Science.gov

Sample records for earth orbital spacecraft

  1. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  2. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  3. Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2016-01-01

    Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.

  4. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  5. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  6. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  7. Orbital debris environment for spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1990-01-01

    Modeling and measurement results used in formulating an environment model that can be used for the engineering design of spacecraft are reviewed. Earth-based and space-based sensors are analyzed and it is noted that the effects of satellite breakups can be modeled to predict a uncatalogued population, if the nature of the breakup is understood. It is observed that the telescopic data indicate that the current model is too low for sizes slightly larger than 10 cm, and may be too low for sizes between 2 cm and 10 cm, while there is an uncertainty in the current development, especially for sizes smaller than 10 cm, and at altitudes different from 500 km. Projections for the catastrophic collision rate for different growth conditions are made, emphasizing that the rate of growth of fragments will be twice the rate of intact objects.

  8. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  9. Effects of the low Earth orbital environment on spacecraft materials

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1986-01-01

    It is evident from space flights during the last three years that the low Earth orbital (LEO) environment interacts with spacecraft surfaces in significant ways. One manifestation of these interactions is recession of, in particular, organic-polymer-based surfaces presumably due to oxidation by atomic oxygen, the major component of the LEO environment. Three experiments have been conducted on Space Shuttle flights 5, 8 and 41-G to measure reaction rates and the effects of various parameters on reaction rates. Surface recession on these flights indicates reaction efficiencies approximately 3 x 10(-24) cu cm/atoms for unfilled organic polymers. Of the metals, silver and osmium are very reactive. Effects on spacecraft or experiment surfaces can be evaluated using the derived reaction efficiencies and a definition of the total exposure to atomic oxygen. This exposure is obtained using an ambient density model, solar activity data and spacecraft parameters of altitude, attitude and operational date. Oxygen flux on a given surface is obtained from the ambient density and spacecraft velocity and can then be integrated to provide the total exposure or fluence. Such information can be generated using simple computational programs and can be converted to various formats. Overall, the extent of damage is strongly dependent on the type of surface and total exposure time.

  10. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  11. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen, formed in Earth s thermosphere, interacts readily with many materials on spacecraft flying in low Earth orbit (LEO). All hydrocarbon based polymers and graphite are easily oxidized upon the impact of approx.4.5 eV atomic oxygen as the spacecraft ram into the residual atmosphere. The resulting interactions can change the morphology and reduce the thickness of these materials. Directed atomic oxygen erosion will result in the development of textured surfaces on all materials with volatile oxidation products. Examples from space flight samples are provided. As a result of the erosive properties of atomic oxygen on polymers and composites, protective coatings have been developed and are used to increase the functional life of polymer films and composites that are exposed to the LEO environment. The atomic oxygen erosion yields for actual and predicted LEO exposure of numerous materials are presented. Results of in-space exposure of vacuum deposited aluminum protective coatings on polyimide Kapton indicate high rates of degradation are associated with aluminum coatings on both surfaces of the Kapton. Computational modeling predictions indicate that less trapping of the atomic oxygen occurs, with less resulting damage, if only the space-exposed surface is coated with vapor deposited aluminum rather than having both surfaces coated.

  12. Spacecraft Charging Hazards In Low-earth Orbit

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.

    The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.

  13. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  14. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.

    2015-05-01

    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  15. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  16. Characteristics of spacecraft charging in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    2012-07-01

    It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.

  17. Spacecraft orbit/earth scan derivations, associated APL program, and application to IMP-6

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1971-01-01

    The derivation of a time shared, remote site, demand processed computer program is discussed. The computer program analyzes the effects of selected orbit, attitude, and spacecraft parameters on earth sensor detections of earth. For prelaunch analysis, the program may be used to simulate effects in nominal parameters which are used in preparing attitude data processing programs. After launch, comparison of results from a simulation and from satellite data will produce deviations helpful in isolating problems.

  18. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  19. The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Spacecraft and launch vehicle stages abandoned in Earth orbit have historically been a primary source of debris from accidental explosions. In the future, such satellites will become the principal cause of orbital debris via inadvertent collisions. To curtail both the near-term and far-term risks posed by derelict spacecraft and launch vehicle stages to operational space systems, numerous national and international orbital debris mitigation guidelines specifically recommend actions which could prevent or limit such future debris generation. Although considerable progress has been made in implementing these recommendations, some changes to existing vehicle designs can be difficult. Moreover, the nature of some missions also can present technological and budgetary challenges to be compliant with widely accepted orbital debris mitigation measures.

  20. Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Hwang, K. S.; Wu, S. T.

    1995-01-01

    Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.

  1. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    NASA Technical Reports Server (NTRS)

    Conn, Tracie R.; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping fuel expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total delta-v required for long-term station keeping and minimummaximummean spacecraft separation distances are also presented.

  2. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    NASA Astrophysics Data System (ADS)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  3. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for mission success and crew safety. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing launch on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that one would call a repairman to fix something at their home. This approach would reduce ground training requirements, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft.

  4. AEOSS runtime manual for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced earth orbital spacecraft system (AEOSS) enables users to project the required power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxiliary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius' 4th Dimension with a Macintosh version. Because of the licensing agreements, two versions of the AEOSS documents were prepared. This version, AEOSS Runtime Manual, is permitted to be distributed with a finite number of the restrictive 4D Runtime version. It can perform all contained applications without any programming alterations.

  5. AEOSS design guide for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced Earth Orbital Spacecraft System (AEOSS) enables users to project the requried power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxillary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius; 4th Dimension with a Macintosh version. Because of the licensing agreement, two versions of the AEOSS documents were prepared. This version AEOSS Design Guide, is for users to exploit the full capacity of the 4th Dimension. It is for a user who wants to alter or expand the program structures, the program statements, and the program procedures. The user has to possess a 4th Dimension first.

  6. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  7. LEOrbit: A program to calculate parameters relevant to modeling Low Earth Orbit spacecraft-plasma interaction

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Purschke, D.; Samson, J.

    2013-03-01

    Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft

  8. Issues and Effects of Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Sechkar, Edward; Stueber, Thomas; Snyder, Aaron; deGroh, Kim; Haytas, Christy; Brinker, David

    2000-01-01

    The continued presence and use of silicones on spacecraft in low Earth orbit (LEO) has been found to cause the deposition of contaminant films on surfaces which are also exposed to atomic oxygen. The composition and optical properties of the resulting SiO(x)- based (where x is near 2) contaminant films may be dependent upon the relative rates of arrival of atomic oxygen, silicone contaminant and hydrocarbons. This paper presents results of in-space silicone contamination tests, ground laboratory simulation tests and analytical modeling to identify controlling processes that affect contaminant characteristics.

  9. An Alternative Approach to Human Servicing of Manned Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John; Alpert, Brian

    2011-01-01

    As manned spacecraft have grown larger and more complex, they have come to rely on spacewalks or Extravehicular Activities (EVA) for both mission success and crew safety. Typically these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware . This paper proposes an alternative methodology to utilize launch-on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that most people would call a repairman to fix something at their home. This approach would not only reduce ground training requirements and save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, but would also lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current ISS unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft utilizing lessons learned from ISS. As this methodology relies entirely on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of

  10. Investigation of Teflon FEP Embrittlement on Spacecraft in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.

    1997-01-01

    Teflon fluorinated ethylene propylene (FEP) (DuPont) is commonly used on exterior spacecraft surfaces for thermal control in the low-Earth orbit environment. Silverized or aluminized Teflon FEP is used for the outer layers of the thermal control blanket because of its high reflectance, low solar absorptance, and high thermal emittance. Teflon FEP is also desirable because, compared with other spacecraft polymers (such as Kapton), it has relatively high resistance to atomic oxygen erosion. Because of its comparably low atomic oxygen erosion yield, Teflon FEP has been used unprotected in the space environment. Samples of Teflon FEP from the Long Duration Exposure Facility (LDEF) and the Hubble Space Telescope (retrieved during its first servicing mission) were evaluated for solar-induced embrittlement and for synergistic effects of solar degradation and atomic oxygen.

  11. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for assembly and to assure mission success. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires up-mass, volume for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing either launch-on-need hardware and crew or regularly scheduled missions to provide EVA capability for space stations in low Earth orbit after assembly complete. Much the same way that one would call a repairman to fix something at their home these EVAs are dedicated to maintenance and upgrades of the orbiting station. For crew safety contingencies it is assumed the station would be designed such the crew could either solve those issues from inside the spacecraft or use the docked Earth to Orbit vehicles as a return lifeboat, in the same manner as the International Space Station (ISS) which does not rely on EVA for crew safety related contingencies. This approach would reduce ground training requirements for long duration crews, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to any failures such as IVA systems reconfiguration or jumper installation as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted on ISS, including the time required for preparation, and offer an alternative for future spacecraft. As this methodology relies on the on-time and on

  12. A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    1999-01-01

    The accurate prediction of ionizing radiation exposure in low-Earth orbit is necessary in order to minimize risks to astronauts, spacecraft and instrumentation. To this end, models of the radiation environment, the AP-8 trapped proton model and the AE-8 trapped electron model, have been developed for use by spacecraft designers and mission planners. It has been widely acknowledged for some time now by the space radiation community that these models possess some major shortcomings. Both models cover only a limited trapped particle energy region and predictions at low altitudes are extrapolated from higher altitude data. With the launch of the first components of the International Space Station with numerous constellations of low-Earth orbit communications satellites now being planned and deployed, the inadequacies of these trapped particle models need to be addressed. Efforts are now underway both in the U.S. and in Europe to refine the AP-8 and AE-8 trapped particle models. This report is an attempt to collect a significant fraction of data for use in validation of trapped radiation models at low altitudes.

  13. Handling Qualities Evaluation of Pilot Tools for Spacecraft Docking in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Mueller, Eric; Frost, Chad

    2009-01-01

    A new generation of spacecraft is now under development by NASA to replace the Space Shuttle and return astronauts to the Moon. These spacecraft will have a manual control capability for several mission tasks, and the ease and precision with which pilots can execute these tasks will have an important effect on mission risk and training costs. This paper focuses on the handling qualities of a spacecraft based on dynamics similar to that of the Crew Exploration Vehicle, during the last segment of the docking task with a space station in low Earth orbit. A previous study established that handling qualities for this task degrade significantly as the level of translation-into-rotation coupling increases. The goal of this study is to evaluate the efficacy of various pilot aids designed to mitigate the handling qualities degradation caused by this coupling. Four pilot tools were ev adluaetead:d-band box/indicator, flight-path marker, translation guidance cues, and feed-forward control. Each of these pilot tools improved handling qualities, generally with greater improvements resulting from using these tools in combination. A key result of this study is that feedforward control effectively counteracts coupling effects, providing solid Level 1 handling qualities for the spacecraft configuration evaluated.

  14. Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2001-01-01

    Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than

  15. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    NASA Astrophysics Data System (ADS)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  16. Atomic oxygen effects on candidate coatings for long-term spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Lan, E. H.; Smith, Charles A.; Cross, J. B.

    1988-01-01

    Candidate atomic oxygen protective coatings for long-term low Earth orbit (LEO) spacecraft were evaluated using the Los Alamos National Laboratory O-atom exposure facility. The coatings studied include Teflon, Al2O3, SiO2, and SWS-V-10, a silicon material. Preliminary results indicate that sputtered PTFE Teflon (0.1 micrometers) has a fluence lifetime of 10 to the 19th power O-atoms/cm (2), and sputtered silicon dioxide (0.1 micrometers), aluminum oxide (0.1 micrometers), and SWS-V-10, a silicone, (4 micrometers) have fluence lifetimes of 10 to the 20th power to 10 to the 21st power O-atoms/cm (2). There are large variations in fluence lifetime data for these coatings.

  17. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    -year requirement and thus they need specific arrangements for deorbiting at the end of life or they can simply rely on mother nature for reentry. The goal of this proposed approach is to utilize existing technology developed for acceleration measurement in space and state-of-the-art satellite tracking to precisely determine the orbit of a satellite with well-defined geometrical and mass characteristics (i.e., (A/m) ratio), at the same time accurately measuring over a long period of time the drag deceleration (as well as others non-gravitational effects) acting on the satellite. This will result in a virtually drag-free object that can be exploited to: 1. perform fundamental physics tests by verifying the equation of motion of a test mass in the general relativistic context and placing limits to alternative theories of gravitation; 2. improve the knowledge of selected tidal terms; 3. map, through acceleration measurements, the atmospheric density in the orbital region of interest. In its preliminary incarnation, the satellite would be cylindrical in shape and spinning about its cylinder axis that would be also orthogonal to the orbital plane. The satellite should be placed on a dawn-dusk, sun-synchronous, elliptical orbit spanning the orbital altitudes of interest (e.g., between 500 and 1200 km of altitude). The satellite should be equipped with a 3-axis accelerometer package with an acceleration resolution better than (10^{-11} g) (with (g) the acceleration at the Earth's surface). The expected measurement range is (10^{-8} - 10^{-11} g) considering estimates of drag forces at minimum and maximum solar activity conditions in the altitude range of interest and a preliminary estimate of the satellite (A/m) ratio. The overall concept of the mission will be discussed, concentrating on the fundamental aspects and main scientific return. The main instrumentation to be hosted on-board the spacecraft will be then reviewed, with a focus on current and projected capabilities.

  18. Modeling and Data Analysis at the CCMC to Determine Threat of Spacecraft Surface Charging in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; Kuznetsova, M. M.; Zheng, Y.; Jordanova, V.; Yu, Y.; Minow, J. I.

    2016-12-01

    Spacecraft surface charging in Low-Earth Orbit occurs primarily in regions of low plasma density when precipitating electrons drive the spacecraft potential. Sudden changes in electric potentials occur when a spacecraft enters and leaves the sunlit region.At the Community Coordinated Modeling Center, we can employ a multitude of models of the ionosphere-thermosphere and inner magnetosphere to identify regions where spacecraft charging can occur based on thresholds of electron precipitation flux and energy and track the proximity of those areas to positions of satellites of interest. The identified regions will be validated and refined based on satellite observations. This work is in conjunction with the Spacecraft Charging Challenge organized by the GEM Workshop in collaboration with CCMC and the SHIELDS project at LANL.

  19. Detection of hypervelocity dust impacts on the Earth orbiting Cluster and MMS spacecraft and problems with signal interpretation

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo

    2017-04-01

    Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.

  20. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.

    1997-01-01

    Teflon(registered trademark) FEP (fluorinated ethylene-propylene) is commonly used on exterior spacecraft surfaces in the low Earth orbit (LEO) environment for thermal control. Silverized or aluminized FEP is used for the outer layer of thermal control blankets because of its low solar absorptance and high thermal emittance. FEP is also preferred over other spacecraft polymers because of its relatively high resistance to atomic oxygen erosion. Because of its low atomic oxygen erosion yield, FEP has not been protected in the space environment. Recent, long term space exposures such as on the Long Duration Exposure Facility (LDEF, 5.8 years in space), and the Hubble Space Telescope (HST, after 3.6 years in space) have provided evidence of LEO environmental degradation of FEP. These exposures provide unique opportunities for studying environmental degradation because of the long durations and the different conditions (such as differences in altitude) of the exposures. Samples of FEP from LDEF and from HST (retrieved during its first servicing mission) have been evaluated for solar induced embrittlement and for synergistic effects of solar degradation and atomic oxygen. Micro-indenter results indicate that the surface hardness increased as the ratio of atomic oxygen fluence to solar fluence decreased for the LDEF samples. FEP multilayer insulation (MLI) retrieved from HST provided evidence of severe embrittlement on solar facing surfaces. Micro-indenter measurements indicated higher surface hardness values for these samples than LDEF samples, but the solar exposures were higher. Cracks induced during bend testing were significantly deeper for the HST samples with the highest solar exposure than for LDEF samples with similar atomic oxygen fluence to solar fluence ratios. If solar fluences are compared, the LDEF samples appear as damaged as HST samples, except that HST had deeper induced cracks. The results illustrate difficulties in comparing LEO exposed materials from

  1. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  2. Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation

    NASA Technical Reports Server (NTRS)

    Park, Sang-Young; Mazanek, Daniel D.

    2005-01-01

    This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is

  3. Optical effects produced by running onboard engines of low-earth-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Beletskiy, A. B.; Mihalev, A. V.; Hahinov, V. V.; Lebedev, V. P.

    2016-12-01

    This paper presents results of optical observations made during Radar-Progress Experiment performed on April 17, 2013 and July 30, 2014 after approach-correction engines (ACE) of Progress M-17M and Progress M-23M cargo spacecraft in the thermosphere had been started. A region of enhanced emission intensity was recorded during engine operation. This may have been related to the scatter of twilight solar emission along the cargo spacecraft exhaust and to the emergence of additional atomic oxygen [OI] emission at 630 nm. The maximum dimension of the observed emission region was ~330-350 km and ~250-270 km along and across the orbit respectively. For the first time after ACE had been started, an expansion rate of emission region was ~ 7 and ~ 3.5 km/s along and across the orbit respectively. The maximum intensity of the disturbance area for Progress M-17M is estimated as ~40-60 R at 2 nm. Progress M-23M Space Experiment recorded a minor disturbance of atmospheric [OI] 630.0 nm emissions, both in near and in far cargo spacecraft flight paths, which might have been associated with the ACE exhaust gas injection.

  4. Preliminary Results of the GPS Flight Experiment on the High Earth Orbit AMSAT-OSCAR 40 Spacecraft

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.; Bauer, Frank H.; Carpenter, J. Russell; Davis, Edward P.; Davis, George W.; Jackson, Larry A.

    2002-01-01

    The GPS flight experiment on the High Earth Orbit (HEO) AMSAT-OSCAR 40 (AO-40) spacecraft was activated for a period of approximately six weeks between 25 September and 2 November, 2001, and the initial results have exciting implications for using GPS as a low-cost orbit determination sensor for future HEO missions. AO-40, an amateur radio satellite launched November 16, 2000, is currently in a low inclination, 1000 by 58,800 km altitude orbit. Although the GPS receiver was not initialized in any way, it regularly returned GPS observations from points all around the orbit. Raw signal to noise levels as high as 9 AMUs (Trimble Amplitude Measurement Units) or approximately 48 dB-Hz have been recorded at apogee, when the spacecraft was close to 60,000 km in altitude. On several occasions when the receiver was below the GPS constellation (below 20,000 krn altitude), observations were reported for GPS satellites tracked through side lobe transmissions. Although the receiver has not returned any point solutions, there has been at least one occasion when four satellites were tracked simultaneously, and this short arc of data was used to compute point solutions after the fact. These results are encouraging, especially considering the spacecraft is currently in a spin-stabilized attitude mode that narrows the effective field of view of the receiving antennas and adversely affects GPS tracking. Already AO-40 has demonstrated the feasibility of recording GPS observations in HEO using an unaided receiver. Furthermore, it is providing important information about the characteristics of GPS signals received by a spacecraft in a HEO, which has long been of interest to many in the GPS community. Based on the data returned so far, the tracking performance is expected to improve when the spacecraft is transitioned to a three axis stabilized, nadir pointing attitude in Summer, 2002.

  5. Economic and technical aspects of repair, servicing, and retrieval of low earth orbit free flying spacecraft

    NASA Technical Reports Server (NTRS)

    Cepollina, F. J.

    1982-01-01

    The economic and technical aspects of the Solar Maximum Observatory Repair Mission at NASA are presented, in an effort to demonstrate the Space Shuttle capability to rendezvous with and repair on-orbit the Solar Maximum Observatory (SMM). A failure in the Attitude Control Subsystem (ACS) after 10 months of operation caused a loss in precision pointing capability. The Multimission Modular Spacecraft (MMS) used for the mission, was designed with on-orbit repairability, and to correct various instrument anomalies, repiar kits such as an electronics box, a thermal aperture closure, and a high energy particle reflection baffle will be used. In addition, a flight support system will be used to berth, electrically safe, and support all the repair activities. A two year effort is foreseen, and the economic return on SMM will be $176 M, in addition to two to three years of solar observation. The mission will eventually conduct studies on flare as a function of solar cycle.

  6. A comparison of spacecraft penetration hazards due to meteoroids and manmade earth-orbiting objects

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1976-01-01

    The ability of a typical double-walled spacecraft structure to protect against penetration by high-velocity incident objects is reviewed. The hazards presented by meteoroids are compared to the current and potential hazards due to manmade orbiting objects. It is shown that the nature of the meteoroid number-mass relationship makes adequate protection for large space facilities a conceptually straightforward structural problem. The present level of manmade orbiting objects (an estimated 10,000 in early 1975) does not pose an unacceptable risk to manned space operations proposed for the near future, but it does produce penetration probabilities in the range of 1-10 percent for a 100-m diameter sphere in orbit for 1,000 days. The number-size distribution of manmade objects is such that adequate protection is difficult to achieve for large permanent space facilities, to the extent that future restrictions on such facilities may result if the growth of orbiting objects continues at its historical rate.

  7. High-latitude spacecraft charging in low-Earth polar orbit

    NASA Astrophysics Data System (ADS)

    Frooninckx, Thomas B.

    Spacecraft charging within the upper ionosphere is commonly thought to be insignificant and thus has received little attention. Recent experimental evidence has shown that electric potential differences as severe as 680 volts can develop between Defense Meteorological Satellite Program (DMSP) polar-orbiting (840 kilometers) spacecraft and their high-latitude environment. To explore space vehicle charging in this region more fully, an analysis was performed using DMSP F6, F7, F8, and F9 satellite precipitating particle and ambient plasma measurements taken during the winters of 1986-87 (solar minimum) and 1989-90 (solar maximum). An extreme solar cycle dependence was discovered as charging occurred more frequently and with greater severity during the period of solar minimum. One hundred seventy charging events ranging from -46 to 1,430 volts were identified, and satellite measurements and Time Dependent Ionospheric Model (TDIM) output were used to characterize the environments which generated and inhibited these potentials. All current sources were considered to determine the cause of the solar cycle dependence.

  8. A Study on the Effects of J2 Perturbations on a Drag-Free Control System for Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Vess, Melissa Fleck; Starin, Scott R.

