gross electrical discontinuities in the lithosphere when observed at satellite altitudes.

  17. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  18. New NASA Satellite Zooms in on Tornado Swath

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A number of severe thunder storms swept through the mid-Atlantic states on April 28, bringing high winds, hailstones, and heavy rains to many areas. The intense storms spawned at least two tornadoes, one of which was classified as an F4 twister. The powerful tornado touched down in southern Maryland and ripped through the town of La Plata, destroying most of the historic downtown. The twister-the strongest ever recorded to hit the state and perhaps the strongest ever recorded in the eastern U.S.-flattened everything in its path along a 24-mile (39 km) swath running west to east through the state. The tornado's path can be seen clearly in this band-sharpened color image acquired on May 1 by the Advanced Land Imager (ALI), flying aboard NASA's EO-1 satellite. La Plata is situated toward the lefthand side of this scene and the twister's swath is the bright stripe passing through the town and running eastward 6 miles (10 km) toward the Patuxent River beyond the righthand side of the image. This stripe is the result of the vegetation flattened by the storm. The flattened vegetation reflects more light than untouched vegetation. EO-1 is the first Earth observing satellite launched as part of NASA's New Millennium Program. This program is designed to spearhead development and testing of a new generation of satellite remote sensing technologies for future Earth and space science missions. The ALI is designed to improve upon and extend the measurement heritage begun by the Landsat series of satellites well into the 21st Century. For more images of the tornado's path, including Landsat, visit Tornado Hits La Plata, Maryland in the Natural Hazards section of the Earth Observatory. Image courtesy Lawrence Ong, EO-1 Mission Science Office, NASA GSFC

  19. Satellites, scientists track storm from Sun to surface

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    1997-02-01

    On January 6, the Sun spat a coronal mass ejection (CME) into the solar wind and toward Earth; by January 10, a cloud of charged particles buffeted the face of the planet. It was, by several accounts, a run-of-the-mill space weather event. But the scientific work surrounding the storm was anything but run-of-the-mill. For the first time, space physicists observed and recorded a space weather event from start to finish, from solar surface to earthly impact. Researchers are calling it the first true success story of the four-year-old International Solar Terrestrial Physics program (ISTP), which includes NASA's WIND and POLAR spacecraft; the joint Solar and Heliospheric Observatory (SOHO) mission of NASA and the European Space Agency; the joint Geotail mission of NASA and Japan's Institute of Space and Aeronautical Science; and Russia's Interball satellites.

  20. JPL-20171011-OCOf-0002-NASA Pinpoints Cause of Earths Recent CO2 Spike

    NASA Image and Video Library

    2017-10-12

    Video File: New research from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite shows that the impacts of heat and drought during the 2015-16 El Niño on Earth's tropical regions were responsible for the largest increase in atmospheric CO2 in at least 2,000 years. Animations showing change from 2014-2017, summertime changes in CO2, OCO-2 spacecraft. Footage of Amazon rainforest. Interview with Annemarie Eldering, OCO-2 Deputy Project Scientist, JPL.

  1. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  2. Earth observations satellite data policy: Process and outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less

  3. Contingency study for the third international Sun-Earth Explorer (ISEE-3) satellite

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    The third satellite of the international Sun-Earth Explorer program was inserted into a periodic halo orbit about L sub 1, the collinear libration point between the Sun and the Earth-Moon barycenter. A plan is presented that was developed to enable insertion into the halo orbit in case there was a large underperformance of the Delta second or third stage during the maneuver to insert the spacecraft into the transfer trajectory. After one orbit of the Earth, a maneuver would be performed near perigee to increase the energy of the orbit. A relatively small second maneuver would put the spacecraft in a transfer trajectory to the halo orbit, into which it could be inserted for a total cost within the fuel budget. Overburns (hot transfer trajectory insertions) were also studied.

  4. Laser Communication Experiments with Artemis Satellite

    NASA Astrophysics Data System (ADS)

    Kuzkov, Sergii; Sodnik, Zoran; Kuzkov, Volodymyr

    2013-10-01

    In November 2001, the European Space Agency (ESA) established the world-first inter-satellite laser communication link between the geostationary ARTEMIS satellite and the low Earth orbiting (LEO) SPOT-4 Earth observation satellite, demonstrating data rates of 50 Mbps. In 2006, the Japanese Space Agency launched the KIRARI (OICETS) LEO satellite with a compatible laser communication terminal and bidirectional laser communication links (50 Mbps and 2 Mbps) were successfully realized between KIRARI and ARTEMIS. ESA is now developing the European Data Relay Satellite (EDRS) system, which will use laser communication technology to transmit data between the Sentinel 1 and 2 satellites in LEO to two geostationary satellites (EDRS-A and EDRS-C) at data rates of 1.8 Gbps. As the data handling capabilities of state-of-the-art telecommunication satellites in GEO increase so is the demand for the feeder-link bandwidth to be transmitted from ground. This is why there is an increasing interest in developing high bandwidth ground-to-space laser communication systems working through atmosphere. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system for its 0.7m AZT-2 telescope, located in Kyiv, Ukraine. The work was supported by the National Space Agency of Ukraine and by ESA. MAO developed a highly accurate computerized tracking system for AZT-2 telescope and a compact laser communication package called LACES (Laser Atmosphere and Communication Experiments with Satellites). The LACES instrument includes a camera of the pointing and tracking subsystems, a receiver module, a laser transmitter module, a tip/tilt atmospheric turbulence compensation subsystem, a bit error rate tester module and other optical and electronic components. The principal subsystems are mounted on a platform, which is located at the Cassegrain focus of the AZT-2 telescope. All systems were tested with the laser communication payload on-board ARTEMIS and

  5. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  6. Determine Daytime Earth's Radiation Budget from DSCOVR

    NASA Astrophysics Data System (ADS)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  7. Satellite Remote Sensing Tools at the Alaska Volcano Observatory

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Dean, K.; Webley, P.; Bailey, J.; Valcic, L.

    2008-12-01

    Volcanoes rarely conform to schedules or convenience. This is even more the case for remote volcanoes that still have impact on local infrastructure and air traffic. With well over 100 eruptions in the North Pacific over 20 years, the Alaska Volcano Observatory has developed a series of web-based tools to rapidly assess satellite imagery of volcanic eruptions from virtually anywhere. These range from automated alarms systems to detect thermal anomalies and ash plumes at volcanoes, as well as efficient image processing that can be done at a moments notice from any computer linked to the internet. The thermal anomaly detection algorithm looks for warm pixels several standard deviations above the background as well as pixels which show stronger mid infrared (3-5 microns) signals relative to available thermal channels (10-12 microns). The ash algorithm primarily uses the brightness temperature difference of two thermal bands, but also looks for shape of clouds and noise elimination. The automated algorithms are far from perfect, with 60-70% success rates, but improve with each eruptions. All of the data is available to the community online in a variety of forms which provide rudimentary processing. The website, avo-animate.images.alaska.edu, is designed for use by AVO's partners and "customers" to provide quick synoptic views of volcanic activity. These tools also have been essential in AVO's efforts in recent years and provide a model for rapid response to eruptions at distant volcanoes anywhere in the world. animate.images.alaska.edu

  8. A southern Africa harmonic spline core field model derived from CHAMP satellite data

    NASA Astrophysics Data System (ADS)

    Nahayo, E.; Kotzé, P. B.; McCreadie, H.

    2015-02-01

    The monitoring of the Earth's magnetic field time variation requires a continuous recording of geomagnetic data with a good spatial coverage over the area of study. In southern Africa, ground recording stations are limited and the use of satellite data is needed for the studies where high spatial resolution data is required. We show the fast time variation of the geomagnetic field in the southern Africa region by deriving an harmonic spline model from CHAMP satellite measurements recorded between 2001 and 2010. The derived core field model, the Southern Africa Regional Model (SARM), is compared with the global model GRIMM-2 and the ground based data recorded at Hermanus magnetic observatory (HER) in South Africa and Tsumeb magnetic observatory (TSU) in Namibia where the focus is mainly on the long term variation of the geomagnetic field. The results of this study suggest that the regional model derived from the satellite data alone can be used to study the small scale features of the time variation of the geomagnetic field where ground data is not available. In addition, these results also support the earlier findings of the occurrence of a 2007 magnetic jerk and rapid secular variation fluctuations of 2003 and 2004 in the region.

  9. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule; correction. SUMMARY: The Federal...

  10. Committee on Earth Observation Satellites (CEOS) perspectives about the GEO Supersite initiative

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Zoffoli, Simona; Giguere, Christine; Hoffmann, Joern; Lindsay, Francis; Seguin, Guy

    2014-05-01

    This presentation is outlining the effort of the Committee on Earth Observation Satellites (CEOS) using its global collaboration structure to support implementing the GEO priority action DI-01 Informing Risk Management and Disaster Reduction addressing the component: C2 Geohazards Monitoring, Alert, and Risk Assessment. A CEOS Supersites Coordination Team (SCT) has been established in order to make best use of the CEOS global satellite resources. For this, the CEOS SCT has taken a holistic view on the science data needs and availability of resources, considering the constraints and exploitation potentials of synergies. It is interfacing with the Supersites Science Advisory Group and the Principle Investigators to analyze how the satellite data associated with seismic and Global Navigation Satellite System (GNSS) data can support national authorities and policy makers in risk assessment and the development of mitigation strategies. CEOS SCT aims to support the establishment of a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. The three Supersites projects which are funded under the EC FP7 action, namely (i) FUTUREVOLC: A European volcanological supersite in Iceland: a monitoring system and network for the future Geohazards Monitoring, Alert, and Risk Assessment, (ii) MARsite: New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, (iii) MED-SUV: MEDiterranean Volcanoes and related seismic risks, have been examined as a vehicle to fulfill these ambitious objectives. FUTUREVOLC has already been granted CEOS support. This presentation will outline CEOS agreed process and criteria applied by the Supersites Coordination Team (SCT), for selecting these Supersites in the context of the GSNL initiative, as

  11. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  12. Dynamics of fictitious earth's satellites with possible past values of the ecliptic.

