Science.gov

Sample records for earth observing satellite-ii

  1. Earth Observation

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  2. Earth Observation

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. On crewmember's Flickr page - Look straight down into an aurora.

  3. Earth Observation

    2014-05-31

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: CEO - Arena de Sao Paolo. View used for Twitter message: Cloudy skies over São Paulo Brazil

  4. Earth Observation

    2013-07-26

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Never tire of finding shapes in the clouds! These look very botanical to me. Simply perfect.

  5. Earth Observation

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of a solar array is also visible.

  6. Earth Observation

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!

  7. Earth Observation

    2014-06-27

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.

  8. Earth Observations

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  9. Earth Observation

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.

  10. Earth Observation

    2013-07-21

    Earth observation taken during night pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message this is labeled as : Tehran, Iran. Lights along the coast of the Caspian Sea visible through clouds. July 21.

  11. Earth Observation

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: From southernmost point of orbit over the South Pacific- all clouds seemed to be leading to the South Pole.

  12. Earth Observation

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of the U.S. Lab and PMM are also visible.

  13. Earth Observations

    2014-11-18

    ISS042E006751 (11/08/2014) --- Earth observation taken from the International Space Station of the coastline of the United Arab Emirates. The large wheel along the coast center left is "Jumeirah" Palm Island, with a conference center, hotels, recreation areas and a large marine zoo.

  14. Earth Observation

    2011-08-02

    ISS028-E-020276 (2 Aug. 2011) --- This photograph of polar mesospheric clouds was acquired at an altitude of just over 202 nautical miles (about 322 kilometers) in the evening hours (03:19:54 Greenwich Mean Time) on Aug. 2, 2011, as the International Space Station was passing over the English Channel. The nadir coordinates of the station were 49.1 degrees north latitude and 5.5 degrees west longitude. Polar mesospheric clouds (also known as noctilucent, or ?night-shining? clouds) are transient, upper atmospheric phenomena that are usually observed in the summer months at high latitudes (greater than 50 degrees) of both the Northern and Southern Hemispheres. They appear bright and cloudlike while in deep twilight. They are illuminated by sunlight when the lower layers of the atmosphere are in the darkness of Earth?s shadow. The horizon of Earth appears at the bottom of the image, with some layers of the lower atmosphere already illuminated by the rising sun. The higher, bluish-colored clouds look much like wispy cirrus clouds, which can be found as high as 60,000 feet (18 kilometers) in the atmosphere. However noctilucent clouds, as seen here, are observed in the mesosphere at altitudes of 250,000 to 280,000 feet (about 76 to 85 kilometers). Astronaut observations of polar mesospheric clouds over northern Europe in the summer are not uncommon.

  15. Earth Observation

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  16. Earth Observation

    2016-04-20

    ISS047e069406 (04/20/2016) ---Earth observation image taken by the Expedition 47 crew aboard the International Space Station. This is an oblique south-looking view of the main Bahama island chain. Cuba is across the entire top of the image, the Florida Peninsula on the right margin. In the Bahamas, the main Andros island is just distinguishable under cloud upper left of center. Under less cloud is the Abaco Islands in the foreground (middle of pic nearest camera left of center.)

  17. Earth Observations

    2010-09-11

    ISS024-E-014233 (11 Sept. 2010) --- A smoke plume near the northern Caspian Sea, Kazakhstan is featured in this image photographed by an Expedition 24 crew member on the International Space Station. This broad view of the north coast of the Caspian Sea shows a smoke plume (left) and two river deltas (bottom and lower right). The larger delta is that of the Volga River which appears prominently here in sunglint (light reflected off a water surface back towards the observer), and the smaller less prominent delta is that of the Ural River. Wide angle, oblique views ? taken looking outward at an angle, rather than straight down towards Earth ? such as this give an excellent impression of how crew members onboard the space station view Earth. For a sense of scale, the Caucasus Mts. (across the Caspian, top right) are approximately 1,100 kilometers to the southwest of the International Space Station?s nadir point location ? the point on Earth directly underneath the spacecraft ? at the time this image was taken. The smoke plume appears to be sourced in the dark-toned coastal marsh vegetation along the outer fringe of the Ural River delta, rather than in a city or at some oil storage facility. Although even small fires produce plumes that are long and bright and thus easily visible from space, the density of the smoke in this plume, and its 350-kilometer length across the entire north lobe of the Caspian Sea, suggest it was a significant fire. The smoke was thick enough nearer the source to cast shadows on the sea surface below. Lines mark three separate pulses of smoke, the most recent, nearest the source, extending directly south away from the coastline (lower left). With time, plumes become progressively more diffuse. The oldest pulse appears to be the thinnest, casting no obvious shadows (center left).

  18. Earth Observation

    2011-07-06

    ISS028-E-014782 (6 July 2011) --- The Shoemaker (formerly Teague) Impact Structure, located in Western Australia in a drainage basin south of the Waldburg Range, presents an other-worldly appearance in this detailed photograph recorded from onboard the International Space Station on July 6. The Shoemaker impact site is approximately 30 kilometers in diameter, and is clearly defined by concentric ring structures formed in sedimentary rocks (brown to dark brown, image center) that were deformed by the impact event approximately 1630 million years ago, according to the Earth Impact Database. Several saline and ephemeral lakes?Nabberu, Teague, Shoemaker, and numerous smaller ponds?occupy the land surface between the concentric ring structures. Differences in color result from both water depth and suspended sediments, with some bright salt crusts visible around the edges of smaller ponds (image center The Teague Impact Structure was renamed Shoemaker in honor of the late Dr. Eugene M. Shoemaker, a pioneer in the field of impact crater studies and planetary geology, and founder of the Astrogeology Branch of the United States Geological Survey. The image was recorded with a digital still camera using a 200 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

  19. Earth Observation

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  20. Earth Observation

    2014-06-07

    ISS040-E-008174 (7 June 2014) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  1. Earth Observation

    2014-06-02

    ISS040-E-006817 (2 June 2014) --- Intersecting the thin line of Earth's atmosphere, International Space Station solar array wings are featured in this image photographed by an Expedition 40 crew member on the International Space Station.

  2. Earth Observation

    2012-07-10

    ISS032-E-006129 (10 July 2012) --- Flooding in Krymsk in the Krasnodar region of southern Russia is featured in this image photographed by an Expedition 32 crew member on the International Space Station. On the night of July 7, 2012 a major storm dumped more than a foot of water on the southern Russian area of Krasnodar, near the Black Sea. The resulting flood was likened to a tsunami, and to date, more than 170 people died, most from the city of Krymsk. The Moscow times reports that more than 19,000 people lost everything. This image taken by cosmonauts aboard the space station shows the city of Krymsk. The tan-colored areas indicate some of the regions that were flooded; the color is probably due to the mud and debris that were left by the floodwaters. Krymsk is located in the western foothills on the northern slope of the Caucasus Mountains?a range that stretches between the Black Sea and the Caspian Sea. The vast amount of rain quickly overwhelmed the small river channels that flow northward from the mountains to the Russian lowlands and the Kuban River; Krymsk, located on one of those tributaries, was directly in the pathway of the flash flood. As part of the international partner agreement to use the International Space Station to benefit humanity, crew members and other Earth observing instruments provide best-effort support to the International Disaster Charter (IDC) when it is activated by collecting imagery of areas on the ground impacted by natural events such as the flooding in Krymsk. This image was acquired July 10, 2012 in response to the IDC activation.

  3. Earth Observation

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too

  4. Earth Observation

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  5. Earth Observation

    2014-07-19

    ISS040-E-070412 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 panorama featuring wildfires which are plaguing the Northwest and causing widespread destruction. (Note: south is at the top of the frame). The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Parts of Oregon and Washington are included in the scene. Mt. Jefferson, Three Sisters and Mt. St. Helens are all snow-capped and visible in the photo, and the Columbia River can also be delineated.

  6. Earth Observation

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.

  7. Earth observation

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  8. Earth Observation

    2014-08-10

    ISS040-E-091158 (10 Aug. 2014) --- One of the Expedition 40 crew members 225 nautical miles above Earth onboard the International Space Station used a 200mm lens to record this image of Hawke's Bay, New Zealand on Aug. 10, 2014. Napier and the bay area's most populous area are at bottom center of the frame.

  9. Earth Observation

    2013-06-13

    ISS036-E-007619 (13 June 2013) --- To a crew member aboard the International Space Station, the home planet is seen from many different angles and perspectives, as evdenced by this Expedition 36 image of Earth's atmophere partially obscured by one of the orbital outpost's solar panels.

  10. Earth Observation

    2013-05-19

    ISS036-E-002224 (21 May 2013) --- The sun is captured in a "starburst" mode over Earth's horizon by one of the Expedition 36 crew members as the orbital outpost was above a point in southwestern Minnesota on May 21, 2013.

  11. Earth Observation

    2014-06-14

    ISS040-E-011868 (14 June 2014) --- The dark waters of the Salton Sea stand out against neighboring cultivation and desert sands in the middle of the Southern California desert, as photographed by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station on June 14, 2014.

  12. Earth Observation

    2013-07-04

    ISS036-E-015354 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at lower left) were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  13. Earth Observation

    2013-07-04

    ISS036-E-015355 (4 July 2013) --- A number of Quebec, Canada wildfires near the Manicouagan Reservoir (seen at bottom center) were recorded in a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  14. Earth Observation

    2013-07-03

    ISS036-E-015292 (3 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 3-4 by the Expedition 36 crew members aboard the International Space Station. This image was recorded on July 3.

  15. Earth Observation

    2013-07-04

    ISS036-E-015342 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  16. Earth Observation

    2013-07-04

    ISS036-E-015335 (4 July 2013) --- A number of Quebec, Canada wildfires southeast of James Bay were recorded as part of a series of photographs taken and downlinked to Earth on July 4 by the Expedition 36 crew members aboard the International Space Station.

  17. Earth Observation

    2013-08-29

    ISS036-E-038117 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.2 degrees west longitude.

  18. Earth Observation

    2013-08-29

    ISS036-E-038114 (29 Aug. 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station photographed massive smoke plumes from the California wildfires. When this image was exposed on Aug. 29, the orbital outpost was approximately 220 miles above a point located at 38.6 degrees north latitude and 123.3 degrees west longitude.

  19. Earth Observations

    2010-09-09

    ISS024-E-014071 (9 Sept. 2010) --- This striking panoramic view of the southwestern USA and Pacific Ocean is an oblique image photographed by an Expedition 24 crew member looking outwards at an angle from the International Space Station (ISS). While most unmanned orbital satellites view Earth from a nadir perspective?in other words, collecting data with a ?straight down? viewing geometry?crew members onboard the space station can acquire imagery at a wide range of viewing angles using handheld digital cameras. The ISS nadir point (the point on Earth?s surface directly below the spacecraft) was located in northwestern Arizona, approximately 260 kilometers to the east-southeast, when this image was taken. The image includes parts of the States of Arizona, Nevada, Utah, and California together with a small segment of the Baja California, Mexico coastline at center left. Several landmarks and physiographic features are readily visible. The Las Vegas, NV metropolitan area appears as a gray region adjacent to the Spring Mountains and Sheep Range (both covered by white clouds). The Grand Canyon, located on the Colorado Plateau in Arizona, is visible (lower left) to the east of Las Vegas with the blue waters of Lake Mead in between. The image also includes the Mojave Desert, stretching north from the Salton Sea (left) to the Sierra Nevada mountain range. The Sierra Nevada range is roughly 640 kilometers long (north-south) and forms the boundary between the Central Valley of California and the adjacent Basin and Range. The Basin and Range is so called due to the pattern of long linear valleys separated by parallel linear mountain ranges ? this landscape, formed by extension and thinning of Earth?s crust, is particularly visible at right.

  20. Earth Observation

    2014-07-19

    ISS040-E-070439 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above a point on Earth located at 48.0 degrees north latitude and 116.9 degrees west longitude when the image was exposed. The state of Washington is especially affected by the fires, many of which have been blamed on lightning. This particular fire was part of the Carlton Complex Fire, located near the city of Brewster in north central Washington. The reservoir visible near the center of the image is Banks Lake.

  1. Earth Observation

    2014-07-25

    ISS040-E-081008 (25 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station, flying 225 nautical miles above Earth, photographed this image of the Tifernine dunes and the Tassili Najjer Mountains in Algeria. The area is about 800 miles south, southeast of Algiers, the capital of Algeria. The dunes are in excess of 1,000 feet in height.

  2. Earth Observation

    2014-07-15

    ISS040-E-063578 (15 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, flying some 225 nautical miles above the Caribbean Sea in the early morning hours of July 15, photographed this north-looking panorama that includes parts of Cuba, the Bahamas and Florida, and even runs into several other areas in the southeastern U.S. The long stretch of lights to the left of center frame gives the shape of Miami.

  3. Earth Observations

    2011-05-28

    ISS028-E-006059 (28 May 2011) --- One of the Expedition 28 crew members, photographing Earth images onboard the International Space Station while docked with the space shuttle Endeavour and flying at an altitude of just under 220 miles, captured this frame of the Salton Sea. The body of water, easily identifiable from low orbit spacecraft, is a saline, endorheic rift lake located directly on the San Andreas Fault. The agricultural area is within the Coachella Valley.

  4. Earth Observation

    2014-06-24

    ISS040-E-018729 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are just below center frame on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  5. Earth Observation

    2014-05-29

    ISS040-E-005979 (29 May 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 200mm lens to photograph this image from 222 nautical miles above Earth showing Harris County and Galveston County, Texas plus several other surrounding counties, including a long stretch along the Gulf of Mexico (bottom left). The entirety of Galveston Bay is visible at bottom center. Just below center lies the 1625-acre site of NASA's Johnson Space Center, one of the training venues for all space station crew members and the nearby long-time area of residence for NASA astronauts.

  6. Earth Observation

    2013-07-31

    ISS036-E-027014 (31 July 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station, as it was passing over Eastern Europe on July 31, 2013, took this night picture looking toward the Mediterranean Sea, which almost blends into the horizon. Also visible are the Aegean Sea, Adriatic Sea and Mediterranean Sea. Parts of the following countries are among those visible as well: Greece, Italy, Sicily, Bulgaria, Serbia, Croatia and Albania. The high oblique 50mm lens shot includes a number of stars in the late July sky. A solar array panel is visible in the darkness on the right side of the frame.

  7. Earth Observation

    2013-06-17

    ISS036-E-009405 (17 June 2013) --- One of the Expedition 36 crew members aboard the International Space Station, some 240 miles above Earth, used a 50mm lens to record this oblique nighttime image of a large part of the nation’s second largest state in area, including the four largest metropolitan areas in population. The extent of the metropolitan areas is easily visible at night due to city and highway lights. The largest metro area, Dallas-Fort Worth, often referred to informally as the Metroplex, is the heavily cloud-covered area at the top center of the photo. Neighboring Oklahoma, on the north side of the Red River, less than 100 miles to the north of the Metroplex, appears to be experiencing thunderstorms. The Houston metropolitan area, including the coastal city of Galveston, is at lower right. To the east near the Texas border with Louisiana, the metropolitan area of Beaumont-Port Arthur appears as a smaller blotch of light, also hugging the coast of the Texas Gulf. Moving inland to the left side of the picture one can delineate the San Antonio metro area. The capital city of Austin can be seen to the northeast of San Antonio. This and hundreds of thousands of other Earth photos taken by astronauts and cosmonauts over the past 50 years are available on http://eol.jsc.nasa.gov

  8. Earth observation

    2014-08-31

    ISS040-E-113700 (31 Aug. 2014) --- This panorama view, photographed by an Expedition 40 crew member on the International Space Station, shows tan-colored dust of a major dust storm obscuring the Persian Gulf and the its northern shoreline. Strong north winds often blow in summer, churning up dust from the entire length of the desert surfaces of the Tigris and Euphrates valleys (top left). Dust partly obscures the hundreds of kilometers of Iraq’s light-green agricultural lands along these rivers (left). A line of thunderstorms is being set off by the Zagros Mountains of Iran (right), with the setting sun casting long shadows from the thunderheads. Space station crews see sixteen sunrises and sunsets every day from low Earth orbit. Here the crew captured dusk in a darkening Iranian landscape (right).

  9. Earth Observation

    2014-06-24

    ISS040-E-018725 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring most of the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are in lower right portion of the image on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  10. Earth Observation

    2013-07-29

    ISS036-E-025908 (29 July 2013) --- One of the Expedition 36 crew members aboard the Earth-orbiting International Space Station, as it was passing over Africa, took this night picture of Sicily (center frame) and much of Italy (frame left to frame center) on July 29, 2013. The Stretto de Messina, which separates Sicily from Italy, is near frame center. The high oblique 50mm lens shot includes a scenic horizon with a number of stars in the late July sky. Barely visible in the darkness, part of the long arm of the Space Station Remote Manipulator System or Canadarm2 runs diagonally through the right one-third of the image.

  11. Earth Observation

    2011-07-15

    ISS028-E-017123 (16 July 2011) --- Separate atmospheric optical phenomena were captured in this electronic still photograph from the Inernational Space Station. The thin greenish band stretching along the Earth's horizon is airglow; light emitted by the atmosphere from a layer about 30 kilometers thick and about 100 kilometers in altitude. The predominant emission in airglow is the green 5577 Angstrom wavelength light from atomic oxygen atoms. Airglow is always and everywhere present in the atmosphere; it results from the recombination of molecules that have been broken apart by solar radiation during the day. But airglow is so faint that it can only be seen at night by looking "edge on" at the emission layer, such as the view astronauts and cosmonauts have in orbit. The second phenomenon is the appearnce of Aurora Australis.

  12. Earth Observation

    2014-11-22

    ISS042E007131 (11/22/2014) — Astronauts aboard the International Space Station captured this image of a huge crater in Africa on Nov. 22, 2014. This is the Richat Structure in northwestern Mauritania, otherwise known as the “Eye of the Sahara.” Scientists are still deciding whether this was formed by a subterranean volcano or impact from a large meteor. Deep in the Sahara Desert it is nearly a perfect circle, it is 1.2 miles (1.9 kilometers) wide, and sports a rim 330 feet (100 meters) tall. The crater sits in a vast plain of rocks so ancient they were deposited hundreds of millions of years before the first dinosaurs walked the Earth.

  13. Earth Observation

    2014-08-30

    ISS040E112662 (08/30/2014) ---- Cancún, Mexico. A long lens was used by astronauts aboard the International Space Station to take this image, and it highlights many natural and built features. The street pattern of Mexico’s tourist mecca, Cancún, contrasts with the waterways of the marinas that open into the bay and the lagoons. Brilliant blue water over coral reefs contrast with the dark waters of inland lagoons. The reefs are the second largest reef system on Earth, and draw tourists from all over the world. The wide, well developed beach on the gulf coast (image upper right) is the result of vigorous wave energy; the white sand makes the beach easily visible from space. But wave energy is reduced along Cancún’s protected shoreline (image center) and the beaches are thin or non-existant. Fair-weather cumulus clouds are scattered across the image top left. To shoot crisp mages with long lenses, astronaut photographers must learn to brace themselves against the ISS bulkhead to prevent any slight shaking that would blur or “smear” the picture. Counterintuitively, they then need to move the camera carefully retaining the target at the same point in the viewfinder (the landscape moves across the viewfinder quickly with long lenses). This is called tracking the target and requires good coordination by the photographer—again, to prevent blurring. Shorter lenses do not require this skill because the image appears to pass more slowly across the viewfinder.

  14. Earth Observations

    2010-09-20

    ISS024-E-015121 (20 Sept. 2010) --- Twitchell Canyon Fire in central Utah is featured in this image photographed by an Expedition 24 crew member on the International Space Station (ISS). The Twitchell Canyon Fire near central Utah?s Fishlake National Forest is reported to have an area of approximately 13,383 hectares (approximately 134 square kilometers, or 33,071 acres). This detailed image shows smoke plumes generated by several fire spots close to the southwestern edge of the burned area. The fire was started by a lightning strike on July 20, 2010. Whereas many of the space station images of Earth are looking straight down (nadir), this photograph was exposed at an angle. The space station was located over a point approximately 509 kilometers (316 miles) to the northeast, near the Colorado/Wyoming border, at the time the image was taken on Sept. 20. Southwesterly winds were continuing to extend smoke plumes from the fire to the northeast. While the Twitchell Canyon region is sparsely populated, Interstate Highway 15 is visible at upper left.

  15. Earth Observation

    2014-08-05

    ISS040-E-088891 (5 Aug. 2014) --- Thunderheads near Borneo, Indonesia are featured in this image photographed by an Expedition 40 crew member on the International Space Station. Late afternoon sun casts long shadows from high thunderhead anvils over southern Borneo. Crews aboard the space station have recently concentrated on panoramic views of clouds?taken with lenses similar to the focal length of the human eye. These images reveal the kinds of views crews see -- huge areas of the planet, with a strong three-dimensional sense of what it is like to fly 350 kilometers above Earth. Winds usually blow in different directions at different altitudes. High-altitude winds are clearly sweeping the tops off the many tallest thunderclouds, generating long anvils of diffuse cirrus plumes that trail south. At low levels, ?streets? of white dots -- fair-weather cumulus clouds -- are aligned with west-moving winds (lower left). Small smoke plumes from forest fires onshore are also aligned west. Storm formation near the horizon -- more than 1,000 kilometers away (center) -- is assisted by air currents rising over the central mountains of Borneo.

  16. Earth Observation

    2013-10-14

    ISS037-E-011470 (14 Oct. 2013) --- Man-made archipelagos near Dubai, United Arab Emirates, are featured in this image photographed by an Expedition 37 crew member on the International Space Station, flying at approximately 220 miles above Earth. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments -- particularly from the perspective of astronauts onboard the space station -- are three man-made archipelagos. The two Palm Islands -- Palm Jumeirah (right) and Palm Jebel Ali (out of frame further to the right) -- appear as stylized palm trees when viewed from above. The World Islands (center frame) evoke a rough map of the world from an air- or space-borne perspective. The Palm Jumeirah project began in 2001 and required more than 50 million cubic meters of dredged sand to raise the islands above the Persian Gulf sea level. Construction of the Palm Jumeirah islands was completed in 2006; for several years now they have been developed for residential and commercial housing and infrastructure. Creation of the World Islands was begun in 2003 and completed in 2008, using 320 million cubic meters of sand and 37 million tons of rock for the surrounding 27 kilometer-long protective breakwater.

  17. Earth Observations

    2013-06-21

    ISS036-E-011034 (21 June 2013) --- The Salton Trough is featured in this image photographed by an Expedition 36 crew member on the International Space Station. The Imperial and Coachella Valleys of southern California – and the corresponding Mexicali Valley and Colorado River Delta in Mexico – are part of the Salton Trough, a large geologic structure known to geologists as a graben or rift valley that extends into the Gulf of California. The trough is a geologically complex zone formed by interaction of the San Andreas transform fault system that is, broadly speaking, moving southern California towards Alaska; and the northward motion of the Gulf of California segment of the East Pacific Rise that continues to widen the Gulf of California by sea-floor spreading. According to scientists, sediments deposited by the Colorado River have been filling the northern rift valley (the Salton Trough) for the past several million years, excluding the waters of the Gulf of California and providing a fertile environment – together with irrigation—for the development of extensive agriculture in the region (visible as green and yellow-brown fields at center). The Salton Sea, a favorite landmark of astronauts in low Earth orbit, was formed by an irrigation canal rupture in 1905, and today is sustained by agricultural runoff water. A wide array of varying landforms and land uses in the Salton Trough are visible from space. In addition to the agricultural fields and Salton Sea, easily visible metropolitan areas include Yuma, AZ (lower left); Mexicali, Baja California, Mexico (center); and the San Diego-Tijuana conurbation on the Pacific Coast (right). The approximately 72-kilometer-long Algodones Dunefield is visible at lower left.

  18. Earth Observations

    2011-06-02

    ISS028-E-006687 (2 June 2011) --- Estuaries on the northwestern coast of Madagascar are featured in this image photographed by an Expedition 28 crew member on the International Space Station. Regions where fresh water flowing in rivers and salt water from the seas and oceans mix are called estuaries, and they are among the most biologically productive ecosystems on Earth. This photograph highlights two estuaries located along the northwestern coastline of the island of Madagascar. The Mozambique Channel (top) separates Madagascar from the southeastern coast of Africa. Bombetoka Bay (upper left) is fed by the Betsiboka River and is a frequent subject of astronaut photography due to its striking red floodplain sediments. Mahajamba Bay (right) is fed by several rivers including the Mahajamba and Sofia Rivers; like the Betsiboka, the floodplains of these rivers also contain reddish sediments eroded from their basins upstream. The brackish (mix of fresh and salty water) conditions found in most estuaries host unique plant and animal species adapted to live in such environments. Mangroves in particular are a common plant species found in and around Madagascar estuaries, and Bombetoka Bay contains some of the largest remaining stands. Estuaries also host abundant fish and shellfish species ? many of which need access to freshwater for a portion of their life cycles ? and these in turn support local and migratory bird species that prey on them. However, human activities such as urban development, overfishing, and increased sediment loading from erosion of upriver highlands threaten the ecosystem health of the estuaries. In particular, the silt deposits in Bombetoka Bay at the mouth of the Betsiboka River have been filling in the bay.

  19. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  20. Earth Observations

    2010-07-23

    ISS024-E-009404 (23 July 2010) --- This photo taken from the International Space Station on July 23, 2010, shows the Gulf of Mexico oil spill as part of ongoing observations of the region. When this image was taken, three months after the explosion on the Deepwater Horizon oil rig, the leak had been plugged for eight days. Water surfaces appear bright and land surfaces appear dark in the image. The stark contrast is due to sun glint, in which the sun is reflected brilliantly off all water surfaces back towards the astronaut observer on board the station. The sun glint reveals various features in the Gulf of Mexico, especially sheens of oil as packets of long bright streaks seen on the left side of the image. Sediments carried by the Mississippi River have a light-yellow coloration in this image, with distinct margins between plumes that likely mark tidal pulses of river water into the Gulf of Mexico. A boat wake cuts across one of the oil packets at image lower left. Daily National Oceanic and Atmospheric Administration (NOAA) maps of oil distribution show predicted heavier and lighter oil movement near the Gulf coastline. The maps show that on the day this image was taken, the north edge of the ?oiled? zone was expected to bank up against the delta. The observed spread of the surface oil in the approximately 100 days since the explosion highlights the connectivity between the deepwater areas and coastlines of the Gulf of Mexico.