    2003-01-01

    Low Earth Orbit (LEO) missions provide a unique means of gathering information about many of Earth s aspects such as climate, atmosphere, and gravitational field. Among the greatest challenges of LEO missions are designing, predicting, and maintaining the spacecraft orbit. The predominant perturbative forces acting on a spacecraft in LEO are J2 and higher order gravitational components, the effects of which are fairly easy to predict, and atmospheric drag, which causes the greatest uncertainty in predicting spacecraft ephemeris. The continuously varying atmospheric drag requires increased spacecraft tracking in order to accurately predict spacecraft location. In addition, periodic propulsive maneuvers typically must be planned and performed to counteract the effects of drag on the spacecraft orbit. If the effects of drag could be continuously and autonomously counteracted, the uncertainty in ephemeris due to atmospheric drag would essentially be eliminated from the spacecraft dynamics. One method of autonomous drag compensation that has been implemented on some missions is drag-free control. Drag-free control of a spacecraft was initially proposed in the 1960's and is discussed extensively by Lange. His drag-free control architecture consists of a free-floating proof mass enclosed within a spacecraft, isolating it from external disturbance forces such as atmospheric drag and solar radiation pressure. Under ideal conditions, internal disturbance forces can be ignored or mitigated, and the orbit of the proof mass depends only on gravitational forces. A sensor associated with the proof mass senses the movement of the spacecraft relative to the proof mass. Using the sensor measurements, the spacecraft is forced to follow the orbit of the proof mass by using low thrust propulsion, thus counteracting any non-gravitational disturbance forces. If the non-gravitational disturbance forces are successfully removed, the spacecraft s orbit will be affected only by well

  9. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet

  10. Lessons Learned From Atomic Oxygen Interaction With Spacecraft Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim, K.; Miller, Sharon K.; Waters, Deborah L.

    2008-01-01

    There have been five Materials International Space Station Experiment (MISSE) passive experiment carriers (PECs) (MISSE 1-5) to date that have been launched, exposed in space on the exterior of International Space Station (ISS) and then returned to Earth for analysis. An additional four MISSE PECs (MISSE 6A, 6B, 7A, and 7B) are in various stages of completion. The PECs are two-sided suitcase to size sample carriers that are intended to provide information on the effects of the low Earth orbital environment on a wide variety of materials and components. As a result of post retrieval analyses of the retrieved MISSE 2 experiments and numerous prior space experiments, there have been valuable lessons learned and needs identified that are worthy of being documented so that planning, design, and analysis of future space environment experiments can benefit from the experience in order to maximize the knowledge gained. Some of the lessons learned involve the techniques, concepts, and issues associated with measuring atomic oxygen erosion yields. These are presented along with several issues to be considered when designing experiments, such as the uncertainty in mission duration, scattering and contamination effects on results, and the accuracy of measuring atomic oxygen erosion.

  11. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; hide

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  12. Low emittance chromated chemical conversion coatings for spacecraft thermal control in low earth orbit

    NASA Astrophysics Data System (ADS)

    LeVesque, R. J.; DeJesus, R. R.; Jones, C. A.; Babel, H. W.

    1996-03-01

    Low emittance coatings were required on the inner side of micro-meteoroid shielding and other structures to minimize heat transfer from the sun illuminated side to the underlying structure. A program was undertaken to evaluate conversion coatings for long term use in space. The conversion coatings evaluated were Alodine 1200 with three different bath chemistries, Iridite 14-2, and Alodine 600. Although the primary emphasis was on evaluating how processing conditions influenced the infrared emittance, corrosion resistance and electrical bonding characteristics were also evaluated. All of the conversion coatings were able to provide the target emittance value of less than 0.10, although baths with ferricyanide accelerators required shorter immersion times than typical of standard shop practices. The balance between emittance, corrosion resistance, and electrical bonding were defined. Space environmental stability tests were conducted on conversion coated 2219 and 7075 aluminum. The emittance and the electrical bonding characteristics were not affected by the space exposure even though the coating dehydrated and mud cracking is evident under a microscope. The dehydration resulted in a loss of corrosion resistance which is a consideration for hardware returned to Earth. It was concluded that conversion coatings are acceptable thermal control coatings for long life spacecraft although additional work is recommended for solar exposed surfaces.

  13. Orbital spacecraft consumables resupply

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.; Eberhardt, Ralph N.; Tracey, Thomas R.

    1988-01-01

    The capability to replenish spacecraft, satellites, and laboratories on-orbit with consumable fluids provides significant increases in their cost and operational effectiveness. Tanker systems to perform on-orbit fluid resupply must be flexible enough to operate from the Space Transportation System (STS), Space Station, or the Orbital Maneuvering Vehicle (OMV), and to accommodate launch from both the Shuttle and Expendable Launch Vehicles (ELV's). Resupply systems for storable monopropellant hydrazine and bipropellants, and water have been developed. These studies have concluded that designing tankers capable of launch on both the Shuttle and ELV's was feasible and desirable. Design modifications and interfaces for an ELV launch of the tanker systems were identified. Additionally, it was determined that modularization of the tanker subsystems was necessary to provide the most versatile tanker and most efficient approach for use at the Space Station. The need to develop an automatic umbilical mating mechanism, capable of performing both docking and coupler mating functions was identified. Preliminary requirements for such a mechanism were defined. The study resulted in a modular tanker capable of resupplying monopropellants, bipropellants, and water with a single design.

  14. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  15. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    NASA Astrophysics Data System (ADS)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  16. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  17. Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ha; Park, Chandeok; Park, Sang-Young

    2015-12-01

    This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

  18. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  19. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  20. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  1. Soviet Soyuz spacecraft in orbit as seen from American Apollo spacecraft

    1975-07-17

    AST-01-053 (17-19 July 1975) --- The Soviet Soyuz spacecraft is contrasted against a black-sky background in this photograph taken in Earth orbit. This view is looking toward the aft end of the Soyuz. Two solar panels protrude out from the spacecraft's Instrument Assembly Module. The ASTP astronauts and cosmonauts visited each other's spacecraft while the Soyuz and Apollo were docked in Earth orbit for two days.

  2. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  3. Orbital dynamics of high area-to-mass ratio spacecraft with J2 and solar radiation pressure for novel Earth observation and communication services

    NASA Astrophysics Data System (ADS)

    Colombo, Camilla; Lücking, Charlotte; McInnes, Colin R.

    2012-12-01

    This paper investigates the effect of planetary oblateness and solar radiation pressure on the orbits of high area-to-mass spacecraft. A planar Hamiltonian model shows the existence of equilibrium orbits with the orbit apogee pointing towards or away from the Sun. These solutions are numerically continued to non-zero inclinations and considering the obliquity of the ecliptic plane relative to the equator. Quasi-frozen orbits are identified in eccentricity, inclination and the angle between the Sun-line and the orbit perigee. The long-term evolution of these orbits is then verified through numerical integration. A set of 'heliotropic' orbits with apogee pointing in the direction of the Sun is proposed for enhancing imaging and telecommunication on the day side of the Earth. The effects of J2 and solar radiation pressure are exploited to obtain a passive rotation of the apsides line following the Sun; moreover the effect of solar radiation pressure enables such orbits at higher eccentricities with respect to the J2 only case.

  4. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  5. Spacecraft Instrumentation to Measure and Stimulate Space Particles and Plasma Waves in the Medium-Earth Orbit (MEO) Regime

    DTIC Science & Technology

    2006-07-12

    fluxgate magnetometer for the AFRL-DSX mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1 nT and...which is essential to fulfill the two primary goals of the DSX science program. 1.1. Scientific Rationale: Ring Current and The fluxgate magnetometer ...UCLA’s ments and the Radiation Belt Remediation primary motivation in providing fluxgate requirements. The magnetic field is necessary magnetometers for

  6. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  7. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  8. An electrically conductive thermal control surface for spacecraft encountering Low-Earth Orbit (LEO) atomic oxygen indium tin oxide-coated thermal blankets

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1987-01-01

    An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.

  9. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  10. An Earth Albedo Model: A Mathematical Model for the Radiant Energy Input to an Orbiting Spacecraft Due to the Diffuse Reflectance of Solar Radiation from the Earth Below

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Moore, Wendy A.

    1994-01-01

    Past missions have shown that the earth's albedo can have a significant effect on the sun sensors used for spacecraft attitude control information. In response to this concern, an algorithm was developed to simulate this phenomenon, consisting of two parts, the physical model of albedo and its effect on the sun sensors. This paper contains the theoretical development of this model, practical operational notes, and its implementation in a FORTRAN subroutine.

  11. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  12. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  13. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  14. Spacecraft attitude determination using the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  15. Orbital simulations of laser-propelled spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.; Melis, Carl; Walsh, Kevin J.

    2015-09-01

    Spacecraft accelerate by directing propellant in the opposite direction. In the traditional approach, the propellant is carried on board in the form of material fuel. This approach has the drawback of being limited in Delta v by the amount of fuel launched with the craft, a limit that does not scale well to high Delta v due to the massive nature of the fuel. Directed energy photon propulsion solves this problem by eliminating the need for on-board fuel storage. We discuss our system which uses a phased array of lasers to propel the spacecraft which contributes no mass to the spacecraft beyond that of the reflector, enabling a prolonged acceleration and much higher final speeds. This paper compares the effectiveness of such a system for propelling spacecraft into interplanetary and interstellar space across various laser and sail configurations. Simulated parameters include laser power, optics size and orbit as well as payload mass, reflector size and the trajectory of the spacecraft. As one example, a 70 GW laser with 10 km optics could propel a 1 kg craft past Neptune (~30 au) in 5 days at 4% the speed of light, or a 1 g "wafer-sat" past Mars (~0.5 au) in 20 minutes at 21% the speed of light. However, even lasers down to 2 kW power and 1 m optics show noticeable effect on gram-class payloads, boosting their altitude in low Earth orbits by several kilometers per day which is already sufficient to be of practical use.

  16. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  17. Illumination from space with orbiting solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Canady, J. E., Jr.; Allen, J. L., Jr.

    1982-01-01

    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed.

  18. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  19. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  20. Envisioning a 21st Century, National, Spacecraft Servicing and Protection Infrastructure and Demand Potential: A Logical Development of the Earth Orbit Economy

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A.

    2003-01-01

    The modern world is extremely dependent on thin strings of several hundred civil, military, and commercial spacecraft/satellites currently stationed in space. They provide a steady stream of commerce, defense, and knowledge data. This dependency will in all likelihood increase significantly during this century. A major disruption of any kind in these essential systems and networks could be socially, economically, and politically catastrophic, on a global scale. The development of a space-based, robotic services economy could be useful in mitigating this growing risk, from an efficiency and security standpoint. This paper attempts to suggest what makes sense to invest in next for the logical, economic development of Earth orbit i.e., after ISS completion. It expands on the results of an advanced market research and analysis study that sampled the opinions of several satellite industry executives and presents these results within a broad policy context. The concept of a spacecraft carrier that serves as the nucleus of a national, space-based or on-orbit, robotic services infrastructure is introduced as the next logical step for United States leadership in space. This is viewed as a reasonable and appropriate followon to the development of ELVs and satellites in the 1950s and 1960s, the Space Shuttle/PRLV in the 1970s and 1980s, and the International Space Station (ISS) in the 1980s, 1990s and 2000s. Large-scale experience in LEO-to-GEO spacecraft/satellite servicing and protection by robotic means is assumed to be an indispensable prerequisite or stepping-stone toward the development and preservation of the large scientific exploration facilities that are envisioned by NASA for operation beyond GEO. A balanced, return on national investment (RONI) strategy for space, focused on the provision of enhanced national/homeland security for increased protection, national economic/industrial expansion for increased revenue, and national scientific exploration for increased

  1. On Orbit Commissioning of the Earth Observing System Microwave Limb Sounder (EOS MLS) On the Aura Spacecraft

    NASA Technical Reports Server (NTRS)

    Lay, Richard R.; Lee, Karen A.; Holden, James R.; Oswald, John E.; Jarnot, Robert F.; Pickett, Herbert M.; Stek, Paul C.; Cofield, Richard E., III; Flower, Dennis A.; Schwartz, Michael J.; hide

    2005-01-01

    The Microwave Limb Sounder instrument was launched aboard NASA's EOS AURA satellite in July, 2004. The overall scientific objectives for MLS are to measure temperature, pressure, and several important chemical species in the upper troposphere and stratosphere relevant to ozone processes and climate change. MLS consists of a suite of radiometers designed to operate from 11 8 GHz to 2.5 THz, with two antennas (one for 2.5 THz, the other for the lower frequencies) that scan vertically through the atmospheric limb, and spectrometers with spectral resolution of 6 MHz at spectral line centers. This paper describes the on-orbit commissioning the MLS instrument which includes activation and engineering functional verifications and calibrations.

  2. Artist concept of Magellan spacecraft orbiting Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft orbits Venus in this artist concept. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  3. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  4. Orbit Maintenance and Navigation of Human Spacecraft at Cislunar Near Rectilinear Halo Orbits

    NASA Technical Reports Server (NTRS)

    Davis, Diane; Bhatt, Sagar; Howell, Kathleen; Jang, Jiann-Woei; Whitley, Ryan; Clark, Fred; Guzzetti, Davide; Zimovan, Emily; Barton, Gregg

    2017-01-01

    Multiple studies have concluded that Earth-Moon libration point orbits are attractive candidates for staging operations. The Near Rectilinear Halo Orbit (NRHO), a member of the Earth-Moon halo orbit family, has been singularly demonstrated to meet multi-mission architectural constraints. In this paper, the challenges associated with operating human spacecraft in the NRHO are evaluated. Navigation accuracies and human vehicle process noise effects are applied to various station keeping strategies in order to obtain a reliable orbit maintenance algorithm. Additionally, the ability to absorb missed burns, construct phasing maneuvers to avoid eclipses and conduct rendezvous and proximity operations are examined.

  5. Earth Orbit Raise Design for the Artemis Mission

    NASA Technical Reports Server (NTRS)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  6. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  7. Extensive Radiation Shielding Analysis for Different Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Çay, Yiǧit; Kaymaz, Zerefsan

    2016-07-01

    Radiation environment around Earth poses a great danger for spacecraft and causes immature de-orbiting or loss of the spacecraft in near Earth space environment. In this study, a student project has been designed to build a CubeSat, PolarBeeSail (PBS), with an orbit having inclination of 80°, 4 Re in perigee and 20 Re in apogee to study the polar magnetospheric environment. An extensive radiation dose analyses were carried out for PBS orbit, and integral and differential fluxes were calculated using SPENVIS tools. A shielding analysis was performed and an optimum Aluminum thickness, 3 mm, was obtained. These results for PBS were then compared for other orbits at different altitudes both for polar and equatorial orbits. For this purpose, orbital characteristics of POES-19 and GOES-15 were used. The resulting proton flux analyses, TID analyses, and further shielding studies were conducted; comparisons and recommendations were made for future design of spacecraft that will use these environments.

  8. Technologies for Refueling Spacecraft On-Orbit

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.

  9. Stochastic Analysis of Orbital Lifetimes of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sasamoto, Washito; Goodliff, Kandyce; Cornelius, David

    2008-01-01

    A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC)--a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine. OLMC enables modeling of variances of key physical parameters that affect orbital lifetimes through the use of probability distributions. These parameters include altitude, speed, and flight-path angle at insertion into orbit; solar flux; and launch delays. The products of OLMC are predicted lifetimes (durations above specified minimum altitudes) for the number of user-specified cases. Histograms generated from such predictions can be used to determine the probabilities that spacecraft will satisfy lifetime requirements. The document discusses uncertainties that affect modeling of orbital lifetimes. Issues of repeatability, smoothness of distributions, and code run time are considered for the purpose of establishing values of code-specific parameters and number of Monte Carlo runs. Results from test cases are interpreted as demonstrating that solar-flux predictions are primary sources of variations in predicted lifetimes. Therefore, it is concluded, multiple sets of predictions should be utilized to fully characterize the lifetime range of a spacecraft.

  10. Safety in earth orbit study. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A summary of the technical results and conclusions is presented of the hazards analyses of earth orbital operations in conjunction with the space shuttle program. The space shuttle orbiter and a variety of manned and unmanned payloads delivered to orbit by the shuttle are considered. The specific safety areas examined are hazardous payloads, docking, on-orbit survivability, tumbling spacecraft, and escape and rescue.

  11. Generating Animated Displays of Spacecraft Orbits

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  12. The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The film describes the Lunar Orbiter's mission to photograph landing areas on the Moon. The Orbiter will be launched from Cape Kennedy using an Atlas Agena booster rocket. Once it is boosted in a trajectory toward the Moon, the Orbiter will deploy two-way earth communication antennas and solar panels for electricity. Attitude control jets will position the solar panels toward the sun and a tracker for a fix on its navigational star. The Orbiter will be put in an off-center orbit around the Moon where it will circle from four to six days. Scientists on Earth will study the effects of the Moon's gravitational field on the spacecraft, then the orbit will be lowered to 28 miles above the Moon's surface. Engineers will control the Orbiter manually or by computer to activate two camera lenses. The cameras will capture pictures of 12,000 square miles of lunar surface in 25 and 400 square mile increments. Pictures will be sent back to Earth using solar power to transmit electrical signals. The signals will be received by antennas at Goldstone, CA, and in Australia and Spain. Incoming photographic data will be electronically converted and processed to produce large-scale photographic images. The mission will be directed from the Space Flight Operations Facility in Pasadena, CA by NASA and Boeing engineers. After the photographic mission, the Orbiter will continue to circle the Moon providing information about micrometeoroids and radiation in the vicinity.

  13. Risk Analysis of On-Orbit Spacecraft Refueling Concepts

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Stromgren, Chel; Cates, Grant R.

    2010-01-01

    On-orbit refueling of spacecraft has been proposed as an alternative to the exclusive use of Heavy-lift Launch Vehicles to enable human exploration beyond Low Earth Orbit (LEO). In these scenarios, beyond LEO spacecraft are launched dry (without propellant) or partially dry into orbit, using smaller or fewer element launch vehicles. Propellant is then launched into LEO on separate launch vehicles and transferred to the spacecraft. Refueling concepts are potentially attractive because they reduce the maximum individual payload that must be placed in Earth orbit. However, these types of approaches add significant complexity to mission operations and introduce more uncertainty and opportunities for failure to the mission. In order to evaluate these complex scenarios, the authors developed a Monte Carlo based discrete-event model that simulates the operational risks involved with such strategies, including launch processing delays, transportation system failures, and onorbit element lifetimes. This paper describes the methodology used to simulate the mission risks for refueling concepts, the strategies that were evaluated, and the results of the investigation. The results of the investigation show that scenarios that employ refueling concepts will likely have to include long launch and assembly timelines, as well as the use of spare tanker launch vehicles, in order to achieve high levels of mission success through Trans Lunar Injection.

  14. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  15. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  16. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  17. Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations

    NASA Astrophysics Data System (ADS)

    Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.

    2013-09-01

    The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (<5cm) of MMOD (Micro-Meteoroids and Orbital Debris). Compliance implies to think about spacecraft robustness as redundancies, segregations and shielding devices (as implemented in crewed missions but in a more complex mass - cost - criticality trade- off). Consequently the need is non-only to demonstrate the PNP compliance requirement but also the PNF (probability of Non-Failure) per impact location on all parts of the vehicle and investigate the probabilities for the different fatal scenarios: loss of mission, loss of spacecraft (space environment critical) and spacecraft fragmentation (space environment catastrophic).The recent THALES experience known on ESA Sentinel-3, of increasing need of robustness has led the ALTRAN company to initiate an internal innovative working group on those topics which conclusions may be attractive for their prime manufacturer customers.The intention of this paper is to present a status of this study : * Regulations, requirements and tools available * Detailed FMECA studies dedicated specifically to the MMOD risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on

  18. Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.

    2007-01-01

    Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been

  19. New method for estimating low-earth-orbit collision probabilities

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    An unconventional but general method is described for estimating the probability of collision between an earth-orbiting spacecraft and orbital debris. This method uses a Monte Caralo simulation of the orbital motion of the target spacecraft and each discrete debris object to generate an empirical set of distances, each distance representing the separation between the spacecraft and the nearest debris object at random times. Using concepts from the asymptotic theory of extreme order statistics, an analytical density function is fitted to this set of minimum distances. From this function, it is possible to generate realistic collision estimates for the spacecraft.

  20. Low-Earth orbit satellite servicing economics

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Cepollina, F. J.

    1982-01-01

    Servicing economics of low Earth orbit satellites were studied. The following topics are examined: the economic importance of the repair missions; comparison of mission cost as opposed to satellite modulation transfer functions over a 10 year period; the effect of satellite flight rate change due to changes in satellite failure rate; estimated satellite cost reduction with shuttle operation projects from the 1960's to the 1970's; design objectives of the multimission modular spacecraft; and the economic importance of the repair mission.

  1. Earth to Orbit Beamed Energy Experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  2. Graphical techniques to assist in pointing and control studies of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Ruf, J. H.

    1986-01-01

    Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.

  3. Spacecraft on-orbit deployment anomalies - What can be done?

    NASA Astrophysics Data System (ADS)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  4. Sources of orbital debris and the projected environment for future spacecraft

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1980-01-01

    The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.

  5. Anomalous accelerations in spacecraft flybys of the Earth

    NASA Astrophysics Data System (ADS)

    Acedo, L.

    2017-12-01

    The flyby anomaly is a persistent riddle in astrodynamics. Orbital analysis in several flybys of the Earth since the Galileo spacecraft flyby of the Earth in 1990 have shown that the asymptotic post-encounter velocity exhibits a difference with the initial velocity that cannot be attributed to conventional effects. To elucidate its origin, we have developed an orbital program for analyzing the trajectory of the spacecraft in the vicinity of the perigee, including both the Sun and the Moon's tidal perturbations and the geopotential zonal, tesseral and sectorial harmonics provided by the EGM96 model. The magnitude and direction of the anomalous acceleration acting upon the spacecraft can be estimated from the orbital determination program by comparing with the trajectories fitted to telemetry data as provided by the mission teams. This acceleration amounts to a fraction of a mm/s2 and decays very fast with altitude. The possibility of some new physics of gravity in the altitude range for spacecraft flybys is discussed.