    NASA Astrophysics Data System (ADS)

    Callegari, N., Jr.; Yokoyama, T.; Marinho, E. P.

    The dynamics of some fictitious Earth satellites is studied considering initially, the secular perturbations due to Sun and the oblateness of the planet. With only these two disturbers, the problem is shown to be very similar to the case of fictitious satellites of Mars and Venus (already studied by one of us). Then, since the obliquities of the inner planets could have varied in a large interval, the eccentricities of the satellites were strongly disturbed, reaching some high prohibitive values. These values might have caused collision of the satellite with the planet or with some internal orbits. Moreover we can show that, provided that the semi major axis is near a critical value, a chaotic zone may appear and again the eccentricity can suffer very strong variation. However, as shown by Laskar et all (1993) in the case of Earth, large variation of the obliquity occurs only in the absence of the Moon. Although we do not know the origin and the past evolution of the M! oon, we decided to include it as a new disturber. Some information about past inclination of the Moon and the obliquity for several distances from the planet are given in Goldreich (1966), Touma and Wisdom (1993). The integration of the full equations, even for a massless satellite, takes too long computer time. In order to safe time and to get a preliminary idea, we derived the standard averaged equations for the gravitational part in the spatial case. However the present value of the Moon's mass is too much large for this first order averaged system. In spite of this, starting with some smaller masses and convenient ratio of semi major axes, it is shown that the qualitative behaviour of the averaged equations matches well with the results of the exact equation. Then it is easy to search and confirm the existence of some unstable regions where satellites placed on the equator in almost circular orbits can suffer very big increase of the eccentricity in a few hundred years. For the present value of

  13. Eliminating large-scale magnetospheric current perturbations from long-term geomagnetic observatory data

    NASA Astrophysics Data System (ADS)

    Pick, L.; Korte, M. C.

    2016-12-01

    Magnetospheric currents generate the largest external contribution to the geomagnetic field observed on Earth. Of particular importance is the solar-driven effect of the ring current whose fluctuations overlap with internal field secular variation (SV). Recent core field models thus co-estimate this effect but their validity is limited to the last 15 years offering satellite data. We aim at eliminating magnetospheric modulation from the whole geomagnetic observatory record from 1840 onwards in order to obtain clean long-term SV that will enhance core flow and geodynamo studies.The ring current effect takes form of a southward directed external dipole field aligned with the geomagnetic main field axis. Commonly the Dst index (Sugiura, 1964) is used to parametrize temporal variations of this dipole term. Because of baseline instabilities, the alternative RC index was derived from hourly means of 21 stations spanning 1997-2013 (Olsen et al., 2014). We follow their methodology based on annual means from a reduced station set spanning 1960-2010. The absolute level of the variation so determined is "hidden" in the static lithospheric offsets taken as quiet-time means. We tackle this issue by subtracting crustal biases independently calculated for each observatory from an inversion of combined Swarm satellite and observatory data.Our index reproduces the original annual RC index variability with a reasonable offset of -10 nT in the reference time window 2000-2010. Prior to that it depicts a long-term trend consistent with the external dipole term from COV-OBS (Gillet et al., 2013), being the only long-term field model available for comparison. Sharper variations that are better correlated with the Ap index than the COV-OBS solution lend support to the usefulness of our initial modeling approach. Following a detailed sensitivity study of station choice future work will focus on increasing the resolution from annual to hourly means.

  14. Comparison of the Earth's high-latitude disturbances with energetic electrons measured by the ERG/Arase satellite

    NASA Astrophysics Data System (ADS)

    Chiang, C. Y.; Chang, T. F.; Tam, S. W. Y.; Syugu, W. J.; Kazama, Y.; Wang, B. J.; Wang, S. Y.; Kasahara, S.; Yokota, S.; Hori, T.; Yoshizumi, M.; Shinohara, I.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite has been successfully launched from the Uchinoura Space Center in December 2016. The main goal of the ERG project is to elucidate acceleration and loss mechanisms of relativistic electrons in the radiation belts. In addition, the apogee of the ERG satellite's orbit often exceeds the edge of outer radiation belt in radial distance. Thus the data measured from the higher-L region may be associated with the activities observed in the Earth's high-latitude region. We statistically compare the Auroral Electrojet (AE) index with the data measured by the Low-Energy Particle Experiments - Electron Analyzer (LEP-e) and Medium-Energy Particle Experiments - Electron Analyzer (MEP-e) onboard the ERG satellite in the past months. With the selected data for L > 7, we statistically investigate the contributions of the different electron energies observed in various magnetic local time (MLT) sectors to the Earth's high-latitude disturbances.

  15. Multiple continuous coverage of the earth based on multi-satellite systems with linear structure

    NASA Astrophysics Data System (ADS)

    Saulskiy, V. K.

    2009-04-01

    A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  18. The Earth Gravitational Observatory (EGO): Nanosat Constellations For Advanced Gravity Mapping

    NASA Astrophysics Data System (ADS)

    Yunck, T.; Saltman, A.; Bettadpur, S. V.; Nerem, R. S.; Abel, J.

    2017-12-01

    The trend to nanosats for space-based remote sensing is transforming system architectures: fleets of "cellular" craft scanning Earth with exceptional precision and economy. GeoOptics Inc has been selected by NASA to develop a vision for that transition with an initial focus on advanced gravity field mapping. Building on our spaceborne GNSS technology we introduce innovations that will improve gravity mapping roughly tenfold over previous missions at a fraction of the cost. The power of EGO is realized in its N-satellite form where all satellites in a cluster receive dual-frequency crosslinks from all other satellites, yielding N(N-1)/2 independent measurements. Twelve "cells" thus yield 66 independent links. Because the cells form a 2D arc with spacings ranging from 200 km to 3,000 km, EGO senses a wider range of gravity wavelengths and offers greater geometrical observing strength. The benefits are two-fold: Improved time resolution enables observation of sub-seasonal processes, as from hydro-meteorological phenomena; improved measurement quality enhances all gravity solutions. For the GRACE mission, key limitations arise from such spacecraft factors as long-term accelerometer error, attitude knowledge and thermal stability, which are largely independent from cell to cell. Data from a dozen cells reduces their impact by 3x, by the "root-n" averaging effect. Multi-cell closures improve on this further. The many closure paths among 12 cells provide strong constraints to correct for observed range changes not compatible with a gravity source, including accelerometer errors in measuring non-conservative forces. Perhaps more significantly from a science standpoint, system-level estimates with data from diverse orbits can attack the many scientifically limiting sources of temporal aliasing.

  19. Satellite Sees Holiday Lights Brighten Cities - Southern California and the Southwest

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Satellite Sees Holiday Lights Brighten Cities - Washington, D.C., and Baltimore

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  2. Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links.

    PubMed

    Belmonte, Aniceto; Taylor, Michael T; Hollberg, Leo; Kahn, Joseph M

    2017-07-10

    The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.

  3. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  4. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    NASA Astrophysics Data System (ADS)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  5. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  6. The Satellite Data Thematic Core Service within the EPOS Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Buonanno, Sabatino; Zeni, Giovanni; Wright, Tim; Hooper, Andy; Diament, Michel; Ostanciaux, Emilie; Mandea, Mioara; Walter, Thomas; Maccaferri, Francesco; Fernandez, Josè; Stramondo, Salvatore; Bignami, Christian; Bally, Philippe; Pinto, Salvatore; Marin, Alessandro; Cuomo, Antonio

    2017-04-01

    EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model

  7. Four identical satellites investigating the Earth's turbulent relationship with the Sun

    NASA Astrophysics Data System (ADS)

    1996-05-01

    Once in space, the four satellites will manoeuvre to an eccentric polar trajectory along which they will fly in tetrahedral formation for the next two years. They will take highly precise and, for the first time, three- dimensional measurements of the extraordinarily dynamic phenomena that occur where the solar wind meets the near- Earth environment. They will gather an unprecedented volume of very high- quality information on the magnetic storms, electric currents and particle accelerations that take place in the space surrounding our planet, which give rise to all manner of events, such as the aurorae in the polar regions, power cuts, breakdowns in telecommunication systems, or satellite malfunctions, and perhaps even changes in climate. The Cluster mission will also gather a host of fundamental information on the ionised gases whose behaviour physicists are trying to reproduce under laboratory conditions with the ultimate aim of generating thermonuclear energy. A cosmic battlefield The Sun's flames are lapping at the Earth's doorstep. In its constant state of effervescence/evaporation, it emits into space a wind charged with ions, electrons and protons which reach Earth at speeds of 1.5 to 3 million kph. Fortunately, our planet is armed with a natural shield against this onslaught: the magnetosphere, a distant magnetic, ionised extension of our atmosphere which slows and deflects the bulk of the stream of particles emitted by the Sun. This shield does not provide complete protection, however. Under constant buffeting from the interplanetary wind, the "fluid" magnetic screen is buckled, distorted and occasionally torn, causing small holes. When this happens, intense electric currents, magnetic storms and particle accelerations immediately develop. The overall interaction between the solar wind and the magnetosphere is so violent that the energy transferred can be as much as 1013 watts - equivalent to worldwide power consumption - and the currents induced run to