  1. Earth Observation

    2013-06-23

    ISS036-E-010628 (24 June 2013) --- Strait of Tiran, Red Sea and Gulf of Aqaba are featured in this image photographed by an Expedition 36 crew member on the International Space Station. The approximately six-kilometer wide Strait of Tiran (also known as the Straits of Tiran) between the Egyptian mainland and Tiran Island separates the Gulf of Aqaba from the Red Sea, and provides two channels (290 meters and 73 meters deep, respectively) navigable by large ships bound for ports in Jordan and Israel. A smaller passage also exists between the east side of Tiran Island and Saudi Arabia, but this a single channel that is 16 meters deep. Due to its strategic position, control of the Strait has been an important factor in historical conflicts of the region, such as the Suez Crisis in 1956 and the Six-Day War in 1967. This photograph illustrates the morphology of the Strait. The relatively clear, deep-water passages of the western Strait of Tiran are visible at right, while the more sinuous shallow-water passage on the Saudi Arabia side can be seen at bottom center. Light blue to turquoise areas around Tiran Island indicate shallow water, while the island itself is arid and largely free of vegetation. Coral reefs are also found in the Straits of Tiran and are a popular diving destination. The silvery sheen on the water surface within the Strait and the south of Tiran Island is sunglint – light reflecting off the water surface back towards the observer on the space station. Disturbance to the water surface, as well as presence of substances such as oils and surfactants, can change the reflective properties of the water surface and highlight both surface waves and subsurface currents. For example, a large wave set is highlighted by sunglint at upper left.

  2. Earth Observation

    2013-08-18

    ISS036-E-032853 (18 Aug. 2013) --- Central Idaho wildfires are featured in this image photographed by an Expedition 36 crew member on the International Space Station. Taken with a short lens (50 mm), this west-looking image covers much of forested central Idaho?the dark areas are all wooded mountains. The image highlights part of the largest single wilderness area in the contiguous United States (the Frank Church-River of No Return Wilderness). Within this mountainous region, several fires can be seen producing extensive smoke plumes. Some fires had been named by Aug. 20, 2013, two days after the image was taken. The densest smoke on that day appears to be generated by a combination of the Little Queens and Leggit fires (left, within the Salmon River Mountains). The named fires were mostly set by lightning, and on Aug. 20 totaled 53,000 acres of burned forest south of the Salmon River, and many more if the unnamed fires are included. The Gold Pan fire north of the Salmon River had burned 27,000 acres. For a sense of scale in this oblique view, the Gold Pan fire lies about 125 miles north of the Little Queens fire. This image shows the common pattern of westerly winds transporting smoke in an easterly direction, as seen during the wildfire season of one year ago. Ten days before this image was taken, fires in central Idaho near Boise were aggravated by southerly winds. Some of the fires began to burn in July but were quelled and remain under observation for new flare-ups. Smoke from fires in the south partly obscures the black lava flows of the Craters of the Moon National Monument (lower left). The Beaverhead Mountains mark the eastern boundary of Idaho with Montana.

  3. Earth Observations

    2010-07-31

    ISS024-E-010403 (31 July 2010) --- This detailed image ? photographed by an Expedition 24 crew member on the International Space Station (ISS) ? is centered on the NASA Lyndon B. Johnson Space Center (JSC), located in the southeastern Houston, TX metropolitan area. While initially being represented by a number of temporary locations in Houston, the facility was established in 1961 as the Manned Spacecraft Center and renamed in honor of the late U.S. President Johnson (a Texas native) in 1973. JSC serves as the lead NASA center for both astronaut training and mission control of manned spacecraft - such as the ISS and space shuttle - and has done so throughout the history of the U.S. manned space program. The Center also collaborates with other NASA and international partner facilities in a variety of scientific and engineering programs related to human spaceflight and planetary exploration. JSC is located approximately midway between downtown Houston and Galveston, TX, and is bordered by several smaller municipalities that form a mosaic of urban and suburban land use (grey areas with street grids, and commercial/industrial areas characterized by white rooftops). Large tracts of grassy fields and forests in the area (light to dark green respectively) include nature preserves, grazing lands, and flood control areas. Also visible at upper left is Ellington Field. This airport services a variety of NASA aircraft used for astronaut training, scientific, and cargo transport purposes. Clear Lake, an inlet of Galveston Bay, is located to the immediate southeast of JSC. Both Clear Lake and Galveston Bay appear silver-grey due to sunglint, or light reflected back towards the observer on the ISS that gives the water surface a mirror-like appearance. Several boat wakes are visible in Galveston Bay (right) due to disruption of the water surface that reduces the sunglint effect.

  4. Earth Observation

    2011-06-29

    ISS028-E-010162 (29 June 2011) --- Sault Ste Marie, Ontario and Michigan are featured in this image photographed by an Expedition 28 crew member on the International Space Station. The twin cities of Sault Ste Marie are located across the St. Mary?s River that forms part of the international boundary between Canada (Province of Ontario) and the United States (State of Michigan). This photograph highlights the two cities, together with the region of lakes and islands that separates Lakes Huron and Superior, two of the Great Lakes of North America. Smaller lakes include Lake George to the west; the large forested islands of St. Joseph and Drummond are visible at lower left. The Sault Ste Marie urban areas (upper right) have a distinctive gray to white coloration in the image, contrasting with the deep green of forested areas in Ontario and the lighter green of agricultural fields in Michigan. The coloration of water surfaces in the lakes and rivers varies from blue to blue-green to silver, and is likely caused by varying degrees of sediment and sunglint ? light reflecting back to the observer on the space station from the water surface, much as light reflects from a mirror. Prior to formalization of the US/Canada border in 1817, Sault Ste Marie was a single community. Archeological evidence suggests that the region had been occupied by Native Americans at least five hundred years ago. A mission ? the first European settlement in Michigan ? was established there in 1668 by the French Jesuit Father Jacques Marquette. Today, shipping locks and canals in both urban areas are an important part of the Great Lakes shipping traffic system.

  5. Earth Observation

    2013-09-03

    quadrant known as Mount Venus. The extent of the lakes of Bracciano and Vico are readily apparent in this image due to sunglint – light reflecting back towards the observer from the water surfaces. This reflection gives a mirror-like sheen to the water surfaces in the image. Dark green forested areas associated with parks are visible near both lakes, while light gray to white regions indicate built areas - such as the city of Viterbo at right - and tilled fields (bottom center).

  6. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  7. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  8. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  9. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  10. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  11. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  12. Geodetic Earth Observation

    NASA Astrophysics Data System (ADS)

    Rothacher, Markus

    2017-04-01

    Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.

  13. STS-34 earth observations

    1989-10-20

    STS034-44-023 (20 Oct. 1989) --- The Southern Lights or Aurora Australis were photographed by the STS-34 crewmembers aboard the Earth-orbiting Space Shuttle Atlantis. From the Shuttle astronauts can photograph expanses of auroras, an advantage over scientists on Earth who can only get small sections at a time in a frame of photography. The space position allows for large-scale changes. This scene was one of 26 shown to the press by the five STS-34 crewmembers at their post-flight press conference.

  14. Nimbus earth resources observations

    NASA Technical Reports Server (NTRS)

    Sabatini, R. R.; Rabchevsky, G. A.; Sissala, J. E.

    1971-01-01

    The potential for utilizing data gathered by Nimbus satellites to study the earth surface and its physical properties is illustrated. The Nimbus data applicable to investigations of the earth and its resources, and to the problems of resolution and cloud cover are described. Geological, hydrological, and oceanographic applications are discussed. Applications of the data to other fields, such as cartography, agriculture, forestry, and urban analysis are presented. Relevant information is also given on the Nimbus orbit and experiments; surface and atmospheric effects on HRIR and THIR radiation measurements; and noise problems in the AVCS, IDCS, HRIR, and THIR data.

  15. 51F earth observations

    2009-06-25

    51F-37-014 (29 July-6 Aug 1985) --- This Earth view shows Oregon and Washington including metropolitan Portland at the center. The Columbia River can be seen from Goble (upper left) upstream to Bonneville (upper right). The Willamette River is at the lower photo and seen upstream to east of McMinnville.

  16. Earth observation image data format

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1976-01-01

    A flexible format for computer compatable tape (CCT) containing multispectral earth observation sensor data is described. The driving functions which comprise the data format requirements are summarized and general data format guidelines are discussed.

  17. International program for Earth observations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail.

  18. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  19. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  20. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  1. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  2. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  3. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  4. Earth Observing-1 Extended Mission

    ,

    2005-01-01

    Since November 2000, the National Aeronautics and Space Administration (NASA) Earth Observing-1 (EO-1) mission has demonstrated the capabilities of a dozen spacecraft sensor and communication innovations. Onboard the EO-1 spacecraft are two land remote sensing instruments. The Advanced Land Imager (ALI) acquires data in spectral bands and at resolutions similar to Landsat. The Hyperion instrument, which is the first civilian spaceborne hyperspectral imager, acquires data in 220 10-nanometer bands covering the visible, near, and shortwave-infrared bands. The initial one-year technology demonstration phase of the mission included a detailed comparison of ALI with the Landsat Enhanced Thematic Mapper Plus (ETM+) instrument. Specifications for the Operational Land Imager (OLI), the planned successor to ETM+, were formulated in part from performance characteristics of ALI. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1. The extended mission continues, on a cost-reimbursable basis, as long as customer sales fully recover flight and ground operations costs. As of May 2005, more than 17,800 scenes from each instrument have been acquired, indexed, archived, and made available to the public.

  5. Earth Observing-1 Extended Mission

    ,

    2003-01-01

    From its beginning in November 2000, the NASA Earth Observing-1 (EO-1) mission demonstrated the feasibility and performance of a dozen innovative sensor, spacecraft, and operational technologies. The 1-year mission tested a variety of technologies, some of which may be included on the planned 2007 Landsat Data Continuity Mission. Onboard the spacecraft are two land remote sensing instruments: the Advanced Land Imager (ALI), which acquires data in spectral bands and at resolutions similar to Landsat, and Hyperion, which acquires data in 220 10-nanometer-wide bands covering the visible, near-, and shortwave-infrared bands. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1 on a cost-reimbursable basis as long as customer sales are sufficient to recover flight and ground operations costs. The EO-1 extended mission operates within constraints imposed by its technology-pioneering origins, but it also provides unique and valuable capabilities. The spacecraft can acquire a target scene three times in a 16-day period. The ALI instrument has additional spectral coverage and greater radiometric dynamic range compared with the sensors on Landsat 7. Hyperion is the first civilian spaceborne hyperspectral imager. As of January 2003, more than 5,000 scenes had been acquired, indexed, and archived.

  6. Earth Observing System Covariance Realism Updates

    NASA Technical Reports Server (NTRS)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  7. Earth observations during STS-89

    1998-01-26

    STS089-743-004 (22-31 Jan. 1998) --- This picture showing Auckland Island, New Zealand was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. A spectacular occurrence of internal waves in the ocean is visible in the wake of the island. These waves can be generated by currents or, in some cases, wind across the island. In this case, the observation was that these waves were visible after the sunglint disappeared, suggesting current generated effects. If so, the circum-polar current that moves west-east around Antarctica would generate the scalloped appearance in the water east of the island. There is characteristically very little surface expression to these waves so they would not be noticed by a ship in this region. Fundamental processes of oceanic circulation and interaction are poorly understood. These shots help oceanographers model the dynamics of the open ocean and work out mixing models for ocean layer and ocean-air interaction (important for modeling CO2 budget, for example). The long linear valleys and bays have been excavated by glaciers cutting into this long-extinct volcano. This island is located on the submerged Campbell Plateau, which is an area almost as large as the exposed land of South Island, New Zealand. Scientists report that the plateau was submerged when New Zealand, Antarctica and Australia separated "around 75 million years ago." This could be viewed as one of the tallest mountains on the plateau. Usually the weather in this area is bad so this photo opportunity was considered a "great catch." Photo credit: NASA

  8. Deep Space Earth Observations from DSCOVR

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Herman, J.

    2018-02-01

    The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.

  9. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  10. Solar Array and Earth Observation

    2013-09-07

    ISS036-E-047951 (7 Sept. 2013) --- Backdropped by a blue and white part of Earth and the blackness of space, International Space Station solar array panels are featured in this image photographed by an Expedition 36 crew member aboard the station.

  11. STS-61A earth observations

    1985-11-02

    61A-43-029 (2 Nov 1985) --- This view, photographed from the Earth orbiting Challenger, features a vertical view of the Okavango Swamp in Botswana. Center coordinates are 19.0 degrees south latitude and 22.5 degrees east longitude. The Challenger was flying at an altitude of 177 nautical miles when the photo was taken with a 70mm handheld Hasselblad camera.

  12. Earth Observation Services (Forest Imaging)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Two university professors used EOCAP funding to demonstrate that satellite data can generate forest classifications with equal or better accuracy than traditional aerial photography techniques. This comparison had not been previously available. CALFIRST, the resulting processing package, will be marketed to forest companies and government agencies. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of, NASA- developed technology for analyzing information about Earth and ocean resources.

  13. STS-61A earth observations

    1985-10-30

    61A-31-005 (30 Oct 1985) --- This almost vertical view, photographed from Earth-orbit by an STS-61A crew member, centers on the metropolis of Milwaukee, Wisconsin, and some of the adjacent Lake Michigan shoreline, southward toward the Illinois border. The 70mm frame was photographed on the first day of the Spacelab D-1 mission with a handheld Hasselblad camera.

  14. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  15. The NASA Space Shuttle Earth Observations Office

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Wood, Charles A.

    1989-01-01

    The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.

  16. STS-61A earth observations

    1985-11-01

    61A-39-052 (30 Oct-6 Nov 1985) --- This Earth view shows Quinhuangdao, China. The Great Wall of China can be seen in this photograph. The center coordinates are 40.0 north latitude and 120.0 east longitude. This photograph was taken from an altitude of 180 miles, on the 24th orbit of the Space Shuttle Challenger. The crew consists of astronauts Henry W. Hartsfield, Jr., commander; Steven R. Nagel, pilot; mission specialists James F. Buchli, Guion S. Bluford, Jr., Bonnie J. Dunbar; payload specialists Reinhard Furrer (DFVLR), Ernst Messerschmid (DFVLR), and Wubbo J. Ockels (ESA).

  17. STS-61A earth observations

    1985-11-04

    61A-40-38 (30 Oct-6 Nov 1985) --- The coral reef forming the atoll of Midway sits atop a volcanic seamount that has descended more than 3,000 feet (1000 meters) below the sea surface in this ancient region of the Hawaiian volcanic chain. This view was taken by the crew members onboard the Earth-orbiting Space Shuttle Challenger. The crew consisted of astronauts Henry W. Hartsfield, Jr., commander; Steven R. Nagel, pilot; James F. Buchli, Guion S. Bluford, Jr., and Bonnie J. Dunbar, all mission specialists; Reinhard Furrer, Ernst Messerschmid, and Wubbo J. Ockels, all payload specialists. Ockels represents the European Space Agency (ESA).

  18. STS-61A earth observations

    1985-11-02

    61A-52-049 (30 Oct-6 Nov 1985) --- A 70mm image of the Strait of Dover area showing southeast England as photographed from the Earth-orbiting Space Shuttle Challenger by the astronaut crew members of the STS-61A mission. Center point coordinates in the handheld Hasselblad scene are 45.5 degrees north latitude and 0.5 degrees east longitude. Five NASA astronauts were joined by three European scientists for the week-long space flight, marking the largest roster on any Shuttle mission to date.

  19. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  20. Earth observations during STS-95

    1998-01-29

    STS089-703-056 (22-31 Jan. 1998) --- This oblique picture of Argentina and other parts of South America was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. Looking westward across the continent, north is toward the upper right corner and the Atlantic Ocean is in the foreground. Rio de la Plata in the center (the confluence of Rio Uruguay and Rio Parana) shows a sediment plume generated by drainage of El Niño rains upslope in the Andean foothills. The sediment plume is possibly more extensive than usual and extends down the coast and out of the bay to the left (south). The city of Buenos Aires, Argentina (population 13 million) is at upper left, and at right center is the city of Montevideo, Uruguay (population 1.2 million). Photo credit: NASA

  1. STS-61A earth observations

    1985-10-31

    61A-51-045 (31 Oct 1985) --- San Francisco Bay and the San Andreas fault line stand out in this 70mm frame exposed from the Earth-orbiting Space Shuttle Challenger on October 31, 1985. The California coastline extends from Tomales Bay on the north almost to Santa Cruz (just out of frame) on the south. Parts of the Sacramento and San Joaquin valleys are seen along the frame's right edge. Some of the bay's salt evaporators are recognizable by their unique hews, near Fremont and near Vallejo. Center point coordinates are located at 37.5 degrees north latitude and 122.5 degrees west longitude. The Challenger was 180 nautical miles directly above a point centered at 38.8 degrees north latitude and 126.5 degrees west longitude.

  2. Earth observations during STS-89

    1998-01-30

    STS089-709-049 (22-31 Jan. 1998) --- This oblique photograph of Argentina and Chile was among several of South America photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. This part of Patagonia in Argentina and the lake district of Chile and Argentina are in southern South America between latitudes 40 degrees and 43 degrees. It is a beautiful alpine region noted for skiing and for the recent immigration of rich Americans and Europeans. On the west side of the Andes are a series of snow-capped volcanoes that are formed due to melting of sediments and portions of the Pacific Plate, which are being subducted beneath South America. East of the mountains the plains are barren and windswept, noted as having "the curse of sterility" by Charles Darwin. In the mountain regions some alpine valleys are filled by lovely lakes, such as Nahuel Huapi (in sunglint). The university town and ski resort of Bariloche, Argentina is the light area on the southeastern shore. In 1901 Robert Leroy Parker and Harry Longabaugh (aka Butch Cassidy and Sundance Kid) bought a ranch near the town of Cholila (lower left in the photo) with the proceeds of a robbery of the First National Bank of Winnemucca, Nevada. They lived there as successful ranchers until 1907, when they were reportedly forced to sell out and flee to Bolivia where their career ended at the hands of the Bolivian army. Photo credit: NASA

  3. Earth Observations taken by Expedition 44 crewmember

    2015-06-20

    ISS044E002419 (06/20/2015) --- This Earth observation of Iran was taken by members of Expedition 44 on the International Space Station on June 20, 2015. Described as "Earth Art" it is the western shore of Lake Urmia near Gülmanxana, Iran (~36.6N, 45.3E).

  4. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  5. Earth observations during STS-89

    1998-03-04

    STS089-742-014 (22-31 Jan. 1998) --- This near-nadir picture of the central Andes, showing Santiago and other parts of Chile and Argentina, was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. Santiago (population 4.7 million) is visible to the right of center, west of the snow-capped Andes Mountains. Mendoza, Argentina is the light spot in the upper center of the image in the eastern foothills of the Andes. Cerro Aconcagua, the highest peak in South America (22,834 feet) is due west of Mendoza. Note the sharp bend in the river valley to the junction with a straight north-trending valley. Aconcagua is the large, rounded mass with a bit of cloud just northwest of the valley junction. Bright white spots on the left of the image are salars, or dry lake beds of gypsum and/or salt. Usually dry, some contain water due to recent rains generated by the record El Nino this year. The Pacific Ocean is to the upper right. The continental shelf is very steep in this region and water depths drop (to almost 17,000 feet over a distance of about 60 miles) over the same distance inland from the coast, the Andes rise +17,000 to almost 23,000 feet. The reason for this is the very rapid plate motion between the Pacific Ocean plate and South America. According to NASA scientists, over the last 140 million years, South America has been overriding the Pacific plate resulting in the rapid rise in the Andes and the rapid subduction of the Pacific plate, along with any sediments that are shed into the ocean along the continental margin. The dark, linear mountain ranges east of the high Andes (right center) constitute the Precordillera block; rock strata there have been correlated with the Ordovician (approximately 470 million years old) rocks near El Paso, Texas. The rocks and the fossils within them are virtually identical in the two areas, which are now widely separated. This region would be considered a "remnant terrain" from the time when this

  6. Earth Observations taken by Expedition 47 Crewmember.

    2016-03-26

    ISS047e022293 (03/26/2016) --- This Earth Observation image from the International Space Station is of a large extinct volcano in the lower southwest African Brukkaros Mountain in the country of Namibia.

  7. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  8. COMS normal operation for Earth Observation mission

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  9. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  10. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  11. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  12. Earth Observation from Space: Competition or Cooperation?

    DTIC Science & Technology

    1992-04-01

    or remote sensing from space (2). Earth observations or remote sensing includes all forms of observation by sensors borne by a space object including...3). The capabilities of remote sensing are as varied as the sensors that are built and put in orbit, but =- • I •1 capabilities fall into two...adversary or ally. For example, the ability of one nation to observe and study another through space-borne sensors permits strategic assessment of a

  13. Catalogs of Space Shuttle earth observations photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A review is presented of postflight cataloging and indexing activities of mission data obtained from Space Shuttle earth observations photography. Each Space Shuttle mission acquires 1300-4400 photographs of the earth that are reviewed and interpreted by a team of photointerpreters and cataloging specialists. Every photograph's manual and electronic set of plots is compared for accuracy of its locational coordinates. This cataloging activity is a critical and principal part of postflight activity and ensures that the database is accurate, updated and consequently made meaningful for further utilization in the applications and research communities. A final product in the form of a Catalog of Space Shuttle Earth Observations Handheld Photography is published for users of this database.

  14. Earth Observing System, Conclusions and Recommendations

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  15. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  16. Optical MEMS for earth observation payloads

    NASA Astrophysics Data System (ADS)

    Rodrigues, B.; Lobb, D. R.; Freire, M.

    2017-11-01

    An ESA study has been taken by Lusospace Ltd and Surrey Satellite Techonoly Ltd (SSTL) into the use of optical Micro Eletro-Mechanical Systems (MEMS) for earth Observation. A review and analysis was undertaken of the Micro-Optical Electro-Mechanical Systems (MOEMS) available in the market with potential application in systems for Earth Observation. A summary of this review will be presented. Following the review two space-instrument design concepts were selected for more detailed analysis. The first was the use of a MEMS device to remove cloud from Earth images. The concept is potentially of interest for any mission using imaging spectrometers. A spectrometer concept was selected and detailed design aspects and benefits evaluated. The second concept developed uses MEMS devices to control the width of entrance slits of spectrometers, to provide variable spectral resolution. This paper will present a summary of the results of the study.

  17. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  18. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  19. The Common Framework for Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T. S.; Sherman, R.

    2016-12-01

    Each year, the Federal government records petabytes of data about our home planet. That massive amount of data in turn provides enormous benefits to society through weather reports, agricultural forecasts, air and water quality warnings, and countless other applications. To maximize the ease of transforming the data into useful information for research and for public services, the U.S. Group on Earth Observations released the first Common Framework for Earth Observation Data in March 2016. The Common Framework recommends practices for Federal agencies to adopt in order to improve the ability of all users to discover, access, and use Federal Earth observations data. The U.S. Government is committed to making data from civil Earth observation assets freely available to all users. Building on the Administration's commitment to promoting open data, open science, and open government, the Common Framework goes beyond removing financial barriers to data access, and attempts to minimize the technical impediments that limit data utility. While Earth observation systems typically collect data for a specific purpose, these data are often also useful in applications unforeseen during development of the systems. Managing and preserving these data with a common approach makes it easier for a wide range of users to find, evaluate, understand, and utilize the data, which in turn leads to the development of a wide range of innovative applications. The Common Framework provides Federal agencies with a recommended set of standards and practices to follow in order to achieve this goal. Federal agencies can follow these best practices as they develop new observing systems or modernize their existing collections of data. This presentation will give a brief on the context and content of the Common Framework, along with future directions for implementation and keeping its recommendations up-to-date with developing technology.

  20. Earth Observations taken by Expedition 47 Crewmember

    2016-03-14

    ISS047e007765 (03/14/2016) --- Using special cameras and Chronophotography aboard the International Space Station, crew members of Expedition 47 during Earth observations capture awesome beauty . This nighttime image shows an approaching lightning storm on the left. The gold and red aurora act as a frame to this display of natures wonders.

  1. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  2. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  3. Earth observing system - Concepts and implementation strategy

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  4. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  5. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  6. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  7. Value of Earth Observation for Risk Mitigation

    NASA Astrophysics Data System (ADS)

    Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.

    2017-12-01

    Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.

  8. JEOS. The JANUS earth observation satellite

    NASA Astrophysics Data System (ADS)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  9. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  10. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  11. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  12. International Space Station Earth Observations Working Group

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  13. Aspiring to Spectral Ignorance in Earth Observation

    NASA Astrophysics Data System (ADS)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  14. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  15. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  16. Landsat Celebrates 40 Years of Observing Earth

    2017-12-08

    An artist's rendition of the next Landsat satellite, the Landsat Data Continuity Mission (LDCM) that will launch in Feb. 2013. Credit: NASA The Landsat program is the longest continuous global record of Earth observations from space – ever. Since its first satellite went up in the summer of 1972, Landsat has been looking at our planet. The view of Earth that this 40-year satellite program has recorded allows scientists to see, in ways they never imagined, how the Earth's surface has transformed, over time. In the 1970s Landsat captured the first views from space of the Amazonian rainforest and continued to track the area year after year after year, giving the world an unprecedented view of systemic and rapid deforestation. This view from space let us see an activity that was taking place in an exceptionally remote part of our world. These now iconic-images of tropical deforestation spurred the global environmental community to rally in an unprecedented way, and resulted in worldwide attention and action. To read more go to: www.nasa.gov/mission_pages/landsat/news/landsat-history.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  18. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  19. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  20. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  1. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  2. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  3. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  4. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  5. Continuity of Earth Radiation Budget Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  6. ASTER, a multinational Earth observing concept

    NASA Technical Reports Server (NTRS)

    Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.

