Sample records for earth quakes dynamische

  1. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  2. QuakeML 2.0: Recent developments

    NASA Astrophysics Data System (ADS)

    Euchner, Fabian; Kästli, Philipp; Heiniger, Lukas; Saul, Joachim; Schorlemmer, Danijel; Clinton, John

    2016-04-01

    QuakeML is a community-backed data model for seismic event parameter description. Its current version 1.2, released in 2013, has become the gold standard for parametric data dissemination at seismological data centers, and has been adopted as an FDSN standard. It is supported by several popular software products and data services, such as FDSN event web services, QuakePy, and SeisComP3. Work on the successor version 2.0 is under way since 2015. The scope of QuakeML has been expanded beyond event parameter description. Thanks to a modular architecture, many thematic packages have been added, which cover peak ground motion, site and station characterization, hydraulic parameters of borehole injection processes, and macroseismics. The first three packages can be considered near final and implementations of program codes and SQL databases are in productive use at various institutions. A public community review process has been initiated in order to turn them into community-approved standards. The most recent addition is a package for single station quake location, which allows a detailed probabilistic description of event parameters recorded at a single station. This package adds some information elements such as angle of incidence, frequency-dependent phase picks, and dispersion relations. The package containing common data types has been extended with a generic type for probability density functions. While on Earth, single station methods are niche applications, they are of prominent interest in planetary seismology, e.g., the NASA InSight mission to Mars. So far, QuakeML is lacking a description of seismic instrumentation (inventory). There are two existing standards of younger age (FDSN StationXML and SeisComP3 Inventory XML). We discuss their respective strengths, differences, and how they could be combined into an inventory package for QuakeML, thus allowing full interoperability with other QuakeML data types. QuakeML is accompanied by QuakePy, a Python package

  3. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  4. QuakeSim 2.0

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant

    2012-01-01

    QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data

  5. QuakeSim Project Networking

    NASA Astrophysics Data System (ADS)

    Kong, D.; Donnellan, A.; Pierce, M. E.

    2012-12-01

    QuakeSim is an online computational framework focused on using remotely sensed geodetic imaging data to model and understand earthquakes. With the rise in online social networking over the last decade, many tools and concepts have been developed that are useful to research groups. In particular, QuakeSim is interested in the ability for researchers to post, share, and annotate files generated by modeling tools in order to facilitate collaboration. To accomplish this, features were added to the preexisting QuakeSim site that include single sign-on, automated saving of output from modeling tools, and a personal user space to manage sharing permissions on these saved files. These features implement OpenID and Lightweight Data Access Protocol (LDAP) technologies to manage files across several different servers, including a web server running Drupal and other servers hosting the computational tools themselves.

  6. QuakeML - An XML Schema for Seismology

    NASA Astrophysics Data System (ADS)

    Wyss, A.; Schorlemmer, D.; Maraini, S.; Baer, M.; Wiemer, S.

    2004-12-01

    We propose an extensible format-definition for seismic data (QuakeML). Sharing data and seismic information efficiently is one of the most important issues for research and observational seismology in the future. The eXtensible Markup Language (XML) is playing an increasingly important role in the exchange of a variety of data. Due to its extensible definition capabilities, its wide acceptance and the existing large number of utilities and libraries for XML, a structured representation of various types of seismological data should in our opinion be developed by defining a 'QuakeML' standard. Here we present the QuakeML definitions for parameter databases and further efforts, e.g. a central QuakeML catalog database and a web portal for exchanging codes and stylesheets.

  7. Autogenous cross-regulation of Quaking mRNA processing and translation balances Quaking functions in splicing and translation

    PubMed Central

    Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul

    2017-01-01

    Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. PMID:29021242

  8. Autogenous cross-regulation of Quaking mRNA processing and translation balances Quaking functions in splicing and translation.

    PubMed

    Fagg, W Samuel; Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2017-09-15

    Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. © 2017 Fagg et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Cankers on Western Quaking Aspen (FIDL)

    Treesearch

    David W. Johnson; Jerome S. Beatty; Thomas E. Hinds

    1995-01-01

    Quaking aspen (Populus tremuloides Michx.) is one of the most well-known tree species in the western United States (figure 1). It is found from the northern limit of trees in northwestern Alaska through the western United States and into northern Mexico. Quaking aspen is an aggressive pioneer species that frequently colonizes burned sites, making it an important...

  10. QuakeSim: a Web Service Environment for Productive Investigations with Earth Surface Sensor Data

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Granat, R. A.; Lyzenga, G. A.; Glasscoe, M. T.; McLeod, D.; Al-Ghanmi, R.; Pierce, M.; Fox, G.; Grant Ludwig, L.; Rundle, J. B.

    2011-12-01

    The QuakeSim science gateway environment includes a visually rich portal interface, web service access to data and data processing operations, and the QuakeTables ontology-based database of fault models and sensor data. The integrated tools and services are designed to assist investigators by covering the entire earthquake cycle of strain accumulation and release. The Web interface now includes Drupal-based access to diverse and changing content, with new ability to access data and data processing directly from the public page, as well as the traditional project management areas that require password access. The system is designed to make initial browsing of fault models and deformation data particularly engaging for new users. Popular data and data processing include GPS time series with data mining techniques to find anomalies in time and space, experimental forecasting methods based on catalogue seismicity, faulted deformation models (both half-space and finite element), and model-based inversion of sensor data. The fault models include the CGS and UCERF 2.0 faults of California and are easily augmented with self-consistent fault models from other regions. The QuakeTables deformation data include the comprehensive set of UAVSAR interferograms as well as a growing collection of satellite InSAR data.. Fault interaction simulations are also being incorporated in the web environment based on Virtual California. A sample usage scenario is presented which follows an investigation of UAVSAR data from viewing as an overlay in Google Maps, to selection of an area of interest via a polygon tool, to fast extraction of the relevant correlation and phase information from large data files, to a model inversion of fault slip followed by calculation and display of a synthetic model interferogram.