  8. Satellites Seek Gravity Signals for Remote Sensing the Seismotectonic Stresses in Earth

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Chen, Jizhong; Li, Jinling

    2003-01-01

    The ability of the mantle to withstand stress-difference due to superimposed loads would appear to argue against flow in the Earth s mantle, but the ironic fact is that the satellite determined gravity variations are the evidence of density differences associated with mantle flow. The type of flow which is most likely to be involved concerns convection currents. For the past 4 decades, models of mantle convection have made remarkable advancements. Although a large body of evidence regarding the seafloor depth, heat flow, lithospheric strength and forces of slab-pull and swell-push has been obtained, the global seismotectonic stresses in the Earth are yet to be determined. The problem is that no one has been able to come up with a satisfactory scenario that must characterize the stresses in the Earth which cause earthquakes and create tectonic features.

  9. Monitoring volcanic threats using ASTER satellite data

    USGS Publications Warehouse

    Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.

    2008-01-01

    This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.

  10. VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David; hide

    2017-01-01

    The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.

  11. A Modern Operating System for Near-real-time Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank

    2014-05-01

    The NSF Ocean Observatory Initiative (OOI) provided an opportunity for expanding the capabilities for managing open, near-real-time (latencies of seconds) data from ocean observatories. The sensors deployed in this system largely return data from seafloor, cabled fiber optic cables as well as satellite telemetry. Bandwidth demands range from high-definition movies to the transmission of data via Iridium satellite. The extended Internet also provides an opportunity to not only return data, but to also control the sensors and platforms that comprise the observatory. The data themselves are openly available to any users. In order to provide heightened network security and overall reliability, the connections to and from the sensors/platforms are managed without Layer 3 of the Internet, but instead rely upon message passing using an open protocol termed Advanced Queuing Messaging Protocol (AMQP). The highest bandwidths in the system are in the Regional Scale Network (RSN) off Oregon and Washington and on the continent with highly reliable network connections between observatory components at 10 Gbps. The maintenance of metadata and life cycle histories of sensors and platforms is critical for providing data provenance over the years. The integrated cyberinfrastructure is best thought of as an operating system for the observatory - like the data, the software is also open and can be readily applied to new observatories, for example, in the rapidly evolving Arctic.

  12. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    NASA Technical Reports Server (NTRS)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  13. Data Access and Web Services at the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Henderson, D.; Hodgkinson, K.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Smith, J.; Wright, J.; Jackson, M.

    2007-12-01

    The EarthScope Plate Boundary Observatory (PBO) at UNAVCO, Inc., part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 880 continuous GPS stations, 103 borehole strainmeter stations, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations and one previously existing laser strainmeter. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of access methods, incuding map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  14. On-Orbit Cross-Calibration of AM Satellite Remote Sensing Instruments using the Moon

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Kieffer, Hugh H.; Barnes, Robert A.; Stone, Thomas C.

    2003-01-01

    On April 14,2003, three Earth remote sensing spacecraft were maneuvered enabling six satellite instruments operating in the visible through shortwave infrared wavelength region to view the Moon for purposes of on-orbit cross-calibration. These instruments included the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on the Earth Observing System (EOS) Terra spacecraft, the Advanced Land Imager (ALI) and Hyperion instrument on Earth Observing-1 (EO-1) spacecraft, and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the SeaStar spacecraft. Observations of the Moon were compared using a spectral photometric mode for lunar irradiance developed by the Robotic Lunar Observatory (ROLO) project located at the United States Geological Survey in Flagstaff, Arizona. The ROLO model effectively accounts for variations in lunar irradiance corresponding to lunar phase and libration angles, allowing intercomparison of observations made by instruments on different spacecraft under different time and location conditions. The spacecraft maneuvers necessary to view the Moon are briefly described and results of using the lunar irradiance model in comparing the radiometric calibration scales of the six satellite instruments are presented here.

  15. Time and Frequency Activities at the U.S. Naval Observatory

    DTIC Science & Technology

    2005-01-01

    Naval Observatory, Washington, D.C.), pp. 325-332. [15] D. Kirchner, 1999, “Two Way Satellite Time and Frequency Transfer ( TWSTFT ),” Review of...of Carrier- Phase-Based Two-Way Satellite Time and Frequency Transfer ( TWSTFT ),” in Proceedings of the 36th Annual Precise Time and Time Interval

  16. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  17. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  18. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  19. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  20. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  1. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  2. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  3. Satellite Observations of Annihilation of Positrons Produced at the Sun, the Earth, and Center of our Galaxy

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.; Lin, R. P.

    2007-05-01

    Positrons are created in nuclear interactions that produce β +-unstable nuclei and pi+ mesons. Satellites remotely observe positron production when they annihilate with electrons yielding the characteristic line at 511 keV. Radiation detectors such as the germanium diodes on the Ramaty High-Energy Solar Spectrocopic Imager (RHESSI) observe this line from positrons by nuclei activated in the spacecraft by proton interactions during transit through the Earth's radiation belts and from cosmic radiation. This forms an intense background for solar and astrophysical observations. RHESSI and other satellites have observed positron annihilation in over 50 solar flares. These measurements provide information on the temperature, density, and ionization state of solar atmosphere where the positrons annihilate. The measurements suggest that up to a few kg of positrons are produced in these flares. Detectable annihilation-line radiation is also emitted from the Earth's atmosphere in interactions of cosmic rays and solar energetic particles. An extended annihilation-line source has also been detected within about 10 degrees of the center of the Milky Way that is attributed to positrons released in radioactive decays of nuclei with long half-lives produced in supernovae, novae, and other stellar explosions. From 1980 to 1988 NASA's Solar Maximum Mission satellite also detected belts of positrons emitted by nuclear reactors onboard KOSMOS satellites and trapped temporarily in the Earth's magnetic field. This work was supported by NASA Supporting Research & Technology grants.

  4. Ground-based Characterization of Earth Quasi Satellite (469219) 2016 HO3

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Kuhn, Olga; Thirouin, Audrey; Conrad, Al; Malhotra, Renu; Sanchez, Juan A.; Veillet, Christian

    2017-10-01

    (469219) 2016 HO3 is a small, <100 meter-size, near-Earth object (NEO) that while orbiting the Sun, also appears to circle around the Earth just beyond the Hill sphere as a Earth quasi-satellite. Only five quasi-satellites have been discovered so far, but 2016 HO3 is the most stable of them. The provenance of this object is unknown. On timescales of many centuries, 2016 HO3 remains within 38-100 lunar distance from us making it a prime target for future robotic and human exploration, provided it can be established it is indeed a natural object. In an effort to constrain its rotation period and surface composition, we observed 2016 HO3 on April 14 and 18 2017 (UTC) with the Large Binocular Telescope (LBT) and the Discovery Channel Telescope (DCT). We derive a rotation period of about 28 minutes based on our lightcurve observations. We obtained low-resolution (R ˜ 150 - 500) spectra of 2016 HO3 on 2017 April 14 (UTC) using the pair of MODS spectrographs mounted at the direct Gregorian foci of the LBT, obtaining the entire spectrum from 0.39-0.97 microns simultaneously. The visible wavelength spectrum shows a sharp rise in reflectance between 0.4-0.65 microns with a broad plateau beyond. The scatter near 0.8 microns makes it challenging to confirm the presence of a silicate absorption band at ~1 micron. Color ratios derived from the spectrum all suggest an S taxonomic type. We also derive an updated diameter of 36 meters for 2016 HO3 using an absolute magnitude of 24.3 and S-type albedo of 0.25. The derived rotation period and the spectrum are not uncommon amongst small NEOs, suggesting that 2016 HO3 is a natural object of similar provenance to other small NEOs. NASA Near-Earth Object Observations Program Grant NNX17AJ19G (PI: Reddy) funded parts of this work.

  5. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  6. Time and Frequency Activities at the U.S. Naval Observatory

    DTIC Science & Technology

    2012-01-01

    Satellite Time Transfer (TWSTT), also referred to as Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) The most accurate means of operational long...satellite broadcasts, and the BIPM uses that reported by the Observatory of Paris (OP), transferred to the BIPM via TWSTFT . This is compared to...Frequency Transfer ( TWSTFT ),” Review of Radio Science (Oxford Science Publications), pp. 27-44. [25] L. A. Breakiron, A. L. Smith, B. C. Fonville

  7. Computational Earth Science: Big Data Transformed Into Insight

    NASA Astrophysics Data System (ADS)

    Sellars, Scott; Nguyen, Phu; Chu, Wei; Gao, Xiaogang; Hsu, Kuo-lin; Sorooshian, Soroosh

    2013-08-01

    More than ever in the history of science, researchers have at their fingertips an unprecedented wealth of data from continuously orbiting satellites, weather monitoring instruments, ecological observatories, seismic stations, moored buoys, floats, and even model simulations and forecasts. With just an internet connection, scientists and engineers can access atmospheric and oceanic gridded data and time series observations, seismographs from around the world, minute-by-minute conditions of the near-Earth space environment, and other data streams that provide information on events across local, regional, and global scales. These data sets have become essential for monitoring and understanding the associated impacts of geological and environmental phenomena on society.