    1993-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.

  7. Earth Observations taken by Expedition 34 crewmember

    2013-02-14

    ISS034-E-48455 (14 Feb. 2013) --- Looking out at Earth?s surface from the International Space Station (ISS), astronauts and cosmonauts frequently observe sunglint highlighting both ocean and inland water surfaces. The Atlantic Ocean, including Cape Cod Bay and Buzzards Bay, along the coastlines of Massachusetts and Rhode Island, has a burnished, mirror-like appearance in this image. This is due to sunlight reflected off the water surface back towards the station crew member who took the photo. The peak reflection point is towards the right side of the image, lending the waters of Long Island Sound and the upper Massachusetts coastline an even brighter appearance. Sunglint also illuminates the surface waters of Chesapeake Bay, located over 400 kilometers (250 miles) to the southwest of the tip of Long Island. This suggests that the Sun was low on the horizon due to the observed extent of the sunglint effect. The time of image acquisition, approximately 4:26 p.m. Eastern Standard Time, was about one hour before local sunset. There is little in this image to indicate that the region was still recovering from a major winter storm that dropped almost one meter (three feet) of snow over much of the northeastern USA less than a week earlier. The high viewing angle from the space station also allows Earth?s curvature, or limb, to be seen; blue atmospheric layers gradually fade into the darkness of space across the top part of the image. Low clouds near Cape Cod, Long Island, and further down the Atlantic coastline cast shadows over the water surfaces, reducing the sunglint in some areas.

  8. Earth Observations for Global Water Security

    NASA Technical Reports Server (NTRS)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  9. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  10. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  11. Earth observation archive activities at DRA Farnborough

    NASA Technical Reports Server (NTRS)

    Palmer, M. D.; Williams, J. M.

    1993-01-01

    Space Sector, Defence Research Agency (DRA), Farnborough have been actively involved in the acquisition and processing of Earth Observation data for over 15 years. During that time an archive of over 20,000 items has been built up. This paper describes the major archive activities, including: operation and maintenance of the main DRA Archive, the development of a prototype Optical Disc Archive System (ODAS), the catalog systems in use at DRA, the UK Processing and Archive Facility for ERS-1 data, and future plans for archiving activities.

  12. Earth Observations taken by Expedition 47 Crewmember.

    2016-03-26

    ISS047e022280 (03/26/2016) --- This interesting Earth observation image from the International Space Station seems an abstract painting but is really the outskirts of the Namib Desert in southwest Africa. One of the oldest and largest deserts in the world, the Namib stretches inland from the Atlantic Ocean, covering large swathes of Namibia and parts of Angola and South Africa. This arid hotspot surprisingly supports a diverse number of plants and animals, some of which are found nowhere else in the world.

  13. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  14. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project

  15. Sharing Earth Observation Data When Health Management

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2015-12-01

    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  16. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  17. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  18. Global Partnership in Global Earth Observations

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Obersteiner, M.

    2007-12-01

    The emergence of a global partnership on earth observations will crucially drive the configuration of future observing systems and consequently shape how socio-economic benefits are generated. In this paper we take a game-theoretical approach to model cooperation on building global earth observation systems. We consider several societies whose economies are subject to shocks mimicking major natural disasters. Economies operate optimally and lead to the best possible expected value for the social welfares in the future. In order to increase its welfare even more society can make a decision to invest into a global alerting system which lowers the risk of disasters. We start our investigation from a single-society case and show conditions under which benefits of such investment can be reaped. The propensity to invest increases with economic affluence and degree of vulnerability to natural disasters. We find that for poor and/or less vulnerable countries it is better to forbear from investment. If to consider a situation of multiple societies a strategic gaming situation emerges motivated by the fact that every society will benefit from a global system regardless of whether they invested or not. Our analysis of possible equilibrium solutions shows that similar to the formation of trading blocks (e.g. EU, NAFTA) only in the case of similar societies we will observe cooperation behavior (when all invest) and otherwise we will observe free-riding. This insight, that we might face a prisoners dilemma problem in the formation of a GEOSS, has important implications for the GEO process.

  19. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  20. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  1. Earth Observation Research for GMES Initial Operations

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  2. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  4. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  5. STS-4 earth observations from space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 earth observations from space. Views include both Florida coasts, with Cape Canaveral visible at the center of the frame. The photo was exposed through the aft window on the flight deck of the Columbia. The vertical tail and both orbital maneuvering systems (OMS) pods are visible in the foreground. Other features on the Earth which are visible include Tampa Bay and several lakes, including Apopka, Tohopekaliga, East Tahopekaliga, Harris, Cypress and a number of small reservoirs (33223); This is a north-easterly looking view toward California's Pacific Coast. The coastal area covered includes San Diego northward to Pismo Beach. Los Angeles is near center. The arc of the Temblor-Tehachapi-Sierra Nevada surrounds the San Joaquin Valley at left. The Mojave desert lies between the San Andres and Garlock Faults (33224); Mexico's Baja California and Sonora state are visible in the STS-4 frame. The islands of Angel de la Guardia and Tiburon stand out above and right of center. Low clouds

  6. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  7. Coordinating an Autonomous Earth-Observing Sensorweb

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth; hide

    2006-01-01

    A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

  8. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    for Earth Observation by initiating feasibility studies of a spaceborne concept to monitor atmospheric CO2 and other greenhouse gases. The purpose of this paper is to present the instruments concept and related technology/instrument developments that are currently running at the European Space Agency. The paper will also outline the development planning proposed for future lidar systems.

  9. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  10. Landsat: Sustaining earth observations beyond Landsat 8

    Kelly, Francis P.; Holm, Thomas M.

    2014-01-01

    The Landsat series of Earth-observing satellites began 41-years ago as a partnership between the U.S. Geological Survey (USGS) of the Department of the Interior (DOI) and The National Aeronautics and Space Administration (NASA). For the past 41 years, Landsat satellites and associated U.S. Government ground processing, distribution, and archiving systems have acquired and made available global, moderate-resolution, multispectral measurements of land and coastal regions, providing humankind’s longest record of our planet from space. Landsat information is truly a national asset, providing an important and unique capability that benefits abroad community, including Federal, state, and local governments; globalchange science; academia, and the private sector.

  11. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  12. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  13. Earth Observations taken by Expedition 26 crewmember

    2010-11-26

    ISS026-E-006255 (30 Nov. 2010) --- This night time image, photographed by an Expedition 26 crew member on the International Space Station, features the Las Vegas, Nevada metropolitan area, located near the southern tip of the state within the Mohave Desert of the southwestern USA. While the city of Las Vegas proper is famous for its casinos and resort hotels – the city bills itself as “the entertainment capital of the world” – the metropolitan area includes several other incorporated cities and unincorporated (not part of a state-recognized municipality) areas. Crew members onboard the ISS observe and photograph numerous metropolitan sites when the areas are illuminated by sunlight, but the extent and pattern of these areas are perhaps best revealed by the city lights at night. The surrounding dark desert presents a stark contrast to the brightly lit, regular street grid of the developed metropolitan area. The Vegas Strip (center) is reputed to be the brightest spot on Earth due to the concentration of lights associated with its hotels and casinos. The tarmac of McCarran International Airport to the south is a dark feature by comparison. The airstrips of Nellis Air Force Base on the northeastern fringe of the metropolitan area are likewise dark compared to the well-lit adjacent streets and neighborhoods. The dark mass of Frenchman Mountain borders the metropolitan area to the east. Acquisition of focused night time images such as this one requires space station crew members to track the target with the handheld camera while the ISS is moving at a speed of more than seven kilometers per second (15,659 miles per hour) relative to Earth’s surface. This was achieved during ISS Expedition Six using a homemade tracking device, but subsequent crews have needed to develop manual tracking skills. These skills, together with advances in digital camera technology, have enabled recent ISS crews to acquire striking night time images of Earth.

  14. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  15. Cloud Based Earth Observation Data Exploitation Platforms

    NASA Astrophysics Data System (ADS)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  16. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case

  17. Infrared sensors for Earth observation missions

    NASA Astrophysics Data System (ADS)

    Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.

    2007-10-01

    SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.

  18. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  19. STS-42 Earth observation of Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, with an electronic still camera (ESC) is of Kamchatka Peninsula in Russia. Mid-afternoon sun projects long shadows from volcanoes on the Kamchatka Peninsula. This flat-topped volcano with the sharp summit crater is Tobachinsky, over 3,085 kilometers high. Its last major eruption was in 1975 and 1976, but it has been very active since the middle of the Sixteenth Century. The shadows cast by the low sunlight brings out the dramatic relief of the volcano as well as the smaller morphologic features. For example, the small hills in the foreground and behind the central volcano are cinder cones, approximately only 200 meters high. Note the sharp triangular shadow from the conical volcano at right. Electronic still photography is a relatively new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital images from STS-42 were stored on a disk

  20. STS-42 Earth observation of Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, with an electronic still camera (ESC) is of Kamchatka Peninsula in Russia. Mid-afternoon sun projects long shadows from volcanoes on the Kamchatka Peninsula. This flat-topped volcano with the sharp summit crater is Tobachinsky, over 3,085 kilometers high. Its last major eruption was in 1975 and 1976, but it has been very active since the middle of the Sixteenth Century. The shadows cast by the low sunlight brings out the dramatic relief of the volcano as well as the smaller morphologic features. Electronic still photography is a relatively new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital images from STS-42 were stored on a disk and brought home with the flight crewmembers for processing. ESC was developed by the JSC Man-Systems Division and this mission's application of it is part of a continuing evolutionary development le

  1. STS-43 Earth observation of a colorful sunrise

    1991-08-11

    STS-43 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, captures the Earth's limb at sunrise with unusual cloud patterns silhouetted by the sunlight and rising into the terminator lines.

  2. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  3. Earth observations taken by Expedition 38 crewmember

    2013-11-24

    ISS038-E-007756 (24 Nov. 2013) --- One of the Expedition 38 crew members aboard the Earth-orbiting International Space Station used an 800mm lens to record this nadir image of Key West, Florida on Nov. 24, 2013.

  4. Earth Observations taken by Expedition 47 Crewmember

    2016-03-17

    ISS047e010211 (03/17/2016) --- NASA astronaut Tim Kopra sent this interesting image out via Twitter with the comment " Lake in #Brazil - looks like something from #MiddleEarth. @Space_Station #TheShire #Explore".

  5. Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth

    NASA Astrophysics Data System (ADS)

    Kandel, Robert S.

    1994-06-01

    Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.

  6. Earth Observations taken by STS-127 Crew

    2009-07-30

    S127-E-012774 (30 July 2009) --- Backdropped by Earth?s horizon and the blackness of space, a Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) is photographed after its release from Space Shuttle Endeavour?s payload bay by STS-127 crew members. DRAGONSat will look at independent rendezvous of spacecraft in orbit using Global Positioning Satellite data. The two satellites were designed and built by students at the University of Texas, Austin, and Texas A&M University, College Station.

  7. Earth Observations taken by STS-127 Crew

    2009-07-30

    S127-E-012776 (30 July 2009) --- Backdropped by Earth?s horizon and the blackness of space, a Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) is photographed after its release from Space Shuttle Endeavour?s payload bay by STS-127 crew members. DRAGONSat will look at independent rendezvous of spacecraft in orbit using Global Positioning Satellite data. The two satellites were designed and built by students at the University of Texas, Austin, and Texas A&M University, College Station.

  8. Earth Observations taken by Expedition 41 crewmember

    2014-09-17

    ISS041-E-016740 (17 Sept. 2014) --- One of the Expedition 41 crew members aboard the Earth-orbiting International Space Station exposed this Sept. 17 nocturnal scene featuring most of the largest cities on the central eastern seaboard. Even at 221 nautical miles above Earth, the 28mm focal length on the still camera was able to pick up detail in the image, for example, Central Park on Manhattan at right frame. The nation?s capital is very near frame center.

  9. Earth observation taken by Expedition 35 crew

    2013-05-05

    ISS035-E-034848 (5 May 2013) --- The sun is about to come up over the South Pacific Ocean in this colorful scene photographed by one of the Expedition 35 crew members aboard the Earth-orbiting International Space Station between 4 and 5 a.m. local time, May 5, 2013. The outpost was at a point above Earth located at 27.4 degrees south latitude and 110.1 degrees west longitude, a few hundred miles east of Easter Island.

  10. The future of Earth observation in hydrology

    NASA Astrophysics Data System (ADS)

    McCabe, Matthew F.; Rodell, Matthew; Alsdorf, Douglas E.; Miralles, Diego G.; Uijlenhoet, Remko; Wagner, Wolfgang; Lucieer, Arko; Houborg, Rasmus; Verhoest, Niko E. C.; Franz, Trenton E.; Shi, Jiancheng; Gao, Huilin; Wood, Eric F.

    2017-07-01

    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smartphones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other

  11. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  12. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  13. Earth observations taken during STS-1 mission

    2009-06-24

    STS001-13-443 (12-14 April 1981) --- This photograph showing much of Italy was taken with a hand-held 70mm camera from 276 kilometers above Earth as the NASA space shuttle Columbia and its crew were marking their last few hours in space on the historic first space mission utilizing a reusable vehicle. Included in the area of the frame are Golfo de Napoli, Napoli (Naples), Castellammare, Amalfi, Capri, Sorrento, Mt. Vesuvius and the ruins of Pompei. Astronauts John W. Young and Robert L. Crippen exposed eight magazines of color 70mm film during their two-and-one-third days in Earth orbit. Photo credit: NASA

  14. Project Copernicus: An Earth observing system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  15. Connecting Earth observation to high-throughput biodiversity data.

    PubMed

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W

    2017-06-22

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

  16. Earth Observations taken by STS-116 Crewmember

    2006-12-13

    S116-E-06081 (13 Dec. 2006) -- Backdropped against a colorful part of Earth, Progress 23 supply vehicle docked to the Zvezda Service Module's aft port of International Space Station, is featured in this image photographed by a STS-116 crewmember while Space Shuttle Discovery was docked with the station. Shark Bay, Australia is visible at lower right.

  17. Earth Observations taken by Expedition 44 crewmember

    2015-06-22

    ISS044E002699 (06/23/2015) --- This spectacular view of the Earth with colorful aurora, sparkling city lights, and a rising sun over a background of diamond twinkling stars was taken by members of Expedition 44 on the International Space Station on June 23, 2015.

  18. Apollo 9 Mission image - Earth Observation - Georgia

    1969-03-03

    AS09-23-3567 (3-13 March 1969) --- Oblique view of the Atlanta, Georgia area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. The Chattahoochee River runs from Lake Sidney Lanier, near Gainesville (at upper left corner), south-westward by Atlanta and between Newnan and Carrollton (lower right). Allatoona Lake is at left center.

  19. Earth observations taken from shuttle orbiter Columbia

    1995-10-22

    STS073-728-010 (22 October 1995) --- Photographed by the astronauts aboard the Space Shuttle Columbia orbiting at 146 nautical miles above Earth is this scene over West Virginia featuring the Appalachian Mountains. Center point coordinates are 37.5 degrees north latitude and 80.5 degrees west longitude.

  20. NASA Facts, Observing Earth from Skylab.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    The process of high-altitude photography and its uses are the topics of this publication. The advantages of color infrared photography over black and white images are discussed, using as evidence a series of skylab photographs. The major portion of this work is devoted to the detection of natural resources of the earth from the analysis of…

  1. Earth Observation taken during Joint Operations

    2009-07-23

    S127-E-008040 (23 July 2009) --- This is a view of Egypt's Lake Nasser from the shuttle-station tandem currently flying 220 miles above Earth. An international crew of thirteen astronauts and cosmonaut are working together to continue work on the orbital outpost

  2. Earth Observations taken by Expedition 34 crewmember

    2013-02-25

    ISS034-E-056011 (25 Feb. 2013) --- One of the Expedition 34 crew members aboard the International Space Station took advantage of clear skies over Indianapolis, Indiana on Feb. 25 and captured this image of the capital city from a point some 240 miles above Earth.

  3. Earth Observations taken by Expedition 47 Crewmember

    2016-03-25

    ISS047e020123 (03/25/2016) --- A golden reflection of the rising sun on the Earths oceans greets the crew of Expedition 47 on board the International Space station. Another day begins for the crew in their pursuit of science that will aid humankind.

  4. Earth observations taken during STS-8 mission

    2009-06-25

    STS008-50-1840 (30 Aug-5 Sept 1983) --- An active 5,500 foot high volcano on Adonara Island in Indonesia leaves a 30 mile long visible trail of smoke. The surrounding islands are Flores (lower right) Solor (right edge) and Lomblen (upper center). This photograph was made from the Earth orbiting Space Shuttle Challenger on its third mission.

  5. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    NASA Astrophysics Data System (ADS)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  6. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  7. Earth Observations taken by Expedition 34 crewmember

    2013-02-21

    ISS034-E-056100 (21 Feb. 2013) --- One of the most recognizable natural features on Earth, when viewing from space, is the Manicouagan Crater, one of the oldest known impact craters on Earth. Photographed by one of the Expedition 34 crew members onboard the International Space Station, the crater is located primarily in Manicouagan Regional County Municipality in the Côte-Nord region of Québec, Canada, about 300 kilometers (190 miles) north of the city of Baie-Comeau. Manicouagan is one of the oldest large astroblemes still visible on the surface. The crater is a multiple-ring structure about 100 kilometers (60 miles) across, with its 70 kilometer (40 mile) diameter inner ring its most prominent feature; it contains a 70 kilometer (40 mile) diameter annular lake, the Manicouagan Reservoir, surrounding an inner island plateau.

  8. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  9. Earth observations taken during STS-41C

    2009-06-25

    41C-51-2414 (6-13 April 1984) --- The entire Texas portion of the Gulf Coast and part of Louisiana's shoreline are visible in this frame, photographed on 4"x5" roll film using a large format camera aboard the Earth-orbiting space shuttle Challenger. Coastal bays and other geographic features from the Boca Chica (mouth of Rio Grande), to the mouth of the Mississippi are included in the frame, photographed from approximately 285 nautical miles above Earth. Inland cities that can be easily delineated are San Antonio, Austin, College Station, Del Rio and Lufkin. Easily pinpointed coastal cities include Houston, Galveston and Corpus Christi. The 41-C crew members used this frame as one of the visuals for their post-flight press conference on April 24, 1984.

  10. Scheduling Observations of Celestial Objects for Earth Observing Sensor Calibration

    NASA Technical Reports Server (NTRS)

    Wilson, Truman; Xiong, Xiaoxiong

    2016-01-01

    Radiometric calibration of Earth-observing satellite sensors is critical for tracking on-orbit gain changes through- out the satellite's mission. The Moon, being a stable, well-characterized radiometric target, has been used effectively for tracking the relative gain changes of the reflective solar bands for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board EOS AM-1 (Terra) and PM-1 (Aqua). The Moon is viewed through the MODIS space-view port, and the relative phase of the Moon is restricted to within 0.5 degrees of a chosen target phase to increase the accuracy of the calibration. These geometric restrictions require spacecraft maneuvers in order to bring space-view port into proper alignment with the position of the Moon when the phase requirement is met. In this paper, we describe a versatile tool for scheduling such maneuvers based on the required geometry and lunar phase restrictions for a general spacecraft bound instrument. The results of the scheduling tool have been verified using lunar images from Aqua and Terra MODIS after a scheduled roll maneuver was performed. This tool has also been tested for the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Technology Microwave Sounder on-board the Suomi-NPP spacecraft. As an extension of this work, we have also developed a tool for scheduling views of bright stars. These stars provide another well-characterized radiometric source that can be used for sensor calibration. This tool has been implemented to determine the times in which a chosen star can be viewed by the high gain stages of the day/night band for the VIIRS instrument.

  11. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  12. Earth observations taken during STS-8

    2009-06-25

    STS008-32-748 (30 Aug-5 Sept 1983) --- Bora-Bora, with its wide-fringing reef, stands out in the center of this photographed, taken over the Society Island chain from the Earth-orbiting Space Shuttle Challenger on its third spaceflight. In the upper left corner are the islands of Raiatea and Tahaa. The ancient volcano islands are very slowly sinking into the oceanic crust, while coral growth maintains a reef platform.

  13. Earth Observations taken by Expeditiion 38 crewmember

    2013-11-12

    ISS038-E-000649 (12 Nov. 2013) --- Although crew members on the International Space Station view literally hundreds of scenes of the moon rising and setting over Earth on each several- month increment, the home planet's natural satellite never ceases to escape the crew's attention and impulse to grab a camera from time to time. Such was the case with this image of a waxing gibbous moon recorded exactly at 00:00:00 GMT, Nov. 12, 2013.

  14. Earth observations taken during STS-77

    1996-05-21

    STS077-704-010 (19-29 May 1996) --- The northeastern tip of the Yucatan Peninsula is visible in this Earth scene. The eastern coast of the Yucatan Peninsula is characterized by bluffs, bays, and islands. Isla Mujeres is one of the larger islands off the eastern coast where a tourism industry is being developed. The different shades of blue along the coast is an indication of water depth, with the lighter shades representing more shallow water.

  15. Earth Observation Services (Oil Spill Mapping)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An EOCAP project led Research Planning, Inc. to the development of advanced techniques for "environmental sensitivity" oil spill mapping. The new method incorporates satellite remote sensing and GIS technologies and was utilized to assess the damage potential of the Gulf war oil spill. EOCAP provides government co-funding to encourage private investment in, and to broaden the, use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  16. Earth Observations taken by Expedition 30 crewmember

    2012-01-22

    ISS030-E-048067 (22 Jan. 2012) --- With hardware from the Earth-orbiting International Space Station appearing in the near foreground, a night time European panorama reveals city lights from Belgium and the Netherlands at bottom center, the British Isles partially obscured by solar array panels at left, the North Sea at left center, and Scandinavia at right center beneath the end effector of the Space Station Remote Manipulator System or Canadarm2.

  17. Earth observation taken during STS-102

    2001-06-14

    STS102-342-024 (8-21 March 2001)--- The largest percentage of astronaut out-the-window photography is scientific in nature. However, occasionally scenes such as this one showing the moon over Earth's airglow are irresistable for crew members with cameras. The 35mm scene was recorded by one of the STS-102 astronauts from the aft flight deck of the Space Shuttle Discovery.

  18. Earth Observation taken by STS-116 Crewmember

    2006-12-20

    S116-E-07663 (20 Dec. 2006) --- One of the STS-116 crewmembers onboard the Space Shuttle Discovery captured this picture of Aurora Borealis over Norway, Poland and Sweden, as the crew made preparations for a Dec. 22 landing. European Space Agency astronaut Christer Fuglesang onboard the shuttle noted the rarity of pictures over this area from shuttle missions, and especially pictures that included the Northern Lights. Fuglesang is from Sweden. The city lights of Copenhagen (bright cluster of lights in the middle left portion of the image), Stockholm (under the aurora on the far right side of the image), and Gdansk (in the center forefront) are seen. The formation of the aurora starts with the sun releasing solar particles. The Earth's magnetic field captures and channels the solar particles toward the Earth's two magnetic poles (north and south). As the solar particles move towards the poles they collide with the Earth's atmosphere, which acts as an effective shield against these deadly particles. The collision between the solar particles and the atmospheric gas molecule emits a light particle (photon). When there are many collisions the aurora is formed.

  19. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  20. Waste Management with Earth Observation Technologies

    NASA Astrophysics Data System (ADS)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (< 1 m). The main product of InSAR is Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that

  1. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  2. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  3. Earth Observations taken by Expedition 26 crewmember

    2011-02-23

    ISS026-E-029133 (24 Feb. 2011) --- From approximately 220 miles above Earth, an Expedition 26 crew member aboard the International Space Station exposed this oblique-angle still frame of parts of New Zealand including those impacted by an earthquake almost four days ago. This image provides a view across the South Island of New Zealand. One can see the Southern Alps mountain range, along the length of the island (more on the west side) which is formed where the Indo-Australian and Pacific tectonic plates meet. Death toll announced on Feb. 24, the day this picture was taken, had reached slightly above 100.

  4. Earth observations taken during STS-81 mission

    1997-01-21

    STS081-711-009 (12-22 Jan. 1997) --- As photographed with a 70mm handheld camera from the Earth-orbiting Space Shuttle Atlantis, this image provides a northeastward panorama of the Florida peninsula, the northern Bahamas and Cuba as well as a synoptic view of the northern Caribbean region. Lake Okeechobee and the urban region around Miami are the two key visual points in Florida. The turquoise shallow water platforms around the Florida Keys, the Bahamas, and south of Cuba contrast with the deep blue color of the deeper channels which separate Florida from Cuba and the Bahamas. Offshore breezes keep the coastal areas clear of clouds.

  5. Earth Observations taken by Expedition 30 crewmember

    2012-01-01

    ISS030-E-038622 (1 Jan. 2012) --- Framed by a window of the Cupola on the International Space Station is a scene photographed by one of the Expedition 30 crew members aboard the orbital outpost showing two Russian spacecraft that are currently docked to it. A Soyuz (near foreground) is docked to Rassvet, also known as the Mini-Research Module 1 (MRM-1), and a Progress is linked to the Pirs Docking Compartment, just above center frame. Part of Earth, mostly clouds and water, can be seen running horizontally through the scene.

  6. Earth Observations taken by Expedition 26 crewmember

    2011-02-20

    ISS026-E-028384 (22 Feb. 2011) --- This high oblique night time view of the bottom two thirds of the Florida peninsula, photographed by an Expedition 26 crew member aboard the International Space Station at 220 miles above Earth, displays many of the state's well-lighted metropolitan areas. The crew member used a digital still camera equipped with an 80-mm lens to expose the frame. The station was above the Gulf of Mexico, facing eastward toward the Atlantic, at the time the photo was taken.