  6. Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Piazzolla, Sabino

    2012-01-01

    The objective of this study is to investigate the potential of using the bright and near-uniform Earth infrared (or wavelength infrared, LWIR) signature as a stable reference for accurate (micro-rad or less) inertial pointing and tracking on-board an space vehicle, including the determination of the fundamental limits of applicability of the proposed method for space missions. We demonstrate sub-micro radian level pointing accuracy under a representative set of disturbances experienced by the spacecraft in orbit.

  7. Earth from Orbit 2014

    2015-04-20

    Every day of every year, NASA satellites provide useful data about our home planet, and along the way, some beautiful images as well. This video includes satellite images of Earth in 2014 from NASA and its partners as well as photos and a time lapse video from the International Space Station. We’ve also included a range of data visualizations, model runs, and a conceptual animation that were produced in 2014 (but in some cases might have been utilizing data from earlier years.) Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  9. On-Orbit ACDS Performance of the Landsat 7 Spacecraft

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip; Bolek, Joseph; Scott, Steve; Holmes, Eric; O'Donnell, James R., Jr.; Storey, James

    2001-01-01

    Landsat 7 is part of NASA's Earth Science Enterprise (ESE). The ESE is committed to developing an understanding of the total Earth system, the effects of natural and human-induced changes on the global environment, and how natural processes affect humans and how humans affect them. The Landsat 7 satellite consists of the spacecraft bus which was provided under a NASA contract with Lockheed Martin Missiles and Space in Philadelphia, PA, and the Enhanced Thematic Mapper-Plus (ETM+) instrument, procured under a NASA contract with Raytheon Santa Barbara Remote Sensing, in Santa Barbara, CA. The Landsat 7 Attitude Control and Determination System (ACDS) provides many essential functions for the operation of the spacecraft bus and for ETM+. The ACDS maintains the required attitude and orbit at the degree of accuracy necessary for power generation, command and telemetry, thermal balance, image acquisition, Gimbaled X-Band Antenna (GXA) pointing and data for image post-processing. Descriptions of the Landsat 7 mission and the ACDS modes and requirements are presented. A brief summary of significant events of the on-orbit initialization and validation period are provided. Finally, the Landsat 7 product generation system is described and the impact that the ACDS performance has on the ground based image processing system is explored.

  10. LO2/LH2 propulsion for outer planet orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  11. The 2014 Earth return of the ISEE-3/ICE spacecraft

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Farquhar, Robert W.; Loucks, Michel; Roberts, Craig E.; Wingo, Dennis; Cowing, Keith L.; Garcia, Leonard N.; Craychee, Tim; Nickel, Craig; Ford, Anthony; Colleluori, Marco; Folta, David C.; Giorgini, Jon D.; Nace, Edward; Spohr, John E.; Dove, William; Mogk, Nathan; Furfaro, Roberto; Martin, Warren L.

    2015-05-01

    In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit. In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment. After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second ΔV (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was

  12. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Astrophysics Data System (ADS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  13. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-01-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  14. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  15. Analysis of spacecraft on-orbit anomalies and lifetimes

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Graham, W.

    1983-01-01

    Analyses of the on-orbit performance of forty-four unmanned NASA spacecraft are presented. Included are detailed descriptions and classifications of over 600 anomalies; each anomalous incident represents one reported deviation from expected spacecraft performance. Charts depicting satellite lifetimes and the performance of their major subsystems are included. Engineering analyses to further investigate the kinds and frequencies of various classes of anomalies have been conducted. An improved method for charting spacecraft capability as a function of time on orbit is explored.

  16. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit

    NASA Astrophysics Data System (ADS)

    Herman, Jay; Huang, Liang; McPeters, Richard; Ziemke, Jerry; Cede, Alexander; Blank, Karin

    2018-01-01

    EPIC (Earth Polychromatic Imaging Camera) on board the DSCOVR (Deep Space Climate Observatory) spacecraft is the first earth science instrument located near the earth-sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity), SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI) in the Andes and Himalayas (greater than 18), and high values of UVI near the Equator at equinox.

  17. EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.

  18. Simulated Aging of Spacecraft External Materials on Orbit

    NASA Astrophysics Data System (ADS)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  19. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  20. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  1. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  2. Earth orbiting Sisyphus system study

    NASA Technical Reports Server (NTRS)

    Jurkevich, I.; Krause, K. W.; Neste, S. L.; Soberman, R. K.

    1971-01-01

    The feasibility of employing an optical meteoroid detecting system, known as Sisyphus, to measure the near-earth particulates from an earth orbiting vehicle, is considered. A Sisyphus system can discriminate between natural and man-made particles since the system measures orbital characteristics of particles. A Sisyphus system constructed for the Pioneer F/G missions to Jupiter is used as the baseline, and is described. The amount of observing time which can be obtained by a Sisyphus instrument launched into various orbits is determined. Observation time is lost when, (1) the Sun is in or near the field of view, (2) the lighted Earth is in or near the field of view, (3) the instrument is eclipsed by the Earth, and (4) the phase angle measured at the particle between the forward scattering direction and the instrument is less than a certain critical value. The selection of the launch system and the instrument platform with a dedicated, attitude controlled payload package is discussed. Examples of such systems are SATS and SOLRAD 10(C) vehicles, and other possibilities are AVCO Corp. S4 system, the OWL system, and the Delta Payload Experiment Package.

  3. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    NASA Astrophysics Data System (ADS)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  4. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  5. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  6. A Jupiter Orbiter mother/daughter spacecraft concept

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1975-01-01

    The feasibility of a tandem launch of a mother/daughter spacecraft pair with a single launch vehicle for a 1981 Mariner Jupiter Orbiter mission is described. The mother is a close derivative of the three-axis stabilized Mariner Jupiter Saturn 1977 spacecraft with the addition of a Viking-type propulsion module for orbit capture; it concentrates on the planetology and satellite science objectives. The daughter is a small, simple spin-stabilized spacecraft taking advantage of the mother's transit and delivery capabilities; it obtains in-situ measurements of the surrounding planetary environment. A conceptual design of the daughter spacecraft is presented.

  7. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  8. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  9. Supportability for Beyond Low Earth Orbit Missions

    NASA Technical Reports Server (NTRS)

    Crillo, William M.; Goodliff, Kandyce E.; Aaseng, Gordon; Stromgren, Chel; Maxwell, Andrew J.

    2011-01-01

    Exploration beyond Low Earth Orbit (LEO) presents many unique challenges that will require changes from current Supportability approaches. Currently, the International Space Station (ISS) is supported and maintained through a series of preplanned resupply flights, on which spare parts, including some large, heavy Orbital Replacement Units (ORUs), are delivered to the ISS. The Space Shuttle system provided for a robust capability to return failed components to Earth for detailed examination and potential repair. Additionally, as components fail and spares are not already on-orbit, there is flexibility in the transportation system to deliver those required replacement parts to ISS on a near term basis. A similar concept of operation will not be feasible for beyond LEO exploration. The mass and volume constraints of the transportation system and long envisioned mission durations could make it difficult to manifest necessary spares. The supply of on-demand spare parts for missions beyond LEO will be very limited or even non-existent. In addition, the remote nature of the mission, the design of the spacecraft, and the limitations on crew capabilities will all make it more difficult to maintain the spacecraft. Alternate concepts of operation must be explored in which required spare parts, materials, and tools are made available to make repairs; the locations of the failures are accessible; and the information needed to conduct repairs is available to the crew. In this paper, ISS heritage information is presented along with a summary of the challenges of beyond LEO missions. A number of Supportability issues are discussed in relation to human exploration beyond LEO. In addition, the impacts of various Supportability strategies will be discussed. Any measure that can be incorporated to reduce risk and improve mission success should be evaluated to understand the advantages and disadvantages of implementing those measures. Finally, an effort to model and evaluate

  10. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments

    NASA Astrophysics Data System (ADS)

    Vaquero Escribano, Tatiana Mar

    Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is

  11. Line drawing titled 'TDRS Spacecraft On-Orbit Configuration'

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawing titled 'TDRS Spacecraft On-Orbit Configuration' identifies the various tracking and data relay satellite (TDRS) components (solar arrays, C-Band antenna, K-Band antenna, space ground link (SGL) antenna, single access antennas, multiple access antenna, omni antenna, solar sail). A TDRS will be deployed during the STS-26 mission. Including the space shuttle, the TDRS will be equipped to support up to 26 user spacecraft simultaneously. It will provide two types of service: 1) multiple access which can relay data from as many as 20 low data rate (100 bits per second to 50 kilobits per second) user satellites simultaneously and; 2) single access which will provide two high data rate (to 300 megabits per second) communication relays. The TDRS is three-axis stabilizrd with the body fixed antennas pointing constantly at the Earth while the solar arrays track the Sun. TDR satellites do no processing of user traffic in either direction. Rather, they operate as 'bent pipe' repeaters,

  12. Galileo orbit determination for the Venus and Earth-1 flybys

    NASA Astrophysics Data System (ADS)

    Kallemeyn, P. H.; Haw, R. J.; Pollmeier, V. M.; Nicholson, F. T.; Murrow, D. W.

    1992-08-01

    This paper presents the orbit determination strategy and results in navigating the Galileo spacecraft from launch through its Venus and first earth flybys. Many nongravitational effects were estimated, including solar radiation pressure, small velocity impulses from attitude changes and eight trajectory correction maneuvers. Tracking data consisted of S-Band Doppler and range. The fitting of Doppler was difficult since one of the cpacecraft's two antennas was offset from the spin axis, thus producing the sinusoidal velocity fluctuation seen in the data. Finally, Delta Differential One-way Range data was used during the last three months of the earth approach to help deliver the spacecraft to within desired accuracy.

  13. Spacecraft Formation Flying near Sun-Earth L2 Lagrange Point: Trajectory Generation and Adaptive Full-State Feedback Control

    NASA Technical Reports Server (NTRS)

    Wong, Hong; Kapila, Vikram

    2004-01-01

    In this paper, we present a method for trajectory generation and adaptive full-state feedback control to facilitate spacecraft formation flying near the Sun-Earth L2 Lagrange point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft formation is created by placing a leader spacecraft on a desired Halo orbit and placing follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo orbit. Then, we design an adaptive, full-state feedback position tracking controller for the follower spacecraft providing an adaptive compensation for the unknown mass of the follower spacecraft. The proposed control law is simulated for the case of the leader and follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative position tracking errors.

  14. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph; Willis, Emily

    2014-01-01

    Internal charging is not generally considered a threat in low Earth orbit due to the relatively short exposure times and low flux of electrons with energies of a few MeV encountered in typical orbits. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. We investigate the conditions required for this internal charging process to occur in low Earth orbit using a one-dimensional charging model and evaluate the environments for which the process may be a threat to spacecraft.

  15. Neutron Environment Calculations for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Clowdsley, M. S.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Heinbockel, J. H.; Atwell, W.

    2001-01-01

    The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth's magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth's atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors. The models discussed herein are being developed to evaluate the natural and induced environment data for the Intelligence Synthesis Environment Project and eventual use in spacecraft optimization.

  16. Deep Reconditioning Testing for near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Betz, F. E.; Barnes, W. L.

    1984-01-01

    The problems and benefits of deep reconditioning to near Earth orbit missions with high cycle life and shallow discharge depth requirements is discussed. A simple battery level approach to deep reconditioning of nickel cadmium batteries in near Earth orbit is considered. A test plan was developed to perform deep reconditioning in direct comparison with an alternative trickle charge approach. The results demonstrate that the deep reconditioning procedure described for near Earth orbit application is inferior to the alternative of trickle charging.

  17. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  18. Orbital thermal analysis of lattice structured spacecraft using color video display techniques

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Palmer, M. T.

    1983-01-01

    A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.

  19. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  20. Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1992-01-01

    Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements.

  1. Short- and Long-Term Propagation of Spacecraft Orbits

    NASA Technical Reports Server (NTRS)

    Smith, John C., Jr.; Sweetser, Theodore; Chung, Min-Kun; Yen, Chen-Wan L.; Roncoli, Ralph B.; Kwok, Johnny H.; Vincent, Mark A.

    2008-01-01

    The Planetary Observer Planning Software (POPS) comprises four computer programs for use in designing orbits of spacecraft about planets. These programs are the Planetary Observer High Precision Orbit Propagator (POHOP), the Planetary Observer Long-Term Orbit Predictor (POLOP), the Planetary Observer Post Processor (POPP), and the Planetary Observer Plotting (POPLOT) program. POHOP and POLOP integrate the equations of motion to propagate an initial set of classical orbit elements to a future epoch. POHOP models shortterm (one revolution) orbital motion; POLOP averages out the short-term behavior but requires far less processing time than do older programs that perform long-term orbit propagations. POPP postprocesses the spacecraft ephemeris created by POHOP or POLOP (or optionally can use a less accurate internal ephemeris) to search for trajectory-related geometric events including, for example, rising or setting of a spacecraft as observed from a ground site. For each such event, POPP puts out such user-specified data as the time, elevation, and azimuth. POPLOT is a graphics program that plots data generated by POPP. POPLOT can plot orbit ground tracks on a world map and can produce a variety of summaries and generic ordinate-vs.-abscissa plots of any POPP data.

  2. Apparatus and method of capturing an orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Harwell, William D. (Inventor); Gardner, Dale A. (Inventor)

    1987-01-01

    Apparatus and a method of capturing an orbiting spacecraft by attaching a grapple fixture are discussed. A probe is inserted into an opening, such as a rocket nozzle, in the spacecraft until a stop on the prove mechanism contacts the spacecraft. A lever is actuated releasing a spring loaded rod which moves axially along the probe removing a covering sleeve to expose spring loaded toffle fingers which pivot open engaging the side of the opening. The probe is shortened and tensioned by turning a screw thread, pressing the fingers inside of the opening to compress the spacecraft between the toggle fingers and the stop. A grapple fixture attached to the probe, which is thus secured to the spacecraft, is engaged by appropriate retrieval means such as a remote manipulator arm.

  3. Conceptual design of a two stage to orbit spacecraft

    NASA Technical Reports Server (NTRS)

    Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.

    1993-01-01

    This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.

  4. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  5. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  6. Single Event Effects Testing For Low Earth Orbit Missions with Neutrons

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon; O'Neill, Pat; Bailey, Chuck; Nguyen, Kyson

    2015-01-01

    Neutrons can effectively be used to screen electronic parts intended to be used in Low Earth Orbit. This paper compares neutron with proton environments in spacecraft and discusses recent comparison testing.

  7. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  8. Tests of general relativity in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1989-01-01

    Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.

  9. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  10. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  11. Multi-sun-synchronous (MSS) orbits for earth observation

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Anselmo, Luciano

    1992-08-01

    A case study is outlined for a remote-sensing mission at low and middle latitudes based on multi-sun-synchronous (MSS) orbits. The scenario involves the use of small payloads in low-earth posigrade orbits that would overfly the Mediterranean region. A 600-kg spacecraft is considered in an orbit that is 571 km in altitude and at an inclination of 42.5 deg. The orbit is analyzed in terms of mission characteristics, and two years of operation is shown to be feasible with a fuel-consumption rate of less than three kg/yr of hydrazine. The mission could be based on the use of a Scout solid-propellant rockets into an MSS orbit, and only a limited number of ground stations are required for good data collection. A remote-sensing mission at low/middle latitudes is shown to be efficient in terms of both revisit frequency, fuel consumption, and data acquisition.

  12. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    NASA Technical Reports Server (NTRS)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  13. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  14. Earth-to-Orbit Beamed Energy eXperiment (EBEX)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are 1) large area, low mass spacecraft and 2) efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. A more detailed investigation of accessing LightSail-2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, it is a first step toward that

  15. Contamination of optical surfaces in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.

    1992-01-01

    Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.

  16. Aqua Satellite Orbiting Earth Artist Concept

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  17. BepiColombo — The Next Step of Mercury Exploration with Two Orbiting Spacecraft

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2018-05-01

    BepiColombo is a joint project between ESA and JAXA. The mission consists of two orbiters — the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. From dedicated orbits, the spacecraft will be studying the planet and its environment.

  18. Low Earth Orbit (LEO) Commercial Market Projections

    DOT National Transportation Integrated Search

    1995-05-16

    This study assesses the possible number of small commercial satellites to be : launched to Low Earth Orbit (LEO) in the period 1995-2005. The information : provided reflects an Office of Commercial Space Transportation (OCST) : assessment of overall ...

  19. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  20. NASA Spacecraft Images One of Earth Iceberg Incubators

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  1. Fuel optimal maneuvers of spacecraft about a circular orbit

    NASA Technical Reports Server (NTRS)

    Carter, T. E.

    1982-01-01

    Fuel optimal maneuvers of spacecraft relative to a body in circular orbit are investigated using a point mass model in which the magnitude of the thrust vector is bounded. All nonsingular optimal maneuvers consist of intervals of full thrust and coast and are found to contain at most seven such intervals in one period. Only four boundary conditions where singular solutions occur are possible. Computer simulation of optimal flight path shapes and switching functions are found for various boundary conditions. Emphasis is placed on the problem of soft rendezvous with a body in circular orbit.

  2. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  3. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  4. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  5. Simplified adaptive control of an orbiting flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Maganti, Ganesh B.; Singh, Sahjendra N.

    2007-10-01

    The paper presents the design of a new simple adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. A moment generating device located on the central rigid body of the spacecraft is used for the attitude control. It is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension. In addition, only the pitch angle and its derivative are measured and elastic modes are not available for feedback. The control output variable is chosen as the linear combination of the pitch angle and the pitch rate. Exploiting the hyper minimum phase nature of the spacecraft, a simple adaptive control law is derived for the pitch angle control and elastic mode stabilization. The adaptation rule requires only four adjustable parameters and the structure of the control system does not depend on the order of the truncated spacecraft model. For the synthesis of control system, the measured output error and the states of a third-order command generator are used. Simulation results are presented which show that in the closed-loop system adaptive output regulation is accomplished in spite of large parameter uncertainties and disturbance input.

  6. GPS World, Innovation: Autonomous Navigation at High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bamford, William; Winternitz, Luke; Hay, Curtis

    2005-01-01

    Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these

  7. Secure communications with low-orbit spacecraft using quantum cryptography

    DOEpatents

    Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Luther, Gabriel G.; Morgan, George L; Nordholt, Jane E.; Peterson, Charles G.; Simmons, Charles M.

    1999-01-01

    Apparatus and method for secure communication between an earth station and spacecraft. A laser outputs single pulses that are split into preceding bright pulses and delayed attenuated pulses, and polarized. A Pockels cell changes the polarization of the polarized delayed attenuated pulses according to a string of random numbers, a first polarization representing a "1," and a second polarization representing a "0." At the receiving station, a beamsplitter randomly directs the preceding bright pulses and the polarized delayed attenuated pulses onto longer and shorter paths, both terminating in a beamsplitter which directs the preceding bright pulses and a first portion of the polarized delayed attenuated pulses to a first detector, and a second portion of the polarized delayed attenuated pulses to a second detector to generate a key for secure communication between the earth station and the spacecraft.

  8. Summary of the orbit determination of NOZOMI spacecraft for all the mission period

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Kawaguchi, Jun'Ichiro; Yamakawa, Hiroshi; Kato, Takaji; Ichikawa, Tsutomu; Ohnishi, Takafumi; Ishibashi, Shiro

    2005-07-01

    Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It could have reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. One of the most difficult works was the orbit determination for the period without the telemetry. In this period, for the most of the time the high gain antenna did not point to the earth because of a constraint of the attitude. Therefore, the quality of the tracking data was not good, and for some period it was impossible to get the tracking data at all. Under such critical condition, we managed to get the solution of the orbit, and in a near-miraculous way, we were able to control NOZOMI and execute two earth swingbys successfully. Other issues related to the orbit determination are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve these issues by the conventional way using range and Doppler data. However, we also tried the new method, that is the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys.

  9. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  10. Earth-Mars transfers through Moon Distant Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Conte, Davide; Di Carlo, Marilena; Ho, Koki; Spencer, David B.; Vasile, Massimiliano

    2018-02-01

    This paper focuses on the trajectory design which is relevant for missions that would exploit the use of asteroid mining in stable cis-lunar orbits to facilitate deep space missions, specifically human Mars exploration. Assuming that a refueling "gas station" is present at a given lunar Distant Retrograde Orbit (DRO), ways of departing from the Earth to Mars via that DRO are analyzed. Thus, the analysis and results presented in this paper add a new cis-lunar departure orbit for Earth-Mars missions. Porkchop plots depicting the required C3 at launch, v∞ at arrival, Time of Flight (TOF), and total Δ V for various DRO departure and Mars arrival dates are created and compared with results obtained for low Δ V Low Earth Orbit (LEO) to Mars trajectories. The results show that propellant-optimal trajectories from LEO to Mars through a DRO have higher overall mission Δ V due to the additional stop at the DRO. However, they have lower Initial Mass in LEO (IMLEO) and thus lower gear ratio as well as lower TOF than direct LEO to Mars transfers. This results in a lower overall spacecraft dry mass that needs to be launched into space from Earth's surface.

  11. Rosetta at comet 67P/Churyumov-Gerasimenko: Spacecraft orbit modeling

    NASA Astrophysics Data System (ADS)

    Hahn, Matthias; Paetzold, Martin; Tellmann, Silvia; Haeusler, Bernd; Andert, Thomas

    The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its target comet 67P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investiga-tions (RSI) experiment addresses fundamental aspects of cometary science such as the deter-minations of the nucleus mass and bulk density, its size and shape, its gravity field and internal structure, and its perturbed interplanetary orbit. The radio carrier links at X-band (8.4 GHz) and S-band (2.3 GHz) between the Rosetta spacecraft and the Earth will be used for these investigations. The motion of the spacecraft will be perturbed near the comet nucleus. The Doppler frequency shifts of the transmitted radio signals can be used to reconstruct the flown orbit. In order to extract small changes of the Doppler frequency, a prediction of the orbit is needed which includes best known estimates for all forces acting on the spacecraft. These forces are the nucleus gravity field, third body perturbations, the solar radiation pressure, the solar wind pressure, the cometary outgassing, etc. It is then possible to determine iteratively low degree and order harmonic coefficients of the nucleus gravity field or the gas pressure force and the gas production rate from outgassing from the differences between the predicted and the observed frequency shifts.

  12. An algorithm for enhanced formation flying of satellites in low earth orbit

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  13. The In-Orbit Battery Reconditioning Experience On Board the Orion 1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hoover, S. A.; Daughtridge, S.; Johnson, P. J.; King, S. T.