  8. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini-satellite

  9. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    NASA Astrophysics Data System (ADS)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  10. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    PubMed

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  11. Use of libration-point orbits for space observatories

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, David W.

    1990-01-01

    The sun-earth libration points, L1 and L2, are located 1.5 million kilometers from the earth toward and away from the sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.

  12. Low-earth-orbit Satellite Internet Protocol Communications Concept and Design

    NASA Technical Reports Server (NTRS)

    Slywezak, Richard A.

    2004-01-01

    This report presents a design concept for a low-Earth-orbit end-to-end Internet-Protocol- (IP-) based mission. The goal is to maintain an up-to-date communications infrastructure that makes communications seamless with the protocols used in terrestrial computing. It is based on the premise that the use of IPs will permit greater interoperability while also reducing costs and providing users the ability to retrieve data directly from the satellite. However, implementing an IP-based solution also has a number of challenges, since wireless communications have different characteristics than wired communications. This report outlines the design of a low-Earth-orbit end-to-end IP-based mission; the ideas and concepts of Space Internet architectures and networks are beyond the scope of this document. The findings of this report show that an IP-based mission is plausible and would provide benefits to the user community, but the outstanding issues must be resolved before a design can be implemented.

  13. The impact of earth resources exploration from space. [technology assessment/LANDSAT satellites -technological forecasting

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1975-01-01

    The use of Earth Resources Technology Satellites in solving global problems is examined. Topics discussed are: (1) management of food, water, and fiber resources; (2) exploration and management of energy and mineral resources; (3) protection of the environment; (4) protection of life and property; and (5) improvements in shipping and navigation.

  14. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    NASA Astrophysics Data System (ADS)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  15. Sir Thomas Brisbane's Legacy to Colonial Science: Colonial Astronomy at the Parramatta Observatory, 1822-1848

    NASA Astrophysics Data System (ADS)

    Saunders, Shirley D.

    2004-12-01

    Sir Thomas Makdougall Brisbane's legacy to colonial science derives from his initiative in establishing a privately owned observatory in the southern hemisphere, the Parramatta Observatory, during his term as Governor of the Colony of New South Wales from 1822 to 1825. In this paper a discussion is given of the origin and setting up of Brisbane's Parramatta Observatory, including the recruitment and employment of Carl Rümker and James Dunlop. An account is given of the choice of the work undertaken at Parramatta Observatory when it was privately owned by Brisbane such as the rediscovery of Encke's Comet in 1822, the publication of a catalogue of 7,385 southern stars in 1835 and measurements of earthly phenomena such as the weather, the temperature of the interior of the Earth and the figure of the Earth. An investigation is made of the ensuing struggles as the Parramatta Observatory moved from a private, gentlemanly endeavour to a more accountable public-sector institution in a distant colony of Britain. The main events concerning the public Parramatta Observatory are chronicled from 1826 to 1830 during the years when Rümker worked at the Observatory. A discussion is given of the period 1831 to 1848 at the Parramatta Observatory during Dunlop's term of public office, concluding with an account of the decay and demolition of the observatory.

  16. Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch

    NASA Astrophysics Data System (ADS)

    1998-06-01

    (temperatures, voltages, etc.,) will be monitored while AXAF is in the bay of the shuttle. This information will be relayed to the shuttle from the OCC via Johnson Space Center. The condition of the satellite during launch and the first few orbits will determine if it can be sent on its way. Unlike the Hubble Space telescope, AXAF will not be serviceable after it is in orbit. When the satellite has been released into space from the shuttle bay, a built in propulsion system will boost it into a large elliptical orbit around Earth. The nearest the observatory will come to Earth is 6,200 miles and its furthest point will be more than a third of the way to the moon. This means that the telescope will have approximately 52 hours of observing time each orbit. AXAF images will show fifty times more detail than any previous X-ray telescope. The revolutionary telescope combines the ability to make sharp images while measuring precisely the energies of X-rays coming from cosmic sources. The impact AXAF will have on X-ray astronomy can be compared to the difference between a fuzzy black and white and a sharp color picture.

  17. Orbiting Carbon Observatory-2 Ready to Blast Off

    NASA Image and Video Library

    2014-06-30

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 OCO-2 satellite onboard, is seen at Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif.

  18. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  19. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    NASA Astrophysics Data System (ADS)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  20. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  1. The first Earth Resources Technology Satellite - Nearly two years of operation

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1974-01-01

    A brief status report is given of the ERTS-1 satellite system as of June, 1974, and some applications of the ERTS-1 images are discussed. The multispectral images make it possible to identify or measure the quality and composition of water, the potential water content of snow, the moisture and possible composition of soils, the types and state of vegetation cover, and factors relating to stresses on the environment. The orthographic view of the earth provided by the satellite makes it possible to rapidly produce thematic maps, on a scale of 1:250,000, of most areas of the world. The regular, repetitive coverage provided by ERTS-1 every 18 days is important in areas such as water-supply and flood-damage studies. The use of ERTS-1 imagery for land-use planning, wetlands surveying, assessing marine resources, and observing processes such as desertification in the African Sahel is discussed.

  2. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  3. The role of a low Earth orbiter in intercontinental time synchronization via GPS satellites

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Ondrasik, V. J.

    1985-01-01

    Time synchronization between two sites using differential GPS has been investigated by a number of researchers. When the two sites are widely separated, the common view period of any GPS satellite becomes shorter; low elevation observations are inevitable. This increase the corrupting effects of the atmospheric delay and, at the same time, narrows the window for such time synchronization. This difficulty can be alleviated by synchronization. This difficulty can be alleviated by using a transit site located midway between the two main sites. The main sites can now look at different GPS satellites which are also in view at the transit site. However, a ground transit site may not always be conveniently available, especially across the Pacific Ocean; also, the inclusion of a ground transit site introduce additional errors due to its location error and local atmospheric delay. An alternative is to use a low Earth orbiter (LEO) as the transit site. A LEO is superior to a ground transit site in three ways: (1) It covers a large part of the Earth in a short period of time and, hence, a single LEO provides worldwide transit services; (2) it is above the troposphere and thus its inclusion does not introduce additional tropospheric delay error; and (3) it provides strong dynamics needed to improve GPS satellite positions which are of importance to ultraprecise time synchronization.

  4. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global

  5. EarthScope: Cyberinfrastructure to access Plate Boundary Observatory data products and services

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Mattioli, G. S.; Miller, M.; Boler, F. M.; Crosby, C. J.; Mencin, D.; Phillips, D. A.; Snett, L.

    2013-12-01

    The wealth of data from geodetic observing systems, especially the Plate Boundary Observatory (PBO), presents major data management challenges. The challenges are driven by ingenious new uses of Global Positioning System (GPS) data, demands for higher-rate, lower latency data, the need for continued access and long term preservation of archival data, the expansion of data users into other science, engineering and commercial arenas, and the growth of enhanced products that expand the utility of the data. To meet these challenges, UNAVCO has established a comprehensive suite of data services encompassing sensor network data operations, data product generation (through the activities of partners at Massachusetts Institute of Technology, Central Washington University, New Mexico Institute of Mining and Technology, and the University of California, San Diego - UCSD), data management, access and archiving, and advanced cyberinfrastructure. PBO sensor systems include 1,100 continuously operating GPS stations, 79 borehole geophysical sites (with a combination of strainmeters, tiltmeters, seismometers, pore pressure gauges, and meteorological sensors), and 6 long baseline strainmeters. Imaging data acquired for EarthScope include large volumes of satellite synthetic aperture radar (SAR) and airborne LiDAR data. Core data products such as daily GPS position time series and derived crustal motion velocities have been augmented with real-time data streams and positions calculated every second from 367 PBO stations. Higher rate (5 Hz) data files are available for applications such as GPS seismology. Efforts are underway with UCSD to integrate GPS and accelerometers at a subset of PBO sites to increase the reliability and capability of the observations. These observations have utility for research and hazards mitigation. Ingenious methods of GPS data analysis, developed by the University of Colorado and the University Corporation for Atmospheric Research, measure snow depth

  6. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  7. Candidate configuration trade study, Stellar-inertial Measurement Systems (SIMS) for an Earth Observation Satellite (EOS)

    NASA Technical Reports Server (NTRS)

    Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.

    1972-01-01

    The results of analytical and simulation studies of the stellar-inertial measurement system (SIMS) for an earth observation satellite are presented. Subsystem design analyses and sensor design trades are reported. Three candidate systems are considered: (1) structure-mounted gyros with structure-mounted star mapper, (2) structure-mounted gyros with gimbaled star tracker, and (3) gimbaled gyros with structure-mounted star mapper. The purpose of the study is to facilitate the decisions pertaining to gimbaled versus structure-mounted gyros and star sensors, and combinations of systems suitable for the EOS satellite.