  7. Earth Observations taken by Expedition 30 crewmember

    2012-01-30

    ISS030-E-060478 (30 Jan. 2012) --- The city lights of Madrid (just right of center) stand out in this photograph from the International Space Station. Recorded by one of the Expedition 30 crew members, the view shows almost the entire Iberian Peninsula (both Spain and Portugal) with the Strait of Gibraltar and Morocco appearing at lower left. What is thought to be a blur of the moon appears in upper left corner. The faint gold or brownish line of airglow?caused by ultraviolet radiation exciting the gas molecules in the upper atmosphere?parallels the horizon or Earth limb.

  8. Earth Observations taken by Expedition 41 crewmember

    2014-09-27

    ISS041-E-045469 (27 Sept. 2014) --- One of the Expedition 41 crew members aboard the International Space Station, flying at an altitude of 222 nautical miles above a point in the Atlantic Ocean several hundred miles off the coast of Africa near the Tropic of Cancer, photographed this eye-catching panorama of the night sky on Sept. 27. NASA astronaut Reid Wiseman, flight engineer, tweeted the image, which was taken with an electronic still camera, set with a 24mm focal length. In his accompanying comments, Wiseman stated, "Sahara sands make the Earth glow orange."

  9. The U.S. National Plan for Civil Earth Observations

    NASA Astrophysics Data System (ADS)

    Stryker, T.; Clavin, C.; Gallo, J.

    2014-12-01

    Globally, the United Sates Government is one of the largest providers of environmental and Earth-system data. As the nation's Earth observation capacity has grown, so have the complexity and challenges associated with managing Earth observation systems and related data holdings. In July 2014, the White House Office of Science and Technology Policy released the first-ever National Plan for Civil Earth Observations to address these challenges. The Plan provides a portfolio management-based framework for maximizing the value of Federal Earth observations. The Plan identifies Federal priorities for Earth observations and improved management of their data. Through routine assessments, expanding data management efforts, interagency planning, and international collaboration, OSTP and its partner agencies will seek ensure the continued provision of and access to key Earth observation data, which support a broad range of public services and research programs. The presenters will provide a detailed review of the components of the National Plan, its impacts across the Federal agencies involved in Earth observations, and associated efforts to enable interagency coordination.

  10. Earth Observations taken by Expedition 38 crewmember

    2014-01-02

    ISS038-E-025350 (2 Jan. 2014) --- One of the Expedition 38 crew members aboard the Earth-orbiting International Space Station recorded this image which features the Manicouagan Crater and reservoir located primarily in Manicouagan Regional County Municipality in the Cote-Nord region of Quebec, Canada. Scientists believe the crater was caused by the impact of a 5 kilometer (3 mile) diameter asteroid about 215.5 million years ago (Triassic Period). The crater is a multiple-ring structure about 100 kilometers (60 miles) across, with its 70 kilometer (40 mile) diameter inner ring as its most prominent feature; it contains a 70 kilometer (40 mile) diameter annular lake, the Manicouagan Reservoir, surrounding an inner island plateau, Rene-Levasseur Island. Because it is so unique and easily recognizable from the sky and space, the crater has been the subject of hundreds of images from astronauts for 45-plus years.

  11. Earth Observations taken by Expedition 34 crewmember

    2013-01-15

    ISS034-E-029105 (15 Jan. 2013) --- One of the Expedition 34 crew members aboard the Earth-orbiting International Space Station photographed this image of the Piccaninny impact structure, located within the semi-arid Purnululu National Park and World Heritage site in Australia. The structure is believed by most scientists to have been formed less than 360 million years ago. Specifically, the 7.5 kilometer diameter structure forms a roughly circular plateau within the striking sandstone cone towers of the Bungle Bungle Range. Geological evidence indicating an impact structure includes regional folding and faulting patterns both within and surrounding the plateau. Features confirming an impact, such as shock textures (indicating rapid compression, melting, and fracturing during impact) in rocks and minerals have not yet been found; this, according to scientists, is perhaps due to removal during erosion of an original crater.

  12. Earth Observations taken during Expedition Four

    2002-04-21

    ISS004-E-10288 (21 April 2002) --- This view featuring the San Francisco Bay Area was photographed by an Expedition 4 crewmember onboard the International Space Station (ISS). The gray urban footprint of San Francisco, Oakland, San Jose, and their surrounding suburbs contrasts strongly with the green hillsides. Of particular note are the Pacific Ocean water patterns that are highlighted in the sun glint. Sets of internal waves traveling east impinge on the coastline south of San Francisco. At the same time, fresher bay water flows out from the bay beneath the Golden Gate Bridge, creating a large plume traveling westward. Tidal current channels suggest the tidal flow deep in the bay. Because the ISS orbits are not synchronous with the sun, station crewmembers view Earth with variable solar illumination angles. This allows them to document phenomena such as the sun reflecting differentially off surface waters in a way that outlines complicated water structures.

  13. Earth Observations taken by Expedition 30 crewmember

    2012-01-29

    ISS030-E-055569 (29 Jan. 2012) --- Southeastern USA at night is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The brightly lit metropolitan areas of Atlanta, GA (center) and Jacksonville, FL (lower right) appear largest in the image with numerous other urban areas forming an interconnected network of light across the region. A large dark region to the northwest of Jacksonville, FL is the Okefenokee National Wildlife Refuge; likewise the ridges of the Appalachian Mountains form dark swaths to the north of Atlanta, GA and west of Charlotte, NC (center). The faint gold and green line of airglow—caused by ultraviolet radiation exciting the gas molecules in the upper atmosphere—parallels the horizon (or Earth limb).

  14. Earth observations during STS-89 mission

    1998-01-28

    STS089-703-007 (22-32 Jan. 1998) --- This picture of southern Australia was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. The Nullarbor Plain (behind the boom of Russia’s Mir Space Station) has been one of the least photographed features of the continents. The coastal escarpment rises abruptly to 500 feet above sea level. The limestone bedrock has been dissolved away along fractures and joints. In this photo of the western Australian Bight, solution grooves can be seen to have localized sand deposits in long bands. Both inland and along the coast, rounded sinkholes and depressions attest to solution of the surficial limestone’s; "karst" is the term for this kind of terrain. Caves such as Cocklebiddy and Weebubbie are common along the coast and linear passages, formed by dissolution of joints, commonly connect rooms. Photo credit: NASA

  15. Orbit Selection for Earth Observation Missions

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1978-01-01

    The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.

  16. Earth observations taken during STS-98 mission

    2001-02-07

    STS098-819-038 (17 February 2001) --- Much of Metropolitan Houston appears in this nearly vertical image photographed with a handheld 70mm camera onboard the Earth-orbiting Space Shuttle Atlantis. Interstate 45 and Highways 146 and 6 can be traced from lower right in Galveston County as they head into different directions toward a wide range of points in the city and its suburbs. NASA's Johnson Space Center can be easily pin-pointed just above the center point in the frame. Other points of interest in the area can be located by tracking over the various U.S., state and interstate highways---10, 51, 610 loop, Beltway 8 and others. Downtown Houston is at left center, but the so-called Uptown area is just out of frame at left. Galveston Bay takes up most of the upper right quadrant. Lake Houston is at upper left. A small piece of the Gulf of Mexico is in lower right.

  17. Earth Observations taken by Expedition 30 crewmember

    2011-12-04

    ISS030-E-010008 (4 Dec. 2011) --- One of the Expedition 30 crew members aboard the Earth-orbiting International Space Station photographed this night time scene of the Iberian Peninsula on Dec. 4, 2011. The city lights of Spain and Portugal define the peninsula. Several large metropolitan areas are visible, marked by their relatively large and brightly lit areas, such as two capital cities -- Madrid, Spain, located near the center of the peninsula?s interior, and Lisbon, Portugal, located along the southwestern coastline. Ancient Seville, visible at image right to the north of the approximately 14 kilometer-wide Strait of Gibraltar, is one of the largest cities in Spain. All together, the Principality of Andorra, the Kingdom of Spain and the Portuguese Republic total approximately 590,000 square kilometers of landmass. The peninsula is bounded by the Atlantic Ocean to the northwest, west, and southwest and the Mediterranean Sea to the east. Its northeastern boundary with the rest of continental Europe is marked by the Pyrenees mountain range. The view is looking outwards from the orbital outpost toward the east. The network of smaller cities and towns in the interior and along the coastline attest to the large extent of human presence on the Iberian landscape. Blurring of the city lights is caused by thin cloud cover (image left and center), while the cloud tops are dimly illuminated by moonlight. Though obscured, the lights of France are visible near the horizon line at image upper left, while the lights of northern Africa are more clearly discernable at image right. The gold to green line of airglow, caused by excitation of upper atmosphere gas molecules by ultraviolet radiation, parallels the horizon line (or Earth limb).

  18. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  19. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  20. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  1. An Evolving Model for Capacity Building with Earth Observation Imagery

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  2. Earth observations taken from shuttle orbiter Columbia

    1995-10-26

    STS073-708-089 (26 October 1995) --- As evidenced by this 70mm photograph from the Earth-orbiting Space Shuttle Columbia, international borders have become easier to see from space in recent decades. This, according to NASA scientists studying the STS-73 photo collection, is particularly true in arid and semi-arid environments. The scientists go on to cite this example of the razor-sharp vegetation boundary between southern Israel and Gaza and the Sinai. The nomadic grazing practices to the south (the lighter areas of the Sinai and Gaza, top left) have removed most of the vegetation from the desert surface. On the north side of the border, Israel uses advanced irrigation techniques in Israel, mainly "trickle irrigation" by which small amounts of water are delivered directly to plant roots. These water-saving techniques have allowed precious supplies from the Jordan River to be used on farms throughout the country. Numerous fields of dark green can be seen in this detailed view. Scientists say this redistribution of the Jordan River waters has increased the Israeli vegetation cover to densities that approach those that may have been common throughout the Mid-East in wetter early Biblical times. A small portion of the Mediterranean Sea appears top right.

  3. Earth observations taken during STS-98 mission

    2001-02-07

    STS098-714A-020 (7-20 February 2001) ---One of the STS-98 astronauts aboard the Earth-orbiting Space Shuttle Atlantis used a 70mm handheld camera to record this image of Southern California. Snow blanketing the higher elevations in the Los Padres National Forest (center of the image) and that covering the Angeles National Forest (right middle) help to accentuate and separate three major landform regions in southern California. The northern Los Angeles Basin that includes the San Fernando Valley and the Santa Monica Mountains is visible in the lower right quadrant of the image. The western end of the Mojave Desert (upper right) shows the two distinctive mountain boundaries along the southwest and northwest edge of the desert. The San Andreas Fault and the Garlock Fault converge (snow covered in this scene) at the western end of the desert. The intensively irrigated and cultivated southern end of the San Joaquin Valley that includes Bakersfield is visible (upper left) north of the snow-covered, northeast-southwest trending Tehachapi Mountains. The island off of the California coast (bottom left) is Santa Cruz Island.

  4. Earth Observations taken by Expedition 34 crewmember

    2013-03-05

    ISS034-E-61717 (5 March 2013) --- One of the Expedition 34 crew members aboard the Earth-orbiting International Space Station captured this image of Belgrade, the capital city of the Republic of Serbia. Located at the confluence of the Danube and Sava Rivers, the Belgrade metropolitan area has a population of 1.65 million (2011 census information) which ranks it as one of the largest such areas in southeastern Europe. Human occupation of the Belgrade area can be traced back over 6000 years. According to historical reports, a city that eventually became Belgrade existed by at least 279 BC. The core of old Belgrade – known as Kalemegdan –is located along the right banks of both the Danube and the Sava Rivers (image center). To the west across the Sava, Novi Beograd (New Belgrade) was constructed following World War II. The photograph was acquired on March 5, 2013 with a digital camera using the equivalent of a 700 millimeter lens.

  5. Earth observations taken during STS-3 mission

    2009-06-24

    STS003-10-567 (22-30 March 1982) --- Manila Bay, the city of Manila, Clark Air Force Base and other features can be delineated in this nearly vertical view of Luzon in the Philippines, as photographed with a handheld camera from the Earth-orbiting space shuttle Columbia on NASA's STS-3 mission. Hold picture with largest cloud mass at bottom so that north will be at top right corner. A number of volcanoes can be seen in the picture: Mariveles (left center), Natib (just north of Mariveles), Pinatubo (upper right) and Arayet (east-southeast of Pinatubo). Manila is in the south portion of the picture (lower left corner). The island of Corregidor is clearly visible at the mouth of the bay. Clark Air Force Base can be seen between Mt. Pinatubo and Mt. Arayet. Subic Naval Base is just northwest of Mt. Natib on the coast of the South China Sea. Photo credit: NASA EDITOR'S NOTE: Since this photograph was taken, an important update. June 20, 1991, a small eruption in April northwest of the summit at the geothermal area was followed on June 11, 1991, by a larger one, which climaxed June 15 and 16, 1991, into an event of historic proportions. Until the 1991 eruptions, the volcano had not erupted for 635 years.

  6. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley; Olson, V.; Trenchard, M.; Willis, K.; Baskin, P.

    2006-01-01

    This viewgraph presentation asks the question "Is the observation of earth from the ISS a positive (salutogenic) experience for crew members?"All images are distributed to the public via the "Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov. The objectives of the study are (1) Mine the dataset of Earth Observation photography--What can it tell us about the importance of viewing the Earth as a positive experience for the crewmembers? (2) Quantify extent to which photography was self-initiated (not requested by scientists) (3) Identify patterns photography activities versus scientific requested photography.

  7. Earth observation taken by the Expedition 43 crew

    2015-04-26

    ISS043E142265 (04/26/2015) --- NASA astronaut Scott Kelly on the International Space Station Apr.26, 2015 tweeted this image out of an Earth observation as part of his Space Geo contest "name this location" with this remark and clue: "This frozen body of water is the world's oldest (25 million years) and deepest basin on Earth. Name it!"

  8. The Operations Security Concept for Future ESA Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bargellini, P.; Merri, M.

    2008-08-01

    Next-generation European earth observation missions will play a critical role in public safety and security infrastructures. This makes it necessary for ESA to protect the communication infrastructure of these missions in order to guarantee their service availability. In this paper, we discuss the development process for a generic earth observation security concept. This concept has been developed as part of a GMES Flight Operation Segment security study with the objective to analyse and select a number of high level security requirements for the missions. Further, we studied the impact of an implementation for these requirements on the operational infrastructure of current earth observation missions.

  9. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  10. Earth Observations taken by Expedition 38 crewmember

    2013-11-16

    ISS038-E-005515 (16 Nov. 2013) --- Activity at Kliuchevskoi Volcano on Kamchatka Peninsula in the Russian Federation is featured in this image photographed by an Expedition 38 crew member on the International Space Station. When viewing conditions are favorable, crew members onboard the space station can take unusual and striking images of Earth. This photograph provides a view of an eruption plume emanating from Kliuchevskoi Volcano, one of the many active volcanoes on the Kamchatka Peninsula. Nadir views – looking “straight down”—that are typical of orbital satellite imagery tend to flatten the appearance of the landscape by reducing the sense of three dimensions of the topography. In contrast, this image was taken from the ISS with a very oblique viewing angle that gives a strong sense of three dimensions, which is accentuated by the shadows cast by the volcanic peaks. This resulted in a view similar to what a person might see from a low-altitude airplane. The image was taken when the space station was located over a ground position more than 1,500 kilometers to the southwest. The plume – likely a combination of steam, volcanic gases, and ash – is extended to the east-southeast by prevailing winds; the dark region to the north-northwest of the plume is likely a product of both shadow and ash settling out. Several other volcanoes are visible in the image, including Ushkovsky, Tolbachik, Zimina, and Udina. To the south-southwest of Kliuchevskoi lies Bezymianny Volcano which appears to be emitting a small steam plume (visible at center).

  11. Earth observations taken during STS-98 mission

    2001-02-07

    STS098-712-091 (7-20 February 2001) --- The forested area of the Panama Canal Zone can be seen near the center of this north-looking image, photographed with a 70mm handheld camera from the Earth-orbiting Space Shuttle Atlantis. (NOTE: The image should be oriented with Panama running horizontally and the majority of the clouds at the top). The Panama Canal Zone extends 5 miles (8 kilometers) on either side of the Panama Canal. The forested zone acts as a buffer for the canal to help prevent erosion and sediment from clogging the canal. Most of the countryside on both sides of the Canal Zone has been deforested to make way for large ranches and the raising of cattle. Though some sedimentation is occurring, dredging of the canal keeps the passage clear. The Panama Canal is 40 miles (64 kilometers) long including dredged approach channels at each end. With the Caribbean Sea covering the upper portion of the image and the Pacific Ocean covering the lower portion of the image, the canal traverses the Isthmus of Panama in a northwest to southeast direction. Gatun Lake, one of the largest artificial lakes in the world, is visible at the north end of the Canal Zone. Panama City (light-colored grayish area) is discernible to the right of the canal at its southern entrance from the Pacific Ocean. In 1996, 15,000 ships traveled through the canal, an average of 42 ships per day. Passage through the canal requires 7 to 8 hours.

  12. Earth observations taken during STS-83 mission

    2016-08-12

    STS083-747-033 (4-8 April 1997) --- Center Pivot Irrigation, in Saudi Arabia. This irrigation project in Saudi Arabia is typical of many isolated irrigation projects scattered throughout the arid and hyper-arid regions of the Earth. Fossil water is mined from depths as great as 3,000 feet, pumped to the surface, and distributed via large center pivot irrigation feeds. The circles of green irrigated vegetation may comprise a variety of agricultural commodities from alfalfa to wheat. Diameters of the normally circular fields range from a few hundred meters to as much as 2 miles. The projects often trace out a narrow, sinuous, and seemingly random path. Actually, engineers generally seek ancient river channels now buried by the sand seas. The fossil waters mined in these projects accumulated during periods of wetter climate in the Pleistocene glacial epochs, between 10,000 to 2 million years ago, and are not being replenished under current climatic conditions. The projects, therefore, will have limited production as the reservoirs are drained. Water, of course, is the key to agriculture in Saudi Arabia. The Kingdom has implemented a multifaceted program to provide the vast supplies of water necessary to achieve the spectacular growth of the agricultural sector. A network of dams has been built to trap and utilize precious seasonal floods. Vast underground water reservoirs have been tapped through deep wells. Desalination plants have been built to produce fresh water from the sea for urban and industrial use, thereby freeing other sources for agriculture. Facilities have also been put into place to treat urban and industrial run-off for agricultural irrigation. These efforts collectively have helped transform vast tracts of the desert into fertile farmland. Land under cultivation has grown from under 400,000 acres in 1976 to more than 8 million acres in 1993.

  13. Earth observations during STS-89 mission

    1998-01-31

    STS089-706-068 (22-31 Jan. 1998) --- This nadir view of the southern Cape District of South Africa was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. Prominent landmarks are the Cape of Good Hope, False Bay and Cape Town. Cape Town is the gray area at the base of the peninsula that forms the Cape of Good Hope. East and north of Cape Town the dark mountain ranges are the Cape Fold Belt. Northerly structures of the region formed approximately 580 million years ago when east Antarctica, Africa and parts of South America combined. According to NASA scientists those continents separated and then recombined about 230 million years ago; in the later event, the northerly structures were again active and the west-trending folds of the Great and Little Karroo ranges formed. The westerly structures of the Karroo formed somewhat later; the northerly structures were re-folded at that time. The great continental mass, Gondwana, remained together until around 175 million years ago, when it rifted apart leaving the coastline essentially as it is seen today. Photos such as this are useful to geologists working in these areas as they provide, quite literally, the big picture in complex regions. Other items of interest are the internal waves noted offshore, several trains can be seen east, north and south of Cape Town. In the mountains to the north (upper left corner) a large brush fire is seen from the smoke plume. The giant gold and diamond mines are located northeast and east of this photo. The gold province is primarily located around Johannesburg (450 miles northeast) and the diamond mines are approximately 300 miles northeast around Kimberley. Photo credit: NASA

  14. Earth Observations taken by Expedition 34 crewmember

    2013-02-28

    ISS034-E-057550 (28 Feb. 2013) --- One of the Expedition 34 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the Southern High Plains of northwestern Texas, directly south of the city of Amarillo (off the image to the north). At first glance the picture appears more like a map than an actual photo. The winter of 2012-2013 has been marked by powerful snowstorms with record-setting snowfall throughout much of the Midwestern United States The snowstorm that passed through this area left a record snowfall of approximately 43 centimeters (17 inches). Snow blankets the city of Canyon, Texas. Urban street grids and stream channels appear etched into the landscape by the snow, a result of both melting and street clearing in the urban regions and of the incised nature of stream channels in the surrounding plains. Agricultural fields are easily identified due to the even snow cover broken only by roadways between the fields. Palo Duro Canyon is largely free of snow along the Prairie Dog Town Fork of the Red River channel and at lower elevations, allowing the red sedimentary rocks of the canyon walls to be visible. Lake Tanglewood, a reservoir to the northeast of Canyon, appears dark due to a lack of ice cover. Another dark region to the northwest of Canyon is a feed yard for cattle; any snowfall in this area has been removed by the actions of the livestock. The image was recorded with a digital camera using a 400 millimeter lens,

  15. Earth Observations taken by Expedition 26 Crewmember

    2011-02-13

    ISS026-E-026761 (13 Feb. 2011) --- Medano Blanco coastal dunes in Buenos Aires Province, Argentina are featured in this image photographed by an Expedition 26 crew member on the International Space Station. The Medano Blanco (White Dunes) are a well known recreational area 35 kilometers west of the twin cities of Nicochea-Quequen, one of the biggest ports in the province of Buenos Aires, central Argentina. The Medano Blanco dunes separate the Atlantic Ocean from intensive sunflower agricultural cropland, visible as the angular pattern of green and brown fields at left. The dune field extends 3.5 kilometers at its widest part. Narrow cordons of coastal dunes stretch along this part of Argentina’s coastline for hundreds of kilometers. Small streams, oriented towards the coast, cross the farmland at upper left. Water from these is dammed behind the dunes, and even within the dunes, where wetlands flourish. This is the drier southern part of Buenos Aires province near the more arid and windier border with Patagonia—one of the windiest places on Earth. The effect of strong westerly winds (blowing bottom to top in this slightly oblique image) can be seen everywhere in this detailed photograph. The dune sand is blown from local beaches onshore where it forms the dunes. The prominent dune ridge crests are oriented at right angles to the prevailing wind. Geologists suspect that erosion by wind has excavated numerous hollows which now dot the farmland as small shallow lakes. A stand of dark green trees has been planted on the upwind side of a health spa—located at the white dot (center left) which is the roof of a stately building—as a protective barrier against the wind. The white fringe along the seashore is formed from lines of breaking waves. Crossing swell trains can be seen offshore in the Atlantic Ocean. The curvature of the swell pattern offshore also shows the effect of the westerly wind, and indeed drives the local sea current in this area—slightly more

  16. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  17. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation.

    PubMed

    Cord, Anna F; Brauman, Kate A; Chaplin-Kramer, Rebecca; Huth, Andreas; Ziv, Guy; Seppelt, Ralf

    2017-06-01

    Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services. We argue that the full potential of Earth observation is not yet realized in ecosystem service studies. To provide guidance for priority setting and to spur research in this area, we propose five priorities to advance the capabilities of Earth observation-based monitoring of ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Earth Atmosphere Observations taken by the Expedition 35 Crew

    2013-04-03

    Earth atmosphere observation taken by the Expedition 35 crew aboard the ISS. The colors roughly denote the layers of the atmosphere (the orange troposphere, the white stratosphere, and the blue mesosphere).

  19. Earth observation taken by the Expedition 42 crew

    2015-03-02

    ISS042E311037 (03/02/2015) --- A waning sun, splayed its light across the planet and created this serene scene. US astronauts aboard the International Space Station snapped this Earth Observation on Mar 2, 2015.

  20. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  1. STS-59 crewmembers in training for onboard Earth observations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  2. Constellations: A New Paradigm for Earth Observations

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have

  3. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  4. Earth Observations taken by Expedition 38 crewmember

    2014-01-05

    ISS038-E-025895 (5 Jan. 2014) --- Bazman volcano in Iran is featured in this image photographed by an Expedition 38 crew member on the International Space Station. Bazman volcano is located in a remote southern region within the Bazman Protected Area of Sistan and Baluchestan Provinces. While the volcano has the classic cone shape associated with stratovolcanoes, it is also heavily dissected by channels that extend downwards from the 3,490-meter-above-sea-level summit. This radial drainage pattern - looking similar to the spokes of a bicycle wheel - is readily observed in this photograph. Such patterns can form around high, symmetric peaks when water runoff and erosion is not constrained by the resistance of geologic materials or barriers to flow, leading to essentially even distribution of water runoff channels around the central peak. While there is no historical record of volcanism at Bazman, and no geologic record of eruptive activity within the past 10,000 years, some fumarolic activity - gas and steam emissions - have been reported, according to the Smithsonian Institution National Museum of Natural History's Global Volcanism Program. The summit of the volcano is marked by a well-formed explosion crater, and lava cones formed on the flanks of the main volcano are associated with well-preserved lava flows-a particularly striking example is visible on the north flank of Bazman at center. Together, these observations and features are suggestive that Bazman may be a dormant, rather than extinct, volcano.

  5. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  6. Earth Observations by the Expedition 19 crew

    2009-05-07

    ISS019-E-014918 (7 May 2009) --- Saint Helena Island is featured in this image photographed by an Expedition 19 crewmember on the International Space Station. This isolated island, located in the South Atlantic Ocean approximately 1860 kilometers to the west of the African coastline, is perhaps best known as the final resting place of Napoleon Bonaparte I of France. Bonaparte was exiled to the island following his defeat at the Battle of Waterloo in 1815; he died on the island six years later in 1821. Today, the island is a British Overseas Territory, with access provided thirty times a year by a single ship, the RMS St. Helena. The rugged topography evident in this photograph is the result of erosion of the volcanic rocks that make up the island into sharp peaks and deep ravines. A climatic gradient related to elevation is also evident ? the higher, wetter central portion of the island is covered with green vegetation, whereas the lower coastal areas are drier and hotter with little vegetation cover. Human presence on the island has also caused dramatic changes to the original flora and fauna of the island. Only approximately 10 percent of the forest cover observed by the first explorers now remains in a semi-natural state, and that is concentrated in the interior highlands. Saint Helena Island was also visited by Charles Darwin during his scientific voyages in the 19th century. He visited the island in 1836 aboard HMS Beagle, recording observations of the flora, fauna, and geology that would inform his theory of evolution. This image was acquired by crew members onboard the International Space Station as part of an ongoing project (the HMS Beagle Project) to document current biodiversity in areas visited by Charles Darwin.