    1997-01-01

    The Orion 1 spacecraft is a three-axis stabilized geostationary earth orbiting commercial communications satellite which was launched on November 29, 1994 aboard an Atlas II launch vehicle. The power subsystem is a dual bus, dual battery semi-regulated system with one 78 Ampere-hour nickel-hydrogen battery per bus. The batteries were built and tested by Eagle Picher Industries, Inc., of Joplin, MO and were integrated into the spacecraft by its manufacturer, Matra Marconi Space UK Ltd. This paper presents the results obtained during the first four in-orbit reconditioning cycles and compares the battery performance to ground test data. In addition, the on-station battery management strategy and implementation constraints are described. Battery performance has been nominal throughout each reconditioning cycle and subsequent eclipse season.

  14. Keeping a Spacecraft on the Sun-Earth Line

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Kay-Bunnell, Linda

    2005-01-01

    Measurements of Earth's atmosphere as it occults sunlight can be obtained advantageously from a spacecraft placed in the proximity of the Sun-Earth Lagrange point L2. Maintaining the condition of continuous solar occultation by all parts of the atmospheric disk requires that the displacement of the spacecraft perpendicular to the Sun-Earth line remains less than 200 km. However, the gravitational force exerted by the Earth s moon must be negated by propulsion in order to meet this rather tight constraint. We provide an estimate of propulsive force needed to keep the spacecraft coincident with L2, as well as estimates of velocity increments needed to maintain various trajectories in the close vicinity of L2.

  15. Spacecraft Orbit Anomaly Representation Using Thrust-Fourier-Coefficients with Orbit Determination Toolbox

    NASA Astrophysics Data System (ADS)

    Ko, H.; Scheeres, D.

    2014-09-01

    Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX

  16. Orbit Selection for Earth Observation Missions

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1978-01-01

    The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.

  17. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  18. Model predictive control for spacecraft rendezvous in elliptical orbit

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.

    2018-05-01

    This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.

  19. Circulating transportation orbits between earth and Mars

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Niehoff, J. C.; Byrnes, D. V.; Longuski, J. M.

    1986-01-01

    This paper describes the basic characteristics of circulating (cyclical) orbit design as applied to round-trip transportation of crew and materials between earth and Mars in support of a sustained manned Mars Surface Base. The two main types of nonstopover circulating trajectories are the socalled VISIT orbits and the Up/Down Escalator orbits. Access to the large transportation facilities placed in these orbits is by way of taxi vehicles using hyperbolic rendezvous techniques during the successive encounters with earth and Mars. Specific examples of real trajectory data are presented in explanation of flight times, encounter frequency, hyperbolic velocities, closest approach distances, and Delta V maneuver requirements in both interplanetary and planetocentric space.

  20. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  1. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  2. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  3. Earth orbital variations and vertebrate bioevolution

    NASA Technical Reports Server (NTRS)

    Mclean, Dewey M.

    1988-01-01

    Cause of the Pleistocene-Holocene transition mammalian extinctions at the end of the last age is the subject of debate between those advocating human predation and climate change. Identification of an ambient air temperature (AAT)-uterine blood flow (UBF) coupling phenomenon supports climate change as a factor in the extinctions, and couples the extinctions to earth orbital variations that drive ice age climatology. The AAT-UBF phenomenon couples mammalian bioevolution directly to climate change via effects of environmental heat upon blood flow to the female uterus and damage to developing embryos. Extinctions were in progress during climatic warming before the Younger Dryas event, and after, at times when the AAT-UBF couple would have been operative; however, impact of a sudden short-term cooling on mammals in the process of adapting to smaller size and relatively larger S/V would have been severe. Variations in earth's orbit, and orbital forcing of atmospheric CO2 concentrations, were causes of the succession of Pleistocene ice ages. Coincidence of mammalian extinctions with terminations of the more intense cold stages links mammalian bioevolution to variations in earth's orbit. Earth orbital variations are a driving source of vertebrate bioevolution.

  4. A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew

    2017-01-01

    Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (less than 300 km), where atmospheric drag rapidly removes debris, and at very high altitudes (beyond geostationary), where debris is practically non-existent. The vagueness of these boundaries and repeated questions from spacecraft projects have prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of producing a millimeter-deep crater in aluminum for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids throughout near-Earth space.

  5. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  6. Prepping Orbital Sciences? Cygnus commercial cargo spacecraft for undock

    2013-10-21

    ISS037-E-016758 (21 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, gives a thumbs up signal after closing the hatch between the International Space Station’s Harmony node and the Orbital Sciences’ Cygnus commercial cargo spacecraft in preparation for its release after completing a successful demonstration mission to the space station. Cygnus delivered 1,300 pounds of gear on Sept. 29 when it arrived and was captured by Canadarm2 and berthed to the Harmony node.

  7. Airbreathing Acceleration Toward Earth Orbit

    SciT

    Whitehead, J C

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, thenmore » transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.« less

  8. On the use of a sunward libration-point-orbiting spacecraft as an interplanetary magnetic field monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1986-01-01

    In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point to determine the orientation of the interplanetary magnetic field (IMF), the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting the earth, has been calculated for a data set of 1-hour periods covering four months. For each period, a 10-minute average of ISEE 1 data is compared with 10-minute averages of ISEE 3 data at successively lagged intervals. It is concluded that the IMF orientation at a libration-point-orbiting spacecraft, lagged by the time required for the solar wind to convect to the earth, is a convenient predictor of IMF orientation near the earth, to within about 20-degree accuracy.

  9. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  10. PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document

    NASA Technical Reports Server (NTRS)

    Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

    1978-01-01

    The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

  11. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  12. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  13. Satellite probes plasma processes in earth orbit

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.; Reasoner, David L.

    1992-01-01

    The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.

  14. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  15. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview

    NASA Technical Reports Server (NTRS)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; hide

    2009-01-01

    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  16. A search for life on Earth from the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Carlson, R.; Gurnett, D.; Hord, C.

    1993-01-01

    In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrow-band, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the serach for extraterrestrial life by modern interplanetary spacecraft.

  17. A search for life on Earth from the Galileo spacecraft.

    PubMed

    Sagan, C; Thompson, W R; Carlson, R; Gurnett, D; Hord, C

    1993-10-21

    In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrow-band, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the serach for extraterrestrial life by modern interplanetary spacecraft.

  18. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  19. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  20. An industrial information integration approach to in-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Du, Xiaoning; Wang, Hong; Du, Yuhao; Xu, Li Da; Chaudhry, Sohail; Bi, Zhuming; Guo, Rong; Huang, Yongxuan; Li, Jisheng

    2017-01-01

    To operate an in-orbit spacecraft, the spacecraft status has to be monitored autonomously by collecting and analysing real-time data, and then detecting abnormities and malfunctions of system components. To develop an information system for spacecraft state detection, we investigate the feasibility of using ontology-based artificial intelligence in the system development. We propose a new modelling technique based on the semantic web, agent, scenarios and ontologies model. In modelling, the subjects of astronautics fields are classified, corresponding agents and scenarios are defined, and they are connected by the semantic web to analyse data and detect failures. We introduce the modelling methodologies and the resulted framework of the status detection information system in this paper. We discuss system components as well as their interactions in details. The system has been prototyped and tested to illustrate its feasibility and effectiveness. The proposed modelling technique is generic which can be extended and applied to the system development of other large-scale and complex information systems.

  1. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  2. Earth observations taken from shuttle orbiter Columbia

    1995-10-22

    STS073-728-010 (22 October 1995) --- Photographed by the astronauts aboard the Space Shuttle Columbia orbiting at 146 nautical miles above Earth is this scene over West Virginia featuring the Appalachian Mountains. Center point coordinates are 37.5 degrees north latitude and 80.5 degrees west longitude.

  3. Earth Orbital Science, Space in the Seventies.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is part of the "Space in the Seventies" series and reviews the National Aeronautics and Space Administration's (NASA) earth orbital scientific research programs in progress and those to be pursued in the coming decade. Research in space physics is described in Part One in these areas: interplanetary monitoring platforms, small…

  4. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  5. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Technical Reports Server (NTRS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-01-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  6. Earth orbital operations supporting manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  7. Nickel hydrogen low Earth orbit life testing

    NASA Technical Reports Server (NTRS)

    Badcock, C. C.; Haag, R. L.

    1986-01-01

    A program to demonstrate the long term reliability of NiH2 cells in low Earth orbits (LEO) and support use in mid-altitude orbits (MAO) was initiated. Both 3.5 and 4.5 inch diameter nickel hydrogen cells are included in the test plan. Cells from all U.S. vendors are to be tested. The tests will be performed at -5 and 10 C at 40 and 60% DOD for LEO orbit and 10 C and 80% DOD for MAO orbit simulations. The goals of the testing are 20,000 cycles at 60% DOD and 30,000 cycles at 40% DOD. Cells are presently undergoing acceptance and characterization testing at Naval Weapons Systems Center, Crane.

  8. Earth orbital operations supporting manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    1989-01-01

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  9. Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Lesikar, James D., II; Garrick, Joseph C.

    1996-01-01

    Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.

  10. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  11. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  12. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  13. Near Earth asteroid orbit perturbation and fragmentation

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Harris, Alan W.

    1992-01-01

    Collisions by near earth asteroids or the nuclei of comets pose varying levels of threat to man. A relatively small object, approximately 100 meter diameter, which might be found on an impact trajectory with a populated region of the Earth, could potentially be diverted from an Earth impacting trajectory by mass driver rocket systems. For larger bodies, such systems would appear to be beyond current technology. For any size object, nuclear explosions appear to be more efficient, using either the prompt blow-off from neutron radiation, the impulse from ejecta of near-surface explosion for deflection, or as a fragmenting charge. Practical deflections of bodies with diameters of 0.1, 1, and 10 km require interception, years to decades prior to earth encounter, with explosions a few kilotons, megatons, or gigatons, respectively, of equivalent TNT energy to achieve orbital velocity changes or destruction to a level where fragments are dispersed to harmless spatial densities.

  14. Dual technique magnetometer experiment for the Cassini Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Southwood, D. J.; Balogh, A.; Smith, E. J.

    1992-01-01

    The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.

  15. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  16. Spacecraft Maneuvering at the Sun/Earth-Moon L2 Libration Point

    NASA Astrophysics Data System (ADS)

    Shahid, Kamran

    Spacecraft formation flying in the vicinity of the Sun/Earth-Moon libration points offers many promising possibilities for space exploration. The concept of formation flying involves the distribution of the functionality of a single spacecraft among several smaller, cooperative spacecraft. The libration points are locations relative to two large orbiting bodies where a third body with relatively small mass can remain stationary relative to the two larger bodies. The most significant perturbation experienced by a spacecraft at the libration point is effect of solar radiation pressure. This thesis presents the development of nonlinear control techniques for maneuvering control at the Sun-Earth/Moon L2 libration point. A new thruster based formation control technique is presented. We also consider a leader/follower formation architecture, and examine the station keeping control of the leader spacecraft and the formation control of the follower spacecraft using solar radiation pressure. Reference trajectories of the leader spacecraft, halo and Lissajous orbits, are determined using a numerical technique in order to take into account all major gravitational perturbations. The nonlinear controllers are developed based on Lyapunov analysis, including non-adaptive and adaptive designs. Thruster based and solar radiation pressure based control laws for spacecraft maneuvering at the Sun-Earth/Moon libration point are developed. Higher order sliding mode control is utilized to address the non-affine structure of the solar sail control inputs. The reduced input solar radiation pressure problem is properly addressed as an underactuated control problem. The development of adaptive control for solar sail equipped spacecraft is an innovation and represents and advancement in solar sailing control technology. Controller performance is evaluated in a high fidelity ephemeris model to reflect a realistic simulated space environment. The numerical results demonstrate the effectiveness

  17. Earth Albedo and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1985-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  18. Earth albedo and the orbit of Lageos

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. S.

    1986-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  19. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  20. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  1. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  2. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  3. Spacecraft Orbit Design and Analysis (SODA), version 1.0 user's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.; Davis, John S.

    1989-01-01

    The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 1.0 is described. SODA is a spaceflight mission planning system which consists of five program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an EVANS & SUTHERLAND PS300 graphics workstation. BOEING RIM-Version 7 relational database management system performs transparent database services. In the current version three program modules produce an interactive three dimensional (3D) animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. One module produces an interactive 3D animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently Earth, Moon, and Mars systems are supported for all modules except the solar system module.

  4. Spacecraft Orbit Design and Analysis (SODA). Version 2.0: User's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.; Davis, John S.; Zsoldos, Jeffrey S.

    1991-01-01

    The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 2.0, is discussed. SODA is a spaceflight mission planning system that consists of six program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an Evans and Sutherland PS300 graphics workstation. In the current version, three program modules produce an interactive three dimensional animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. Circular and rectangular, off nadir, fixed and scanning sensors are supported. One module produces an interactive three dimensional animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently, Earth, Moon, and Mars systems are supported for all modules except the solar system module.

  5. A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew

    2017-01-01

    Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (<300 km), where atmospheric drag rapidly removes debris, and at very high altitudes beyond GEO (geostationary), where debris is practically non-existent. The vagueness of these boundaries has prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of penetrating a millimeter thick aluminum plate for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids in near Earth space.

  6. On-orbit radiometric calibration over time and between spacecraft using the moon

    Kieffer, H.H.; Stone, T.C.; Barnes, R.A.; Bender, S.; Eplee, R.E.; Mendenhall, J.; Ong, L.; ,

    2002-01-01

    The Robotic Lunar Observatory (ROLO) project has developed a spectral irradiance model of the Moon that accounts for variations with lunar phase through the bright half of a month, lunar librations, and the location of an Earth-orbiting spacecraft. The methodology of comparing spacecraft observations of the Moon with this model has been developed to a set of standardized procedures so that comparisons can be readily made. In the cases where observations extend over several years (e.g., SeaWiFS), instrument response degradation has been determined with precision of about 0.1% per year. Because of the strong dependence of lunar irradiance on geometric angles, observations by two spacecraft cannot be directly compared unless acquired at the same time and location. Rather, the lunar irradiance based on each spacecraft instrument calibration can be compared with the lunar irradiance model. Even single observations by an instrument allow inter-comparison of its radiometric scale with other instruments participating in the lunar calibration program. Observations by SeaWiFS, ALI, Hyperion and MTI are compared here.

  7. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    NASA Astrophysics Data System (ADS)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  8. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sarah; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.

  9. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  10. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  11. Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Defrees, D. (Editor); Brownlee, D. (Editor); Tarter, J. (Editor); Usher, D. (Editor); Irvine, W. (Editor); Klein, H. (Editor)

    1989-01-01

    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented.

  12. Stationkeeping of the First Earth-Moon Libration Orbiters: The ARTEMIS Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Woodard, Mark; Cosgrove, D.

    2011-01-01

    Libration point orbits near collinear locations are inherently unstable and must be controlled. For Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) Earth-Moon Lissajous orbit operations, stationkeeping is challenging because of short time scales, large orbital eccentricity of the secondary, and solar gravitational and radiation pressure perturbations. ARTEMIS is the first NASA mission continuously controlled at both Earth-Moon L1 and L2 locations and uses a balance of optimization, spacecraft implementation and constraints, and multi-body dynamics. Stationkeeping results are compared to pre-mission research including mode directions.

  13. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions

    NASA Astrophysics Data System (ADS)

    Greenspon, J.

    day orbit - with a resupply schedule of 120 days. The initial power grid, based on the ISS's solar array, provides energy during the initial start-up phases. The Operations Core serves as the backbone of the outpost, providing a centrally defined structural brace for other elements. After placement, the core is energized through the deployment of 2 ISS solar wings. Gravitation via rotation will occur approximately 450 days later, with the completion of the habitat elements, when the main reaction control engines are fired to provide an artificial gravity of 8.77 m/s. Station operations begin with deployment of the solar arrays and charging of the battery systems. Newton and Cruis assist in the transporting of supplies and personnel from Earth to Mars via the Outpost, and serve as a crucial component to a long term space exploration/colonization initiative. The cycling spacecraft means of travel has advantages in that it is readily repeatable, immediately demonstrating a long term commitment. The cycling spacecraft, however, represent a less than mature technology. The transportation system between Earth - Outpost - Mars will be perpetually on a duplicate development track with it's "stops". Ares/Diana is advantageous in that they are completely conventional mission profiles with modules and knowledge imported from the International Space Station. While Diana represents a logical next step from Earth, Ares will undoubtedly be developed alongside the Outpost itself.

  14. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  15. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  16. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  17. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  18. Direct Data Distribution From Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.

    1997-01-01

    NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.

  19. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  20. Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Jamnejad, V.; Cesarone, R.

    2003-01-01

    Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.

  1. Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.

    2002-01-01

    Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.

  2. Earth-to-Orbit Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III

    2003-01-01

    The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.

  3. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  4. Human exposure in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F.

    1984-01-01

    Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits.

  5. The gas-surface interaction of a human-occupied spacecraft with a near-Earth object

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Hurley, D. M.; Poston, M. J.; Zimmerman, M. I.; Orlando, T. M.; Hibbitts, C. A.; Killen, R. M.

    2016-11-01

    NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near-Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 1015 H2O's/m2 for space weathered regolith at T ∼ 300 K.

  6. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Programs

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Over the past 50 years, various NASA communities have contributed significantly to maturing NASA s meteoroid and orbital debris (MMOD)1 programs to their current state. As a result of these community efforts, and to NASA s credit, NASA s MMOD programs and models are now widely used and respected by the providers and users of both government and commercial satellites, nationally as well as internationally. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite s structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. The space shuttle, as it orbited Earth, and whether docked to the ISS or not, was optimally oriented to protect its fragile thermal protection and thermal radiation systems from MMOD damage. In addition, astronauts inspected its thermal protection system for MMOD damage before the shuttle reentered Earth s atmosphere; Orion, NASA s capsule to carry astronauts to low Earth orbit, includes designs to mitigate the threat of MMOD damage and provide increased safety to the crew. When a handful of reasonable assumptions are used in NASA s MMOD models, scenarios are uncovered that conclude that the current orbital debris environment has already reached a "tipping point." That is, the amount of debris - in terms of the population of large debris objects, as well as overall mass of debris in orbit - currently in orbit has reached a threshold where it will continually collide with itself, further increasing the population of orbital debris. This increase will lead to corresponding increases in spacecraft failures, which will only create more feedback into the system, increasing the debris population

  7. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  8. Safety concerns for first entry operations of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Steven H.; Limero, Thomas F.; James, John T.

    1994-01-01

    The Space Station Freedom crew will face operational problems unique to the spacecraft environment due to the absence of convection currents and the confined atmosphere within the habitable modules. Airborne contaminants from the materials offgassing or contingency incidents like thermodegradation may accumulate until they reach hazardous concentrations. Flow modeling and experiences from previous space flight missions confirm that caution must be exercised during first-entry operations. A review of the first-entry procedures performed during the Skylab Program will be presented to highlight the necessity for carefully planned operations. Many of the environmental conditions that can be expected on the Space Station are analogous to those which exist in confined storage or work spaces in the industrial setting. Experience with closed-loop environmental operations (e.g., atmospheric control of submarines) have also demonstrated that the buildup of trace contaminant gases could result in conditions that lead to mission termination or loss of crew. Consequently, some first-entry issues for the Station can be addressed by comparing them to familiar techniques developed on Earth. The instruments of the Environmental Health System (EHS) will provide the necessary monitoring capability to protect crew health and safety during the planned first-entry procedures of the MTC phase of the SSF Program. The authors of this paper will describe those procedures and will cite an example of the consequences when proper first-entry procedures are not followed.

  9. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2018-01-01

    In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.

  10. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  11. The dynamics and control of solar-sail spacecraft in displaced lunar orbits

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey George

    Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the

  12. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.

    2014-01-01

    Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a

  13. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  14. Three Super-Earths Orbiting HD 7924

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.

    2015-06-01

    We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  15. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  16. Hardware in-the-Loop Demonstration of Real-Time Orbit Determination in High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Moreau, Michael; Naasz, Bo; Leitner, Jesse; Carpenter, J. Russell; Gaylor, Dave

    2005-01-01

    This paper presents results from a study conducted at Goddard Space Flight Center (GSFC) to assess the real-time orbit determination accuracy of GPS-based navigation in a number of different high Earth orbital regimes. Measurements collected from a GPS receiver (connected to a GPS radio frequency (RF) signal simulator) were processed in a navigation filter in real-time, and resulting errors in the estimated states were assessed. For the most challenging orbit simulated, a 12 hour Molniya orbit with an apogee of approximately 39,000 km, mean total position and velocity errors were approximately 7 meters and 3 mm/s respectively. The study also makes direct comparisons between the results from the above hardware in-the-loop tests and results obtained by processing GPS measurements generated from software simulations. Care was taken to use the same models and assumptions in the generation of both the real-time and software simulated measurements, in order that the real-time data could be used to help validate the assumptions and models used in the software simulations. The study makes use of the unique capabilities of the Formation Flying Test Bed at GSFC, which provides a capability to interface with different GPS receivers and to produce real-time, filtered orbit solutions even when less than four satellites are visible. The result is a powerful tool for assessing onboard navigation performance in a wide range of orbital regimes, and a test-bed for developing software and procedures for use in real spacecraft applications.

  17. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  18. Medium Earth Orbits: Is There a Need for a Third Protected Region?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    The Inter-Agency Space Debris Coordination Committee (IADC) and the United Nations have adopted the concept of near-Earth regions which should be afforded protection from the accumulation of orbital debris. These regions are low Earth orbit (LEO), which extends up to 2000 km altitude, and geosynchronous orbit (GEO), which includes the volume of space encompassed by 35,786 km +/- 200 km in altitude and +/- 15 degrees in inclination. The region between LEO and GEO is commonly referred to as Medium Earth Orbit (MEO). Although historically a small minority of spacecraft have operated in MEO, the number of such satellites residing in or routinely transiting the zone is increasing. The question thus arises: should MEO be considered an orbital debris protected region? This paper first reviews the characteristics of space systems now utilizing MEO, as well as those anticipated to join them in the near future. MEO is then contrasted with LEO and GEO, both physically and pragmatically. Recommended orbital debris mitigation guidelines for MEO space vehicles are highlighted, and the challenges of spacecraft and launch vehicle stage disposal are recognized. Note is also made of the principal tenets of the United Nations Outer Space Treaty and of recent trends toward de facto partitioning of MEO. Finally, the efficacy and practicality of establishing MEO as a new protected region with regard to orbital debris is addressed.