  8. Measurements of the north polar cap of Mars and the earth's Northern Hemisphere ice and snow cover

    NASA Technical Reports Server (NTRS)

    Foster, J.; Owe, M.; Capen, C.

    1986-01-01

    The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the earth, the polar caps have been accurately mapped only since the mid 1960s when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as earth are intimately linked to global energy balance. Data on the year to year variations in the extent of the north polar caps of Mars and earth have been assembled and compared, although only 6 years of concurrent data were available for comparison.

  9. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  10. The hills are alive: Earth surface dynamics in the University of Arizona Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Troch, P. A.; Barron-Gafford, G. A.; Huxman, T. E.; Pelletier, J. D.; Dontsova, K.; Niu, G.; Chorover, J.; Zeng, X.

    2012-12-01

    To meet the challenge of predicting landscape-scale changes in Earth system behavior, the University of Arizona has designed and constructed a new large-scale and community-oriented scientific facility - the Landscape Evolution Observatory (LEO). The primary scientific objectives are to quantify interactions among hydrologic partitioning, geochemical weathering, ecology, microbiology, atmospheric processes, and geomorphic change associated with incipient hillslope development. LEO consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1 meter of basaltic tephra ground to homogenous loamy sand and contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. Each ~1000 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation), to facilitate better quantification of evapotraspiration. Each landscape has an engineered rain system that allows application of precipitation at rates between3 and 45 mm/hr. These landscapes are being studied in replicate as "bare soil" for an initial period of several years. After this initial phase, heat- and drought-tolerant vascular plant communities will be introduced. Introduction of vascular plants is expected to change how water, carbon, and energy cycle through the landscapes, with potentially dramatic effects on co-evolution of the physical and biological systems. LEO also provides a physical comparison to computer models that are designed to predict interactions among hydrological, geochemical, atmospheric, ecological and geomorphic processes in changing climates. These computer models will be improved by comparing their predictions to physical measurements made in

  11. First results of DORIS data analysis at Geodetic Observatory Pecný

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Hugentobler, Urs; Le Bail, Karine

    2006-11-01

    In a cooperation between the Astronomical Institute, University of Bern (AIUB), the Geodetic Observatory Pecný (GOPE), and the Institut Géographique National (IGN), DORIS data analysis capabilities were implemented into a development version of the Bernese GPS software. The DORIS Doppler observables are reformulated such that they are similar to global navigation satellite system (GNSS) carrier-phase observations, allowing the use of the same observation models and algorithms as for GNSS carrier-phase data analysis with only minor software modifications. As such, the same algorithms may be used to process DORIS carrier-phase observations. First results from the analysis of 3 weeks of DORIS data (September 2004, five DORIS-equipped satellites) at GOPE are promising and are presented here. They include the comparison of station coordinates with coordinate estimates derived by the Laboratoire d’Etudes en Géophysique et Océanographie Spatiale/Collecte Localisation Satellites analysis centre (LCA) and the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL), and the comparison of Earth orientation parameters (EOPs) with the International Earth Rotation and Reference Frames Service (IERS) C04 model. The modified Bernese results are of a slightly lower, but comparable, quality than corresponding solutions routinely computed within the IDS (International DORIS Service). The weekly coordinate repeatability RMS is of the order of 2 3 cm for each 3D station coordinate. Comparison with corresponding estimates of station coordinates from current IDS analysis centers demonstrates similar precision. Daily pole component estimates show a mean difference from IERS-C04 of 0.6 mas in X p and - 0.5 mas in Y p and a RMS of 0.8 mas in X p and 0.9 mas in Y p (mean removed). An automatic analysis procedure is under development at GOPE, and routine DORIS data processing will be implemented in the near future.

  12. Satellite Conferences

    Science.gov Websites

    NOAA- NESDIS Banner Satellite Conferences Collage images of earth, POES and GOES satellites in space HOME Call for Poster Abstracts DOC Logo NOAA Logo Satellite Conferences Welcome to the website for National Oceanic and Atmospheric Administration (NOAA) Satellite Conferences; past, present and future

  13. A New Model of the Mean Albedo of the Earth: Estimation and Validation from the GRACE Mission and SLR Satellites.

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.

    2017-12-01

    This talk provides new results of a study that we began last year, and that was the subject of a poster by the same authors presented during AGU FM 2016, entitled « Mean Effect of the Albedo of the Earth on Artificial Satellite Trajectories: an Update Over 2000-2015. »The emissivity of the Earth, split into a part in the visible domain (albedo) and the infrared domain (thermic emissivity), is at the origin of non gravitational perturbations on artificial satellite trajectories. The amplitudes and periods of these perturbations can be investigated if precise orbits can be carried out, and reveal some characteristics of the space environment where the satellite is orbiting. Analyzing the perturbations is, hence, a way to characterize how the energy from the Sun is re-emitted by the Earth. When led over a long period of time, such an approach enables to quantify the variations of the global radiation budget of the Earth.Additionally to the preliminary results presented last year, we draw an assessment of the validity of the mean model based on the orbits of the GRACE missions, and, to a certain extent, of some of the SLR satellite orbits. The accelerometric data of the GRACE satellites are used to evaluate the accuracy of the models accounting for non gravitational forces, and the ones induced by the albedo and the thermic emissivity in particular. Three data sets are used to investigate the mean effects on the orbit perturbations: Stephens tables (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts) data sets and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis, we analyze what is the data set leading to the lowest residual level, to define which data set appears to be the most suitable one to derive a new « mean albedo model » from accelerometric data sets of the GRACE mission. The period of investigation covers the full GRACE

  14. Ground-to-satellite quantum teleportation.

    PubMed

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  15. Ground-to-satellite quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  16. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  17. Feasibility study for near-earth-object tracking by a piggybacked micro-satellite with penetrators

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Leung, W.; Yung, K. L.

    2010-05-01

    As of August 2007, over 5000 near-earth-objects (NEO) have been discovered. Some already represent a potential danger to the Earth while others might become hazards in the future. The Planetary Society organised in 2007 the "Apophis Mission Design Competition" in response to this potential threat with the objective to identify promising concepts to track NEOs; the asteroid 99942 Apophis was taken as the study case. This paper describes the "Houyi" proposal which was evaluated by the competition jury as an innovative approach to this problem. Instead of launching a large satellite for NEO tracking, this novel concept proposes a miniaturized satellite that is piggybacked onto a larger (scientific) mission. Such mission design would drastically reduce the costs for NEO surveillance. The presented scenario uses the ESA's SOLO mission as a design baseline for the piggyback option. This paper summarizes the architecture of this CubeSat towards Apophis and extends the previous study by focusing on the feasibility of a piggybacked mission in terms of propulsion requirements.

  18. Earth Science

    NASA Image and Video Library

    1976-01-01

    The LAGEOS I (Laser Geodynamics Satellite) was developed and launched by the Marshall Space Flight Center on May 4, 1976 from Vandenberg Air Force Base, California . The two-foot diameter satellite orbited the Earth from pole to pole and measured the movements of the Earth's surface.

  19. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  20. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    NASA Technical Reports Server (NTRS)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  1. ScienceCast 151: NASA to Launch Carbon Observatory

    NASA Image and Video Library

    2014-06-24

    NASA is about to launch a satellite dedicated to the study of the greenhouse gas carbon dioxide. The Orbiting Carbon Observatory (OCO-2) will quantify global CO2 sources and sinks, and help researchers predict the future of climate change.

  2. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  3. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  4. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  6. Protection of passive radio frequencies used for earth exploration by satellite

    NASA Astrophysics Data System (ADS)

    Rochard, Guy

    2004-10-01

    Space-borne passive sensing of the Earth"s surface and atmosphere has an essential and increasing importance in Earth Observation. The impressive progress recently made or shortly expected in weather analysis, warning and forecasts (in particular for dangerous weather phenomena as rain and floods, storms, cyclones, droughts) as well as in the study and prediction of climate change, is mainly attributable to the spaceborne observations. On this basis, economic studies show that meteorological services have a high positive impact on a wide range of economic activities, notwithstanding safety of life and property aspects. Space-borne passive sensing feeds crucial observational data to numerical weather predction models run on the most advanced super-computers that are operated by a few global forecasting centers. All meteorological and environmental satellite organizations operate these crucial remote-sensing missions as part of the GOS of the World Weather Watch and others... Spaceborne passive sensing for meterological applications is performed in frequency bands allocated to the Earth Exploration-Satellite Service. This is named "EESS passive" in the ITU-R Radio Regulations. The appropriate bands are uniquely determined by the physical properties (e.g. molecular resonance) of constituents of the atmosphere, and are therefore one of the unique natural resources (similarly to Radio Astronomy bands). Passive measurements at several frequencies in the microwave spectrum must be made simultaneously in order to extract the individual contribution of the geophysical parameter of interest. Bands below 100 GHz are of particular importance to provide an "all-weather" capability since many clouds are almost transparent at these frequencies. Along this line, the two first figures below about zenithal opacity describes respectively the atmosphere optical thickness due to water vapor and dry components in the frequency range 1 to 275 GHz and 275 GHz to 1000 GHz on which have

  7. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  8. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  9. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  10. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  11. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  12. NASA launches carbon dioxide research satellite

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    Last week NASA launched a new satellite to study atmospheric carbon dioxide (CO2). Once in orbit, the Orbiting Carbon Observatory-2 (OCO-2) satellite, launched from Vandenberg Air Force Base in California, will take more than 100,000 individual measurements of atmospheric CO2 per day.