  7. Earth Observations taken by Expedition 30 crewmember

    2011-11-26

    ISS030-E-005456 (26 Nov. 2011) --- Emi Koussi Volcano and Aorounga Impact Crater, Chad are featured in this image photographed by an Expedition 30 crew member on the International Space Station. This striking photograph features two examples of circular landscape features?labeled as craters?that were produced by very different geological processes. At left, the broad grey-green shield volcano of Emi Koussi is visible. The volcano is marked by three overlapping calderas formed by eruptions; these form a large oblong depression at the 3,415 meter ASL summit of the volcano. A smaller crater sits within the larger caldera depression. While volcanic activity has not been observed, nor is mentioned in the historical record, an active thermal area is located on the southern flank. The circular Aorounga Impact Crater is located approximately 110 kilometers to the southeast of Emi Koussi and has its origin in forces from above rather than eruptions from below. According to scientists, the Aorounga structure is thought to record a meteor impact approximately 345-370 million years ago. The circular feature visible at upper right may be only one of three impact craters formed by the same event ? the other two are buried by sand deposits. The linear features (lower right) that arc around Emi Koussi and overprint Aorounga and the surrounding bedrock are known as yardangs; these are rock ridges formed by wind erosion.

  8. Earth observations taken during STS-83 mission

    2016-08-12

    STS083-712-063 (4-8 April 1997) --- Northern half of Long Island, Bahamas. The vivid blues of the Bahamas stand out from space. Long Island and Great Exuma Island, which extends from the west north west into the photo, is on the eastern side of the Great Bahama Bank and form the borders of Exuma Sound. This photograph provides a rare opportunity to observe a natural chemical laboratory at work. Limestone of quite a different sort from that forming the Great Barrier Reef is actually in the process of formation. Long Island itself is little more than a sandbar rising just a few meters (about 30 to 50 meters) above sea level but it separates the deep, dark blue waters of the Atlantic on the right from the 10-meter (33 feet) shallows of the Great Bahama Bank (left). Details of the topography of the bank are visible through the clear waters. The shallow waters are warm and become extremely salty. Crystals of aragonite, a calcium carbonate mineral, are precipitated and formed into spherical sand-sized oolites as the tidal currents swirl back and forth. Lithification of the carbonate sands produces an oolithic limestone. Although the water is warm and clear, corals do not live in the shallows, probably because of the elevated salt content. Although chemically similar, the oolithic limestone forming Long Island is very different from coral reef limestone. An airfield is visible at the northern and central (bottom of photo) part of the island.

  9. Earth Observations taken during Expedition Four

    2002-05-15

    ISS004-E-11807 (15 May 2002) --- This digital photograph, taken through the windows of the International Space Station on May 15, 2002, shows condensation trails over the Rhône Valley in the region west of Lyon, France. Condensation trails-or contrails-are straight lines of ice crystals that form in the wake of jet liners where air temperatures are lower than about -40 degrees Centigrade. Scientists have observed that newer contrails are thin whereas older trails have widened with time as a result of light winds. Because of this tendency for thin contrails to cover greater areas with time, it is estimated that these “artificial clouds” cover 0.1 per cent of the planet’s surface. Percentages are far higher in some places, say the scientists, such as southern California, the Ohio River Valley and parts of Europe, as illustrated here. The climatic impact of such clouds is poorly understood, which is why scientists continue to study them using images such as this.

  10. Earth observations and photography experiment: Summary of significant results

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    Observation and photographic data from the Apollo Soyuz Test Project are analyzed. The discussion is structured according to the fields of investigation including: geology, desert studies, oceanography, hydrology, and meteorology. The data were obtained by: (1) visual observations of selected Earth features, (2) hand-held camera photography to document observations, and (3) stereo mapping photography of areas of significant scientific interest.

  11. Optical data communication for Earth observation satellite systems

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Loecherbach, E.

    1991-10-01

    The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.

  12. ESA Earth Observation missions at the service of geoscience

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2017-04-01

    The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development

  13. Earth Observations taken by Expedition 34 crewmember

    2013-01-05

    ISS034-E-024622 (5 Jan. 2013) --- Polar mesospheric clouds over the South Pacific Ocean are featured in this image photographed by an Expedition 34 crew member on the International Space Station. Polar mesospheric clouds—also known as noctilucent, or “night shining” clouds—are formed 76 to 85 kilometers above Earth’s surface near the mesosphere-thermosphere boundary of the atmosphere, a region known as the mesopause. At these altitudes, water vapor can freeze into clouds of ice crystals. When the sun is below the horizon such that the ground is in darkness, these high clouds may still be illuminated—lending them their ethereal, “night shining” qualities. Noctilucent clouds have been observed from all human vantage points in both the Northern and Southern Hemispheres – from the surface, in aircraft, and in orbit from the space station—and tend to be most visible during the late spring and early summer seasons. Polar mesospheric clouds also are of interest to scientists studying the atmosphere. While some scientists seek to understand their mechanisms of formation, others have identified them as potential indicators of atmospheric changes resulting from increases in greenhouse gas concentrations. This photograph was taken when the station was over the Pacific Ocean south of French Polynesia. While most polar mesospheric cloud images are taken from the orbital complex with relatively short focal length lens to maximize the field of view, this image was taken with a long lens (400 mm) allowing for additional detail of the cloud forms to be seen. Below the brightly-lit noctilucent clouds in the center of the image, the pale orange band indicates the stratosphere.

  14. Earth Observations by the Expedition 19 crew

    2009-04-08

    ISS019-E-005286 (8 April 2009) --- Mount Fuji, Japan is featured in this image photographed by an Expedition 19 crew member on the International Space Station. The 3,776 meters high Mount Fuji volcano, located on the island of Honshu in Japan, is one of the world?s classic examples of a stratovolcano. The volcano?s steep, conical profile is the result of numerous interlayered lava flows and explosive eruption products ? such as ash, cinders, and volcanic bombs ? building up the volcano over time. The steep profile is possible because of the relatively high viscosity of the volcanic rocks typically associated with stratovolcanoes. This leads to thick sequences of lava flows near the eruptive vent that build the cone structure, rather than low viscosity flows that spread out over the landscape and build lower-profile shield volcanoes. According to scientists, Mount Fuji, or Fuji-san in Japan, is actually comprised of several overlapping volcanoes that began erupting in the Pleistocene Epoch (1.8 million to approximately 10,000 years ago). Scientists believe that the currently active volcano, known as Younger Fuji, began forming approximately 11,000 to 8,000 years ago. The most recent explosive activity occurred in 1707, creating Hoei Crater on the southeastern flank of the volcano (center). This eruption deposited ash on Edo (present-day Tokyo) located 95 kilometers to the northeast. While there have been no further eruptions of Mount Fuji, steam was observed at the summit during 1780?1820, and the volcano is considered active. This oblique photograph illustrates the snow-covered southeastern flank of the volcano; the northeastern flank can be seen here. A representation of the topography of Mt. Fuji and its surroundings can be viewed here.

  15. Earth Observations taken by Expedition 30 crewmember

    2011-12-31

    ISS030-E-030265 (31 Dec. 2011) --- The Payun Matru Volcanic Field in Argentina is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Payun Matru (3,680 meters above sea level) and Payun Liso (3,715 meters above sea level) stratovolcanoes are the highest points of the Payun Matru Volcanic Field located in west-central Argentina, approximately 140 kilometers to the east of the Andes mountain chain. This photograph illustrates some of the striking geological features of the field visible from space. The summit of Payun Matru is dominated by a roughly 15 kilometer-in-diameter caldera (center), formed by an explosive eruption sometime after approximately 168,000 years ago. Several dark lava flows, erupted from smaller vents and fissures, are visible in the northwestern part of the volcanic field. One distinct flow, erupted from Volcan Santa Maria located to the northwest of Payun Matru, is approximately 15 kilometers long. A number of small cinder cones, appearing as brown dots due to the short lens used, are built on older lava flows (grey) to the northeast of Payun Matru. While there is no recorded historical observation of the most recent volcanic activity in the field, oral histories suggest that activity was witnessed by indigenous peoples. Most Andean volcanoes—and earthquakes—follow the trend of the greater Andes chain of mountains, and are aligned roughly N-S above the tectonic boundary between the subducting (descending) Nazca Plate and the overriding South American Plate as is predicted from plate tectonic theory. Other major volcanic centers located some distance away from the major trend typically result from more complex geological processes associated with the subduction zone, and can provide additional insight into the subduction process.

  16. Earth Observations taken by Expedition 30 crewmember

    2012-03-15

    ISS030-E-162344 (15 March 2012) --- Ice floes along the Kamchatka coastline are featured in this image photographed by an Expedition 30 crew member on the International Space Station. The vantage point from orbit frequently affords the opportunity to observe processes that are impossible to see on the ground – or in this case the northeastern Pacific Ocean. The winter season blankets the Kamchatka Peninsula of Russia in snow, but significant amounts of sea ice can also form and collect along the coastline. As ice floes grind against each other, they produce smaller floes that can be moved by wind and water currents acting along the coastline. The irregular southeastern coastline of Kamchatka helps to produce large circular eddy currents from the main southwestward-flowing Kamchatka current. Three such eddies are clearly highlighted by surface ice floe patterns at center. The ice patterns are very difficult (and dangerous) to navigate in an ocean vessel – while the floes may look thin and delicate from the space station vantage point, even the smaller ice chunks are likely several meters across. White clouds at top right are distinguished from the sea ice and snow cover in the image by their high brightness and discontinuous nature. The Kamchatka Peninsula also hosts many currently and historically active stratovolcanoes. Kliuchevskoi Volcano, the highest in Kamchatka (summit elevation 4,835 meters) and one of the most active, had its most recent confirmed eruption in June of 2011, while Karymsky Volcano to the south likely produced ash plumes days before this image was taken; the snow cover near the volcano to the south and east of the summit is darkened, probably due to a cover of fresh ash, or melted away altogether (bottom center). In contrast, Kronotsky Volcano – a “textbook” symmetrical cone-shaped stratovolcano – last erupted in 1923.

  17. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  18. Earth Observations taken by Expedition 30 crewmember

    2012-12-30

    ISS030-E-234965 (30 Dec. 2011) --- The Etosha Pan in Namibia is featured in this image photographed by an Expedition 30 crew member on the International Space Station. This photograph shows the white, salt-covered floor of the northwest corner of the great dry lake in northern Namibia known as the Etosha Pan (left margin). Two rivers, the Ekuma and Oshigambo, transport water from the north down to the Etosha Pan proper. In a relatively rare event, water from recent rains has flowed down the larger Ekuma River?in which it appears as a thin blue line within the generally light grey-green floodplain?and fills a lobe of the lake with light green water (lower right quarter of image). Water has also flowed into a small offshoot dry lake where it appears a brighter green (upper right quarter of image). Other smaller lakes at center and top center show red and brown water colors. The different colors of lake water are determined by the interplay of water depth and resident organisms such as algae; the algae color varies depending on water temperature and salinity. A similar process is observed in pink and red floodwaters ponded in Lake Eyre, a usually dry lake in Australia?s arid center. In this case it is known that the coloration is indeed due to algae growth. Typically, little river water or sediment reaches the floor of the Etosha dry lake because water seeps into the riverbeds along their courses. The floor of the pan itself is seldom seen with even a thin sheet of water. In this image, there was enough surface flow to reach the pan, but too little to flow beyond the inlet bay. A prior flood event, when water entered the pan via the Oshigambo River, was documented in astronaut imagery in 2006. The straight line that crosses the image from top center to bottom is the northern fence line of Namibia?s Etosha National Park. This straight, three-meter-high fence keeps wildlife from crossing into the numerous small farms of the relatively densely populated Owambo region of

  19. Earth Observations taken by Expedition 30 crewmember

    2012-01-14

    the rift in the region. Much of the faulting observed in this image cuts through such lavas. Elsewhere along the rift system individual volcanoes form. Some of those volcanoes are very large, including Mt. Kilimanjaro and Mt. Kenya. In this image, rising 400 meters above the valley floor, a volcano appears to be superimposed on the faults—indicating that the volcano is younger than the faults it covers. Deeply eroded slopes also suggest that the volcano has not been active for a long time. The largest vegetated area (lower left)—in an desert zone with no vegetation visible to the naked eye from space—is the green floor of a valley which drains an area large enough for water to exist near the surface so that plants can thrive. For a sense of scale, the vegetated valley floor is 17 kilometers long (10.5 miles).

  20. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  1. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  2. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  3. Earth rotation excitation mechanisms derived from geodetic space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  4. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  5. Scientific Contributions to GEO Global Earth Observation Priorities

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Ledrew, E.

    2009-12-01

    Numerous counties and non-governmental organizations have produced documents, held workshops, and published reports in the past decade that identify Earth observation needs to meet their particular objectives. The Group on Earth Observations (GEO) has conducted a review of these documents, workshops, and reports to identify the priority observations common to many societal benefit areas. GEO has made a concerted effort to include materials from a broad range of user types, including scientific researchers, resource managers, and policy makers. GEO has also sought an international breadth in the materials reviewed, including observation priorities from developing countries. The activity will help GEO optimize the observations in GEOSS that are most likely to provide societal benefits, and GEO members will use the results of this meta-analysis to support investment decisions. The Earth observations in GEOSS serve scientific research and applications endeavors. As a primary user of ground-based, airborne, in situ, and space-based observations of the Earth, the scientific community has a significant voice and vested interest in the observations offered through GEOSS. Furthermore, the science and technology community will have opportunities to identify critical scientific/technological advances needed to produce any observations that are needed yet not currently available. In this paper, we will discuss this GEO effort to identify Earth observations priorities. We will present initial findings for some societal benefit areas and the overall meta-analysis. We will also discuss possible roles for the science and technology community to contribute to those priorities, such as scientific advances needed to achieve the observations or to realize societal benefits from the observations.

  6. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  7. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  8. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  9. The role of GPS in precise earth observation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Lindal, Gunnar F.; Liu, Chao-Han

    1988-01-01

    The potential of the Global Positioning System (GPS) for precise earth observation is evaluated. It is projected that soon GPS will be utilized to track remote-sensing satellites with subdecimeter accuracy. The first will be Topex/Poseidon, a US/French ocean altimetry mission to be launched in 1991. In addition, it is suggested that developments planned for future platforms may push orbit accuracy near 1 cm within a decade. GPS receivers on some platforms will track the signals down to the earth limb to observe occultation by intervening media. This will provide comprehensive information on global temperature and climate and help detect the possible onset of a greenhouse effect. It is also projected that dual-frequency observations will be used to trace the flow of energy across earth systems through detection of ionospheric gravity waves, and to map the structure of the ionosphere by computer tomography.

  10. Planning for the Global Earth Observation System of Systems (GEOSS)

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  11. The Montaguto earth flow: nine years of observation and analysis

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  12. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  13. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  14. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2017-12-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  15. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.; hide

    2017-01-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  16. "New Space Explosion" and Earth Observing System Capabilities

    NASA Astrophysics Data System (ADS)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.

    2017-12-01

    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  17. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  18. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  19. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  20. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  1. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  2. Analysis of Critical Earth Observation Priorities for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  3. ESA's Earth observation priority research objectives and satellite instrument requirements

    NASA Astrophysics Data System (ADS)

    Reynolds, M. L.

    2018-04-01

    Since 1996 the European Space Agency has been pursuing an Earth Observation strategy based on a resolution endorsed by European Minister at a meeting in Toulouse. This resolution recognised a broad distinction between purely research objectives, on the one hand, and purely application objectives on the other. However, this is not to be understood as an absolute separation, but rather as an identification of the major driving emphasis for the definition of mission requirement. Indeed, application satellites can provide a wealth of data for research objectives and scientific earth observation programmes can equally provide an important source of data to develop and demonstrate new applications. It is sufficient to look at the data utilisation of Meteosat and ERS to find very many examples of this. This paper identifies the priority research objectives defined for scientific Earth Explorer missions and the resulting instrument needs. It then outlines the requirements for optical instruments.

  4. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  5. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  6. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  7. The Group on Earth Observations (GEO) through 2025

    NASA Astrophysics Data System (ADS)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  8. Earth Observations taken by the Expedition 39 Crew

    2014-04-10

    Earth observation taken by the Expedition 39 crew aboard the ISS. A portion of the docked Soyuz TMA-11M spacecraft is in view. Image was released by astronaut on Instagram and downlinked in folder: Personal photos and the Maldive islands.

  9. Earth observation taken by the Expedition 43 crew

    2015-04-14

    ISS043E120523 (04/14/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this earth observation image out on Apr. 14, 2015 as part of his Space Geo contest of "name this location": Scott tweeted this comment and clue: "#SpaceGeo! In 1962, former Astronaut John Glenn's Friendship 7 Mercury landed in this vicinity. Name it!"

  10. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  11. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  12. Earth observation taken by the Expedition 43 crew

    2015-05-10

    ISS043E184521 (05/10/2015) --- NASA astronaut Terry Virts Expedition 43 Commander on the International Space Station tweeted this Earth observation image of South America with the following comment: "Salar de Uyuni in the #Bolivia desert #SouthAmerica. The world's largest salt flat".

  13. Earth observation taken by the Expedition 43 crew.

    2015-03-13

    Earth observation taken during a day pass by the Expedition 43 crew aboard the International Space Station (ISS). Sent as part of Twitter message: #HappyStPatrickDay with best wishes from the #E43 crew! From space you can see the “Emerald Isle” is very green!

  14. Earth observation taken by the Expedition 46 crew

    2016-01-23

    ISS046e021993 (01/23/2016) --- Earth observation of the coast of Oman taken during a night pass by the Expedition 46 crew aboard the International Space Station. NASA astronaut Tim Kopra tweeted this image out with this message: "Passing over the Gulf of #Oman at night -- city lights of #Muscat #Dubai #AbuDhabi and #Doha in the distance".

  15. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  16. Earth Observations taken during mission STS-111 UF-2

    2002-06-15

    STS111-367-014 (5-19 June 2002) --- This view featuring Canadian forest fires was photographed by the STS-111 crewmembers aboard the Space Shuttle Endeavour. It represents an oblique view northward of one of the numerous fires observed and reported burning in the dry boreal forests of Saskatchewan and Manitoba during the month of June. The location of this one is roughly between Candle Lake, Saskatchewan and Lake Winnepegosis, Manitoba. The Gateway to Astronaut Photography of Earth (link to http://eol.jsc.nasa.gov/sseop/) provides searchable access to other photographs of Earth taken by astronauts.

  17. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  18. Earth observations from space: History, promise, and reality. Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  19. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  20. Radar observations of near-Earth asteroids from Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  1. STS-56 ESC Earth observation of New Zealand (South Island)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows New Zealand (South Island) as recorded on the 45th orbit of Discovery, Orbiter Vehicle (OV) 103. Westport is easily delineated in the image, which was recorded by the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates are 41.836 degrees south latitude and 171.641 degrees east longitude. (300mm lens, no filter). Digital file name is ESC07007.IMG.

  2. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  3. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley J.; Olson, Valerie A.; Trenchard, Mike; Willis, Kim; Baskin, Pam; Ritsher, Jennifer Boyd

    2006-01-01

    To provide for the well-being of crewmembers on future exploration missions, understanding how space station crewmembers handle the inherently stressful isolation and confinement during long-duration missions is important. A recent retrospective survey of previously flown astronauts found that the most commonly reported psychologically enriching aspects of spaceflight had to do with their Perceptions of Earth. Crewmembers onboard the International Space Station (ISS) photograph Earth through the station windows. Some of these photographs are in response to requests from scientists on the ground through the Crew Earth Observations (CEO) payload. Other photographs taken by crewmembers have not been in response to these formal requests. The automatically recorded data from the camera provides a dataset that can be used to test hypotheses about factors correlated with self-initiated crewmember photography. The present study used objective in-flight data to corroborate the previous questionnaire finding and to further investigate the nature of voluntary Earth-Observation activity. We examined the distribution of photographs with respect to time, crew, and subject matter. We also determined whether the frequency fluctuated in conjunction with major mission events such as vehicle dockings, and extra-vehicular activities (EVAs, or spacewalks), relative to the norm for the relevant crew. We also examined the influence of geographic and temporal patterns on frequency of Earth photography activities. We tested the hypotheses that there would be peak photography intensity over locations of personal interest, and on weekends. From December 2001 through October 2005 (Expeditions 4-11) crewmembers took 144,180 photographs of Earth with time and date automatically recorded by the camera. Of the time-stamped photographs, 84.5% were crew-initiated, and not in response to CEO requests. Preliminary analysis indicated some phasing in patterns of photography during the course of a

  4. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  5. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  6. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  7. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  8. GLOBE Observer: Earth Science in the Palm of Your Hand

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    You can get involved in doing Earth system science research tied to NASA research and data. This demo will introduce GLOBE and GLOBE Observer, a student and citizen science program designed to collect observations of the environment. The GLOBE Observer app, released in September 2016, harnesses smart phone technology to simplify select GLOBE observations to open the program to new audiences and to increase data volume. The end goal is to facilitate new student and scientific research. The demo will provide an overview of the app and show you how to access GLOBE Observer environmental data. The app includes a protocol for observing clouds and sky color (air quality proxy), mosquito habitats, and land cover/land use. The GLOBE Observer observations may be matched to NASA satellite data for a more in-depth analysis.

  9. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  10. A Potpourri of Near-Earth Asteroid Observations

    NASA Astrophysics Data System (ADS)

    Tholen, David J.; Ramanjooloo, Yudish; Fohring, Dora; Hung, Denise; Micheli, Marco

    2016-10-01

    Ongoing astrometric follow-up of near-Earth asteroids has yielded a variety of interesting results. In the limited space of a DPS abstract, three recently observed objects are worth mentioning.2008 HU4 is among the most accessible asteroids for a human space flight mission. We successfully recovered this object at a second opposition on 2016 April 26 despite the large ephemeris uncertainty. The small size of this asteroid makes it relatively easy to detect the departure from purely gravitational motion caused by solar radiation pressure, which can be used to estimate the density of the object. At the time of this writing, the object remains bright enough for additional observations, so we expect to improve on our five-sigma detection of a relatively low density (roughly similar to water, indicating a high porosity) between now and the DPS meeting.2016 HO3 is a newly-discovered co-orbital with the Earth. Our 2016 May 10-11 observations extended the observational arc by enough to permit backward extrapolation that led to prediscovery observations by Pan-STARRS in 2015, and then annually back to 2011, and ultimately to Sloan DSS observations in 2004. The 12-year arc is sufficient to examine the dynamical behavior of the object, which shows how it will remain in the vicinity of the Earth for decades, if not centuries. Our observations also revealed a rapid rotation (less than a half hour) with large brightness variation (in excess of 1 magnitude), which helps to explain why this object eluded discovery until this year.2011 YV62 is among the top 20 largest near-Earth asteroids with Earth impact solutions (in 2078 and 2080). At the time of this writing, the object is flagged as being "lost", but a re-examination of observations made in 2013 and 2015 finally yielded a successful recovery at a magnitude fainter than 24. We expect the new observations to eliminate the impact possibilities. The story behind this difficult recovery is fascinating.

  11. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.

    2014-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  12. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  13. US data policy for Earth observation from space

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    Distribution of data from U.S. Earth observations satellites is subject to different data policies and regulations depending on whether the systems in question are operational or experimental. Specific laws, regulations, and policies are in place for the distribution of satellite data from the National Oceanic and Atmospheric Administration (NOAA) operational environmental satellites and from NASA experimental systems. There is a government wide policy for exchange of data for global change research. For the Earth Observing System (EOS) and its international partner programs, a set of data exchange principles is nearing completion. The debate over the future of the LANDSAT program in the U.S. will impact policy for the programs, but the outcome of the debate is not yet known.

  14. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  15. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  16. Ames Research Center SR&T program and earth observations

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.

    1972-01-01

    An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.

  17. Space Shuttle earth observations photography - Data listing process

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1992-01-01

    The data listing process of the electronic data base of the Catalogs of Space Shuttle Earth Observations Photography is described. Similar data are recorded for each frame in each role from the mission. At the end of each roll, a computer printout is checked for mistakes, glitches, and typographical errors. After the roll and frames have been corrected, the data listings are ready for transfer to the data base and for development of the catalog.

  18. Focal plane for the next generation of earth observation instruments

    NASA Astrophysics Data System (ADS)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  19. 2011 Year in review - Earth Resources Observation and Science Center

    Johnson, Rebecca L.

    2012-01-01

    The USGS Earth Resources Observation and Science (EROS) Center's 2011 Year in Review is an annual report recounting the broad scope of the Center's 2011 accomplishments. The report covers preparations for the Landsat Data Continuity Mission (LDCM) launch, the ever-increasing use of free Landsat data, monitoring the effects of natural hazards, and more to emphasize the importance of innovation in using satellite data to study change over time.

  20. An operational, multistate, earth observation data management system

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Hill, C. T.; Morgan, R. P.; Gohagan, J. K.; Hays, T. R.; Ballard, R. J.; Crnkovich, G. G.; Schaeffer, M. A.

    1977-01-01

    State, local, and regional agencies involved in natural resources management were investigated as potential users of satellite remotely sensed data. This group's needs are assessed and alternative data management systems serving some of those needs are outlined. It is concluded that an operational earth observation data management system will be of most use to these user agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  1. Mission Operations of Earth Observing-1 with Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Tran, Daniel Q.; Chien, Steve; Cichy, Benjamin; Sherwood, Rob; Mandl, Dan; Frye, Stuart; Shulman, Seth; Szwaczkowski, Joseph; Boyer, Darrell; hide

    2006-01-01

    Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the past mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the more autonomous operations to which we transferred as part of the Autonomous Sciencecraft Experiment (ASE).