  19. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  20. A simple method to design non-collision relative orbits for close spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  1. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  2. JOSE, Jupiter orbiting spacecraft: A systems study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A brief summary of the mechanical properties of Jupiter is presented along with an organizational outline of the entire JOSE program. Other aspects of the program described include: spacecraft design, mission trajectories, altitude control, propulsion subsystem, on-board power supply, spacecraft structures and environmental design considerations, and telemetry.

  3. Mars approach navigation using Doppler and range measurements to surface beacons and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Estefan, Jeffrey A.

    1991-01-01

    Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.

  4. Large-payload earth-orbit transportation with electric propulsion

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1976-01-01

    Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.

  5. Operationally optimal maneuver strategy for spacecraft injected into sub-geosynchronous transfer orbit

    NASA Astrophysics Data System (ADS)

    Kiran, B. S.; Singh, Satyendra; Negi, Kuldeep

    The GSAT-12 spacecraft is providing Communication services from the INSAT/GSAT system in the Indian region. The spacecraft carries 12 extended C-band transponders. GSAT-12 was launched by ISRO’s PSLV from Sriharikota, into a sub-geosynchronous Transfer Orbit (sub-GTO) of 284 x 21000 km with inclination 18 deg. This Mission successfully accomplished combined optimization of launch vehicle and satellite capabilities to maximize operational life of the s/c. This paper describes mission analysis carried out for GSAT-12 comprising launch window, orbital events study and orbit raising maneuver strategies considering various Mission operational constraints. GSAT-12 is equipped with two earth sensors (ES), three gyroscopes and digital sun sensor. The launch window was generated considering mission requirement of minimum 45 minutes of ES data for calibration of gyros with Roll-sun-pointing orientation in T.O. Since the T.O. period was a rather short 6.1 hr, required pitch biases were worked out to meet the gyro-calibration requirement. A 440 N Liquid Apogee Motor (LAM) is used for orbit raising. The objective of the maneuver strategy is to achieve desired drift orbit satisfying mission constraints and minimizing propellant expenditure. In case of sub-GTO, the optimal strategy is to first perform an in-plane maneuver at perigee to raise the apogee to synchronous level and then perform combined maneuvers at the synchronous apogee to achieve desired drift orbit. The perigee burn opportunities were examined considering ground station visibility requirement for monitoring the burn. Two maneuver strategies were proposed: an optimal five-burn strategy with two perigee burns centered around perigee#5 and perigee#8 with partial ground station visibility and three apogee burns with dual station visibility, a near-optimal five-burn strategy with two off-perigee burns at perigee#5 and perigee#8 with single ground station visibility and three apogee burns with dual station visibility

  6. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  7. On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1984-01-01

    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.

  8. A comprehensive assessment of collision likelihood in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oltrogge, D. L.; Alfano, S.; Law, C.; Cacioni, A.; Kelso, T. S.

    2018-06-01

    Knowing the likelihood of collision for satellites operating in Geosynchronous Earth Orbit (GEO) is of extreme importance and interest to the global community and the operators of GEO spacecraft. Yet for all of its importance, a comprehensive assessment of GEO collision likelihood is difficult to do and has never been done. In this paper, we employ six independent and diverse assessment methods to estimate GEO collision likelihood. Taken in aggregate, this comprehensive assessment offer new insights into GEO collision likelihood that are within a factor of 3.5 of each other. These results are then compared to four collision and seven encounter rate estimates previously published. Collectively, these new findings indicate that collision likelihood in GEO is as much as four orders of magnitude higher than previously published by other researchers. Results indicate that a collision is likely to occur every 4 years for one satellite out of the entire GEO active satellite population against a 1 cm RSO catalogue, and every 50 years against a 20 cm RSO catalogue. Further, previous assertions that collision relative velocities are low (i.e., <1 km/s) in GEO are disproven, with some GEO relative velocities as high as 4 km/s identified. These new findings indicate that unless operators successfully mitigate this collision risk, the GEO orbital arc is and will remain at high risk of collision, with the potential for serious follow-on collision threats from post-collision debris when a substantial GEO collision occurs.

  9. Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region

    NASA Astrophysics Data System (ADS)

    Hanada, Toshiya; Uetsuhara, Masahiko; Nakaniwa, Yoshitaka

    2012-07-01

    Identifying a spacecraft breakup is an essential issue to define the current orbital debris environment. This paper proposes a practical method to identify an orbital anomaly, which appears as a significant discontinuity in the observation data, as a spacecraft breakup. The proposed method is applicable to orbital anomalies in the geostationary region. Long-term orbital evolutions of breakup fragments may conclude that their orbital planes will converge into several corresponding regions in inertial space even if the breakup epoch is not specified. This empirical method combines the aforementioned conclusion with the search strategy developed at Kyushu University, which can identify origins of observed objects as fragments released from a specified spacecraft. This practical method starts with selecting a spacecraft that experienced an orbital anomaly, and formulates a hypothesis to generate fragments from the anomaly. Then, the search strategy is applied to predict the behavior of groups of fragments hypothetically generated. Outcome of this predictive analysis specifies effectively when, where and how we should conduct optical measurements using ground-based telescopes. Objects detected based on the outcome are supposed to be from the anomaly, so that we can confirm the anomaly as a spacecraft breakup to release the detected objects. This paper also demonstrates observation planning for a spacecraft anomaly in the geostationary region.

  10. Automatic trajectory planning for low-thrust active removal mission in low-earth orbit

    NASA Astrophysics Data System (ADS)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano

    2017-03-01

    In this paper two strategies are proposed to de-orbit up to 10 non-cooperative objects per year from the region within 800 and 1400 km altitude in Low Earth Orbit (LEO). The underlying idea is to use a single servicing spacecraft to de-orbit several objects applying two different approaches. The first strategy is analogous to the Traveling Salesman Problem: the servicing spacecraft rendezvous with multiple objects in order to physically attach a de-orbiting kit that reduces the perigee of the orbit. The second strategy is analogous to the Vehicle Routing Problem: the servicing spacecraft rendezvous and docks with an object, spirals it down to a lower altitude orbit, undocks, and then spirals up to the next target. In order to maximise the number of de-orbited objects with minimum propellant consumption, an optimal sequence of targets is identified using a bio-inspired incremental automatic planning and scheduling discrete optimisation algorithm. The optimisation of the resulting sequence is realised using a direct transcription method based on an asymptotic analytical solution of the perturbed Keplerian motion. The analytical model takes into account the perturbations deriving from the J2 gravitational effect and the atmospheric drag.

  11. View of Mission Control during Apollo 9 earth orbital mission

    1969-03-03

    S69-26301 (March 1969) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, during the Apollo 9 Earth-orbital mission. When this photograph was taken a live television transmission was being received from Apollo 9 as it orbited Earth.

  12. The orbital distribution of Near-Earth Objects inside Earth's orbit

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Ngo, Henry; Gladman, Brett

    2012-01-01

    Canada's Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399-433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% of the steady-state NEO population. Vatiras are a previously undiscussed NEO population clearly defined in our integrations, whose orbits lie completely interior to that of Venus. Our integrations also uncovered the unexpected production of retrograde orbits from main-belt asteroid sources; this retrograde NEA population makes up ≃0.1% of the steady-state NEO population. The relative NEO impact rate onto Mercury, Venus, and Earth, as well as the normalized distribution of impact speeds, was calculated from the NEOSSat-1.0 orbital model under the assumption of a steady-state. The new model predicts a slightly higher Mercury impact flux.

  13. Mission design for a halo orbiter of the earth

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Muhonen, D. P.; Richardson, D. L.

    1976-01-01

    The International Sun-Earth Explorer (ISEE) scientific satellite to be stationed in 1978 in the vicinity of the sun-earth interior libration point to continuously monitor the space between the sun and the earth, including the distant geomagnetic tail is described. Orbit selection considerations for the ISEE-C are discussed along with stationkeeping requirements and fuel-optimal trajectories. Due to the alignment of the interior libration point with the sun as viewed from the earth, it will be necessary to place the satellite into a 'halo orbit' around the libration point, in order to eliminate solar interference with down-link telemetry. Parametric data for transfer trajectories between an earth parking orbit (altitude about 185 km) and a libration-point orbit are presented. It is shown that the insertion magnitude required for placing a satellite into an acceptable halo orbit is rather modest.

  14. Earth observations taken from shuttle orbiter Columbia

    1995-10-26

    STS073-708-089 (26 October 1995) --- As evidenced by this 70mm photograph from the Earth-orbiting Space Shuttle Columbia, international borders have become easier to see from space in recent decades. This, according to NASA scientists studying the STS-73 photo collection, is particularly true in arid and semi-arid environments. The scientists go on to cite this example of the razor-sharp vegetation boundary between southern Israel and Gaza and the Sinai. The nomadic grazing practices to the south (the lighter areas of the Sinai and Gaza, top left) have removed most of the vegetation from the desert surface. On the north side of the border, Israel uses advanced irrigation techniques in Israel, mainly "trickle irrigation" by which small amounts of water are delivered directly to plant roots. These water-saving techniques have allowed precious supplies from the Jordan River to be used on farms throughout the country. Numerous fields of dark green can be seen in this detailed view. Scientists say this redistribution of the Jordan River waters has increased the Israeli vegetation cover to densities that approach those that may have been common throughout the Mid-East in wetter early Biblical times. A small portion of the Mediterranean Sea appears top right.

  15. Electric fields in Earth orbital space

    NASA Astrophysics Data System (ADS)

    Olson, W. P.; Pfitzer, K. A.; Scotti, S. J.

    1982-05-01

    This is a report of progress during the past year. The work was performed in three areas with a long term goal understanding the formation and maintenance of electrostatic fields in the earth's magnetosphere. The entry of low energy charged particles into a magnetically closed magnetosphere has been examined in some detail. Entry is permitted because of the non-uniform nature of the magnetic field over the magnetopause surface. Electrostatic fields may be formed across the tail of the magnetosphere because fo the different 'entry efficiencies ' of protons and electrons. The consequences of this particle entry mechanism for the plasma sheet, plasma mantle, and boundary plasmas in the magnetosphere are examined. The mathematics of particle entry was investigated in a one-dimensional boundary using both kinetic theory and bulk MHD parameters. From our participation in the 6th Coordinated Data Analysis Workshop, we have determined that at least during disturbed magnetic conditions, currents persist near geosynchronous orbit in the nightime region which are presently not included in our dynamic magnetic field models. These currents are probably associated with the field aligned currents which close in the ionosphere near auroral latitudes.

  16. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  17. A model of the near-earth plasma environment and application to the ISEE-A and -B orbit

    NASA Technical Reports Server (NTRS)

    Chan, K. W.; Sawyer, K. W.; Vette, J. I.

    1977-01-01

    A model of the near-earth environment to obtain a best estimate of the average flux of protons and electrons in the energy range from 0.1 to 100 keV for the International Sun-Earth Explorer (ISEE)-A and -B spacecraft. The possible radiation damage to the thermal coating on these spinning spacecraft is also studied. Applications of the model to other high-altitude satellites can be obtained with the appropriate orbit averaging. This study is the first attempt to synthesize an overall quantitative environment of low-energy particles for high altitude spacecraft, using data from in situ measurements.

  18. Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.

  19. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    NASA Technical Reports Server (NTRS)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  20. Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-time Profiles

    NASA Technical Reports Server (NTRS)

    Staniewicz, Robert J.; Willson, John; Briscoe, J. Douglas; Rao, Gopalakrishna M.

    2004-01-01

    This viewgraph presentation gives an update on test results from two 16 cell batteries, one in a simulated Low Earth Orbit (LEO) environment and the other in simulated Geosynchronous Earth Orbit (GEO) environment. The tests measured how voltage and capacity are affected over time by thermal cycling.

  1. Evaluation of a Drag-Free Control Concept for Missions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Fleck, Melissa E.; Starin, Scott R.

    2003-01-01

    Atmospheric drag causes the greatest uncertainty in the equations of motion for spacecraft in Low Earth Orbit (LEO). If atmospheric drag eflects can be continuously and autonomously counteracted through the use of a drag-fee control system, drag may essentially be eliminated from the equations of motion for the spacecraft. The main perturbations on the spacecraft will then be those due to the gravitational field, which are much more easily predicted Through dynamical analysis and numerical simulation, this paper presents some potential costs and benefits associated with the fuel used during continuous drag compensation. In light of this cost-benefit analysis, simulation results are used to validate the concept of drag-free control for LEO spacecraft missions having certain characteristics.

  2. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to establish an earth storable fluids tanker concept which satisfies the initial resupply requirements for the Gamma Ray Observatory (GRO) for reasonable front end (design, development, verification) cost while providing growth potential for foreseeable future earth storable resupply mission requirements. The achievement of these objectives becomes possible with the development of a modularized tanker concept which is a hybrid of a dedicated GRO tanker and a generic earth storable propellant tanker.

  3. Radiation Information for Designing and Interpreting Biological Experiments Onboard Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Straume, T.; Slaba, T.; Bhattacharya, S.; Braby, L. A.

    2017-01-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel type missions. Designing such experiments requires knowledge of the radiation environment and its interactions with both the spacecraft and the experimental payload. Information is provided here that is useful for designing such experiments.

  4. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  5. VIew of Mission Control on first day of ASTP docking in Earth orbit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission. The American ASTP flight controllers at JSC were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows Cosmonaut Yuri V. Romanenko at his spacecraft communicator's console in the ASTP mission control center in the Soviet Union.

  6. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  7. Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    DTIC Science & Technology

    2015-06-01

    only take on values that generate real sigma points; therefore, λ > −n. The additional weighting scheme is outlined in the following equations κ = α2...orbit shapes resulted in a similar model weighting. Additional cases of this orbit type also resulted in heavily weighting smaller η value models. It is...determined using both the symmetric and additional parameters UTs. The best values for the weighting parameters are then compared for each test case

  8. Characteristic of the radiation field in low Earth orbit and in deep space.

    PubMed

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  9. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Banks, B. A.; Lenczewski, M.; Demko, R.

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.

  10. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  11. Orbit Determination During Spacecraft Emergencies with Sparse Tracking Data - THEMIS and TDRS-3 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.

    2008-01-01

    This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.

  12. An Artificial Gravity Spacecraft Approach which Minimizes Mass, Fuel and Orbital Assembly Reg

    NASA Astrophysics Data System (ADS)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. Space tourism in low-Earth orbit (LEO), and possibly beyond LEO, comprises one business element of this plan. Supported by a financial gift from the owner of a national U.S. hotel chain, SICSA has examined opportunities, requirements and facility concepts to accommodate up to 100 private citizens and crewmembers in LEO, as well as on lunar/planetary rendezvous voyages. SICSA's artificial gravity Science Excursion Vehicle ("AGSEV") design which is featured in this presentation was conceived as an option for consideration to enable round-trip travel to Moon and Mars orbits and back from LEO. During the course of its development, the AGSEV would also serve other important purposes. An early assembly stage would provide an orbital science and technology testbed for artificial gravity demonstration experiments. An ultimate mature stage application would carry crews of up to 12 people on Mars rendezvous missions, consuming approximately the same propellant mass required for lunar excursions. Since artificial gravity spacecraft that rotate to create centripetal accelerations must have long spin radii to limit adverse effects of Coriolis forces upon inhabitants, SICSA's AGSEV design embodies a unique tethered body concept which is highly efficient in terms of structural mass and on-orbit assembly requirements. The design also incorporates "inflatable" as well as "hard" habitat modules to optimize internal volume/mass relationships. Other important considerations and features include: maximizing safety through element and system redundancy; means to avoid destabilizing mass imbalances throughout all construction and operational stages; optimizing ease of on-orbit servicing between missions; and maximizing comfort and performance through careful attention to human needs. A

  13. Vulnerability of manned spacecraft to crew loss from orbital debris penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, J. E.

    1994-01-01

    Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.

  14. GPS Based Spacecraft Attitude Determination

    DTIC Science & Technology

    1993-09-30

    AD-A271 734 GPS Based Spacecraft Attitude Determination Final Report for October 1992- September 1993 to the Naval Research Laboratory Prepared by .F...ethods ....................................................................... 7 4. Spacecraft Attitude and Orbit Determination... attitude determination techniques to near-Earth spacecraft. The areas addressed include solution algorithms, simulation of the spacecraft and

  15. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to establish an earth storable fluid tanker concept which satisfies the initial resupply requirements for the Gamma Ray Observatory (GRO) at a reasonable front end cost while providing growth potential for foreseeable future earth storable fluid resupply mission requirements. The estimated costs required to design, develop, qualify, fabricate, and deliver a flight tanker and its associated control avionics, ground support equipment (GSE), and processing facilities, and the contractors costs to support the first operations mission are reviewed.

  16. Angles-only relative orbit determination in low earth orbit

    NASA Astrophysics Data System (ADS)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  17. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  18. Low Earth Orbital Atomic Oxygen Interactions With Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.

    2004-01-01

    Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.

  19. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  20. Galileo Declassified: IOV Spacecraft Metadata and Its Impact on Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Schönemann, Erik; Springer, Tim; Flohrer, Claudia; Enderle, Werner

    2017-04-01

    In December 2016, shortly after the declaration of Galileo Initial Services, the European GNSS Agency (GSA) disclosed Galileo spacecraft metadata relevant to precise orbit determination (POD), such as antenna phase center parameters, dimensions of the solar panels and the main body, specularity and reflectivity coefficients for the surface materials, yaw attitude steering law, and signal group delays. The metadata relates to the first four operational Galileo satellites, known as the In-Orbit Validation (IOV) satellites, and is publicly available through the European GNSS Service Center (GSC) web site. One of the dataset's major benefits is that it includes nearly all information about the satellites' surface properties needed to develop a physically meaningful analytical solar radiation pressure (SRP) macro model, or "box-wing" (BW) model. Such a BW model for the IOV spacecraft has now been generated for use in NAPEOS, the European Space Operation Centre's (ESOC's) main geodetic software package for POD. The model represents the satellite as a simple six-sided box with two attached panels, or "wings", and allows for the a priori computation of the direct and indirect (Earth albedo) SRP force. Further valuable parameters of the metadata set are the IOV navigation antenna (NAVANT) phase center offsets (PCOs) and variations (PCVs) inferred from pre-launch anechoic chamber measurements. In this work, we report on the validation of the Galileo IOV metadata and its impact on POD, an activity ESOC has been deeply committed to since the launch of the first Galileo experimental satellite, GIOVE-A, in 2005. We first reanalyze the full history of Galileo tracking data the global International GNSS Service (IGS) network has collected since 2012. We generate orbit and clock solutions based on the widely used Empirical CODE Orbit Model (ECOM) with and without the IOV a priori BW model. For the satellite antennas, we apply the new as well as the standard IGS-recommended phase

  1. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  2. A Cryogenic Propellant Production Depot for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.; Henley, Mark; Guitierrez, Sonia; Fikes, John; Carrington, Connie; Smitherman, David; Gerry, Mark; Sutherlin, Steve; Beason, Phil; Howell, Joe (Technical Monitor)

    2001-01-01

    The cost of access to space beyond low Earth orbit can be lowered if vehicles can refuel in orbit. The power requirements for a propellant depot that electrolyzes water and stores cryogenic oxygen and hydrogen can be met using technology developed for space solar power. A propellant depot is described that will be deployed in a 400 km circular equatorial orbit, receive tanks of water launched into a lower orbit from Earth by gun launch or reusable launch vehicle, convert the water to liquid hydrogen and oxygen, and store Lip to 500 metric tonnes of cryogenic propellants. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. The tanks are configured in an inline gravity-gradient configuration to minimize drag and settle the propellant. Temperatures can be maintained by body-mounted radiators; these will also provide some shielding against orbital debris. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotate once per orbit to track the Sun. In the longer term, cryogenic propellant production technology can be applied to a larger LEO depot, as well as to the use of lunar water resources at a similar depot elsewhere.

  3. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a DELTA V penalty. Usually, because of the DELTA V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Highly Elliptical Orbit (HEO) (2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) (3) One impulsive maneuver from a Low Earth Orbit (LEO) (4) Two impulsive maneuvers from LEO (5) Three impulsive maneuvers from LEO.

  4. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  5. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  6. On-Orbit Maneuver Calibrations for the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Nandi, Sumita; Kennedy, Brian; Williams, Kenneth E.; Byrnes, Dennis V.

    2006-01-01

    The Stardust spacecraft, launched February 7, 1999, successfully delivered its sample return capsule to the Utah Test and Training Range on January 15, 2006. The entry maneuver strategy included a trajectory correction at entry minus 10 days (TCM18) targeted to entry with the inclusion of a final biased fixed direction maneuver at entry minus 29 hours (TCM19). To meet the stringent entry targeting requirements necessary for human safety and capsule integrity, a campaign of maneuver calibrations were undertaken in summers of 2003 and 2005 to improve performance for both maneuvers. The results of the calibration program are reported here. The in-flight calibrations included a series of several turns to various final attitudes via deadband walks about each of the three spacecraft axes, as well as 12 in-place burns with magnitudes between 0.5 and 1.0 m/s, the range initially expected for TCM19. The turn and burn calibrations as well as the performance of TCM 17, 18 and 19 are discussed.

  7. Juno JEDI high latitude snapshot of Earth's energetic charged particle distributions during the coordinated Juno spacecraft encounter with Earth

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Mauk, B.; Haggerty, D. K.; Schlemm, C.; Jaskulek, S.; Kim, C.; Brown, L. E.; Bagenal, F.; Thorne, R. M.