  13. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  14. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    NASA Astrophysics Data System (ADS)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  15. 75 FR 15392 - Satellite License Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... earth station applications must be filed electronically through the International Bureau Filing System... space radio- communication service other than the Fixed Satellite Service. Fixed earth station. An earth... revisions to its satellite and earth station licensing rules. The intended purpose of this proceeding is to...

  16. Remote Sensing Education and Development Countries: Multilateral Efforts through the Committee on Earth Observation Satellites (CEOS)

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    The Committee on Earth Observation Satellites (CEOS) is an international organization which coordinates space-based Earth observations world wide. Created in 1984, CEOS now comprises 38 national space agencies, regional organizations and international space-related and research groups. The aim of CEOS is to achieve international coordination in the planning of satellite missions for Earth observation and to maximize the utilization of data from these missions world-wide. With regard to developing countries, the fundamental aim of CEOS is to encourage the creation and maintenance of indigenous capability that is integrated into the local decision-making process, thereby enabling developing countries to obtain the maximum benefit from Earth observation. Obtaining adequate access to remote sensing information is difficult for developing countries and students and teachers alike. High unit data prices, the specialized nature of the technology , difficulty in locating specific data, complexities of copyright provisions, the emphasis on "leading edge" technology and research, and the lack of training materials relating to readily understood application are frequently noted obstacles. CEOS has developed an education CD-ROM which is aimed at increasing the integration of space-based data into school curricula, meeting the heretofore unsatisfied needs of developing countries for information about Earth observation application, data sources and future plans; and raising awareness around the world of the value of Earth observation data from space. The CD-ROM is designed to be used with an Internet web browser, increasing the information available to the user, but it can also be used on a stand-alone machine. It contains suggested lesson plans and additional resources for educators and users in developing countries.

  17. Study of the Quantum Channel between Earth and Space for Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Bonato, Cristian; Tomaello, Andrea; da Deppo, Vania; Naletto, Giapiero; Villoresi, Paolo

    In this work there are studied the conditions for the effective quantum communications between a terminal on Earth and the other onboard of an orbiter. The quantum key distribution between a LEO satellite and a ground station is studied in particular. The effect of the propagation over long distances as well as the background during day or night is modeled, compared and discussed in the context of key generation and exchange.

  18. Voyager Interactive Web Interface to EarthScope

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate

  19. Geopotential models of the Earth from satellite tracking, altimeter and surface gravity observations: GEM-T3 and GEM-T3S

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.; Chan, J. C.

    1992-01-01

    Improved models of the Earth's gravitational field have been developed from conventional tracking data and from a combination of satellite tracking, satellite altimeter and surface gravimetric data. This combination model represents a significant improvement in the modeling of the gravity field at half-wavelengths of 300 km and longer. Both models are complete to degree and order 50. The Goddard Earth Model-T3 (GEM-T3) provides more accurate computation of satellite orbital effects as well as giving superior geoidal representation from that achieved in any previous GEM. A description of the models, their development and an assessment of their accuracy is presented. The GEM-T3 model used altimeter data from previous satellite missions in estimating the orbits, geoid, and dynamic height fields. Other satellite tracking data are largely the same as was used to develop GEM-T2, but contain certain important improvements in data treatment and expanded laser tracking coverage. Over 1300 arcs of tracking data from 31 different satellites have been used in the solution. Reliable estimates of the model uncertainties via error calibration and optimal data weighting techniques are discussed.

  20. Analyses of the solid earth and ocean tidal perturbations on the orbits of the Geos 1 and Geos 2 satellites

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Agreen, R. W.

    1976-01-01

    Perturbations in the inclination of the Geos 1 and Geos 2 satellite orbits have been analyzed for the solid earth and ocean tide contributions. Precision reduced camera and Tranet Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modeled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc sec (36 m) in the inclination of Geos 1 and 4.5 arc sec (135 m) for Geos 2. The solid earth tides were then modeled by using the Love number 0.30. The resulting inclination residuals were then analyzed for ocean tide spherical harmonic parameters.

  1. SatelliteDL - An IDL Toolkit for the Analysis of Satellite Earth Observations - GOES, MODIS, VIIRS and CERES

    NASA Astrophysics Data System (ADS)

    Fillmore, D. W.; Galloy, M. D.; Kindig, D.

    2013-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation, (2) a unit test framework, (3) automatic message and error logs, (4) HTML and LaTeX plot and table generation, and (5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 of SatelliteDL is anticipated for the 2013 Fall AGU conference. It will distribute with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and

  2. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit

    NASA Astrophysics Data System (ADS)

    Herman, Jay; Huang, Liang; McPeters, Richard; Ziemke, Jerry; Cede, Alexander; Blank, Karin

    2018-01-01

    EPIC (Earth Polychromatic Imaging Camera) on board the DSCOVR (Deep Space Climate Observatory) spacecraft is the first earth science instrument located near the earth-sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity), SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI) in the Andes and Himalayas (greater than 18), and high values of UVI near the Equator at equinox.

  3. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  4. Study of trapped radiation on the Kosmos 426 earth satellite. I. Scientific apparatus of Kosmos 426

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob'ev, V.A.; Kuznetsov, S.N.; Lysenko, I.N.

    1975-01-01

    The spectral characteristics of the penetrating radiation and their space--time variations were studied on the artificial earth satellite. Data are presented from measurements of charged particle fluxes. These measurements were conducted over a period of seven months. The instrumentation is discussed at length. (JFP)

  5. Earth

    NASA Image and Video Library

    2012-01-30

    Behold one of the more detailed images of the Earth yet created. This Blue Marble Earth montage shown above -- created from photographs taken by the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument on board the new Suomi NPP satellite -- shows many stunning details of our home planet. The Suomi NPP satellite was launched last October and renamed last week after Verner Suomi, commonly deemed the father of satellite meteorology. The composite was created from the data collected during four orbits of the robotic satellite taken earlier this month and digitally projected onto the globe. Many features of North America and the Western Hemisphere are particularly visible on a high resolution version of the image. http://photojournal.jpl.nasa.gov/catalog/PIA18033

  6. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  7. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (Principal Investigator)

    1981-01-01

    An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.

  8. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972

    NASA Technical Reports Server (NTRS)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1975-01-01

    Observations of Saturn's satellites have been reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey plates. This involved the use of 29 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measures appears to demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  9. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  10. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  11. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  12. A semi-analytic theory for the motion of a close-earth artificial satellite with drag

    NASA Technical Reports Server (NTRS)

    Liu, J. J. F.; Alford, R. L.

    1979-01-01

    A semi-analytic method is used to estimate the decay history/lifetime and to generate orbital ephemeris for close-earth satellites perturbed by the atmospheric drag and earth oblateness due to the spherical harmonics J2, J3, and J4. The theory maintains efficiency through the application of the theory of a method of averaging and employs sufficient numerical emphasis to include a rather sophisticated atmospheric density model. The averaged drag effects with respect to mean anomaly are evaluated by a Gauss-Legendre quadrature while the averaged variational equations of motion are integrated numerically with automatic step size and error control.

  13. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    PubMed

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  14. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  15. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  16. An evaluation of radiation damage to solid state components flown in low earth orbit satellites.

    PubMed

    Shin, Myung-Won; Kim, Myung-Hyun

    2004-01-01

    The effects of total ionising radiation dose upon commercial off-the-shelf semiconductors fitted to satellites operating in low Earth orbit (LEO) conditions was evaluated. The evaluation was performed for the Korea Institute of Technology SATellite-1, (KITSAT-1) which was equipped with commercial solid state components. Two approximate calculation models for space radiation shielding were developed. Verification was performed by comparing the results with detailed three-dimensional calculations using the Monte-Carlo method and measured data from KITSAT-1. It was confirmed that the developed approximate models were reliable for satellite shielding calculations. It was also found that commercial semiconductor devices, which were not radiation hardened, could be damaged within their lifetime due to the total ionising dose they are subject to in the LEO environment. To conclude, an intensive shielding analysis should be considered when commercial devices are used.

  17. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    NASA Astrophysics Data System (ADS)

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  18. Earth Science

    NASA Image and Video Library

    1994-03-08

    Workers at the Astrotech processing facility in Titusville prepared for a news media showing of the Geostationary Operational Environmental Satellite-1 (GOES-1). GOES-1 was the first in a new generation of weather satellites deployed above Earth. It was the first 3-axis, body-stabilized meteorological satellite to be used by the National Oceanic Atmospheric Administration (NOAA) and NASA. These features allowed GOES-1 to continuously monitor the Earth, rather than viewing it just five percent of the time as was the case with spin-stabilized meteorological satellites. GOES-1 also has independent imaging and sounding instruments which can operate simultaneously yet independently. As a result, observations provided by each instrument will not be interrupted. The imager produces visual and infrared images of the Earth's surface, oceans, cloud cover and severe storm development, while the prime sounding products include vertical temperature and moisture profiles, and layer mean moisture.