  2. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  3. Earth Observation from Space - The Issue of Environmental Sustainability

    NASA Technical Reports Server (NTRS)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  4. Earth's colour unchanged since 1967: results from earthshine observations

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Flynn, Chris; Gleisner, Hans; Schwarz, Henriette

    2014-05-01

    The colour of Earthlight is a function of atmospheric, surface and ocean conditions because each scatters light in a characteristic way. The colour of Earth can in principle be determined and monitored from satellites - but geostationary satellites do not observe in multiple visual bands, and low Earth orbit platforms do not provide instantaneous colour pictures of the terrestrial disc. Observations of the dark side of the Moon - illuminated by earthlight - can be used to determine the terrestrial colour, and was done accurately in 1967 with astronomical photometric techniques. Until now, such techniques have not been re-applied. We report on multi-band visual photometry of the earthshine in 2011/2012. Scattered light in the atmosphere and the equipment is a difficult issue to circumvent - but for a unique pair of observations in the Johnson B and V bands we have a situation where scattered light cancels closely and thus we can estimate the Johnson B-V colours of the earthshine itself. By arguing on the basis of changes in reflected sunlight we can estimate the colour of the earthlight striking the Moon - and hence the colour of the Earth at that particular time. We find good agreement with the a measurement performed 47 years previously, and broad agreement with historic measurements from the 1920s and 30s. This similarity has fundamental consequences for the climate system feedback mechanisms, discussed in this poster.

  5. Towards a Preservation Content Standard for Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Lowe, Dawn; Murphy, Kevin

    2017-01-01

    Information from Earth observing missions (remote sensing with airborne and spaceborne instruments, and in situ measurements such as those from field campaigns) is proliferating in the world. Many agencies across the globe are generating important datasets by collecting measurements from instruments on board aircraft and spacecraft, globally and constantly. The data resulting from such measurements are a valuable resource that needs to be preserved for the benefit of future generations. These observations are the primary record of the Earths environment and therefore are the key to understanding how conditions in the future will compare to conditions today. Earth science observational data, derived products and models are used to answer key questions of global significance. In the near-term, as long as the missions data are being used actively for scientific research, it continues to be important to provide easy access to the data and services commensurate with current information technology. For the longer term, when the focus of the research community shifts toward new missions and observations, it is essential to preserve the previous mission data and associated information. This will enable a new user in the future to understand how the data were used for deriving information, knowledge and policy recommendations and to repeat the experiment to ascertain the validity and possible limitations of conclusions reached in the past and to provide confidence in long term trends that depended on data from multiple missions. Organizations that collect, process, and utilize Earth observation data today have a responsibility to ensure that the data and associated content continue to be preserved by them or are gathered and handed off to other organizations for preservation for the benefit of future generations. In order to ensure preservation of complete content necessary for understanding and reusing the data and derived digital products from todays missions, it is

  6. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  7. Experimenting with Sensor Webs Using Earth Observing 1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2004-01-01

    The New Millennium Program (NMP) Earth Observing 1 ( EO-1) satellite was launched November 21, 2000 as a one year technology validation mission. After an almost flawless first year of operations, EO-1 continued to operate in a test bed d e to validate additional technologies and concepts that will be applicable to future sensor webs. A sensor web is a group of sensors, whether space-based, ground-based or air plane-based which act in a collaborative autonomous manner to produce more value than would otherwise result from the individual observations.

  8. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  9. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  10. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  11. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  12. Earth observation taken by the Expedition 43 crew

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  13. Earth observation taken by the Expedition 43 crew

    2015-04-21

    ISS043E128768 (04/21/2015) --- NASA astronaut Scott Kelly on the International Space Station May 6, 2015 tweeted this image out of an Earth observation as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo! A serpent is known for deceptive traits, but don’t let this snake pull the wool over your eyes. Name it!” Congratulations to @splinesmith for correctly identifying this image first, : #BighornRiver Montana/Wyoming named in 1805 for Bighorn sheep along its banks. He will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: http://www.nasa.gov/feature/where-over-the-world-is-astronaut-scott-kelly

  14. The I4 Online Query Tool for Earth Observations Data

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.

    2015-01-01

    The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or

  15. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  16. Observations of the earth using nighttime visible imagery

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1983-01-01

    The earth as viewed from space in visible light at night reveals some features not easily discernible during the day such as aurora, forest fires, city lights and gas flares. In addition, those features having a high albedo such as snow and ice can be identified on many moonlit nights nearly as well as they can in sunlight. The Air Force DMSP satellites have been operating in the visible wavelengths at night since the mid 1960s. Most all other satellites having optical sensors are incapable of imaging at night. Imaging systems having improved light sensitivity in the visible portion of the spectrum should be considered when planning future earth resources satellite missions in order to utilize nighttime as well as daytime visual observations.

  17. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  18. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  19. Observations of Near-Earth Asteroids in Polarized Light

    NASA Astrophysics Data System (ADS)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  20. Earth Observations taken by the Expedition Seven crew

    2003-10-26

    ISS007-E-18086 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18087 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are just out of frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  1. Earth Observations taken by the Expedition Seven crew

    2003-10-26

    ISS007-E-18082 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18078, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  2. Earth Observations taken by the Expedition Seven crew

    2003-10-26

    ISS007-E-18087 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Silverwood Lake is visible at the bottom of the image. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  3. Earth Observations taken by the Expedition Seven crew

    2003-10-26

    ISS007-E-18088 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18087 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are left and right, respectively, at bottom frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/] .

  4. Earth Observations taken by the Expedition Seven crew

    2003-10-26

    ISS007-E-18078 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18082, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  5. NASA Earth Observations (NEO): Data Imagery for Education and Visualization

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2008-12-01

    NASA Earth Observations (NEO) has dramatically simplified public access to georeferenced imagery of NASA remote sensing data. NEO targets the non-traditional data users who are currently underserved by functionality and formats available from the existing data ordering systems. These users include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists. NEO currently serves imagery from 45 different datasets with daily, weekly, and/or monthly temporal resolutions, with more datasets currently under development. The imagery from these datasets is produced in coordination with several data partners who are affiliated either with the instrument science teams or with the respective data processing center. NEO is a system of three components -- website, WMS (Web Mapping Service), and ftp archive -- which together are able to meet the wide-ranging needs of our users. Some of these needs include the ability to: view and manipulate imagery using the NEO website -- e.g., applying color palettes, resizing, exporting to a variety of formats including PNG, JPEG, KMZ (Google Earth), GeoTIFF; access the NEO collection via a standards-based API (WMS); and create customized exports for select users (ftp archive) such as Science on a Sphere, NASA's Earth Observatory, and others.

  6. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  7. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  8. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  9. Hot spots of multivariate extreme anomalies in Earth observations

    NASA Astrophysics Data System (ADS)

    Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.

    2016-12-01

    Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.

  10. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  11. Key Provenance of Earth Science Observational Data Products

    NASA Astrophysics Data System (ADS)

    Conover, H.; Plale, B.; Aktas, M.; Ramachandran, R.; Purohit, P.; Jensen, S.; Graves, S. J.

    2011-12-01

    As the sheer volume of data increases, particularly evidenced in the earth and environmental sciences, local arrangements for sharing data need to be replaced with reliable records about the what, who, how, and where of a data set or collection. This is frequently called the provenance of a data set. While observational data processing systems in the earth sciences have a long history of capturing metadata about the processing pipeline, current processes are limited in both what is captured and how it is disseminated to the science community. Provenance capture plays a role in scientific data preservation and stewardship precisely because it can automatically capture and represent a coherent picture of the what, how and who of a particular scientific collection. It reflects the transformations that a data collection underwent prior to its current form and the sequence of tasks that were executed and data products applied to generate a new product. In the NASA-funded Instant Karma project, we examine provenance capture in earth science applications, specifically the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Science Investigator-led Processing system (SIPS). The project is integrating the Karma provenance collection and representation tool into the AMSR-E SIPS production environment, with an initial focus on Sea Ice. This presentation will describe capture and representation of provenance that is guided by the Open Provenance Model (OPM). Several things have become clear during the course of the project to date. One is that core OPM entities and relationships are not adequate for expressing the kinds of provenance that is of interest in the science domain. OPM supports name-value pair annotations that can be used to augment what is known about the provenance entities and relationships, but in Karma, annotations cannot be added during capture, but only after the fact. This limits the capture system's ability to record something it

  12. ESA web mapping activities applied to Earth observation

    NASA Astrophysics Data System (ADS)

    Caspar, C.; Petiteville, I.; Kohlhammer, G.; Tandurella, G.

    2002-05-01

    Thousands of Earth Observation satellite instrument products are generated daily, in a multitude of formats, using a variety of projection coordinate sytems. This diversity is a barrier to the development of EO multi-mission-based applications and prevents the merging of EO data with GIS data, which is requested by the user community (value-added companies, serivce providers, scientists, institutions, commercial users, and academic users). The web mapping technologies introduced in this article represent an elegant and low-technologies introduced in this article represent an elegant and low-cost solution. The extraordinary added value that is achieved may be considered a revolution in the use of EO data products.

  13. Performance measures in the earth observations commercialization applications program

    NASA Astrophysics Data System (ADS)

    Macauley, Molly K.

    1996-03-01

    Performance measures in the Earth Observations Commercialization Application Program (EOCAP) are key to its success and include net profitability; enhancements to industry productivity through generic innovations in industry practices, standards, and protocols; and documented contributions to public policy governing the newly developing remote sensing industry. Because EOCAP requires company co-funding, both parties to the agreement (the government and the corporate partner) have incentives to pursue these goals. Further strengthening progress towards these goals are requirements for business plans in the company's EOCAP proposal, detailed scrutiny given these plans during proposal selection, and regularly documented progress reports during project implementation.

  14. STS-55 Earth observation shows a sunset over South America

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows a spectacular sunset view over South America and the cleanest atmosphere since before the volcanic eruptions of 1991, according to NASA scientists studying the STS-55 photography. A dark cloud layer is evident at an altitude of 7 to 9 kilometers. Five kilometers higher, a pink layer of sulfuric acid droplets and ammonium sulfate particles begins at the tropopause and extends upward into the stratosphere to 19 kilometers. Above that, blue scattering by the atmosphere diminishes until, at an altitude of 60 kilometers, the blackness of space is predominant.

  15. Altimetric system: Earth observing system. Volume 2h: Panel report

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Born, George; Chase, Robert R. P.; Fu, Lee-Lueng; Mouginis-Mark, Peter; Parsons, Chester; Tapley, Byron

    1987-01-01

    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements.

  16. Analysis of active volcanoes from the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter; Rowland, Scott; Crisp, Joy; Glaze, Lori; Jones, Kenneth; Kahle, Anne; Pieri, David; Zebker, Howard; Krueger, Arlin; Walter, Lou

    1991-01-01

    The Earth Observing System (EOS) scheduled for launch in 1997 and 1999 is briefly described, and the EOS volcanology investigation objectives are discussed. The volcanology investigation will include long- and short-term monitoring of selected volcanoes, the detection of precursor activity associated with unanticipated eruptions, and a detailed study of on-going eruptions. A variety of instruments on the EOS platforms will enable the study of local- and regional-scale thermal and deformational features of volcanoes, and the chemical and structural features of volcanic eruption plumes and aerosols.

  17. Program on Earth Observation Data Management Systems (EODMS), appendixes

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Bay, S. M.; Foutch, T. K.; Hays, T. R.; Ballard, R. J.; Makin, K. P.; Power, M. A.

    1976-01-01

    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users.

  18. Synthetic aperture lidar as a future tool for earth observation

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  19. Characteristics of solar and heliospheric ion populations observed near earth

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles.

  20. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  1. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  2. An operational, multistate, earth observation data management system

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.

    1977-01-01

    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  3. Earth observation taken by the Expedition 43 crew

    2015-05-10

    ISS043E185040 (05/10/2015) --- Earth observation taken by the Expedition 43 crew of the International Space Station. These islands have often been referred to as the "jewel of the Atlantic" and are only 2 two hours by commercial plane from the USA. NASA astronaut Scott Kelly tweeted this image on May 10, 2015 with this comment: "Bermuda, your clouds and remoteness have shielded you for a long time, but I finally got my eye on you.#YearInSpace".

  4. The Network Structure Underlying the Earth Observation Assessment

    NASA Astrophysics Data System (ADS)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  5. Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases.

    PubMed

    Hamm, Nicholas A S; Soares Magalhães, Ricardo J; Clements, Archie C A

    2015-12-01

    Earth observation (EO) is the use of remote sensing and in situ observations to gather data on the environment. It finds increasing application in the study of environmentally modulated neglected tropical diseases (NTDs). Obtaining and assuring the quality of the relevant spatially and temporally indexed EO data remain challenges. Our objective was to review the Earth observation products currently used in studies of NTD epidemiology and to discuss fundamental issues relating to spatial data quality (SDQ), which limit the utilization of EO and pose challenges for its more effective use. We searched Web of Science and PubMed for studies related to EO and echinococossis, leptospirosis, schistosomiasis, and soil-transmitted helminth infections. Relevant literature was also identified from the bibliographies of those papers. We found that extensive use is made of EO products in the study of NTD epidemiology; however, the quality of these products is usually given little explicit attention. We review key issues in SDQ concerning spatial and temporal scale, uncertainty, and the documentation and use of quality information. We give examples of how these issues may interact with uncertainty in NTD data to affect the output of an epidemiological analysis. We conclude that researchers should give careful attention to SDQ when designing NTD spatial-epidemiological studies. This should be used to inform uncertainty analysis in the epidemiological study. SDQ should be documented and made available to other researchers.

  6. Near-Earth Asteroid Physical Observations: 1993-1995

    NASA Astrophysics Data System (ADS)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  7. Earth Observations taken by the Expedition 23 Crew

    2010-04-28

    ISS023-E-029061 (28 April 2010) --- City lights at night along the France-Italy border, Europe are featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The brightly lit metropolitan areas of Torino (Italy), Lyon, and Marseille (both in France) stand out amidst numerous smaller urban areas in this dramatic photograph. The image captures the night time appearance of the France-Italy border area between the mountainous Alps to the north (not shown) and the island of Corsica in the Ligurian Sea to the south (top). The full moon reflects brightly on the water surface and also illuminates the tops of low patchy clouds over the border (center). This image was taken by an ISS crew member at approximately 11:55 p.m. local time when the station was located over the France-Belgium border near Luxembourg. Crew members orbiting Earth frequently collect images that include sunglint, or sunlight that reflects off a water surface at such an angle that it travels directly back towards the observer. Sunglint typically lends a mirror-like appearance to the water surface. During clear sky conditions reflected light from the moon can produce the same effect (moon glint) as illustrated in this view. The observer was looking towards the southeast at an oblique viewing angle at the time the image was taken; in other words, looking outwards from the ISS, not straight down towards Earth.

  8. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  9. NASA's Earth Observations Program: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    A presentation will be given at the Annual National Awards and President's Invited Lecture. The event is sponsored by the Associated Scientific and Technical Societies, an organization which serves the interests of 40,000 scientists and engineers all over South Africa. A general presentation will be given on the topic of NASA's Earth Observation Program and will be supplemented with visualizations using the NASA/NOAA Earth Science Electronic theater. Included will be space observations with an eye on southern Africa, including Etosha National Park, Namibia, Okavanga Delta, Botswana, Victoria Falls, Zimbabwe, and Cape Town, the Highveld around Johannesburg, Blyde River Canyon, and the Lowveld of Kruger National Park in South Africa; also included will be some AVHRR imagery of fire occurrence during the dry season, mostly the Miombo woodland of Zambia, Angola, Malawi, and northern Mozambique, supplemented with SeaWiFS imagery for VI, aerosols, clouds, AVHRR fire time series, Landsat TM (and possibly ETM+, if available), and other global data sets. Would also like to include some Terra animations from SVS, including perhaps the launch sequence. The presentation would conclude with some of the ER-2 MAS imagery from Brazil that highlights the capability that we plan to bring to Africa in August 2000.

  10. Optical aperture synthesis: limitations and interest for the earth observation

    NASA Astrophysics Data System (ADS)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  11. Dream project: Applications of earth observations to disaster risk management

    NASA Astrophysics Data System (ADS)

    Dyke, G.; Gill, S.; Davies, R.; Betorz, F.; Andalsvik, Y.; Cackler, J.; Dos Santos, W.; Dunlop, K.; Ferreira, I.; Kebe, F.; Lamboglia, E.; Matsubara, Y.; Nikolaidis, V.; Ostoja-Starzewski, S.; Sakita, M.; Verstappen, N.

    2011-01-01

    The field of disaster risk management is relatively new and takes a structured approach to managing uncertainty related to the threat of natural and man-made disasters. Disaster risk management consists primarily of risk assessment and the development of strategies to mitigate disaster risk. This paper will discuss how increasing both Earth observation data and information technology capabilities can contribute to disaster risk management, particularly in Belize. The paper presents the results and recommendations of a project conducted by an international and interdisciplinary team of experts at the 2009 session of the International Space University in NASA Ames Research Center (California, USA). The aim is to explore the combination of current, planned and potential space-aided, airborne, and ground-based Earth observation tools, the emergence of powerful new web-based and mobile data management tools, and how this combination can support and improve the emerging field of disaster risk management. The starting point of the project was the World Bank's Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) program, focused in Central America. This program was used as a test bed to analyze current space technologies used in risk management and develop new strategies and tools to be applied in other regions around the world.

  12. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and

  13. Observations of nonadiabatic acceleration of ions in Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1994-01-01

    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity

  14. ALISEO on MIOSat: an imaging interferometer for earth observation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.

    2017-11-01

    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  15. Earth Observation Training and Education with ESA LearnEO!

    NASA Astrophysics Data System (ADS)

    Byfield, Valborg; Mathieu, Pierre-Philippe; Dobson, Malcolm; Rosmorduc, Vinca; Del Frate, Fabio; Banks, Chris; Picchiani, Matteo

    2013-04-01

    For society to benefit fully from its investment in Earth observation, EO data must be accessible and familiar to a global community of users who have the skills, knowledge and understanding to use the observations appropriately in their work. Achieving this requires considerable education effort. LearnEO! (www.learn-eo.org) is a new ESA education project that contributes towards making this a reality. LearnEO! has two main aims: to develop new training resources that use data from sensors on ESA satellites to explore a variety of environmental topics, and to stimulate and support members of the EO and education communities who may be willing to develop and share new education resources in the future. The project builds on the UNESCO Bilko project, which currently supplies free software, tutorials, and example data to users in 175 countries. Most of these users are in academic education or research, but the training resources are also of interest to a growing number of professionals in government, NGOs and private enterprise. Typical users are not remote sensing experts, but see satellite data as one of many observational tools. They want an easy, low-cost means to process, display and analyse data from different satellite sensors as part of their work in environmental research, monitoring and policy development. Many of the software improvements and training materials developed in LearnEO! are in response to requests from this user community. The LearnEO! tutorial and peer-reviewed lessons are designed to teach satellite data processing and analysis skills at different levels, from beginner to advanced - where advanced lessons requires some previous experience with Earth observation techniques. The materials are aimed at students and professionals in various branches of Earth sciences who have not yet specialised in specific EO technologies. The lessons are suitable for self-study, university courses at undergraduate to MSc level, or for continued professional

  16. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  17. The complex of robotic telescopes for observation of Earth's artificial satellites and near-Earth objects

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.; Kozyrev, E. S.; Kovalchuk, A. N.; Chernozub, V. M.; Sibiryakova, E. S.; Bochkarev, A. B.; Lopachenko, V. V.; Ryhalsky, V. V.

    2010-05-01

    Modern tasks for orbit control of the Earth artificial satellites and objects approaching the Earth define high requirements to ground-based telescopes, which have to be equipped with fast objectives, CCD cameras with a chip size not less than two inches. The CCD camera has to work in different modes. The telescopes must be fully robotized, and have a control system with remote operation and alert mode. In cooperation between RI NAO and NSFCTC, the upgrade of the AZT-8 classical telescope, belonging to NSFCTC, was made. Two telescopes of original design, namely the Fast Robotic Telescope (FRT) and the Mobile Telescope (MobiTel) were made in RI NAO. The telescopes are equipped with absolute angle encoders, CCD cameras with Kodak KAF-09000 chips, GPS time service, robotic drives and an automatic control system. The telescope features, such as a telescope name, f-number, chip name and operating modes, pixel numbers, field of view, pixel sizes, pixel scale, limiting magnitude, the standard deviation are given in the following list: 1) AZT-8(NSFCTC), 0.7/2.8 m, FLI PL09000 stare, 3056x3056, 45x45', 12x12 μm, 0.9"/pix, 20m, 0.05"/0.15"; 2) FRT (NAO), 0.3/1.5 m, Alta U9000stare and drift-scan, 3056x3056, 1°24'x1°24', 12x12 μm, 1.6"/pix, 18m, 0.15"/0.40"; 3) MobiTel-0.5(NAO), 0.5/3.0 m, Alta U9000stare and drift-scan,3056x3056, 42x42, 12x12μm, 0.8"/pix, 19m,0.0"05"/0".15"; 4) MobiTel-0.3(NAO), 0.3/0.75 m, Alta U9000 stare and drift-scan, 3056x3056, 2°48x2°48', 12x12 μm, 3.2"/pix, 18 m, 0.20"/0.45". The telescopes are actively used for control of the near-Earth space as well as for the solution of problems connected with thepotentially hazardous asteroids and comets approaching the Earth. Combination of classical and original methods of observations allows us to carry out virtually any observing programme. Considering objects at geostationary orbits and at highly elliptical orbits, we are able to carry out the following types of observations: massive

  18. Naval EarthMap Observer: overview and data processing

    NASA Astrophysics Data System (ADS)

    Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.

    1999-12-01

    We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.

  19. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  20. STS-56 Earth observation of the northeastern Nile Delta

    1993-04-17

    STS-56 Earth observation of the northeastern Nile Delta was photographed from the Earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The branch of the Nile featured in the frame is Daimietta. The Suez Canal marks the boundary of the Nile Delta agriculture and the Sinai Desert to the right. Lake Masada, the dark waterlogged area to the west (left) of Port Said is becoming more saline as the Aswan Dam has reduced sediment downstream. This sediment reduction, according to NASA scientists studying the STS-56 photography, has resulted in increased coastal erosion and the intrusion of a salt-water lens to the ground water, particularly in the northeastern portions of the delta. Center pivot irrigation fields are located along either side of the Ramses Canal, which connects the Daimietta Nile with Great Bitter Lake. This canal has been re-dug three or four times in the past 3,000 years. Historians note that the canal's most famous use was as the departure point of the fleet of Pharaoh Necho. The fleet circumnavigated Africa clockwise from the head of the Red Sea to the Mediterranean coast of the Nile (probably the Rosetta Nile) in a three-year voyage circa 660 BC.

  1. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  2. Earth observations taken during the STS-71 mission

    1995-07-06

    STS071-705-055 (27 June-7 July 1995) --- This vertical view over the central Andes Mountains was photographed from the Earth-orbiting space shuttle Atlantis during the ten-day STS-71 mission. It is one of many still visuals shown by the returning crew during its post-flight press briefing on July 18, 1995. Views of Earth from orbit often make landscapes seem flat, but this view taken with the Sun near the horizon and with a 250mm lens able to pick up detail reveals the conical peaks of numerous volcanoes. The dusting of snow makes the view more vivid as the peaks cast black shadows. The snow is a few days old in this view since several roads can be seen crossing dry lake beds (smooth white areas between mountains, top right), indicating that vehicles have crushed and melted the thin snow. According to NASA scientists observing the STS-71 photography, some volcanoes are not yet mapped. They believe that most of the snow-covered peaks reach more than 16,000 feet in altitude.

  3. STS-57 Earth observation of King Sound in northwest Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of King Sound in northwest Australia. Roebuck Bay with the city of Broom on its northern shore is south of King Sound. Sediment in the sound is deposited by the Fitzroy River, which is the major body draining the Kimberley Plateau about 200 miles to the west. The extent of the tidal flats around the Sound is indicated by the large white areas covered with a salty residue. According to NASA scientists studying the STS-57 Earth photos, northwest wind gusts are ruffling areas of the water's surface at the mouth of King Sound and in neighboring Collier Bay. Therefore the water is less reflective and dark. The higher reflectance on the brightest areas is caused by biological oils floating on the surface and reducing the capillary wave action. The scientists point out that the oils take the forms of the currents and eddies in the picture. These eddies indicate that the water offshore is moving at a different speed

  4. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  5. Earth observation taken by the Expedition 46 crew

    2016-01-16

    ISS046e009103 (01/16/2016) --- In orbit around the Earth on board the International Space Station NASA astronaut Scott Kelly captured this blue water image in his "Earth Art" series and tweeted it out with this message: " A splash of #EarthArt over the #Bahamas! #YearInSpace ".

  6. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  7. Observations of Near-Earth Asteroids at Abastumani Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Krugly, Yurij; Ayvazyan, Vova; Inasaridze, Raguli; Zhuzhunadze, Vasili; Molotov, Igor; Voropaev, Victor; Rumyantsev, Vasilij; Baransky, Alexander

    Over the past five years physical properties of near-Earth asteroids are investigated in the Kharadze Abastumani Astrophysical Observatory. The work was launched in the collaboration with Kharkiv Institute of Astronomy within the Memorandum on scientific cooperation between Ilia State University (Georgia) and V. N. Karazin Kharkiv National University (Ukraine) in 2011. In the framework of this study the regular observations of several dozen asteroids per year are carried out to determine the rotation periods, size and shape parameters of these celestial bodies. A broad international cooperation is involved in order to improve the efficiency of the study. Abastumani is included in the observatory network called the Gaia -FUN-SSO, which was created for the ground support of the ESA's Gaia space mission.