    2013-12-01

    NASA's Juno spacecraft will begin its orbit of Jupiter in mid-2016. During Juno's gravity assist encounter with Earth on October 9, 2013, the Jupiter Energetic Particle Detector Instrument (JEDI) will take measurements of the energetic electron and ion distributions at relatively high latitudes. These measurements will contribute substantially to a coordinated activity to obtain a comprehensive characterization of Earth's space environment during the encounter period. Here we present and describe the JEDI measurements and discuss them in the context of measurements taken at the same time, including those obtained by the Van Allen Probes mission. JEDI comprises three nearly identical energetic charged particle sensors. Each sensor detects energetic electrons (above 25 keV up to > 1000 keV) and energetic ions (about 20 keV to > 1 MeV for protons, and 50 keV to > 10 MeV for oxygen and sulfur) with high energy, time, and angular resolution. Two of the sensors are fans viewing almost entirely in the plane perpendicular to Juno's high-gain antenna. The third fan is perpendicular to this plane, so that combined with the spacecraft spin rate of about 2 rpm, nearly the whole sky is sampled every 30 s. During the gravitational assist encounter of Earth, JEDI obtains continuous data from about 3 days prior to closest approach through at least 2 weeks after closest approach. This will include data obtained outside and through the bow shock and magnetosheath, to deep within the magnetosphere. Due to the low flyby altitude of about 560 km, JEDI will operate its high voltage (thereby obtaining ion composition information) only outside of a few RE geocentric distances. Also, by using the so-called witness detectors, on one of the three sensors, the instrument is expected to obtain an integral channel measurement inside the radiation belts.

  8. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  9. MSR ESA Earth Return Orbiter Mission Design Trades

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. M.; Varga, G. I.; Huesing, J.; Beyer, F.

    2018-04-01

    The paper describes the work performed at ESOC in support of the Mars Sample Return ESA Earth Return Orbiter definition studies by exploring the trajectory optimization and mission design trade spaces of Mars return missions using electric and chemical propulsion.

  10. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  11. third "free flight" of Shuttle Orbiter 101 Spacecraft

    1977-09-23

    S77-28542 (23 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" separates from the NASA 747 carrier aircraft during the third free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 23, 1977, at the Dryden Flight Research Center (DFRC) in Southern California. The vehicle, with astronauts Fred W. Haise Jr., commander, and C. Gordon Fullerton, pilot, remained in unpowered flight for five-minutes and 34-seconds before landing on the desert land of Edwards Air Force Base.

  12. Soyuz Spacecraft

    2014-11-12

    ISS038-E-000250 (12 Nov. 2013) --- The Russian Soyuz TMA-11M spacecraft dominates this image exposed by one of the Expedition 38 crew members aboard the International Space Station over Earth on Nov. 12. Now docked to the Rassvet or Mini-Research Module 1 (MRM-1), the spacecraft had delivered three crew members to the orbital outpost five days earlier, temporarily bringing the total population to nine aboard the station.

  13. Oblate-Earth Effects on the Calculation of Ec During Spacecraft Reentry

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Matney, Mark

    2017-01-01

    The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay, because of the corresponding clustering of the human population in the lower latitudes. This study expands upon prior work, and formalizes in a single empirical equation the correction that must be made to the calculation of the average exposed population density as a result of this effect. The equation is represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.

  14. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  15. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  16. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  17. Autonomous Vision Navigation for Spacecraft in Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Bader, Nolan A.

    NASA aims to achieve unprecedented navigational reliability for the first manned lunar mission of the Orion spacecraft in 2023. A technique for accomplishing this is to integrate autonomous feature tracking as an added means of improving position and velocity estimation. In this thesis, a template matching algorithm and optical sensor are tested onboard three simulated lunar trajectories using linear covariance techniques under various conditions. A preliminary characterization of the camera gives insight into its ability to determine azimuth and elevation angles to points on the surface of the Moon. A navigation performance analysis shows that an optical camera sensor can aid in decreasing position and velocity errors, particularly in a loss of communication scenario. Furthermore, it is found that camera quality and computational capability are driving factors affecting the performance of such a system.

  18. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    NASA Technical Reports Server (NTRS)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  19. Artist's concept of Skylab space station cluster in Earth's orbit

    1971-10-01

    S71-52192 (1971) --- An artist's concept of the Skylab space station cluster in Earth's orbit. The cutaway view shows astronaut activity in the Orbital Workshop (OWS). The Skylab cluster is composed of the OWS, Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), and the Command and Service Module (CSM). Photo credit: NASA

  20. Coding performance of the Probe-Orbiter-Earth communication link

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Dolinar, S.; Pollara, F.

    1993-01-01

    The coding performance of the Probe-Orbiter-Earth communication link is analyzed and compared for several cases. It is assumed that the coding system consists of a convolutional code at the Probe, a quantizer and another convolutional code at the Orbiter, and two cascaded Viterbi decoders or a combined decoder on the ground.

  1. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    -tagged detection times from which orbit quality can be derived and efficiency by dynamical class. The dominant noise term in the simulations comes from the noise in the background flux caused by thermal emission from zodiacal dust. The model used is sufficient for the study of reasonably low-inclination spacecraft orbits such as are being considered. Results to date are based on the 2002 Bottke NEA orbit-distribution model. The system can work with any orbit-distribution model and with any size-frequency distribution. This tool also serves to quantify the amount of data that will also be collected on main-belt objects by simply testing against the known catalog of bodies. The orbit quality work clearly shows the benefit of a self-followup survey such as Sentinel. Most objects discovered will be seen in multiple observing epochs and the resulting orbits will preclude losing track of them for decades to come (or longer). All of the ephemeris calculations, including investigation of orbit determination quality, are done with the OpenOrb software package. The presentation for this meeting will be based on results of modeling the Sentinel Mission and other similar variants. The focus will be on evaluating the survey completion for different dynamical classes as well as for different sized objects. Within the fidelity of such statistically-based models, the planned Sentinel observatory is well capable of a huge step forward in the efforts to build a complete catalog of all objects that could pose future harm to planet Earth.

  2. The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    NASA Technical Reports Server (NTRS)

    Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.; hide

    2014-01-01

    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (<0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.

  3. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1995-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  4. Heteroclinic, Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations

    NASA Technical Reports Server (NTRS)

    Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.

    2013-01-01

    Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.

  5. Gateway: An earth orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1988-01-01

    University of Texas Mission Design (UTMD) has outlined the components that a space based transportation facility must include in order to support the first decade of Lunar base buildup. After studying anticipated traffic flow to and from the hub, and taking into account crew manhour considerations, propellant storage, orbital transfer vehicle maintenance requirements, and orbital mechanics, UTMD arrived at a design for the facility. The amount of activity directly related to supporting Lunar base traffic is too high to allow the transportation hub to be part of the NASA Space Station. Instead, a separate structure should be constructed and dedicated to handling all transportation-related duties. UTMD found that the structure (named Gateway) would need a permanent crew of four to perform maintenance tasks on the orbital transfer and orbital maneuvering vehicles and to transfer payload from launch vehicles to the orbital transfer vehicles. In addition, quarters for 4 more persons should be allocated for temporary accommodation of Lunar base crew passing through Gateway. UTMD was careful to recommend an expendable structure that can adapt to meet the growing needs of the American space program.

  6. Experimental study of transient liquid motion in orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Tegart, J. R.

    1975-01-01

    The results are presented of a twofold study of transient liquid motion such as that which will be experienced during orbital maneuvers by space tug. A test program was conducted in a low-g test facility involving twenty-two drops. Biaxial, low-g accelerations were applied to an instrumented, model propellant tank during free-fall testing, and forces exerted during liquid reorientation were measured and recorded. Photographic records of the liquid reorientation were also made. The test data were used to verify a mechanical analog which portrays the liquid as a point mass moving on an ellipsoidal constraint surface. The mechanical analog was coded into a FORTRAN IV digital computer program: LAMPS, Large AMPlitude Slosh. Test/analytical correlation indicates that the mechanical analog is capable of predicting the overall force trends measured during testing.

  7. Cluster flight control for fractionated spacecraft on an elliptic orbit

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin

    2016-08-01

    This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.

  8. Orbital and Landing Operations at Near-Earth

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  9. Relativistic effects in earth-orbiting Doppler lidar return signals.

    PubMed

    Ashby, Neil

    2007-11-01

    Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.

  10. Numerical orbit generators of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  11. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  12. Progress satellite: An automatic cargo spacecraft. [for resupplying orbital space stations

    NASA Technical Reports Server (NTRS)

    Novikov, N.

    1978-01-01

    The requirement for resupplying long term orbital space stations is discussed. The operation of Progress (an unmanned automatic resupply spacecraft) is described. It concludes that the development of Progress is a major contribution of Soviet science to domestic and world aeronautics.

  13. Mars Orbiter Study. Volume 2: Mission Design, Science Instrument Accommodation, Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Drean, R.; Macpherson, D.; Steffy, D.; Vargas, T.; Shuman, B.; Anderson, K.; Richards, B.

    1982-01-01

    Spacecraft system and subsystem designs were developed at the conceptual level to perform either of two Mars Orbiter Missions, a Climatology Mission and an Aeronomy Mission. The objectives of these missions are to obtain and return data to increase knowledge of Mars.

  14. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  15. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  16. Guidance and Navigation for Rendezvous and Proximity Operations with a Non-Cooperative Spacecraft at Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Barbee, Brent William; Carpenter, J. Russell; Heatwole, Scott; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; VanEepoel, John

    2010-01-01

    The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that the servicer spacecraft perform rendezvous, proximity, and capture operations with the target spacecraft to be serviced. Many high-value spacecraft, which would be logical targets for servicing from an economic point of view, are located in geosynchronous orbit, a regime in which autonomous rendezvous and capture operations are not commonplace. Furthermore, existing GEO spacecraft were not designed to be serviced. Most do not have cooperative relative navigation sensors or docking features, and some servicing applications, such as de-orbiting of a non-functional spacecraft, entail rendezvous and capture with a spacecraft that may be non-functional or un-controlled. Several of these challenges have been explored via the design of a notional mission in which a nonfunctional satellite in geosynchronous orbit is captured by a servicer spacecraft and boosted into super-synchronous orbit for safe disposal. A strategy for autonomous rendezvous, proximity operations, and capture is developed, and the Orbit Determination Toolbox (ODTBX) is used to perform a relative navigation simulation to assess the feasibility of performing the rendezvous using a combination of angles-only and range measurements. Additionally, a method for designing efficient orbital rendezvous sequences for multiple target spacecraft is utilized to examine the capabilities of a servicer spacecraft to service multiple targets during the course of a single mission.

  17. Remote observations of reentering spacecraft including the space shuttle orbiter

    NASA Astrophysics Data System (ADS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  18. Remote Observations of Reentering Spacecraft Including the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, jay H.; Gibson, David

    2013-01-01

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  19. Galileo view of Moon orbiting the Earth taken from 3.9 million miles

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Eight days after its encounter with the Earth, the Galileo spacecraft was able to look back and capture this remarkable view of the Moon in orbit about the Earth, taken from a distance of about 6.2 million kilometers (3.9 million miles). The picture was constructed from images taken through the violet, red, and 1.0-micron infrared filters. The Moon is in the foreground, moving from left to right. The brightly-colored Earth contrasts strongly with the Moon, which reflects only about one-third as much sunlight as the Earth. Contrast and color have been computer-enhanced for both objects to improve visibility. Antarctica is visible through clouds (bottom). The Moon's far side is seen; the shadowy indentation in the dawn terminator is the south-Pole/Aitken Basin, one of the largest and oldest lunar impact features. Alternate Jet Propulsion Laboratory (JPL) number is P-41508.

  20. Orbital Maneuvers for Spacecrafts Travelling to/from the Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bertachini, A.

    The well-known Lagrangian points that appear in the planar restricted three-body problem (Szebehely, 1967) are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Sun-Earth system). They are all very good points to locate a space-station, since they require a small amount of V (and fuel), the control to be used for station-keeping. The triangular points are specially good for this purpose, since they are stable equilibrium points. In this paper, the planar restricted three-body problem is regularized (using Lemaître regularization) and combined with numerical integration and gradient methods to solve the two point boundary value problem (the Lambert's three-body problem). This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Sun-Earth system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude and direction of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth. This paper is a continuation of two previous papers that studied transfers in the Earth-Moon system: Broucke (1979), that studied transfer orbits between the Lagrangian points and the Moon and Prado (1996), that studied transfer orbits between the Lagrangian points and the Earth. So, the equations of motion are: whereis the pseudo-potential given by: To solve the TPBVP in the regularized variables the following steps are used: i) Guess a initial velocity Vi, so together with the initial prescribed position ri the complete initial state is known; ii

  1. ODISSEE — A proposal for demonstration of a solar sail in earth orbit

    NASA Astrophysics Data System (ADS)

    Leipold, M.; Garner, C. E.; Freeland, R.; Hermann, A.; Noca, M.; Pagel, G.; Seboldt, W.; Sprague, G.; Unckenbold, W.

    1999-11-01

    A recent pre-phase-A study conducted cooperatively between DLR and NASA/JPL concluded that a lowcost solar sail technology demonstration mission in Earth orbit is feasible. Such a mission, nicknamed ODISSEE ( Orbital Demonstration of an Innovative, Solar Sail driven Expandable structure Experiment), is the recommended approach for the development of this advanced concept using solar radiation pressure for primary propulsion and attitude control. The mission, proposed for launch in 2001, would demonstrate and validate the basic principles of sail fabrication, packaging, storage, deployment, and control. The demonstration mission scenario comprises a low-cost 'piggy back' launch of a sailcraft with a total mass of about 80kg on ARIANE 5 into a geostationary transfer orbit, where a 40m × 40m square sail would be deployed. The aluminized sail film is folded and packaged in small storage containers, upon release the sail would be supported by deployable light-weight carbon fiber booms. A coilable 10m central mast is attached to the center of the sail assembly with a 2DoF gimbal, and connected to the spacecraft. Attitude control is performed passively by gimbaling the central mast to offset the center-of-mass to the center-of-pressure generating an external torque due to solar radiation pressure, or actively using a cold-gas micro-thruster system. By proper orientation of the sail towards the Sun during each orbit, the orbital energy can be increased, such that the solar sail spacecraft raises its orbit. After roughly 550 days a lunar polar flyby would be performed, or the sail might be used for orbit capture about the Moon. On-board cameras are foreseen to observe the sail deployment, and an additional science payload could provide remote sensing data of the Earth and also of previously not very well explored lunar areas.

  2. System design of the Pioneer Venus spacecraft. Volume 10: Propulsion/orbit insertion subsystem studies

    NASA Technical Reports Server (NTRS)

    Rosenstein, B. J.

    1973-01-01

    The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.

  3. Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico P.

    1991-01-01

    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions.

  4. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  5. NASA Spacecraft Images Some of Earth Newest Real

    2012-01-20

    In December, 2011, NASA Terra spacecraft captured this image of a new volcanic island forming in the Red Sea. This region is part of the Red Sea Rift where the African and Arabian tectonic plates are pulling apart.

  6. "Night" scene of the STS-5 Columbia in orbit over the earth

    1982-11-17

    S82-39796 (11-16 Nov. 1982) --- A ?night? scene of the STS-5 space shuttle Columbia in orbit over Earth?s glowing horizon was captured by an astronaut crew member aiming a 70mm handheld camera through the aft windows of the flight deck. The aft section of the cargo bay contains two closed protective shields for satellites which were deployed on the flight. The nearest ?cradle? or shield houses the Satellite Business System?s (SBS-3) spacecraft and is visible in this frame while the Telesta Canada ANIK C-3 shield is out of view. The vertical stabilizer, illuminated by the sun, is flanked by two orbital maneuvering system (OMS) pods. Photo credit: NASA

  7. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  8. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; hide

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  9. Relativity mission with two counter-orbiting polar satellites. [nodal dragging effect on earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Van Patten, R. A.; Everitt, C. W. F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.

  10. Attitude control challenges for earth orbiters of the 1980's

    NASA Technical Reports Server (NTRS)

    Hibbard, W.

    1980-01-01

    Experience gained in designing attitude control systems for orbiting spacecraft of the late 1980's is related. Implications for satellite attitude control design of the guidance capabilities, rendezvous and recovery requirements, use of multiple-use spacecraft and the development of large spacecraft associated with the advent of the Space Shuttle are considered. Attention is then given to satellite attitude control requirements posed by the Tracking and Data Relay Satellite System, the Global Positioning System, the NASA End-to-End Data System, and Shuttle-associated subsatellites. The anticipated completion and launch of the Space Telescope, which will provide one of the first experiences with the new generation of attitude control, is also pointed out.

  11. Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.

  12. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  13. Human Exploration Missions Study Launch Window from Earth Orbit

    NASA Technical Reports Server (NTRS)

    Young, Archie

    2001-01-01

    The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric

  14. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data

  15. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  16. The problems of cosmic ray particle simulation for the near-Earth orbital and interplanetary flight conditions.

    PubMed

    Nymmik, R A

    1999-10-01

    A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.

  17. Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment

    NASA Astrophysics Data System (ADS)

    Azema-Rovira, Monica

    Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.

  18. Controllability of Large SEP for Earth Orbit Raising

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    2004-01-01

    A six-degree-of-freedom (6DOF) simulation was constructed and exercised for a large solar electric propulsion (SEP) vehicle operating in low Earth orbit Nominal power was 500 kWe, with the large array sizes implied. Controllability issues, including gravity gradient, roll maneuvering for Sun tracking, and flexible arrays, and flight control methods, were investigated. Initial findings are that a SEP vehicle of this size is controllable and could be used for orbit raising of heavy payloads.

  19. Effects of Low Earth Orbit on Docking Seal Materials

    NASA Technical Reports Server (NTRS)

    Imka, Emily C.; Asmar, Olivia C.; deGroh, Henry C., III; Banks, Bruce A.

    2014-01-01

    Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station (ISS) to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pressure tested over time. Resistance temperature detectors (RTDs), pressure transducers, and LabVIEW (National Instruments) programs were used to measure and analyze the temperature and pressure and calculate leakage. Average leakage of control samples was 2.6 x 10(exp -7) lbs/day. LEO exposure did not considerably damage ELA-SA-401. The S0383-70 flight samples leaked at least 10 times more than ELA-SA-401 in all cases except one, demonstrating that ELA-SA-401 may be a more suitable sealing material in LEO. AO caused greater damage than UV; samples in ram orientation (receiving an AO fluence of 4.3 x 10(exp 21) atoms/(sq cm) and in wake (2.9x 10(exp 20) atoms/(sq cm)) leaked more than those in zenith orientation (1.58 x 10(exp 20) atoms/(sq cm)), whereas variations in UV exposure did not seem to affect the samples. Exposure to LEO did less damage to the seals than hypothesized, and the data did not support the conjecture that UV causes more damage than AO.

  20. Spacecraft

    NASA Technical Reports Server (NTRS)

    Feoktistov, K. P.

    1974-01-01

    The task of building a spacecraft is compared to the construction of an artificial cybernetic system able to acquire and process information. Typical features for future spacecraft are outlined and the assignment of duties in spacecraft control between automatic devices and the crew is analyzed.

  1. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  2. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    SciT

    Gkolias, Ioannis; Gachet, Fabien; Daquin, Jérôme

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically,more » we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.« less

  3. NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER

    NASA Technical Reports Server (NTRS)

    Bamford, William; Naasz, Bo; Moreau, Michael C.

    2006-01-01

    NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.

  4. From Order to Chaos in Earth Satellite Orbits

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  5. VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    2003-09-12

    VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  6. VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    2003-09-12

    VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  8. BioSentinel: Enabling CubeSat-Scale Biogical Research Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sorgenfrei, Matt; Lewis, Brian S.

    2014-01-01

    The introduction of the Space Launch System will provide NASA with a new means of access to space beyond low Earth orbit (LEO), creating opportunities for scientific research in a range of spacecraft sizes. This presentation describes the preliminary design of the BioSentinel spacecraft, a CubeSat measuring 10cm x 20cm x 30cm, which has been manifested for launch on the maiden voyage of the Space Launch System in 2017. BioSentinel will provide the first direct experimental data from a biological study conducted beyond LEO in over forty years, which in turn will help to pave the way for future human exploration missions. The combination of an advanced biology payload with standard spacecraft bus components required for operation in deep space within a CubeSat form factor poses a unique challenge, and this paper will describe the early design trades under consideration. The baseline spacecraft design calls for the biology payload to occupy four cube-units of volume (denoted 4U), with all spacecraft bus components occupying the remaining 2U.

  9. The 1975 report on active and planned spacecraft and experiments. [index

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    Information is presented on current and planned spacecraft activity for various disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, solar physics, and life sciences. For active orbiting spacecraft, the epoch date, orbit type, orbit period, apoasis, periapsis, and inclination are given along with the spacecraft weight, launch date, launch site, launch vehicle, and sponsoring agency. For each planned orbiting spacecraft, the orbit parameters, planned launch date, launch site, launch vehicle, spacecraft weight, and sponsoring agency are given.

  10. Optical property degradation of anodic coatings in the Space Station low earth orbit

    NASA Technical Reports Server (NTRS)

    David, Kaia E.; Babel, Hank W.

    1992-01-01

    The anodic coatings and optical properties to be used for passive thermal control of the SSF are studied. Particular attention is given to the beginning-of-life optical properties for aluminum alloys suitable for structural and radiator applications, the statistical variation in the beginning-of-life properties, and estimates of the end-of-life properties of the alloys based on ultraviolet radiation testing and flight test results. It is concluded that anodic coatings can be used for thermal control of long life, low earth orbit spacecraft. Some use restrictions are defined for specific cases. Anodic coatings have been selected as baseline thermal control coating for large portions of the SSF.

  11. VIew of Mission Control on first day of ASTP docking in Earth orbit

    1975-07-15

    S75-28483 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. The American ASTP flight controllers at NASA's Johnson Space Center were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows cosmonaut Yuri V. Romanenko at his spacecraft communicator?s console in the ASTP mission control center in the Soviet Union. The American ASTP liftoff followed the Soviet ASTP launch by seven and one-half hours.

  12. A Survey Of Earth-Moon Libration Orbits: Stationkeeping Strategies And Intra-Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Folta, David; Vaughn, Frank

    2004-01-01

    Cislunar space is a readily accessible region that may well develop into a prime staging area in the effort to colonize space near Earth or to colonize the Moon. While there have been statements made by various NASA programs regarding placement of resources in orbit about the Earth-Moon Lagrangian locations, there is no survey of the total cost associated with attaining and maintaining these unique orbits in an operational fashion. Transfer trajectories between these orbits required for assembly, servicing, and positioning of these resources have not been extensively investigated. These orbits are dynamically similar to those used for the Sun-Earth missions, but differences in governing gravitational ratios and perturbation sources result in unique characteristics. We implement numerical computations using high fidelity models and linear and nonlinear targeting techniques to compute the various maneuver (Delta)V and temporal costs associated with orbits about each of the Earth-Moon Lagrangian locations (L1, L2, L3, L4, and L5). From a dynamical system standpoint, we speak to the nature of these orbits and their stability. We address the cost of transfers between each pair of Lagrangian locations.