  19. Results of the Calibration of the Delays of Earth Stations for TWSTFT Using the VSL Satellite Simulator Method

    NASA Technical Reports Server (NTRS)

    deJong, Gerrit; Kirchner, Dieter; Ressler, Hubert; Hetzel, Peter; Davis, John; Pears, Peter; Powell, Bill; McKinley, Angela Davis; Klepczynski, Bill; DeYoung, James; hide

    1996-01-01

    Two-way satellite time and frequency transfer (TWSTFT) is the most accurate and precise method of comparing two remote clocks or time scales. The accuracy obtained is dependent on the accuracy of the determination of the non-reciprocal delays of the transmit and the receive paths. When the same transponders in the satellite at the same frequencies are used, then the non-reciprocity in the Earth stations is the limiting factor for absolute time transfer.

  20. Origin of Lα{sup x} satellite in the light rare earths on the basis of plasmon theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Manjula, E-mail: rainbow-mjain@yahoo.co.in; Shrivastava, B. D., E-mail: rashmibasant@gmail.com

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα{sup x}more » has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα{sub 1}. In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα{sub 1} has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite.« less

  1. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Astrophysics Data System (ADS)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  2. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert

    1991-01-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  4. Basic research and data analysis for the earth and ocean physics applications program and for the National Geodetic Satellite program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data acquisition using single image and seven image data processing is used to provide a precise and accurate geometric description of the earth's surface. Transformation parameters and network distortions are determined, Sea slope along the continental boundaries of the U.S. and earth rotation are examined, along with close grid geodynamic satellite system. Data are derived for a mathematical description of the earth's gravitational field; time variations are determined for geometry of the ocean surface, the solid earth, gravity field, and other geophysical parameters.

  5. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  6. Satellite to measure equatorial ozone layer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  7. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  8. Combined release and radiation effects satellite (CRRES) - Spacecraft and mission

    NASA Astrophysics Data System (ADS)

    Johnson, M. H.; Kierein, John

    1992-08-01

    The CRRES mission is a joint NASA and U.S. Department of Defense undertaking to study the near-Earth space environment and the effects of the Earth's radiation environment on state-of-the-art microelectronic components. To perform these studies, CRRES was launched with a complex array of scientific payloads. These included 24 chemical canisters which were released during the first 13 months of the mission at various altitudes over ground observation sites and diagnostic facilities. The CRRES system was launched on July 25, 1990, from Cape Canaveral Air Force Station on an Atlas I expendable launch vehicle into a low-inclination geosynchronous transfer orbit. The specified mission duration was 1 year with a goal of 3 years. The satellite subsystems support the instrument payloads by providing them with electrical power, command and data handling, and thermal control. This review briefly describes the CRRES observatory and mission, and provides an introduction to the CRRES instrumentation technical notes contained within this issue.

  9. Mesoscale mapping of available solar energy at the earth's surface by use of satellites

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1980-01-01

    A method is presented for use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on the mesoscale. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Seasonal geographic distributions of cloud cover/sunshine are converted to joules of solar radiation received at the earth's surface through relationships developed from long-term measurements of these two parameters at six widely distributed stations. The technique can be used to generate maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface.

  10. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    NASA Technical Reports Server (NTRS)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  11. Some environmental problems and their satellite monitoring. [anthropogenic modifications of earth surface

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.

  12. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    NASA Astrophysics Data System (ADS)

    2005-08-01

    facing away from Earth's space satellites. Another Chandra discovery -- gleaned from the deepest X-ray observation of any star cluster -- offered insights on Earth's survival in its infancy. Chandra s focus was the Orion Nebula, which contains at least 1,400 young stars, 30 that are prototypes of the early sun. Using Chandra, scientists learned these young stars produce violent X-ray flares much more frequently and energetically than anything seen today from our 4.6 billion-year-old sun. This implies super-flares torched our young solar system and likely affected the planet-forming disk around the early sun -- enhancing the survival chances of Earth. Space is a harsh environment with extreme temperatures, harmful radiation and none of the protection offered by Earth s atmosphere, said Chandra Program Manager Keith Hefner of the Marshall Center. "Ironically, the fact that our atmosphere absorbs harmful X-rays is the very reason for Chandra s existence. Getting outside the absorbing atmosphere of the Earth requires space-based observatories, and viewing the universe in multiple wavelengths is necessary to fully study cosmic events. Chandra s continued outstanding performance after six years of operation under such harsh conditions is evidence that it is, indeed, an engineering marvel." In its sixth year, Chandra also continued to build on its growing list of discoveries involving black holes. This included finding the most powerful eruption seen in the universe, generated by a supermassive black hole growing at a remarkable rate. The eruption -- which has lasted for 100 million years and is still going -- has generated the energy equivalent to hundreds of millions of gamma-ray bursts. This discovery illustrated the enormous appetite of large black holes, and the profound impact they have on their surroundings. Other recent discoveries include confirming the existence of weight limits for supermassive black holes, finding evidence for a swarm of black holes near the

  13. Estimating Photosynthetically Available Radiation (PAR) at the Earth's surface from satellite observations

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.

  14. VizieR Online Data Catalog: The orbits of Jupiter's irregular satellites (Brozovic+, 2017)

    NASA Astrophysics Data System (ADS)

    Brozovic, M.; Jacobson, R. A.

    2018-05-01

    The large majority of astrometric observations originate from Earth-based telescopes, although there are a handful of observations of Himalia and Callirrhoe from the New Horizons spacecraft flyby of Jupiter. The modern Hipparcos Catalog (Perryman et al. 1997A&A...323L..49P) based astrometry is reported as positions in the ICRF. We convert the older measurements to the ICRF positions. The references to optical observations up to the year 2000 are documented in Jacobson (2000AJ....120.2679J). We continued to use the Jacobson (2000AJ....120.2679J) observational biases for the early measurements. We have since extended the data set with observations published in the Minor Planet Electronic Circulars (MPEC), the International Astronomical Union Circulars (IAUC), the Natural Satellites Data Center (NSDC) database (Arlot & Emelyanov 2009A&A...503..631A), the United States Naval Observatory Flagstaff Station catalog, and the Pulkovo Observatory database. (5 data files).

  15. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  16. NASA Orbiting Carbon Observatory OCO-2 Artist Concept

    NASA Image and Video Library

    2014-05-15

    This most recent artist rendering shows NASA Orbiting Carbon Observatory OCO-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by the Jet Propulsion Laboratory JPL.

  17. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  18. Study of mobile satellite network based on GEO/LEO satellite constellation

    NASA Astrophysics Data System (ADS)

    Hu, Xiulin; Zeng, Yujiang; Wang, Ying; Wang, Xianhui

    2005-11-01

    Mobile satellite network with Inter Satellite Links (ISLs), which consists of non-geostationary satellites, has the characteristic of network topology's variability. This is a great challenge to the design and management of mobile satellite network. This paper analyzes the characteristics of mobile satellite network, takes multimedia Quality of Service (QoS) as the chief object and presents a reference model based on Geostationary Earth Orbit (GEO)/ Low Earth Orbit (LEO) satellite constellation which adapts to the design and management of mobile satellite network. In the reference model, LEO satellites constitute service subnet with responsibility for the access, transmission and switch of the multimedia services for mobile users, while GEO satellites constitute management subnet taking on the centralized management to service subnet. Additionally ground control centre realizes the whole monitoring and control via management subnet. Comparing with terrestrial network, the above reference model physically separates management subnet from service subnet, which not only enhances the advantage of centralized management but also overcomes the shortcoming of low reliability in terrestrial network. Routing of mobile satellite network based on GEO/LEO satellite constellation is also discussed in this paper.

  19. Selection of a model of Earth's albedo radiation, practical calculation of its effect on the trajectory of a satellite

    NASA Technical Reports Server (NTRS)

    Walch, J. J.

    1985-01-01

    Theoretical models of Earth's albedo radiation was proposed. By comparing disturbing accelerations computed from a model to those measured in flight with the CACTUS Accelerometer, modified according to the results. Computation of the satellite orbit perturbations from a model is very long because for each position of this satellite the fluxes coming from each elementary surface of the terrestrial portion visible from the satellite must be summed. The speed of computation is increased ten times without significant loss of accuracy thanks to a stocking of some intermediate results. Now it is possible to confront the orbit perturbations computed from the selected model with the measurements of these perturbations found with satellite as LAGEOS.

  20. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  1. Opportunities investigating the thermosphere/ionosphere system by low Earth orbiting satellite missions (Invited)

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Park, J.; Luhr, H.

    2013-12-01

    New opportunities for investigating the thermosphere/ionosphere interactions arise from in situ measurements on board low Earth orbiting satellites. Ten years of successful operation of the CHAMP satellite mission at a unique orbit altitude of about 400 km revealed many interesting features of the coupling between the thermosphere and ionosphere and the different atmospheric layers. Examples are the investigations of signatures of stratospheric warming events that are known to change significantly the dynamics of the equatorial ionosphere. It was shown that these modifications are due to an enhancement of lunar tidal effects, e.g. reflected in the thermospheric zonal wind, in the equatorial electroje or in the eastward electric field. Another topic concerns the energy deposit in the F-region though cooling of the thermal electron gas caused by elastic and inelastic processes (Schunk and Nagy, 2009). We find that a significant deposition is present during day at mid latitudes. At low latitudes the energy flux remain important until midnight. Observed heating rates depend on the satellite altitudes, but they are globally available from the CHAMP data. Further enhanced investigations are expected from ESA's three-satellite Swarm mission with a launch planned in 2014. The mission will provide observations of electron density, electron and ion temperature, ion drift and the electric field together with neutral density and winds. High-precision magnetic field observations will allow monitoring ionospheric currents.