  8. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  9. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  10. Exploiting Dragon Envisat Times Series and Other Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Marie, Tiphanie; Lai, Xijun; Huber, Claire; Chen, Xiaoling; Uribe, Carlos; Huang, Shifeng; Lafaye, Murielle; Yesou, Herve

    2010-10-01

    Earth Observation data were used for mapping potential Schistosomiasis japonica distribution, within Poyang Lake (Jiangxi Province, PR China). In the first of two steps, areas suitable for the development of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, were derived from submersion time parameters and vegetation community indicators. Y early maps from 2003 to 2008 indicate five principally potential endemic areas: Poyang Lake National Nature Reserve, Dalianzi Hu, Gan Delta, Po Jiang and Xi He. Monthly maps showing the annual dynamic of potential O. hupensis presence areas were obtained from December 2005 to December 2008. In a second step human potential transmission risk was handled through the mapping of settlements and the identification of some human activities. The urban areas and settlements were mapped all around the lake and fishing net locations in the central part of Poyang Lake were identified. Finally, data crossing of the different parameters highlight the potential risk of transmission in most of the fishing nets areas.

  11. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  12. Interoperability And Value Added To Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gasperi, J.

    2012-04-01

    Geospatial web services technology has provided a new means for geospatial data interoperability. Open Geospatial Consortium (OGC) services such as Web Map Service (WMS) to request maps on the Internet, Web Feature Service (WFS) to exchange vectors or Catalog Service for the Web (CSW) to search for geospatialized data have been widely adopted in the Geosciences community in general and in the remote sensing community in particular. These services make Earth Observation data available to a wider range of public users than ever before. The mapshup web client offers an innovative and efficient user interface that takes advantage of the power of interoperability. This presentation will demonstrate how mapshup can be effectively used in the context of natural disasters management.

  13. STS-56 Earth observation of Karakorum Range of north India

    1993-04-17

    STS-56 Earth observation shows of some of the highest mountain peaks in the world taken from Discovery, Orbiter Vehicle (OV) 103, as it passed over India and China. The top of the view shows one of the snow and ice-covered massifs in the great Karakorum Range of north India. A star-shaped peak at top left reaches 23,850 feet. Glaciers can be seen in valleys at these high elevations. The international border between India to the south (top) and China (bottom) snakes left to right along a river near the top of the scene, then veers into the muntains at top left. Larger valleys, despite their elevation (all in excess of 14,000 feet), are occupied by transport routes joining points in India, China and the southern republics of the CIS. The ancient Silk Route between China and the Middle East lies not far to the north (outside the bottom of the frame).

  14. STS-35 Earth observation of the Persian Gulf area

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of the Persian Gulf area. Major cities and oilfields of the countries of Saudi Arabia (foreground), Iraq (top left), Iran (top center and top right), Kuwait, Bahrain, Qatar, and a portion of the United Arab Emirates are visible in this scene. The cities are the large whitish areas of city lights. Flares characteristic of the Mid-East oil field practices are visible both onshore and offshore throughout the scene. Major cities identifiable are in Iraq - Baghdad, Basra, and Faw; in Qatar - Ab Dawhah; in Kuwait - Kuwait City; in Saudi Arabia - Riyadh, Al Jubayl, Dharan, Al Huf, Ad Dilam and Al Hariq; and Bahrain and its associated causeway to the mainland.

  15. STS-35 Earth observation of the Persian Gulf area

    1990-12-10

    STS-35 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of the Persian Gulf area. Major cities and oilfields of the countries of Saudi Arabia (foreground), Iraq (top left), Iran (top center and top right), Kuwait, Bahrain, Qatar, and a portion of the United Arab Emirates are visible in this scene. The cities are the large whitish areas of city lights. Flares characteristic of the Mid-East oil field practices are visible both onshore and offshore throughout the scene. Major cities identifiable are in Iraq - Baghdad, Basra, and Faw; in Qatar - Ab Dawhah; in Kuwait - Kuwait City; in Saudi Arabia - Riyadh, Al Jubayl, Dharan, Al Huf, Ad Dilam and Al Hariq; and Bahrain and its associated causeway to the mainland.

  16. Earth Observations and the Role of UAVs: A Capabilities Assessment

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.

    2006-01-01

    This three-volume document, based on the draft document located on the website given on page 6, presents the findings of a NASA-led capabilities assessment of Uninhabited Aerial Vehicles (UAVs) for civil (defined as non-DoD) use in Earth observations. Volume 1 is the report that presents the overall assessment and summarizes the data. The second volume contains the appendices and references to address the technologies and capabilities required for viable UAV missions. The third volume is the living portion of this effort and contains the outputs from each of the Technology Working Groups (TWGs) along with the reviews conducted by the Universities Space Research Association (USRA). The focus of this report, intended to complement the Office of the Secretary of Defense UAV Roadmap, is four-fold: 1) To determine and document desired future Earth observation missions for all UAVs based on user-defined needs; 2) To determine and document the technologies necessary to support those missions; 3) To discuss the present state of the art platform capabilities and required technologies, including identifying those in progress, those planned, and those for which no current plans exist; 4) Provide the foundations for development of a comprehensive civil UAV roadmap. It is expected that the content of this report will be updated periodically and used to assess the feasibility of future missions. In addition, this report will provide the foundation to help influence funding decisions to develop those technologies that are considered enabling or necessary but are not contained within approved funding plans. This document is written such that each section will be supported by an Appendix that will give the reader a more detailed discussion of that section's topical materials.

  17. Earth observations satellite data policy: Process and outcome

    SciT

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less

  18. Probing the Earth's core with magnetic field observations from Swarm

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide a unique means of probing the dynamics taking place in the deepest reaches of the Earth. In this contribution we present a new high resolution model of the core-generated magnetic field, and its recent time changes, derived from a dataset that includes more two years of observations from the Swarm mission. Resulting inferences regarding the underlying core flow, its dynamics, and the nature of the geodynamo process will be discussed. The CHAOS-6 geomagnetic field model, covering the interval 1999-2016, is derived from magnetic data collected by the three Swarm missions, as well as the earlier CHAMP and Oersted satellites, and monthly means data collected from 160 ground observatories. Advantage is taken of the constellation aspect of the Swarm mission by ingesting both scalar and vector field differences along-track and across track between the lower pair of Swarm satellites. The internal part of the model consists of a spherical harmonic (SH) expansion, time-dependent for degrees 20 and below. The model coefficients are estimated using a regularized, iteratively reweighted, least squares scheme involving Huber weights. At Earth's surface, CHAOS-6 shows evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90deg E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the secular variation (linear trend in the magnetic field) up to SH degree 16. The radial field acceleration at the core surface in 2015 is found be largest at low latitudes under the India-South East Asia region and under the region of northern South America, as well as at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for some acceleration in the central Pacific region, for example

  19. GIONET (GMES Initial Operations Network for Earth Observation Research Training)

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Balzter, H.

    2013-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. Copernicus (previously known as GMES (Global Monitoring for Environment and Security) is a joint undertaking of the European Space Agency and the European Commission. It develops fully operational Earth Observation monitoring services for a community of end users from the public and private sector. The first services that are considered fully operational are the land monitoring and emergency monitoring core services. In GIONET, 14 early stage researchers are being trained at PhD level in understanding the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers are based in industry and universities across Europe, as well as receiving the best technical training and scientific education. The training programme through supervised research focuses on 14 research topics. Each topic is carried out by an Early Stage Researcher based in one of the partner organisations and is expected to lead to a PhD degree. The 14 topics are grouped in 5 research themes: Forest monitoring Land cover and change Coastal zone and freshwater monitoring Geohazards and emergency response Climate adaptation and emergency response The methods developed and used in GIONET are as diverse as its research topics. GIONET has already held two summer schools; one at Friedrich Schiller University in Jena (Germany), on 'New operational radar satellite applications: Introduction to SAR, Interferometry and Polarimetry for Land Surface Mapping'. The 2nd summer school took place last September at the University of Leicester (UK )on 'Remote sensing of land cover and forest in GMES'. The next Summer School in September 2013

  20. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  1. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis

  2. Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N. J.

    2017-12-01

    Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long

  3. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  4. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    NASA Astrophysics Data System (ADS)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment

  5. Earth Observation taken by the Expedition 19 crew

    2009-04-23

    ISS019-E-010556 (23 April 2009) --- A circle in thin ice in Lake Baikal, Russia is featured in this image photographed by an Expedition 19 crewmember on the International Space Station. Late in April 2009, astronauts aboard the station observed a strange circular area of thinned ice (dark in color, with a diameter of about 4.4 kilometers) in the southern end of Lake Baikal in southern Siberia. Lake Baikal is unique in many regards. It is the largest (by volume) and deepest (1,637 meters at the deepest point) fresh water lake on Earth and, as a World Heritage Site, is considered one of Russia?s environmental jewels. The lake?s long, thin and deep profile results from its location in the Baikal Rift valley in Siberia. According to scientists, it is also one of the world?s oldest lakes (25-30 million years old); it contains up to 7 kilometers of sediment deposited on the bottom, and is home to an amazing array of plants and animals, many being found only in Lake Baikal. The lake?s biodiversity includes fresh water seals and several species of fish that are not found elsewhere on Earth. Siberia is remote and cold; ice cover can persist into June. This detailed image shows a circle of thin ice, which is the focal point for ice break up in the very southern end of the lake. While the origin of the circles is unknown, the peculiar pattern suggests convection in the lake?s water column. Ice cover changes rapidly at this time of year. Within a day, the ice can melt almost completely, and then freeze again overnight. Throughout April, the circles are persistent ? they appear when ice cover forms, and then disappear as ice melts. The pattern and appearance suggests that the ice is quite thin.

  6. Earth Observations taken by the Expedition 27 Crew

    2011-04-02

    ISS027-E-009771 (2 April 2011) --- Bassas da India is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The vantage point of crew members onboard the space station provides many dramatic views of Earth?s surface. This detailed photograph of the Bassas da India, an uninhabited atoll in the Indian Ocean (between the Mozambique coast of Africa and the island of Madagascar) has an almost surreal quality due to varying degrees of sunglint. Sunglint is an optical phenomena caused by light reflecting off of a water surface directly back towards the observer. Variations in the roughness of the water surface?presence or absence of waves due to wind and water currents?will cause differences in the intensity of the sunglint. The presence of other materials, such as oils or surfactants, can also change the properties of the water surface. Here the presence of currents is highlighted as darker patches or streaks (left and upper right). In contrast, shallow water in the lagoon (center) presents a more uniform, mirror-like appearance in sunglint suggesting that there are no subsurface currents present. Wave crests visible around the atoll are likely the result of both surface winds and subsurface currents. The Bassas da India atoll is part of the French Southern and Antarctic Lands. It is uninhabited due to its complete submergence during high tide ? there is no vegetation established on the atoll for the same reason. The atoll is approximately 10 kilometers in diameter, and covers an area (including the lagoon) of approximately 80 square kilometers.

  7. Earth Observations taken by the Expedition 17 Crew

    2008-10-21

    ISS017-E-020538 (21 Oct. 2008) --- Arkenu Craters 1 and 2 in Libya are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Geologists often study features on Earth, such as impact craters, to gain insight into processes that occur on other planets. On Earth, more than 150 impact craters have been identified on the continents, but only a few of these are classified as double impact craters. One such example, the Arkenu Craters in northern Africa, is shown in this image. Arkenu 1 and 2 are double impact structures located in eastern Libya (22.04 degrees north latitude and 23.45 degrees east longitude) in the Sahara desert, with diameters of approximately 6.8 kilometers and 10.3 kilometers, respectively. The craters are unusual in that they both exhibit concentric annular ridge structures (gray circles in the image indicate the position of the outermost visible ridges). In many terrestrial complex craters these features are highly eroded and no longer visible. While the circular structure of these features had been noted, the impact origin hypothesis was strengthened in December 2003 when a field team observed shatter cones -- conical-shaped features in rocks created by the high shock pressures generated during impact. Large outcrops of impact breccias -- a jumble of rock fragments generated at the impact site that are now cemented together into an identifiable rock layer -- were also observed by the field team. Two impactors, each approximately 500 meters in diameter, are thought to have created the craters. According to scientists, the age of the impact event has been dated as occurring less than 140 million years ago. While the presence of shatter cones and impact breccias is generally considered to be strong evidence for meteor impact, some scientists now question the interpretation of these features observed at the Arkenu structures and suggest that they were caused by erosive and volcanic processes. At present

  8. Earth Observation for Food Security and Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Bach, Heike; Mauser, Wolfram; Gernot, Klepper

    2016-08-01

    The global and regional potentials of Earth Observation (EO) to contribute to food security and sustainable agriculture in the 2050-timeframe were analysed in the ESA study EO4Food, whose outcome will be presented (www.EO4Food.org). Emphasis was put on the global societal, economic, environmental and technological megatrends that will create demand for food and shape the future societies. They will also constitute the background for developments in EO for food security and sustainable agriculture. The capabilities of EO in this respect were critically reviewed with three perspectives 1) the role of EO science for society, 2) observables from space and 3) development of future science missions.It was concluded that EO can be pivotal for the further development of food security and sustainable agriculture. EO allows to support the whole economic and societal value chain from farmers through food industry to insurance and financial industry in satisfying demands and at the same time to support society in governing sustainable agriculture through verifyable rules and regulations. It has the potential to become the global source of environmental information that is assimilated into sophisticated environmental management models and is used to make agriculture sustainable.

  9. Gap analysis of the European Earth Observation Networks

    NASA Astrophysics Data System (ADS)

    Closa, Guillem; Serral, Ivette; Maso, Joan

    2016-04-01

    Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on

  10. Uncertainty information in climate data records from Earth observation

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    The question of how to derive and present uncertainty information in climate data records (CDRs) has received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we review the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and the case is made that CDR products should follow international metrological norms for presenting quantified uncertainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR, meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assumptions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncertainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the

  11. Update on Spacewatch Observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa; McMillan, Robert S.; Bressi, Terry; Larsen, Jeff; Mastaler, Ron; Read, Mike; Scotti, Jim; Tubbiolo, Andrew

    2017-10-01

    Spacewatch performs targeted astrometric follow-up of near-Earth objects, primarily asteroids (NEAs), to improve knowledge of their orbits. We have a noteworthy history of asteroid and comet observations beginning in 1984 as the first survey to use CCDs to scan the sky for asteroids and comets. Currently, we measure simultaneous astrometry and photometry of observations during an average of 24 nights per lunation (dark and gray time) as the exclusive users of a 1.8-m telescope and a 0.9-m telescope on Kitt Peak. In addition, we use bright time on the 2.3-m Bok Telescope and the 4-m Mayall Telescope on Kitt Peak to chase fainter targets. Continued astrometric follow-up helps to prevent potentially hazardous objects and scientifically interesting NEAs from becoming lost.We prioritize virtual impactors, MPC confirmation page objects, potentially hazardous asteroids (PHAs) with close approaches within 0.03 AU in the next 30 years, upcoming radar targets with astrometry requests, Yarkovsky effect candidates, NEAs with existing characterization data (WISE, Spitzer, SMASS, MANOS), possible spacecraft destinations (NHATS), and requests from the community.In mid October 2015, we switched from survey mode to targeted astrometry on the 0.9-m telescope. From 2015 October 15 through 2017 June 29 (1.7yr), Spacewatch (observatory codes 291, 691, and ^695) had 20951 MPC-accepted NEO lines of astrometry corresponding to measurements of 2647 different NEOs. This includes 4801 PHA lines of astrometry corresponding to 426 different PHAs, of which 223 lines were at apparent magnitudes V>=22.5. We observed 43% of all NEAs and 52% of all unnumbered NEAs that were observed by any observatory during that period. We observed 50% of all PHAs and 64% of all unnumbered PHAs observed during that period. These statistics do not include submitted measurements of confirmation page objects that were not confirmed as NEAs.Support of Spacewatch is from NASA/NEOO grants, the Lunar and Planetary

  12. Earth Observations taken by the STS-135 Crew

    2011-07-09

    S135-E-006265 (9 July 2011) --- A nadir view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the southernmost part of Italy, referred to as the "boot." The astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  13. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  14. EKOSAT/DIAMANT - The Earth Observation Programme at OHB- System

    NASA Astrophysics Data System (ADS)

    Penne, B.; Tobehn, C.; Kassebom, M.; Luebberstedt

    This paper covers the EKOSAT / DIAMANT programme heading for superspectral geo-information products. The EKOSAT / DIAMANT programme is based on a commercial strategy just before the realization of the first step - the EKOSAT launch in 2004. Further, we give an overview on OHB-System earth observation prime activities especially for infrared and radar. The EKOSAT/ DIAMANT is based on the MSRS sensor featuring 12 user dedicated spectral bands in the VIS/NIR with 5m spatial resolution and 26 km swath at an orbit of 670 km. The operational demonstrator mission EKOSAT is a Korean-Israelean-German-Russian initiative that aims in utilizing the existing proto-flight model of the KOMPSAT-1 spacecraft for the MSRS sensor, which development is finished. The EKOSAT pointing capability will allow a revisit time of 3 days. DIAMANT stands for the future full operational system based on dedicated small satellites. The basic constellation relying on 2-3 satellites with about one day revisit is extendend on market demand. EKOSAT/ DIAMANT is designed to fill the gap between modern high spatial resolution multispectral (MS) systems and hyperspectral systems with moderate spatial resolution. On European level, there is currently no remote sensing system operational with comparable features and capabilities concerning applications especially in the field of environmental issues, vegetation, agriculture and water bodies. The Space Segment has been designed to satisfy the user requirements based on a balance between commercial aspects and scientific approaches. For example eight spectral bands have been identified to cover almost the entire product range for the current market. Additional four bands have been implemented to be prepared for future applications as for example the improved red edge detection, which give better results regarding environmental conditions. The spacecraft design and its subsystems are still reasonable small in order to keep the mass below 200 kg. This is an

  15. Web Map Apps using NASA's Earth Observing Fleet

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M. M.; King, B. A.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2016-12-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASA's Earth observing fleet. Spanning 15+ years and running through as recently as "a few hours ago", GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development.

  16. Naval EarthMap Observer (NEMO) science and naval products

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.; Kappus, Mary E.; Gao, Bo-Cai; Bissett, W. Paul; Snyder, William A.

    1998-11-01

    A wide variety of applications of imaging spectrometry have been demonstrated using data from aircraft systems. Based on this experience the Navy is pursuing the Hyperspectral Remote Sensing Technology (HRST) Program to use hyperspectral imagery to characterize the littoral environment, for scientific and environmental studies and to meet Naval needs. To obtain the required space based hyperspectral imagery the Navy has joined in a partnership with industry to build and fly the Naval EarthMap Observer (NEMO). The NEMO spacecraft has the Coastal Ocean Imaging Spectrometer (COIS) a hyperspectral imager with adequate spectral and spatial resolution and a high signal-to- noise ratio to provide long term monitoring and real-time characterization of the coastal environment. It includes on- board processing for rapid data analysis and data compression, a large volume recorder, and high speed downlink to handle the required large volumes of data. This paper describes the algorithms for processing the COIS data to provide at-launch ocean data products and the research and modeling that are planned to use COIS data to advance our understanding of the dynamics of the coastal ocean.

  17. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  18. Model of load distribution for earth observation satellite

    NASA Astrophysics Data System (ADS)

    Tu, Shumin; Du, Min; Li, Wei

    2017-03-01

    For the system of multiple types of EOS (Earth Observing Satellites), it is a vital issue to assure that each type of payloads carried by the group of EOS can be used efficiently and reasonably for in astronautics fields. Currently, most of researches on configuration of satellite and payloads focus on the scheduling for launched satellites. However, the assignments of payloads for un-launched satellites are bit researched, which are the same crucial as the scheduling of tasks. Moreover, the current models of satellite resources scheduling lack of more general characteristics. Referring the idea about roles-based access control (RBAC) of information system, this paper brings forward a model based on role-mining of RBAC to improve the generality and foresight of the method of assignments of satellite-payload. By this way, the assignment of satellite-payload can be mapped onto the problem of role-mining. A novel method will be introduced, based on the idea of biclique-combination in graph theory and evolutionary algorithm in intelligence computing, to address the role-mining problem of satellite-payload assignments. The simulation experiments are performed to verify the novel method. Finally, the work of this paper is concluded.

  19. Observation of the Earth Liquid Core Resonance by Extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula; Kis, Márta; Koppán, András

    2018-05-01

    We performed Earth tidal measurements by quartz tube extensometers of the same type at several observatories (Budapest, Pécs, Sopronbánfalva in Hungary and Vyhne in Slovakia). In this paper, the first attempts to reveal the effect of the Free Core Nutation (FCN) from strain measurements are described. The effect of the FCN on the P1, K1, Ψ1 and Φ1 tidal waves were studied on the basis of tidal results obtained in four observatories. Effectiveness of the correction of tidal data for temperature, barometric pressure and ocean load was also investigated. The obtained K1/O1 ratios are close to the theoretical values with exception of the Pécs station. We found a discrepancy between the observed and theoretical P1/O1 values for all stations with exception of the Budapest station. It was found that the difference between the measured and theoretical Ψ1/O1 and Φ1/O1 ratios was very large independently of correction of the strain data. These discrepancies need further investigations. According to our results, fluid core resonance effects can also be detected by our quartz tube extensometers but correction of strain data for local effects is necessary.

  20. Earth observation taken by the Expedition 42 crew

    2015-02-11

    ISS042E241898 (02/11/2015) --- Texas and the Gulf Coast at night as seen by the International Space Stations Earth observation cameras. This wide-angle, nighttime image was taken by astronauts looking out southeastward over the Gulf of Mexico. Lower center left shows the twin lights of San Antonio Texas with a short string of lights to Austin (further left). Houston, the home of the Johnson Space Center is the brightest directly above (Center left). Moonlight reflects diffusely off the waters of the gulf (image center left) making the largest but diffused illuminated area in the image. The sharp edge of light patterns of coastal cities trace out the long curve of the gulf shoreline—from New Orleans at the mouth of the Mississippi River, to Houston (both image left), to Brownsville (image center) in the westernmost gulf. City lights at great distances in Florida (image top left) and on Mexico’s Yucatán peninsula (image center right) suggest the full extent of the gulf basin, more than 930 miles, from Brownsville to Florida.

  1. STS-55 Earth observation of agricultural development in northern Argentina

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of agricultural development in northern Argentina. This photograph is from a mapping strip of photographs acquired by the STS-55 crew. This mapping strip runs from the 'eyelash forests' of the Bolivian Andes, southeast across the Chaco Plains, and into the upper Parana River Basin of north-central Argentina. The formerly densely forested areas between the upper Rio Pilcomayo and the Rio Teuco of NW Argentina rest on deep, rich alluvial and loess deposits. These modern soils were carried into the region by rivers from the Andes and by dust storms from large playa areas of the Altiplano (high plains) of Peru and Boliva. In this scene, representative of the long mapping strip, the process of converting forests to agriculture is far advanced. The original road network, a series of grids laid out in the forest, has nearly coalesced into a farm and ranch landscape. Some few relict forests are still visible as distin

  2. STS-55 Earth observation of the Timor Sea

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level

  3. STS-56 Earth observation of Perth in Western Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is probably the best view of Perth in Western Australia. (For orientation purposes, note that the coastline runs north and south). The major feature on the coast is the large estuary of the Swan River. The large port city of Perth is situated on the north bank and the smaller city of Freemantle on the south bank by the sea. Smaller seaside towns trail off north and south of this center of urban life. Inland lies a prominent escarpment, more than 600 feet high, seen running down the middle of the view and dividing the lighter-colored coastal lowlands from the highlands where dark-colored tree savanna and desert scrub dominates the land. The Moore River can be seen entering the sea at the top of the frame. Rottnest Island is visible in the sea and Garden Island near bottom edge of the frame. Perth is the largest economic center in Western Australia. It receives natural gas from an offshore field hundreds of miles

  4. An integrated view of data quality in Earth observation

    PubMed Central

    Yang, X.; Blower, J. D.; Bastin, L.; Lush, V.; Zabala, A.; Masó, J.; Cornford, D.; Díaz, P.; Lumsden, J.

    2013-01-01

    Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research. PMID:23230156

  5. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  6. An integrated view of data quality in Earth observation.

    PubMed

    Yang, X; Blower, J D; Bastin, L; Lush, V; Zabala, A; Masó, J; Cornford, D; Díaz, P; Lumsden, J

    2013-01-28

    Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research.

  7. Web Map Apps using NASA's Earth Observing Fleet

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M.; hide

    2016-01-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access

  8. Medium-sized aperture camera for Earth observation

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  9. Program on Earth Observation Data Management Systems (EODMS)

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Hays, T. R.; Ballard, R. J.; Crnkovick, G. R.; Schaeffer, M. A.

    1976-01-01

    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  10. Earth Observations taken by the Expedition 18 Crew

    2009-02-07

    ISS018-E-028898 (7 Feb. 2009) --- The summit of Popocatepetl Volcano in Mexico is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Volcano Popocatepetl, a large stratovolcano located approximately 70 kilometers to the southeast of Mexico City, is considered by many volcanologists to be ?the planet?s riskiest volcano?. The volcano warrants this distinction because of its proximity to one of the most densely populated megacities on Earth (population near 23 million in 2009). The variety of potential volcanic hazards at Popocatepetl is also considerable, including explosive eruptions of ash, pyroclastic flows (hot, fluidized masses of rock and gas that flow rapidly downhill), and debris avalanches. This detailed photograph of the summit crater of Popocatepetl (center) also highlights Ventorillo and Noroccidental Glaciers ? together with ice on nearby Iztaccihuatl Volcano and Pico de Orizaba (Mexico?s highest peak and the highest volcano in North America), these are the only mountain glaciers in tropical North America. The presence of glaciers on Popocatepetl is also connected with another volcanic hazard ? the creation of dangerous mudflows, or lahars, should the ice melt during eruptive activity. At the time this image was taken, steam and ash plumes were observed at the volcano ? a faint white steam plume is visible against gray ash deposits on the eastern and southern flanks of the volcano.