  13. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 3: Program Cost Estimate

    NASA Technical Reports Server (NTRS)

    Perry, D. L.

    1986-01-01

    A cost analysis for the design, development, qualification, and production of the monopropellant and bipropellant Orbital Spacecraft Consumable Resupply System (OSCRS) tankers, their associated avionics located in the Orbiter payload bay, and the unique ground support equipment (GSE) and airborne support equipment (ASE) required to support operations is presented. Monopropellant resupply for the Gamma Ray Observatory (GRO) in calendar year 1991 is the first defined resupply mission with bipropellant resupply missions expected in the early to mid 1990's. The monopropellant program estimate also includes contractor costs associated with operations support through the first GRO resupply mission.

  14. Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit

    NASA Technical Reports Server (NTRS)

    Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle

    1990-01-01

    The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.

  15. Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.

    2011-01-01

    This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the

  16. The association of spacecraft anomalies with electron/proton particle fluxes at different orbits

    NASA Astrophysics Data System (ADS)

    Yi, K.; Moon, Y. J.

    2016-12-01

    In this study, we investigate 195 satellite anomaly data from 1998 to 2010 from Satellite News Digest (SND) to understand the association between spacecraft anomaly and space weather condition. The spacecraft anomalies are classified into Attitude & Propulsion, Power, Control, Telemetry, Instrument and unknown. For the investigation we divide these data according to the spacecraft orbit and launched year. Spacecraft's orbits are classified into the following two groups : (1) high altitude and low inclination, and (2) low altitude and high inclination. Launched year of spacecraft are divided into two groups: 1991 1998 and 1999 2007. We examine the association between these anomaly data and daily peak particle (electron and proton) flux data from GOES as well as their occurrence rates. To determine the association, we use two criteria that electron criterion is >10,000 pfu and proton criterion is >100 pfu. Main results from this study are as follows. First, the number of days satisfying the criteria for electron flux has a peak near a week before the anomaly day and decreases from the peak day to the anomaly day, while that for proton flux has a peak near the anomaly day. Second, we found a similar pattern for the mean daily peak particle (electron and proton) flux as a function of day before the anomaly day. Third, an examination of multiple spacecraft anomaly events, which are likely to occur by severe space weather effects, shows that anomalies mostly occur either when electron fluxes are in the declining stage, or when daily proton peak fluxes are strongly enhanced. Fourth, the time delay between the anomaly day and the day having the highest daily peak electron flux for the recent launching period (1999-2007) is noticeably larger than those for the older periods, implying that the anomaly characteristics associated with electron flux change with time.

  17. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1987-01-01

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.

  18. The Orbital Evolution of Near-Earth Asteroid 3753

    NASA Astrophysics Data System (ADS)

    Wiegert, Paul A.; Innanen, Kimmo A.; Mikkola, Seppo

    1998-06-01

    Asteroid 3753 (1986 TO) is in a 1:1 mean motion resonance with Earth, on a complex horseshoe-type orbit. Numerical experiments are performed to determine its medium-term stability and the means by which it may have entered its current orbit. Though 3753 moves primarily under the influence of the Sun and Earth, the giant planets (and Jupiter especially) play an important role by influencing, through torque-induced precession, the position of the asteroid's nodes. Variations in the nodal distance strongly affect the interaction of 3753 with Earth and may change or destroy the horseshoe-like behavior currently seen. This precession of the nodes provides a mechanism for placing minor planets into, or removing them from, a variety of horseshoe-type orbits. The chaotic nature of this asteroid's orbit makes predictions difficult on timescales longer than its Lyapunov time (~150 yr); therefore, ensembles of particles on orbits near that of 3753 are considered. The asteroid has a high probability of passing close to Venus and/or Mars on 10^4 yr timescales, pointing to a dynamical age much shorter than that of the solar system.

  19. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn and his wife Annie listen to speakers during a reception at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  20. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn and his wife Annie take the stage during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  1. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn and NASA Deputy Administrator Lori Garver pose for a photograph during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  2. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn talks on stage during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  3. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Ohio State University student Joanna Fedeli interviews Sen. John Glenn and his wife Annie during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  4. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn and his wife Annie talk during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  5. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn's wife Annie listens to an interviewers question during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  6. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn, left, and Apollo 11 Astronaut Neil Armstrong are seen prior to the start of a dinner at Ohio State University that honored the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  7. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Apollo 11 Astronaut Neil Armstrong speaks during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  8. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn's wife Annie, right, and NASA Deputy Administrator Lori Garver pose for a photograph during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  9. Autonomous Mars ascent and orbit rendezvous for earth return missions

    NASA Technical Reports Server (NTRS)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  10. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn poses for a portrait shortly after doing live television interviews from the Ohio State University Union building on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of his historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  11. The orbiter PLB and Earth limb during STS-121

    2006-07-15

    S121-E-07909 (15 July 2006) --- Backdropped by the blackness of space and Earth's horizon, Space Shuttle Discovery's aft cargo bay, its vertical stabilizer and orbital maneuvering system (OMS) pods are seen in this image photographed by an STS-121 crewmember onboard the shuttle. The Italian-built Leonardo Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.

  12. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn, left, and NASA Administrator Charles Bolden speak to guest at NASA's Future Forum at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  13. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn, left, and NASA Administrator Charles Bolden address questions from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  14. Trojan Asteroid Shares Orbit with Earth Artist Animation

    2011-07-27

    This artist concept illustrates the first known Earth Trojan asteroid, discovered by NEOWISE, the asteroid-hunting portion of NASA WISE mission. The asteroid is shown in gray and its extreme orbit is shown in green. Objects are not drawn to scale.

  15. 50th Anniversary First American to Orbit Earth

    2012-02-20

    NASA Administrator Charles Bolden answers a question from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  16. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn address questions from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  17. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Sen. John Glenn speaks to guest at NASA's Future Forum at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  18. 50th Anniversary First American to Orbit Earth

    2012-02-20

    NASA Administrator Charles Bolden, seated right, and Sen. John Glenn address questions from the press during a briefing at Ohio State University as John Glenn's wife Annie Glenn, seated in red, looks on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  19. The orbiter PLB and Earth limb during STS-121

    2006-07-15

    S121-E-07904 (15 July 2006) --- Backdropped by the blackness of space and Earth's horizon, Space Shuttle Discovery's aft cargo bay, its vertical stabilizer and orbital maneuvering system (OMS) pods are seen in this image photographed by an STS-121 crewmember onboard the shuttle. The Italian-built Leonardo Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.

  20. From Earth to orbit. [assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Arthur

    1992-01-01

    Within this document, the National Research Council (NRC) assesses the requirements, benefits, technological feasibility, and roles of Earth-to-orbit transportation options that could be developed in support of the national space program. Among the topics covered are launch vehicles and infrastructure, propulsion, and technology.

  1. Can Sunlight Shift the Earth onto a Different Orbit?

    ERIC Educational Resources Information Center

    Esposito, S.

    2011-01-01

    This article comes from a question asked by a student of mine: if the Sun radiates energy in the form of electromagnetic waves, could they shift the Earth from its current orbit on a suitable timescale? The answer to such a question is apparently obvious and trivial. Nevertheless, it requires an instructive reasoning and interesting estimates of…

  2. Dose in critical body organs in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F.

    1984-01-01

    Human exposure to trapped radiations in low Earth orbit (LEO) are evaluated on the basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. A sample impact assessment is discussed.

  3. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  4. Orbital Boom Sensor System with a cloudy Earth limb

    2005-07-28

    S114-E-5712 (28 July 2005) --- This view of the Orbital Boom Sensor System, backdropped by clouds and Earth’s limb, was taken by the STS-114 crew during approach and docking operations with the international space station.

  5. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  6. Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes

    DOE PAGES

    Sarno-Smith, Lois K.; Larsen, Brian A.; Skoug, Ruth M.; ...

    2016-02-27

    Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV.more » It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. Furthermore, we also show noneclipse significant negative charging events on the Van Allen Probes.« less

  7. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne

    2016-01-01

    tuning analysis of the EKF. The study shows that the closed Earth orbit for XNAV performance is reliant on the orbit semi-major axis and eccentricity as well as orbit inclination. These parameters are the primary drivers of pulsar measurement availability and significantly influence the natural spacecraft orbit dynamics. Sensitivity to initial orbit determination error growth due to the scarcity of XNAV measurements within an orbital period require appropriate timing of initial XNAV measurements. The orbit angles of argument of perigee and right ascension of the ascending node, alongside the other orbit parameters, complete the initial cadence of XNAV measurements. The performance of initial XNAV measurements then propagates throughout the experimental period. The study provides a basis to missions who wish to consider XNAV as a potential navigation source in a closed Earth orbit design. It provides a family of orbit trajectories as well as other modeling considerations needed to effectively evaluate if XNAV is an effective navigation source for a potential mission. As an EKF is sensitive to a linearized estimated state, this study has a direct benefit of providing effective XNAV measurements to maintain spacecraft tracking, independent of other navigation sources. In the particular use case of the SEXTANT mission, it also provides a novel scheduling algorithm which addresses the need to prioritize and manage pulsar observations for effective navigation.

  8. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne Hong

    2016-01-01

    tuning analysis of the EKF. The study shows that the closed Earth orbit for XNAV performance is reliant on the orbit semi-major axis and eccentricity as well as orbit inclination. These parameters are the primary drivers of pulsar measurement availability and significantly influence the natural spacecraft orbit dynamics. Sensitivity to initial orbit determination error growth due to the scarcity of XNAV measurements within an orbital period require appropriate timing of initial XNAV measurements. The orbit angles of argument of perigee and right ascension of the ascending node, alongside the other orbit parameters, complete the initial cadence of XNAV measurements. The performance of initial XNAV measurements then propagates throughout the experimental period. The study provides a basis to missions who wish to consider XNAV as a potential navigation source in a closed Earth orbit design. It provides a family of orbit trajectories as well as other modeling considerations needed to effectively evaluate if XNAV is an effective navigation source for a potential mission. As an EKF is sensitive to a linearized estimated state, this study has a direct benefit of providing effective XNAV measurements to maintain spacecraft tracking, independent of other navigation sources. In the particular use case of the SEXTANT mission, it also provides a novel scheduling algorithm which addresses the need to prioritize and manage pulsar observations for effective navigation.

  9. On-orbit assembly of a team of flexible spacecraft using potential field based method

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  10. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  11. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  12. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  13. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 4: Extended study results Part 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objectives consisted of three major tasks. The first was to establish the definition of Space Station and Orbital Maneuvering Vehicle (OMV) user requirements and interfaces and to evaluate system requirements of a water tanker to be used at the station. The second task is to conduct trade studies of system requirements, hardware/software, and operations to evaluate the effect of automatic operation at the station or remote from the station in consonance with the OMV. The last task is to evaluate automatic refueling concepts and to evaluate the impact to Orbital Spacecraft Consumable Resupply System (OSCRS) concept/design to use expendable launch vehicles (ELV) to place the tank into orbit. Progress in each area is discussed.

  14. Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Marmie, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.

  15. GPS Receiver On-Orbit Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Winkler, Stephen; Ramsey, Graeme; Frey, Charles; Chapel, Jim; Chu, Donald; Freesland, Douglas; Krimchansky, Alexander; Concha, Marco

    2017-01-01

    This paper evaluates the on-orbit performance of the first civilian operational use of a Global Positioning System Receiver (GPSR) at a geostationary orbit (GEO). The GPSR is on-board the newly launched Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first of four next generation GEO weather satellites for NOAA, now in orbit GOES-R is formally identified as GOES-16. Among the pioneering technologies required to support its improved spatial, spectral and temporal resolution is a GPSR. The GOES-16 GPSR system is a new design that was mission critical and therefore received appropriate scrutiny. As ground testing of a GPSR for GEO can only be done by simulations with numerous assumptions and approximations regarding the current GPS constellation, this paper reveals what performance can be achieved in using on orbit data. Extremely accurate orbital position is achieved using GPS navigation at GEO. Performance results are shown demonstrating compliance with the1007575 meter and 6 cms radial/in-track/cross-track orbital position and velocity accuracy requirements of GOES-16. The aforementioned compliance includes station-keeping and momentum management maneuvers, contributing to no observational outages. This performance is achieved by a completely new system design consisting of a unique L1 GEOantenna, low-noise amplifier (LNA) assembly and a 12 channel GPSR capable of tracking the edge of the main beam and the side lobes of the GPS L1 signals. This paper presents the definitive answer that the GOES-16 GPSR solution exceeds all performance requirements tracking up to 12 satellites and achieving excellent carrier-to-noise density (C/N0). Additionally, these performance results show the practicality of this approach. This paper makes it clear that all future GEO Satellites should consider the addition of a GPSR in their spacecraft design, otherwise they may be sacrificing spacecraft capabilities and accuracy along with incurring increased and

  16. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  17. Low Earth Orbit Raider (LER) winged air launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn

    1989-01-01

    The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.

  18. Size Dependence of Dust Distribution around the Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  19. Size Dependence of Dust Distribution around the Earth Orbit

    SciT

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less

  20. Oblate-Earth Effects on the Calculation of Ec During Spacecraft Reentry

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Matney, Mark J.

    2017-01-01

    The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay because of the clustering of the human population in the same lower latitudes. This study expands upon prior work, and formalizes the correction that must be made to the calculation of the average exposed population density as a result of this effect. Although a generic equation can be derived from this work to approximate the effects of gravitational and atmospheric perturbations on a final decay, such an equation averages certain important subtleties in achieving a best fit over all conditions. The authors recommend that direct simulation be used to calculate the true Ec for any specific entry as a more accurate method. A generic equation is provided, represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.

  1. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  2. Earth-orbit mission considerations and Space Tug requirements.

    NASA Technical Reports Server (NTRS)

    Huber, W. G.

    1973-01-01

    The reusable Space Tug is a major system planned to augment the Space Shuttle's capability to deliver, retrieve, and support automated payloads. The Space Tug will be designed to perform round-trip missions from low earth orbit to geosynchronous orbit. Space Tug goals and requirements are discussed together with the characteristics of the full capability Tug. The Tug is to be operated in an unmanned 'teleoperator' fashion. Details of potential teleoperator applications are considered, giving attention to related systems studies, candidate Tug mission applications, Tug 'end-effector' alternatives, technical issues associated with Tug payload retrieval, and Tug/payload accommodations.

  3. Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Rhee, Michael S.

    2008-01-01

    The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high

  4. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  5. Trajectory Design from GTO to Near-Equatorial Lunar Orbit for the Dark Ages Radio Explorer (DARE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Yang Yang, Fan; Perez, Andres Dono; Galal, Ken F.; Faber, Nicolas T.; Mitchell, Scott; Landin, Brett; Burns, Jack O.

    2015-01-01

    The trajectory design for the Dark Ages Radio Explorer (DARE) mission concept involves launching the DARE spacecraft into a geosynchronous transfer orbit (GTO) as a secondary payload. From GTO, the spacecraft then transfers to a lunar orbit that is stable (i.e., no station-keeping maneuvers are required with minimum perilune altitude always above 40 km) and allows for more than 1,000 cumulative hours for science measurements in the radio-quiet region located on the lunar farside.

  6. Spacecraft Environmental Interactions Technology, 1983

    NASA Technical Reports Server (NTRS)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  7. Method for deploying multiple spacecraft

    NASA Technical Reports Server (NTRS)

    Sharer, Peter J. (Inventor)

    2007-01-01

    A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.

  8. Earth orbital experiment program and requirements study, volume 1, sections 1 - 6

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A reference manual for planners of manned earth-orbital research activity is presented. The manual serves as a systems approach to experiment and mission planning based on an integrated consideration of candidate research programs and the appropriate vehicle, mission, and technology development requirements. Long range goals and objectives for NASA activities during the 1970 to 1980 time period are analyzed. The useful and proper roles of manned and automated spacecraft for implementing NASA experiments are described. An integrated consideration of NASA long range goals and objectives, the system and mission requirements, and the alternative implementation plans are developed. Specific areas of investigation are: (1) manned space flight requirements, (2) space biology, (3) spaceborne astronomy, (4) space communications and navigation, (5) earth observation, (6) supporting technology development requirements, (7) data management system matrices, (8) instrumentation matrices, and (9) biotechnology laboratory experiments.

  9. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  10. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  11. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  12. Study of an evolutionary interim earth orbit program

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Alton, L. R.; Arno, R. D.; Deerwester, J. M.; Edsinger, L. E.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1971-01-01

    An evolutionary, gradual, and step-wise spacecraft systems technology development from those used on the Apollos and Skylab 1 to that required for the space station was considered. The four mission spacecraft were dry workshop versions of the Saturn 4-B stage, and each individually configured, outfitted and launched by INT-21 vehicles. These spacecraft were evaluated for crews of three, six and nine men and for mission lifetimes of one year. Two versions of the Apollo CSM, a three man and a four man crew, were considered as the logistic vehicle. The solar cell electrical power system of the first mission evolves into a light weight panel system supplemented by an operating isotope-Brayton system on the later missions. The open life support system of the first mission evolves to a system which recovers both water and oxygen on the last mission. The data handling, communications, radiation shielding, micrometeoroid protection, and orbit keeping systems were determined. The program costs were estimated and, excluding operational costs, the cost for each mission would average about $2 billion of which one-sixth would be for development, one-fourth for experiments, and the balance for vehicle acquisition.

  13. Advanced control techniques for teleoperation in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brooks, T. L.

    1980-01-01

    Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.

  14. 50th Anniversary First American to Orbit Earth

    2012-02-20

    Captain Mark Kelly, commander of the space shuttle Endeavour’s final mission and husband of retired U.S. Representative Gabrielle Giffords, gives the keynote address during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  15. The detection of earth orbiting objects by IRAS

    NASA Technical Reports Server (NTRS)

    Dow, Kimberly L.; Sykes, Mark V.; Low, Frank J.; Vilas, Faith

    1990-01-01

    A systematic examination of 1836 images of the sky constructed from scans made by the Infrared Astronomical Satellite has resulted in the detection of 466 objects which are shown to be in earth orbit. Analysis of the spatial and size distribution and thermal properties of these objets, which may include payloads, rocket bodies and debris particles, is being conducted as one step in a feasibility study for space-based debris detection technologies.

  16. Low Earth Orbit Rendezvous Strategy for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Cirillo, William M.; Stromgren, Chel

    2006-01-01

    On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.

  17. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  18. A framework for real-time distributed expert systems: On-orbit spacecraft fault diagnosis, monitoring and control

    NASA Technical Reports Server (NTRS)

    Mullikin, Richard L.

    1987-01-01

    Control of on-orbit operation of a spacecraft requires retention and application of special purpose, often unique, knowledge of equipment and procedures. Real-time distributed expert systems (RTDES) permit a modular approach to a complex application such as on-orbit spacecraft support. One aspect of a human-machine system that lends itself to the application of RTDES is the function of satellite/mission controllers - the next logical step toward the creation of truly autonomous spacecraft systems. This system application is described.

  19. Orbital and Physical Characteristics of Meter-sized Earth Impactors

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward

    2015-11-01

    We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).

  20. Near-Earth asteroids orbits using Gaia and ground-based observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2011-05-01

    Potentially Hazardous Asteroids (PHAs) are Near-Earth Asteroids caraterised by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0.05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.The Gaia mission is an astrometric mission that will be launched in 2012 and will observe a large number of Solar System Objects down to magnitude V≤20. During the 5-year mission, Gaia will continuously scan the sky with a specific strategy: objects will be observed from two lines of sight separated with a constant basic angle. Five constants already fixed determinate the nominal scanning law of Gaia: The inertial spin rate (1°/min) that describe the rotation of the spacecraft around an axis perpendicular to those of the two fields of view, the solar-aspect angle (45°) that is the angle between the Sun and the spacecraft rotation axis, the precession period (63.12 days) which is the precession of the spin axis around the Sun-Earth direction. Two other constants are still free parameters: the initial spin phase, and the initial precession angle that will be fixed at the start of the nominal science operations. These latter are constraint by scientific outcome (e.g. possibility of performing test of fundamental physics) together with operational requirements (downlink to Earth windows). Several sets of observations of specific NEOs will hence be provided according to the initial precession angle. The purpose here is to study the statistical impact of the initial precession angle on the error

  1. KENNEDY SPACE CENTER, FLA. - From a burst of fire and smoke, the Delta II launch vehicle races into the sky carrying the second Mars Exploration Rover, Opportunity. The bright glare briefly illuminated Florida Space Coast beaches. Opportunity’s dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - From a burst of fire and smoke, the Delta II launch vehicle races into the sky carrying the second Mars Exploration Rover, Opportunity. The bright glare briefly illuminated Florida Space Coast beaches. Opportunity’s dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.

  2. Ambient pressure environment surrounding the MSX spacecraft during the first year on orbit

    NASA Astrophysics Data System (ADS)

    Boies, Mark T.; Green, B. David; Galica, Gary E.; Uy, O. Manuel; Silver, David M.; Benson, Richard C.; Lesho, Jeffrey C.; Wood, Bob E.; Hall, David F.; Dyer, James S.

    1998-10-01

    The Total Pressure Sensor (TPS) on-board the Midcourse Space Experiment (MSX) Spacecraft has continuously measured the ambient local pressure since launch of MSX on April 24, 1996. The primary goals of the sensor are: 1) to monitor the ambient pressure surrounding the spacecraft's optical telescopes and to indicate when environmental conditions are acceptable for opening the protective covers, and 2) to monitor the long-term decay of the species outgassed from the spacecraft. The water-induced environment was expected to rapidly decay over the first few months to elves more closely approaching the natural environment. The data generally shows decay toward this level, however, the pressure is quite variable with time and can be influenced by discrete illumination and spacecraft orbital events. Several experiments, conducted approximately one year into the mission, indicate that the thermal blankets retain significant quantities of water. The local pressure due to water vapor is shown to increase by a factor of 100 from direct solar illumination of the blankets. Moreover, the multi-layer construction of the blankets causes them to form a deep reservoir, which continues to be a source of water vapor several tens of months into the mission. Additionally, the TPS has monitored numerous events in which the measured ambient pressure on the optics deck has exceeded 10-9 Torr. Several of these events did not include solar illumination of the blankets. These events indicate that sources other than the MLI blankets are the cause for certain high-pressure transients. Finally, these events are not limited to the early mission, outgassing phase of the program. They have been witnessed over a year into the mission. The results documented herein indicate that special consideration must be given in the design of optical sensors to account for long term outgassing of a spacecraft.