  2. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  3. Jupiter's Decameter Radiation as Viewed from Juno, Cassini, WIND, STEREO A, and Earth-Based Radio Observatories

    NASA Astrophysics Data System (ADS)

    Imai, Masafumi; Kurth, William S.; Hospodarsky, George B.; Bolton, Scott J.; Connerney, John E. P.; Levin, Steven M.; Clarke, Tracy E.; Higgins, Charles A.

    2017-04-01

    Jupiter is the dominant auroral radio source in our solar system, producing decameter (DAM) radiation (from a few to 40 MHz) with a flux density of up to 10-19 W/(m2Hz). Jovian DAM non-thermal radiation above 10 MHz is readily observed by Earth-based radio telescopes that are limited at lower frequencies by terrestrial ionospheric conditions and radio frequency interference. In contrast, frequencies observed by spacecraft depend upon receiver capability and the ambient solar wind plasma frequency. Observations of DAM from widely separated observers can be used to investigate the geometrical properties of the beam and learn about the generation mechanism. The first multi-observer observations of Jovian DAM emission were made using the Voyager spacecraft and ground-based radio telescopes in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. This understanding is sorely needed to confirm DAM generation by the electron cyclotron maser instability, the widely assumed generation mechanism. Juno first detected Jovian DAM emissions on May 5, 2016, on approach to the Jovian system, initiating a new opportunity to perform observations of Jovian DAM radiation with Juno, Cassini, WIND, STEREO A, and Earth-based radio observatories (Long Wavelength Array Station One (LWA1) in New Mexico, USA, and Nançay Decameter Array (NDA) in France). These observers are widely distributed throughout our solar system and span a broad frequency range of 3.5 to 40.5 MHz. Juno resides in orbit at Jupiter, Cassini at Saturn, WIND around Earth, STEREO A in 1 AU orbit, and LWA1 and NDA at Earth. Juno's unique polar trajectory is expected to facilitate extraordinary stereoscopic observations of Jovian DAM, leading to a much improved understanding of the latitudinal beaming of Jovian DAM.

  4. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE PAGES

    Abreu, P.; Aglietta, M.; Ahlers, M.; ...

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversedmore » a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  5. On-Orbit Calibration of a Multi-Spectral Satellite Satellite Sensor Using a High Altitude Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Shimada, M.

    1996-01-01

    Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.

  6. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  7. Satellites | National Oceanic and Atmospheric Administration

    Science.gov Websites

    and understand our dynamic planet LATEST FEATURES // NOAA-20 satellite shares first polar view satellite (GOES-16) witnessed a frightening display of stratiform, or 'spider' lightning as it's known, in Earth DSCOVR, NOAA's first operational satellite in deep space, orbits a million miles from Earth in

  8. Radiometry with nighttime DMSP images in digital form. [satellite earth observations

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1981-01-01

    The USAF Defense Meteorological Satellite Program (DMSP) spacecraft sends images to earth in the form of numbers. It has been common practice to erase the only digital records, the magnetic tapes, for reuse, after films (resembling photographs) have been created from the numbers. While the DMSP images have been widely used, their application in research has been hindered by both the lack of digital data and the lack of an authoritative source of related technical information. The character of the digital form is considered. Each image is essentially a three-dimensional list (X,Y,Z) in which X and Y represent the position coordinates of a pixel and Z is its associated radiance. Only the value of Z is given and the X-Y position must be deduced from adjunct information. Each original scan composed of 1464 pixels represents an area on the earth's surface about 3 km wide and 3000 km long. Strengths and weaknesses of the system with respect to research applications are considered, and concepts for the design of a nocturnal imager are discussed.

  9. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.

  10. Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick

    2017-04-01

    Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.

  11. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  12. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. Dynamics of tethered satellites in the vicinity of the Lagrangian point L2 of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Baião, M. F.; Stuchi, T. J.

    2017-08-01

    This paper analyzes the dynamical evolution of satellites formed by two masses connected by a cable— tethered satellites. We derive the Lagrangian equations of motion in the neighborhood of the collinear equilibrium points, especially for the L2 , of the restricted problem of three bodies. The rigid body configuration is expanded in Legendre polynomials up to fourth degree. We present some numerical simulations of the influence of the parameters such as cable length, mass ratio and initial conditions in the behavior of the tethered satellites. The equation for the collinear equilibrium point is derived and numerically solved. The evolution of the equilibria with the variation of the cable length as a parameter is studied. We also present a discussion of the linear stability around these equilibria. Based on this analysis calculate some unstable Lyapunov orbits associated to these equilibrium points. We found periodic orbits in which the tether travels parallel to itself without involving the angular motion. The numerical applications are focused on the Earth-Moon system. However, the general character of the equations allows applications to the L1 equilibrium and obviously to systems other than the Earth-Moon.

  14. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  15. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  16. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  17. Forecasting the impact of an 1859-caliber superstorm on geosynchronous Earth-orbiting satellites: Transponder resources

    NASA Astrophysics Data System (ADS)

    Odenwald, Sten F.; Green, James L.

    2007-06-01

    We calculate the economic impact on the existing geosynchronous Earth-orbiting satellite population of an 1859-caliber superstorm event were it to occur between 2008 and 2018 during the next solar activity cycle. From a detailed model for transponder capacity and leasing, we have investigated the total revenue loss over the entire solar cycle, as a function of superstorm onset year and intensity. Our Monte Carlo simulations of 1000 possible superstorms, of varying intensity and onset year, suggest that the minimum revenue loss could be of the order of 30 billion. The losses would be larger than this if more that 20 satellites are disabled, if future launch rates do not keep up with the expected rate of retirements, or if the number of spare transponders falls below ˜30%. Consequently, revenue losses can be significantly reduced below 30 billion if the current satellite population undergoes net growth beyond 300 units during Solar Cycle 24 and a larger margin of unused transponders is maintained.

  18. Declassified intelligence satellite photographs

    USGS Publications Warehouse

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  19. Assessing Surface BRDF-related Biases Using Target Mode Retrievals from the Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Natraj, V.; McDuffie, J. L.; O'Dell, C.; Eldering, A.; Fu, D.; Wunch, D.; Wennberg, P. O.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first dedicated Earth remote sensing satellite to study atmospheric carbon dioxide from space, and was launched successfully on July 2, 2014. In the target mode of observation, the Observatory will lock its view onto a specific surface location, and will scan back and forth over that target while flying overhead. A target track pass can last for up to 9 minutes. Over that time period, the Observatory can acquire as many as 12,960 samples at local zenith angles that vary between 0° and 85°. Here, we analyze target track measurements over several of the OCO-2 validation sites where ground-based solar-looking Fourier Transform Spectrometers are located. Preliminary analysis of target mode retrievals using the operational algorithm show biases that appear to be due to not accounting for bidirectional surface reflection (BRDF) effects, i.e., the non-isotropic nature of surface reflection. To address this issue, we implement a realistic BRDF model. The column averaged CO2 dry air mole fraction (XCO2) results using this new model show much less variation with scattering angle (or airmass). Further, the retrieved aerosol optical depth (AOD) is in much better agreement with coincident AERONET values. We also use information content analysis to evaluate the degrees of freedom with respect to BRDF parameters, and investigate cross-correlations between the parameters.

  20. An EarthScope Plate Boundary Observatory Progress Report

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Anderson, G.; Blume, F.; Walls, C.; Coyle, B.; Feaux, K.; Friesen, B.; Phillips, D.; Hafner, K.; Johnson, W.; Mencin, D.; Pauk, B.; Dittmann, T.

    2007-12-01

    UNAVCO is building and operating the Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project to understand the structure, dynamics, and evolution of the North American continent. When complete in October 2008, the 875 GPS, 103 strain and seismic, and 28 tiltmeters stations will comprise the largest integrated geodetic and seismic network in United States and the second largest in the world. Data from the PBO network will facilitate research into plate boundary deformation with unprecedented scope and detail. As of 1 September 2007, UNAVCO had completed 680 PBO GPS stations and had upgraded 89% of the planned PBO Nucleus stations. Highlights of the past year's work include the expansion of the Alaska subnetwork to 95 continuously-operating stations, including coverage of Akutan and Augustine volcanoes and reconnaissance for future installations on Unimak Island; the installation of nine new stations on Mt. St. Helens; and the arrival of 33 permits for station installations on BLM land in Nevada. The Augustine network provided critical data on magmatic and volcanic processes associated with the 2005-2006 volcanic crisis, and has expanded to a total of 11 stations. Please visit http://pboweb.unavco.org/?pageid=3 for further information on PBO GPS network construction activities. As of September 2007, 41 PBO borehole stations had been installed and three laser strainmeter stations were operating, with a total of 60 borehole stations and 4 laser strainmeters expected by October 2007. In response to direction from the EarthScope community, UNAVCO installed a dense network of six stations along the San Jacinto Fault near Anza, California; installed three of four planned borehole strainmeter stations on Mt. St. Helens; and has densified coverage of the Parkfield area. Please visit http://pboweb.unavco.org/?pageid=8 for more information on PBO strainmeter network construction progress. The combined PBO/Nucleus GPS network provides 350 GB of raw standard