  11. STS-56 Earth observation of Perth in Western Australia

    1993-04-17

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is probably the best view of Perth in Western Australia. (For orientation purposes, note that the coastline runs north and south). The major feature on the coast is the large estuary of the Swan River. The large port city of Perth is situated on the north bank and the smaller city of Freemantle on the south bank by the sea. Smaller seaside towns trail off north and south of this center of urban life. Inland lies a prominent escarpment, more than 600 feet high, seen running down the middle of the view and dividing the lighter-colored coastal lowlands from the highlands where dark-colored tree savanna and desert scrub dominates the land. The Moore River can be seen entering the sea at the top of the frame. Rottnest Island is visible in the sea and Garden Island near bottom edge of the frame. Perth is the largest economic center in Western Australia. It receives natural gas from an offshore field hundreds of miles to the north. It lies 3,400 kilometers west of Sydney on the opposite side of this island continent.

  12. Al Gore attends Fall Meeting session on Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  13. EarthScope's USArray: A Decade of Observations and Results

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R. W.; Hafner, K.; Gridley, J. M.; Schultz, A.; Frassetto, A.; Simpson, D. W.

    2013-12-01

    EarthScope's USArray observatory provides unprecedented observations of geophysical targets across the contiguous United States through the systematic deployment of seismic, magnetotelluric, and atmospheric instruments. In addition, USArray includes tightly integrated data management and outreach activities. The seismic and atmospheric components of USArray consist of a Transportable Array (TA), Flexible Array (FA), and Reference Network. The TA has now occupied approximately 1700 sites spanning the entire contiguous 48 states, at 70 km inter-station spacing. These stations have provided broadband seismic, barometric pressure and atmospheric infrasound observations. The pool of instruments that comprise the FA have been deployed by numerous individual investigators in dense arrays to investigate local and regional features over time periods ranging from days to years. The Reference Network provides a permanent, stationary foundation for the TA and FA, with approximately 100 broadband stations deployed across the contiguous US at roughly 300 km spacing. The magnetotelluric (MT) component of USArray has provided both fixed and campaign-style long-period magnetotelluric observations at hundreds of locations across the US. Many of the field activities of USArray engaged both students and the public in important ways and this has been a significant component of USArray outreach. The TA alone has engaged well over one hundred students in site reconnaissance activities and placed seismic stations on the property of roughly a thousand different landowners. All data collected by USArray are openly available, most in real time. Many of the observations have also been incorporated into a variety of data products that have been developed to facilitate use of USArray by many different audiences. The scientific community has used USArray data to achieve a wide range of results--some that were anticipated when the facility was proposed and some that were completely unanticipated

  14. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  15. Earth Observations taken by the Expedition 27 Crew

    2011-05-02

    ISS027-E-020395 (2 May 2011) --- Avachinsky Volcano, Kamchatka Peninsula, Russia is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Kamchatka Peninsula, located along the Pacific ?ring of fire?, includes more than 100 identified volcanoes. While most of these volcanoes are not actively erupting, many are considered to be dangerous due to their past eruptive history and proximity to population centers and air travel corridors. This detailed photograph highlights the summit crater and snow-covered upper slopes of the Avachinsky stratovolcano exposed above a surrounding cloud deck. The 2,741-meter-high Avachinsky volcano has an extensive historical and geological record of eruptions with the latest activity observed in 2008. The large city of Petropavlovsk, Kamchatka is located approximately 25 kilometers to the southwest and, according to scientists, is built over approximately 30,000 ? 40,000 year old debris avalanche deposits that originated from Avachinsky ? suggesting that the city may be at risk from a similar hazard in the future. To the southeast (right), the large breached crater of Kozelsky Volcano is also visible above the clouds. Kozelsky is a parasitic cone, formed by the eruption of material from vents along the flank of Avachinsky volcano. The topography of the volcanoes is accentuated by shadows produced by the relatively low sun angle, and by the oblique viewing angle. Oblique images are taken looking outwards at an angle from the International Space Station, rather than the ?straight down? (or nadir) view typical of most orbital Earth-observing sensor systems.

  16. Earth observation photography: Looking back 20 years after Skylab

    NASA Technical Reports Server (NTRS)

    Nicholson, James H.

    1992-01-01

    A committee of trained classroom teachers, backed by a volunteer team of technical experts and academic advisors has developed a program for earth science based on photographs obtained from low earth orbit. In selecting targeting objectives, immediate note was made of the fact nearly one generation (20 years) has passed since the United States' ambitious SKYLAB program was conducted. A critical part of those missions was the acquisition of earth photography using a six camera, multi-spectral camera system. This objective was systematically furthered through the term of three separate crew visits to the Space Station. Not merely an exercise in randomly photographing the Earth below, the purpose of the Earth Resource Experiment Package (EREP) was to determine what kind, and how much, photographic data could be acquired of the broad variety of Earth features witnessed on the mission's ground track. The collection of 35,000 photos produced by EREP represents the most complete coverage of Earth. However, it remains under used. GAS 324 intends to revisit, and to add a tier of relevancy to this inventory. The photography of GAS 324 should allow a direct examination and comparison of the changes in the globe in the last 20 years. format in both coverage and quality. The photogra phy acquired by CAN DO should allow a direct examination and comparison of the changes that have occured to the Globe in the last twenty years.

  17. Earth Observations taken by the Expedition 17 Crew

    2008-04-26

    ISS017-E-005452 (26 April 2008) --- Layers of Earth's atmosphere, brightly colored as the sun sets over South America, are featured in this image photographed by an Expedition 17 crewmember on the International Space Station.

  18. Earth Observations taken during Expedition 16/STS-120 Joint Operations

    2007-11-03

    ISS016-E-009407 (3 Nov. 2007) --- Layers of Earth's atmosphere, brightly colored as the sun rises, are featured in this image photographed by an Expedition 16 crewmember on the International Space Station.

  19. Earth Observations taken by the Expedition 39 Crew

    2014-04-26

    ISS039-E-016292 (26 April 2014) --- A wish-bone shaped display of Aurora Australis over the Indian Ocean serves as a very colorful backdrop for the SpaceX Dragon spacecraft which is docked to the International Space Station, 226 miles above Earth. Earth's horizon divides the scene horizontally between the blackness of space and the dark portion of the planet. The photograph was taken by one of the Expedition 39 crew members aboard the orbital outpost.

  20. The Role of NASA Observations in Understanding Earth System Change

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  1. Earth Observations taken by the STS-135 Crew

    2011-07-09

    S135-E-006268 (9 July 2011) --- A nadir view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the area of Italy referred to as the "boot." Part of Sicily is at frame's bottom center. The astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  2. Earth Observations taken by the Expedition 23 Crew

    2010-05-29

    ISS023-E-058455 (29 May 2010) --- Aurora Australis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. Among the views of Earth afforded crew members aboard the ISS, surely one of the most spectacular is of the aurora. These ever-shifting displays of colored ribbons, curtains, rays, and spots are most visible near the North (Aurora Borealis) and South (Aurora Australis) Poles as charged particles streaming from the sun (the solar wind) interact with Earth’s magnetic field, resulting in collisions with atoms of oxygen and nitrogen in the upper atmosphere. The atoms are excited by these collisions, and typically emit photons as a means of returning to their original energy state. The photons form the aurora that we see. The most commonly observed color of aurora is green, caused by photons (light) emitted by excited oxygen atoms at wavelengths centered at 0.558 micrometers, or millionths of a meter. Visible light is reflected from healthy (green) plant leaves at approximately the same wavelength. Red auroras are generated by light emitted at a longer wavelength (0.630 micrometers), and other colors such as blue and purple are also sometimes observed. While auroras are generally only visible close to the poles, severe magnetic storms impacting Earth’s magnetic field can shift them towards the equator. This striking aurora image was taken during a geomagnetic storm that was most likely caused by a coronal mass ejection from the sun on May 24, 2010. The ISS was located over the Southern Indian Ocean at an altitude of 350 kilometers, with the observer most likely looking towards Antarctica (not visible) and the South Pole. The aurora has a sinuous ribbon shape that separates into discrete spots near the lower right corner of the image. While the dominant coloration of the aurora is green, there are faint suggestions of red photon emission as well (light fuscia tones at center left). Dense cloud cover is dimly

  3. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability

  4. Digital Object Identifiers for NASA's Earth Observing System Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; James, N.

    2012-12-01

    The science community has long recognized the importance of citing data in published literature to encourage replication of experiments and verification of results. Authors that try to cite their data often find that publishers will not accept Internet addresses because they are viewed as transient references, frequently changed by the data provider after the paper is published. Digital Object Identifiers (DOIs) and the DOI® System were created to avoid this problem by providing a unique and persistent identifier scheme and an online resolution service. DOIs and the Internet service provided by the DOI System have emerged as the most acceptable scheme for publishers. NASA's Earth Science Data and Information System (ESDIS) Project, in cooperation with several Earth Observing System (EOS) instrument teams and data providers, has developed methods for assigning DOIs to EOS products. By assigning DOIs we are enabling authors and publishers to find it easier and more compelling to cite EOS data products. DOIs are unique alphanumeric strings that consist of a prefix and suffix. The prefix is assigned by a registration agency for the DOI System. The suffix must be unique, but is otherwise free to be constructed by the publisher, in this case NASA ESDIS Project. A strategy was needed for constructing DOI suffix names that corresponds to each EOS product. Since the onset of the DOI System, publishers have developed conventions to suit their own purposes. These range from random generation to complex, formally controlled vocabularies. An overarching ESDIS goal has been for the DOI names to be attractive for researchers to use in publication applications. Keeping them short and simple is paramount. When adding meaning to the string, it is also important that the name only refer to the data and not to the publisher, so that the DOI can be accepted as persistent even if the data is moved to a new publisher. Most users download EOS product files to their local facilities when

  5. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning

    NASA Technical Reports Server (NTRS)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred

    2007-01-01

    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  6. Earth observation images taken as part of the EarthKAM educational program

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  7. Earth Observations taken by the Expedition 22 Crew

    2009-12-01

    ISS022-E-005258 (1 Dec. 2009) --- This detailed hand-held digital camera?s image recorded from the International Space Station highlights sand dunes in the Fachi-Bilma erg, or sand sea, which is part of the central eastern Tenere Desert. The Tenere occupies much of southeastern Niger and is considered to be part of the larger Sahara Desert that stretches across northern Africa. Much of the Sahara is comprised of ergs ? with an area of approximately 150,000 square kilometers, the Fachi-Bilma is one of the larger sand seas. Two major types of dunes are visible in the image. Large, roughly north-south oriented transverse dunes fill the image frame. This type of dune tends to form at roughly right angles to the dominant northeasterly winds. The dune crests are marked in this image by darker, steeper sand accumulations that cast shadows. The lighter-toned zones between are lower interdune ?flats?. The large dunes appear to be highly symmetrical with regard to their crests. This suggests that the crest sediments are coarser, preventing the formation of a steeper slip face on the downwind side of the dune by wind-driven motion of similarly-sized sand grains. According to NASA scientists, this particular form of transverse dune is known as a zibar, and is thought to form by winnowing of smaller sand grains by the wind, leaving the coarser grains to form dune crests. A second set of thin linear dunes oriented at roughly right angles to the zibar dunes appears to be formed on the larger landforms and is therefore a younger landscape feature. These dunes appear to be forming from finer grains in the same wind field as the larger zibars. The image was taken with digital still camera fitted with a 400 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

  8. Earth Observations taken by the Expedition 23 Crew

    2010-05-25

    ISS023-E-057948 (25 May 2010) --- A sunset on the Indian Ocean is featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The image presents an edge-on, or limb view, of Earth’s atmosphere as seen from orbit. The Earth’s curvature is visible along the horizon line, or limb, that extends across the image from center left to lower right. Above the darkened surface of Earth, a brilliant sequence of colors roughly denotes several layers of the atmosphere. Deep oranges and yellows are visible in the troposphere that extends from Earth’s surface to 6-20 kilometers high. This layer contains over 80 percent of the mass of the atmosphere and almost all of the water vapor, clouds, and precipitation – several dark cloud layers are visible within this layer. Variations in the colors are due mainly to varying concentrations of either clouds or aerosols (airborne particles or droplets). The pink to white region above the clouds appears to be the stratosphere; this atmospheric layer generally has little or no clouds and extends up to approximately 50 kilometers above Earth’s surface. Above the stratosphere blue layers mark the upper atmosphere (including the mesosphere, thermosphere, ionosphere, and exosphere) as it gradually fades into the blackness of outer space. The ISS was located over the southern Indian Ocean when this image was taken, with the observer looking towards the west. Crew members aboard the space station see 16 sunrises and sunsets per day due to their high orbital velocity (greater than 28,000 kilometers per hour). The multiple chances for photography are fortunate, as at that speed each sunrise/sunset event only lasts a few seconds.

  9. Grid-based platform for training in Earth Observation

    NASA Astrophysics Data System (ADS)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  10. Spectral Classification of NEOWISE Observed Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Desira, Christopher

    2017-01-01

    Near-Earth asteroids (NEAs) allow us to determine the properties of the smallest solar system bodies in the sub-kilometer size range. Large (>few km) NEAs have albedos which span a wide range from ~0.05 to ~0.3 and are known to correlate with asteroid composition, determined by analysing the shape of their optical reflectance spectra. It is, however, still unknown how this relationship extends into the sub-kilometer population.NEOWISE has performed a thermal infrared survey that provides the largest inventory to date of well-determined sizes and albedos for NEAs, including many in the sub-km population. This provides an opportunity to test the albedo-surface composition correlation in a new size regime. If it is found to hold, then a simple optical spectrum can give a well-constrained albedo and size estimate without the need for thermal IR measurements.The sizes and composition of many more sub-km sized NEAs are needed to aid in the understanding of the formation/evolution of the inner solar system and the characterisation of potentially hazardous objects, possible mission targets and even commercial mining operations.We obtained optical spectra of sub-kilometer NEOWISE-observed NEAs using the 1.5m Tillinghast telescope and the FAST spectrograph at the Whipple Observatory on Mt Hopkins, Arizona. We performed a taxonomic classification to identify their likely composition and combined this with NEOWISE data to look for known correlations between main belt asteroid spectral types and their optical albedos. Additionally, we tested the robustness of current data reduction methods in order to increase our confidence in the spectral classifications of NEAs.

  11. A novel earth observation based ecological indicator for cyanobacterial blooms

    NASA Astrophysics Data System (ADS)

    Anttila, Saku; Fleming-Lehtinen, Vivi; Attila, Jenni; Junttila, Sofia; Alasalmi, Hanna; Hällfors, Heidi; Kervinen, Mikko; Koponen, Sampsa

    2018-02-01

    Cyanobacteria form spectacular mass occurrences almost annually in the Baltic Sea. These harmful algal blooms are the most visible consequences of marine eutrophication, driven by a surplus of nutrients from anthropogenic sources and internal processes of the ecosystem. We present a novel Cyanobacterial Bloom Indicator (CyaBI) targeted for the ecosystem assessment of eutrophication in marine areas. The method measures the current cyanobacterial bloom situation (an average condition of recent 5 years) and compares this to the estimated target level for 'good environmental status' (GES). The current status is derived with an index combining indicative bloom event variables. As such we used seasonal information from the duration, volume and severity of algal blooms derived from earth observation (EO) data. The target level for GES was set by using a remote sensing based data set named Fraction with Cyanobacterial Accumulations (FCA; Kahru & Elmgren, 2014) covering years 1979-2014. Here a shift-detection algorithm for time series was applied to detect time-periods in the FCA data where the level of blooms remained low several consecutive years. The average conditions from these time periods were transformed into respective CyaBI target values to represent target level for GES. The indicator is shown to pass the three critical factors set for marine indicator development, namely it measures the current status accurately, the target setting can be scientifically proven and it can be connected to the ecosystem management goal. An advantage of the CyaBI method is that it's not restricted to the data used in the development work, but can be complemented, or fully applied, by using different types of data sources providing information on cyanobacterial accumulations.

  12. Earth Observations Capabilities of the International Space Station

    NASA Astrophysics Data System (ADS)

    Eppler, Dean B.; Scott, Karen P.

    The International Space Station (ISS) is presently being assembled through the joint efforts of the United States, Russia, Canada, Japan, the European Space Agency and Brazil, and will be an orbiting, multi-use facility expected to remain on-orbit into the next decade. The orbital inclination of 51.6 degrees allows the ISS to overfly approximately 75% of the Earth's land area and approximately 95% of the Earth's population. Due to the westward precession of orbit tracks, the ISS will overfly the same location approximately every three days, with the identical lighting conditions being repeated every three months. The ISS has two basic capabilities for Earth observations: a fused silica window in the Destiny laboratory, and sites on the external truss and partner modules that accommodate external payloads. The Destiny laboratory has a window port built into its nadir facing side. The window consists of 3 panes of Corning 7940 fused silica which are approximately 56 cm in diameter, providing an approximately 51 cm clear aperture. In 1996, the ISS Program agreed to upgrade the glass in the Destiny window to a set of stringent optical performance requirements. The window has a wavefront error of 1/15 wavelength peak-to-valley over a 15.2 cm aperture relative to a reference wavelength of 632.8 nm, which will allow up to a 30 cm telescope to be flown. The flight article window was radiometrically calibrated in May of 2000, indicating that the window had better than 95% transmittance in the visible region, with a steep drop-off in the ultraviolet and a gradual drop-off in the infrared from the visible through the near and short wave infrared spectra. Utilization of the optical performance of the Destiny window requires the use of the Window Observational Research Facility (WORF). The WORF is essentially an Express rack with a 0.8 m^3 payload volume centered on the Destiny window. The payload volume provides mounting surfaces for window payload hardware, including a stiff

  13. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller

  14. Earth Observations taken by the Expedition 14 crew

    2006-11-04

    ISS014-E-07258 (4 Nov. 2006) --- Galveston, Texas is featured in this image photographed by an Expedition 14 crewmember on the International Space Station (ISS). Mexico established a port of entry (known as Galveston) in 1825, and following the Texas Revolution it was the capital of the Republic of Texas during 1836. The modern-day city of Galveston was incorporated in 1839, and became the major trading seaport of Texas during the latter half of the 19th century. The city was largely destroyed in early September of 1900 by a powerful hurricane; this, coupled with construction of the Houston Ship Channel and discovery of oil in eastern Texas shifted the center of trade northwest to Houston. Many human footprints are easily observed from the vantage point of low Earth orbit. The eastern half of Galveston Island is dominated by the city of Galveston (gray-white region at center). A large seawall along the Gulf of Mexico (southern coastline of Galveston Island) protects most of the city. To the west of Galveston, coastal wetlands are largely submerged by regional subsidence--a result of ground water withdrawal by the petrochemical industry of Houston and Texas City. The entrance to Galveston Bay and the Houston Ship Channel is located between Galveston Island and the Bolivar Peninsula (upper right). Numerous ship wakes are visible along the Houston Ship Channel. Other visible features of the entrance to Galveston Bay include the five-mile long Texas City Dike, a structure that protects the Texas City channel and includes a fishing pier that extends 600 feet beyond the end of the Dike. Extensive petroleum processing facilities are located to the west of the Dike in Texas City. The Intracoastal Waterway runs through western Galveston Bay; new subdivisions built on dredge spoils are visible along the northern boundary of the Waterway. Geologists studying the ISS collection of down linked still imagery observe that complex estuarine sediment patterns are visible in this

  15. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  16. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  17. Earth Observations taken by the STS-135 Crew

    2011-07-09

    S135-E-006377 (9 July 2011) --- An almost vertical view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the southernmost part of Italy, referred to as the "boot." The eastern-most part of Sicily made it into the frame at left. The dark triangle in upper left corner is part of the window frame on the shuttle's flight deck. When the photo was taken, the STS-135 astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  18. Earth observation taken by the Expedition 43 crew

    2015-04-01

    ISS043E080914 (04/01/2015) --- This Earth view from the International Space Station Apr. 1, 2015 (bottom left corner) is Soyuz TMA-15M which carried NASA astronaut Terry Virts, ESA (European Space Agency) astronaut Samantha Cristoforetti and Russian cosmonaut Anton Shkaplerov to the ISS back in No. 2014 and will remain until May 2015. The further one (top left corner) is Progress 57 a Russian supply spaceship which launched and docked in October last year and will undock at the end of April to return to Earth.

  19. Earth Observation taken by the Expedition 25 crew

    2010-10-03

    ISS025-E-005950 (3 Oct. 2010) ---This is a view from Earth orbit showing Galveston, Texas, as seen on a cloudless day October 3, 2010. The photograph was taken by one of three Expedition 25 crew members aboard the International Space Station, approximately 220 miles above Earth. The crew of three will double in size after a NASA astronaut and two Russian cosmonauts arrive following a launch Oct. 8 (Kazakhstan time)from the Baikonur Cosmodrome via a Soyuz. Photo credit: NASA and its International Partners

  20. Earth Observations taken by the Expedition 39 Crew

    2014-04-22

    ISS039-E-014807 (22 April 2014) --- As the International Space Station passed over the Bering Sea on Earth Day, one of the Expedition 39 crew members aboard the orbital outpost shot this panoramic scene looking toward Russia. The Kamchatka Peninsula can be seen in the foreground. Sunglint is visible on the left side of the frame. Only two points of view from Earth orbit were better for taking in this scene than that of the crew member with the camera inside, and those belonged to the two spacewalking astronauts -- Flight Engineers Rick Mastracchio and Steve Swanson of NASA.

  1. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  2. Earth observation for regional scale environmental and natural resources management

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  3. Uncertainty information in climate data records from Earth observation

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.

    2017-12-01

    How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is

  4. Multi-spectral optical scanners for commercial earth observation missions

    NASA Astrophysics Data System (ADS)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  5. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    NASA Astrophysics Data System (ADS)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  6. Earth observation taken by the Expedition 35 crew

    2013-04-18

    ISS035-E-023422 (18 April 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station photographed this night image of Tripoli, Libya on April 18, 2013. The spacecraft was orbiting approximately 215 miles above a point centered at 32.3 degrees north latitude and 11.8 degrees east longitude.

  7. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  8. Earth observation taken by the Expedition 49 crew

    2016-09-23

    ISS049e008889 (09/23/2016) --- Night view of the Earth from the International Space Station by the crew of Expedition 49. The land mass northwest is South Korea and south of Korea is Japan. The small dotted lights east of South Korea and north of Japan are fishing boats in the Sea of Japan.

  9. Earth observation taken by the Expedition 46 crew

    2016-01-20

    ISS046e015697 (01/20/2016) --- NASA astronaut Scott Kelly took this majestic image of the Earth at night highlighting the green and red hues of an Aurora. He tweeted this message along with the image: “The dance of #aurora. #YearInSpace"

  10. A sunset Earth observation image taken during STS-100

    2001-04-26

    S100-E-5498 (26 April 2001) --- Earth's limb--the edge of the planet seen at twilight--was captured with a digital still camera by one of the STS-100 crew members aboard the Space Shuttle Endeavour. Near center frame the silhouette of cloud layers can be seen in the atmosphere, above which lies an airglow layer (left).

  11. Earth Observation taken during the 41G mission

    2009-06-25

    41G-120-163 (5-13 Oct 1984) --- The long, linear parallel ridges of the Zagros Mountains of southwestern Iran. Dark, round salt domes intrude from deep beneath the earth to produce oil, much of which has yet to be exploited in this area.

  12. Earth Observations taken by the Expedition 23 Crew

    2010-04-10

    ISS023-E-021307 (10 April 2010) --- Photographed by one of the Expedition 23 crew members onboard the International Space Station 220 miles above Earth, this is a broad area view of Sendai, Japan. The end of the shuttle vertical stabilizer points to Sendai.

  13. Earth observations taken from orbiter Discovery during STS-91 mission

    2016-08-24

    STS091-708-077 (2-12 June 1998) -- The cloud shadows grew long as the STS-91 astronauts aboard the Space Shuttle Discovery approached the dark side of the Earth during "sunset" over Poland. The taller building cumulus clouds cast shadows over the lower clouds.

  14. Earth Observations taken by the STS-127 Crew

    2009-07-17

    S127-E-006572 (17 July 2009) --- Sundowns and sunrises are a much more common occurrence for astronauts in space than for Earth-bound eyes but they never cease to attract the astronauts and cosmonauts when cameras are handy. This sunrise came on docking day for the STS-127 crew.

  15. Earth Observation taken by the STS-125 Crew

    2009-05-15

    S125-E-007547 (15 May 2009) --- Low-level winds rushing over the Cape Verde Islands off the coast of northwestern Africa created cloud vortex streets which share this scene with the top of the Hubble Space Telescope locked down in the cargo bay of the Earth-orbiting Space Shuttle Atlantis.

  16. Earth Observations taken by the STS-127 Crew

    2009-07-17

    S127-E-006561 (17 July 2009) -- The Nile River and its delta in Egypt and the Sinai Peninsula and part of the Mediterranean Sea and Red Sea are just a few of the geographic features recognizable in this photograph, taken from an aft window on the Earth-orbiting Space Shuttle Endeavour.

  17. Earth Observations taken by the STS-127 Crew

    2009-07-17

    S127-E-006560 (17 July 2009) -- The Nile River and its delta in Egypt and the Sinai Peninsula and part of the Mediterranean Sea and Red Sea are just a few of the geographic features recognizable in this photograph, taken from an aft window on the Earth-orbiting Space Shuttle Endeavour.

  18. Crew Earth Observations (CEO) taken during Expedition 8

    2004-01-22

    ISS008-E-12570 (22 January 2004) --- Backdropped by Earth’s horizon and the blackness of space, an unpiloted Progress supply vehicle docked to the International Space Station (ISS) was photographed by one of the Expedition 8 crewmembers. Parts of Iran, the United Arab Emirates, Oman, Strait of Hormuz and the Persian Gulf are also visible.

  19. NASA's Earth Observing System Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne

    2017-01-01

    EOSDIS is a data system created by NASA to manage its collection of Earth Science data. This presentation is a brief description of the data system provided to the general user community. The presentation reviews the data types, management and software development techniques in use to organize the system.

  20. Infrared Red (IR) Earth Observations taken by Expedition 30 crewmember

    2011-12-25

    ISS030-E-015896 (25 Dec. 2011) --- This is an infrared image of Jakarta, Indonesia at night recorded by an Expedition 30 crew member aboard the Earth-orbiting International Space Station on Dec. 25, 2011. A 58-mm focal length was used.