  3. Super-Earths as Failed Cores in Orbital Migration Traps

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro

    2016-11-01

    I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.

  4. Thermal re-design of the Galileo spacecraft for a Venus-earth-earth-gravity assist (VEEGA) trajectory

    NASA Technical Reports Server (NTRS)

    Reeve, R.

    1989-01-01

    The cancellation of the Centaur upper stage program in the aftermath of the Challenger tragedy forced a redesign of the flight trajectory of the Galileo spacecraft to Jupiter, i.e., from a direct trajectory to the Venus-earth-earth-gravity-assist (VEEGA) trajectory on the lower energy two-stage inertial upper stage (IUS), with the result that the spacecraft would be exposed to more than twofold increase in peak solar irradiance. This paper describes the general system-level thermal redesign effort for the Galileo spacecraft, from the start of feasibility studies to its final implementation. Results indicate that the addition of sunshades and the generous utilization of second-surface aluminized Kapton surface material for reflecting high percentages of incident solar irradiation would 'harden' the spacecraft's existing thermal protection system adequately, provided that sun-pointing at the relatively higher solar irradiance levels could be maintained. The final miximum flight temperature predictions for the spacecraft's subsystem thermal designs are given.

  5. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  6. Spin-orbit coupling for tidally evolving super-Earths

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.

    2012-12-01

    We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.

  7. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Technical Reports Server (NTRS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-01-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  8. Computer modeling of high-voltage solar array experiment using the NASCAP/LEO (NASA Charging Analyzer Program/Low Earth Orbit) computer code

    NASA Astrophysics Data System (ADS)

    Reichl, Karl O., Jr.

    1987-06-01

    The relationship between the Interactions Measurement Payload for Shuttle (IMPS) flight experiment and the low Earth orbit plasma environment is discussed. Two interactions (parasitic current loss and electrostatic discharge on the array) may be detrimental to mission effectiveness. They result from the spacecraft's electrical potentials floating relative to plasma ground to achieve a charge flow equilibrium into the spacecraft. The floating potentials were driven by external biases applied to a solar array module of the Photovoltaic Array Space Power (PASP) experiment aboard the IMPS test pallet. The modeling was performed using the NASA Charging Analyzer Program/Low Earth Orbit (NASCAP/LEO) computer code which calculates the potentials and current collection of high-voltage objects in low Earth orbit. Models are developed by specifying the spacecraft, environment, and orbital parameters. Eight IMPS models were developed by varying the array's bias voltage and altering its orientation relative to its motion. The code modeled a typical low Earth equatorial orbit. NASCAP/LEO calculated a wide variety of possible floating potential and current collection scenarios. These varied directly with both the array bias voltage and with the vehicle's orbital orientation.

  9. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  10. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  11. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO

    NASA Astrophysics Data System (ADS)

    Kaiser, Clemens; Sjöberg, Fredrik; Delcura, Juan Manuel; Eilertsen, Baard

    2008-07-01

    Orbital Satellite Services Limited (OSSL) is a satellite servicing company that is developing an orbit life extension vehicle (OLEV) to extend the operational lifetime of geostationary satellites. The industrial consortium of SSC (Sweden), Kayser-Threde (Germany) and Sener (Spain) is in charge to develop and industrialize the space and ground segment. It is a fully commercial program with support of several space agencies during the development phase. The business plan is based on life extension for high value commercial satellites while also providing the satellite operators with various fleet management services such as graveyard burns, slot transfers and on orbit protection against replacement satellite or launch failures. The OLEV spacecraft will be able to dock with a geostationary satellite and uses an electrical propulsion system to extend its life by taking over the attitude control and station keeping functions. The OLEV system is building on the SMART-1 platform developed by Swedish Space Corporation. It was developed for ESA as a technology test-bed to demonstrate the use of electrical propulsion for interplanetary orbit transfer manoeuvres. The concept is called SMART-OLEV and takes advantage of the low cost, low mass SMART-1 platform by a maximum use of recurrent platform technology.

  12. New approaches for tracking earth orbiters using modified GPS ground receivers

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.

    1993-01-01

    A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.

  13. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    NASA Astrophysics Data System (ADS)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  14. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  15. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    NASA Astrophysics Data System (ADS)

    Albercromby, Kira J.; Abell, Paul; Barker, Ed

    2009-03-01

    A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but

  16. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Abercromby, Kira J.; Abell, Paul

    2009-01-01

    A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer

  17. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  18. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system

    NASA Astrophysics Data System (ADS)

    Marchand, Belinda G.

    Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking

  19. Advantages of High vs. Low Earth Orbit for SIRTF

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Werner, Michael W.

    1989-01-01

    While the subject of this workshop, which we will refer to as ET (for Enlightenment Telescope), is a dazzling successor to the Hubble Space Telescope, its location is unlikely to be the Low Earth Orbit (LEO) used by HST. Locations suggested for ET include High Earth Orbit (HEO) and the moon. The first space telescope to occupy HEO will be the liquid helium cooled Space Infrared Telescope Facility (SIRTF). The selection of HEO for SIRTF was the outcome of a recent study led by the Ames Research Center which showed significant advantages for SIRTF in HEO vs. LEO. This article summarizes the main results of that study. We begin with a review of SIRTF's rationale and requirements, in part because the IR capabilities and low temperature proposed for ET make it something of a successor to SIRTF as well as to HST. We conclude with some comments about another possible location for both SIRTF and ET, the Earth-Sun L2 Lagrangian point.

  20. The O/OREOS mission—Astrobiology in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  1. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  2. Near Earth Asteroids- Prospection, Orbit Modification and Mining

    NASA Astrophysics Data System (ADS)

    Grandl, W.; Bazso, A.

    2014-04-01

    The number of known Near Earth Asteroids (NEAs) has increased continuously during the last decades. Now we understand the role of asteroid impacts for the evolution of life on Earth. To ensure that mankind will survive in the long run, we have to face the "asteroid threat" seriously. On one hand we will have to develop methods of detection and deflection for Hazardous Asteroids, on the other hand we can use these methods to modify their orbits and exploit their resources. Rare-earth elements, rare metals like platinum group elements, etc. may be extracted more easily from NEAs than from terrestrial soil, without environmental pollution or political and social problems. In a first step NEAs, which are expected to contain resources like nickel-iron, platinum group metals or rare-earth elements, will be prospected by robotic probes. Then a number of asteroids with a minimum bulk density of 2 g/cm^3 and a diameter of 150 to 500 m will be selected for mining. Given the long duration of an individual mission time of 10-20 years, the authors propose a "pipeline" concept. While the observation of NEAs can be done in parallel, the precursor missions of the the next phase can be launched in short intervals, giving time for technical corrections and upgrades. In this way a continuous data flow is established and there are no idle times. For our purpose Potentially Hazardous Asteroids (PHAs) seem to be a favorable choice for the following reasons: They have frequent closeencounters to Earth, their minimum orbit intersection distance is less than 0.05 AU (Astronomic Units) and they have diameters exceeding 150 meters. The necessary velocity change (delta V) for a spaceship is below 12 km/s to reach the PHA. The authors propose to modify the orbits of the chosen PHAs by orbital maneuvers from solar orbits to stable Earth orbits beyond the Moon. To change the orbits of these celestial bodies it is necessary to develop advanced propulsion systems. They must be able to deliver high

  3. Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters

    NASA Astrophysics Data System (ADS)

    Kuang, Da; Bar-Sever, Yoaz; Haines, Bruce

    2015-05-01

    We use a series of simulated scenarios to characterize the observability of geocenter location with GPS tracking data. We examine in particular the improvement realized when a GPS receiver in low Earth orbit (LEO) augments the ground network. Various orbital configurations for the LEO are considered and the observability of geocenter location based on GPS tracking is compared to that based on satellite laser ranging (SLR). The distance between a satellite and a ground tracking-site is the primary measurement, and Earth rotation plays important role in determining the geocenter location. Compared to SLR, which directly and unambiguously measures this distance, terrestrial GPS observations provide a weaker (relative) measurement for geocenter location determination. The estimation of GPS transmitter and receiver clock errors, which is equivalent to double differencing four simultaneous range measurements, removes much of this absolute distance information. We show that when ground GPS tracking data are augmented with precise measurements from a GPS receiver onboard a LEO satellite, the sensitivity of the data to geocenter location increases by more than a factor of two for Z-component. The geometric diversity underlying the varying baselines between the LEO and ground stations promotes improved global observability, and renders the GPS technique comparable to SLR in terms of information content for geocenter location determination. We assess a variety of LEO orbital configurations, including the proposed orbit for the geodetic reference antenna in space mission concept. The results suggest that a retrograde LEO with altitude near 3,000 km is favorable for geocenter determination.

  4. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.

    2016-01-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  5. Solar Energetic Proton Nowcast for Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Winter, L. M.; Quinn, R. A.

    2013-12-01

    Solar energetic proton flux levels above > 10 pfu can damage spacecraft and pose a hazard to astronauts as well as passengers and crew on polar commercial flights. While the GOES satellites provide real-time data of SEP levels in geosynchronous orbit, it is also important to determine the risk to objects in lower altitude orbits. To assess this risk in real-time, we created a web-based nowcast of SEP flux. The tool determines the current solar energetic proton flux level given input position (latitude, longitude, and altitude) and energy of the protons (e.g., > 10 MeV). The effective cutoff energy is calculated for the location and current geomagnetic storm level (i.e., the Kp value from SWPC) using the Shea & Smart (e.g., Smart et al. 1999abc, 2000) geomagnetic cutoff model, which uses a trajectory tracing technique through the Tsyganenko magnetospheric model for the geomagnetic field. With the cutoff energy and GOES proton flux measurements, a map of the current predicted proton flux level at the input energy is displayed along with the calculated integral spectrum for the input position. This operational tool is a powerful new diagnostic for assessing the risk to spacecraft from current solar proton levels, with easy to read color-coded maps generated for all GOES integral proton flux energies and a range of altitudes (1000 - 35000 km). The figures show example maps over a ';'quiet'' (03-26-13) and active (10-30-03) time, with high proton levels easily distinguishable at or above the NOAA warning level (yellow-orange-red). The tool also displays the current GOES integral spectrum and fit, and the estimated spectrum at a user-defined location and altitude.

  6. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  7. Solar radiation pressure resonances in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  8. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  9. Space tourism: from earth orbit to the moon

    NASA Astrophysics Data System (ADS)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  10. 50th Anniversary First American to Orbit Earth

    2012-02-20

    NASA Administrator Charles Bolden surprises Sen. John Glenn, both seated on stage, with a live downlink from International Space Station Expedition 30 crew members Don Pettit, left on screen, Andre Kuipers, and Dan Burbank, right on screen, while Director of the NASA Glenn Research Center Ray Lugo moderates, during NASA's Future Forum at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  11. 50th Anniversary First American to Orbit Earth

    2012-02-20

    The Ohio State University President E. Gordon Gee, left, Apollo 11 Astronaut Neil Armstrong, 2nd from left, Former space shuttle astronaut and former Under Secretary of the Air Force Dr. Ron Sega, and Captain Mark Kelly, commander of the space shuttle Endeavour’s final mission and husband of retired U.S. Representative Gabrielle Giffords, right, talk prior to a reception at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Natural and Induced Environment in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Kim, Myung-Hee Y.; Clowdsley, Martha S.; Heinbockel, John H.; Cucinotta, Francis A.; Badhwar, Gautam D.; Atwell, William; Huston, Stuart L.

    2002-01-01

    The long-term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind which varies over the solar cycle. The neutron environment within the Shuttle in low Earth orbit has two sources. A time dependent model for the ambient environment is used to evaluate the natural and induced environment. The induced neutron environment is evaluated using measurements on STS-31 and STS-36 near the 1990 solar maximum.

  13. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  14. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  15. Synthesis of amino acids in earth orbit: proposal

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Kouchi, Akira; Hashimoto, Hirofumi; Saito, Takeshi; Yamashita, Masamichi

    1999-01-01

    Organic compounds in comets are of interest since they could be the sources of the terrestrial biosphere. They are supposed to be formed in an interstellar dust (ISD) environment. We performed laboratory simulation of the formation of bioorganic compounds in ISD environments: Amino acid precursors were detected in the products after ice mixture of CO (or CH4, CH3OH), NH3 and H2O. The present results should be confirmed in actual space conditions, such as in an exposed facility of JEM. We are designing an apparatus of such exobiology experiments in earth orbit (EEEO). Basic designs proposed for EEEO, remaining problems, and expected outcome will be discussed.

  16. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  17. Galileo view of Moon orbiting the Earth taken from 3.9 million miles

    1992-12-16

    Eight days after its encounter with the Earth, the Galileo spacecraft was able to look back and capture this remarkable view of the Moon in orbit about the Earth, taken from a distance of about 6.2 million kilometers (3.9 million miles). The picture was constructed from images taken through the violet, red, and 1.0-micron infrared filters. The Moon is in the foreground, moving from left to right. The brightly-colored Earth contrasts strongly with the Moon, which reflects only about one-third as much sunlight as the Earth. Contrast and color have been computer-enhanced for both objects to improve visibility. Antarctica is visible through clouds (bottom). The Moon's far side is seen; the shadowy indentation in the dawn terminator is the south-Pole/Aitken Basin, one of the largest and oldest lunar impact features. Alternate Jet Propulsion Laboratory (JPL) number is P-41508. View appears in the Space News Roundup v32 n1 p1, 01-11-93.

  18. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  19. Satellite laser ranging to low Earth orbiters: orbit and network validation

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  20. Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

    1999-01-01

    Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

  1. Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert

    2012-01-01

    Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.

  2. Assessment of the consequences of the Fengyun-1C breakup in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen

    On 11 January 2007, the 880 kg (958 kg at launch) weather spacecraft Fengyun-1C, launched on 10 May 1999 into a sun-synchronous orbit with a CZ-4B booster from the Taiyuan Satellite Launch Center, was destroyed over central China as a result of the first successful Chinese anti-satellite weapon test. It was carried out with a direct ascent interception with a kinetic energy kill vehicle launched by an SC-19 missile, fired from a mobile ground platform close to the Xichang Satellite Launch Center. While the technical details of the test, probably the third attempt, and the characteristics of the weapon used remain shrouded in secrecy, the intentional breakup of the aging weather spacecraft, fully functional until 2005, produced a huge amount of debris in one of the orbital regimes already most affected by past fragmentation events. At present, the US Space Surveillance Network has identified about 2600 objects, typically larger than 10 cm, but the fragments larger than 1 cm may be more than 100,000. After two decades of substantial international progress in the field of orbital debris mitigation, in order to preserve the low Earth and geosynchronous environments for future space missions, the Fengyun-1C destruction represented a serious turnabout. In fact, it abruptly increased by approximately 20% the number of cataloged debris in orbit. To give a rough idea of the impact of this single event on the circumterrestrial environment, it is sufficient to realize that about 15 years of global space activity - including failures and accidental breakups - had been needed to increase, by a comparable amount, the number of cataloged debris in orbit to the level observed before the Chinese anti-satellite test. The purpose of this presentation is to assess the impact of the debris cloud generated by the Fengyun-1C breakup on the low Earth environment. The anti-satellite test was carried out at an altitude of about 863 km, spreading the cataloged fragments between 200 and 4000

  3. Mert Davies: Pioneer in the Use of Spacecraft to Map Earth and Mars

    NASA Astrophysics Data System (ADS)

    Murray, B.; Augenstein, B.

    2002-12-01

    -based television teams invented the world?s first digital television cameras using primitive slow-scan vidicon sensors in order to overcome the 200-fold greater distance to Mars. Spacecraft mapping and geodesy was initiated by the dual flybys Mariner 6 and 7 of 1969, each carrying a moderately high resolution optical system, but one plagued by the geometric limitations of a vidicon sensor necessarily using imprecise electro-optical imaging internally. He understood clearly that the number of resolution elements on the Mariner 6/7 cameras were too small for good photogrammetric solutions. Each picture contained only 70,000 resolution elements compared to a standard aerial photograph with about a third of a billion of comparable elements. Despite such limitations, Mert was able to exploit especially the far encounter imaging from Mariners 6/7 to create the first Mars surface control net based on topographic features, and to solve for the position of the rotational pole. Under his leadership, the Mariner 9 orbiter mission greatly expanded that coverage, providing the evolving basis of USGS Mars mapping practically until the present. Furthermore, Mert, in conjunction with Harold Masursky and Gerard de Vaucoleurs, established the topocentric reference point for the prime meridian on Mars as the small crater Airy-O, which thus occupies a role analogous to that of Greenwich, England for the Earth. He was to play that historic prime meridian role for nearly all the solid bodies in the Solar System over the ensuing decades as well as a continuing role on the IAU committee that named officially the surface features of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, Uranus.

  4. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  5. Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.

  6. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Lenczewski, Mary; Demko, Rikako

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.

  7. Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2017-01-01

    High voltage solar array interactions with the space environment can have a significant impact on array performance and spacecraft charging. Over the past 10 years, data from the International Space Station has allowed for detailed observations of these interactions over long periods of time. Some of the surprising observations have been floating potential transients, which were not expected and are not reproduced by existing models. In order to understand the underlying processes producing these transients, the temporal evolution of the plasma sheath surrounding the solar cells in low Earth orbit is being investigated. This study includes lumped element modeling and particle-in-cell simulation methods. This presentation will focus on recent results from the on-going investigations.

  8. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  9. Seeing Earth's Orbit in the Stars: Parallax and Aberration

    NASA Astrophysics Data System (ADS)

    Timberlake, Todd K.

    2013-11-01

    During the 17th century the idea of an orbiting and rotating Earth became increasingly popular, but opponents of this view continued to point out that the theory had observable consequences that had never, in fact, been observed.1 Why, for instance, had astronomers failed to detect the annual parallax of the stars that must occur if Earth orbits the Sun? To address this problem, astronomers of the 17th and 18th centuries sought to measure the annual parallax of stars using telescopes. None of them succeeded. Annual stellar parallax was not successfully measured until 1838, when Friedrich Bessel detected the parallax of the star 61 Cygni.2 But the early failures to detect annual stellar parallax led to the discovery of a new (and entirely unexpected) phenomenon: the aberration of starlight. This paper recounts the story of the discovery of stellar aberration. It is accompanied by a set of activities and computer simulations that allow students to explore this fascinating historical episode and learn important lessons about the nature of science.3

  10. Earth's external magnetic fields at low orbital altitudes

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.

    1990-01-01

    Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.

  11. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  12. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  13. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits.

    PubMed

    Connerney, J E P; Adriani, A; Allegrini, F; Bagenal, F; Bolton, S J; Bonfond, B; Cowley, S W H; Gerard, J-C; Gladstone, G R; Grodent, D; Hospodarsky, G; Jorgensen, J L; Kurth, W S; Levin, S M; Mauk, B; McComas, D J; Mura, A; Paranicas, C; Smith, E J; Thorne, R M; Valek, P; Waite, J

    2017-05-26

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. Copyright © 2017, American Association for the Advancement of Science.

  14. Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Cowley, S. W. H.; Gerard, J.-C.; Gladstone, G. R.; Grodent, D.; Hospodarsky, G.; Jorgensen, J. L.; Kurth, W. S.; Levin, S. M.; Mauk, B.; McComas, D. J.; Mura, A.; Paranicas, C.; Smith, E. J.; Thorne, R. M.; Valek, P.; Waite, J.

    2017-05-01

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.

  15. High Voltage Design Concepts for Launch Vehicles and Orbital Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kirkici, Hulya; Hillard, G. Barry; Schweickart, Daniel; Dunbar, Bill

    2000-01-01

    With the advent of design concepts such as, electromechanical actuation and "more electric" initiatives, has come the need for electrical power buses and electronic equipment to operate at higher than normal dc voltages to meet power requirements while keeping current levels to manageable levels. This new bus voltage has been typically 270 Volts dc nominal for launch vehicles, and 120 Volt dc for the International Space Station. This paper will discuss the new design applications for high voltage dc power in existing and future launch vehicles and spacecraft and the potential problems associated therewith. These new applications must be operational from lift-off, ascent, on orbit and descent in all of the pressure and temperature conditions for each, i.e. through the "Paschen region" twice. This paper will also attempt to stimulate an interest in the academic and professional communities to support and conduct research needed for design data applicable to high voltage dc usage.

  16. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  17. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into

  18. Orbital Drivers of Climate Change on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.

    Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which

  19. The guide to Design For On-orbit Spacecraft Servicing (DFOSS) manual: Producing a consensus document

    NASA Technical Reports Server (NTRS)

    Nyman, Janice

    1993-01-01

    Increasing interaction and changing economies at the national and international levels have accelerated the call for standardization in space systems design. The benefits of standardization--compatibility, interchangeability, and lower costs--are maximized when achieved through consensus. Reaching consensus in standardization means giving everyone who will be affected by a standard an opportunity to have input into creating that standard. The DFOSS manual was initiated with the goal of developing standards through consensus. The present Proposed Guide derives from work begun by the Space Automation and Robotics Center (SpARC), a NASA Center for the Commercial Development of Space, and has continued as a standards project through the American Institute of Aeronautics and Astronautics (AIAA). The Proposed Guide was released by AIAA in Jan. 1992 for sale during a one-year, trial-use period. DFOSS is a response to the need for one document that contains all the guidelines required by on-orbit spacecraft servicing designers for astronaut extravehicular activity and/or telerobotic servicing. The manual's content is driven by spacecraft design considerations, and its composition has been achieved by interaction and cooperation among government, industry, and research organizations. While much work lies ahead to maximize the potential of DFOSS, the Proposed Guide represents evidence of the benefits of industry-wide consensus, points the way for broader application, and provides an example for similar projects.

  20. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    NASA Astrophysics Data System (ADS)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.