  11. QuakeML: Status of the XML-based Seismological Data Exchange Format

    NASA Astrophysics Data System (ADS)

    Euchner, Fabian; Schorlemmer, Danijel; Kästli, Philipp; Quakeml Working Group

    2010-05-01

    QuakeML is an XML-based data exchange standard for seismology that is in its fourth year of active community-driven development. The current release (version 1.2) is based on a public Request for Comments process that included contributions from ETH, GFZ, USC, SCEC, USGS, IRIS DMC, EMSC, ORFEUS, GNS, ZAMG, BRGM, Nanometrics, and ISTI. QuakeML has mainly been funded through the EC FP6 infrastructure project NERIES, in which it was endorsed as the preferred data exchange format. Currently, QuakeML services are being installed at several institutions around the globe, including EMSC, ORFEUS, ETH, Geoazur (Europe), NEIC, ANSS, SCEC/SCSN (USA), and GNS Science (New Zealand). Some of these institutions already provide QuakeML earthquake catalog web services. Several implementations of the QuakeML data model have been made. QuakePy, an open-source Python-based seismicity analysis toolkit using the QuakeML data model, is being developed at ETH. QuakePy is part of the software stack used in the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center installations, developed by SCEC. Furthermore, the QuakeML data model is part of the SeisComP3 package from GFZ Potsdam. QuakeML is designed as an umbrella schema under which several sub-packages are collected. The present scope of QuakeML 1.2 covers a basic description of seismic events including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Work on additional packages (macroseismic information, seismic inventory, and resource metadata) has been started, but is at an early stage. Contributions from the community that help to widen the thematic coverage of QuakeML are highly welcome. Online resources: http://www.quakeml.org, http://www.quakepy.org

  12. Scientific goals of SCHOOLS & QUAKES

    NASA Astrophysics Data System (ADS)

    Brückl, Ewald; Köberl, Christian; Lenhardt, Wolfgang; Mertl, Stefan; Rafeiner-Magor, Walter; Stark, Angelika; Stickler, Gerald; Weber, Robert

    2015-04-01

    In many countries around the world seismometers are used in schools to broaden the knowledge in seismology in a vivid way and to take part in the observation of the current worldwide seismic activity. SCHOOLS & QUAKES is a project within the Sparkling Science program (http://www.sparklingscience.at), which not only pursues the given educational goals but also integrates scholars in seismological research permitting their own contributions. Research within SCHOOLS & QUAKES concentrates on the seismic activity of the Mürz Valley - Semmering - Vienna Basin transfer fault system in Austria because of its relatively high earthquake hazard and risk. The detection of low magnitude local earthquakes (magnitude ≤ 2), precise location of hypocenters, determination of the focal mechanisms, and correlation of hypocenters with active geological structures are the main scientific goals in this project. Furthermore, the long term build-up of tectonic stress, slip deficit and aseismic slip, and the maximum credible earthquake in this area are issues to be addressed. The scientific efforts of SCHOOLS & QUAKES build on the work of the Seismological Service of Austria at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG), and benefit from the findings on the lithospheric structure of the Eastern Alps gained by the CELEBRATION 2000 and ALP 2002 projects. Regional Vp and Vs-models were derived from this data covering the SCHOOLS & QUAKES target area. Within the ALPAACT project (Seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) the seismic network of the target area was densified by 7 broadband und 2 short period stations. Relocations based on a 3D-velocity model and the densified seismic network yielded substantially higher spatial resolution of seismically active structures. A new method based on waveform stacking (GRA, 16, EGU2014-5722) allowed for focal mechanism solutions of low magnitude (Ml ~2.5) events. Data from 22 GNSS stations have been

  13. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  14. QuakeML: XML for Seismological Data Exchange and Resource Metadata Description

    NASA Astrophysics Data System (ADS)

    Euchner, F.; Schorlemmer, D.; Becker, J.; Heinloo, A.; Kästli, P.; Saul, J.; Weber, B.; QuakeML Working Group

    2007-12-01

    QuakeML is an XML-based data exchange format for seismology that is under development. Current collaborators are from ETH, GFZ, USC, USGS, IRIS DMC, EMSC, ORFEUS, and ISTI. QuakeML development was motivated by the lack of a widely accepted and well-documented data format that is applicable to a broad range of fields in seismology. The development team brings together expertise from communities dealing with analysis and creation of earthquake catalogs, distribution of seismic bulletins, and real-time processing of seismic data. Efforts to merge QuakeML with existing XML dialects are under way. The first release of QuakeML will cover a basic description of seismic events including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Further extensions are in progress or planned, e.g., for macroseismic information, location probability density functions, slip distributions, and ground motion information. The QuakeML language definition is supplemented by a concept to provide resource metadata and facilitate metadata exchange between distributed data providers. For that purpose, we introduce unique, location-independent identifiers of seismological resources. As an application of QuakeML, ETH Zurich currently develops a Python-based seismicity analysis toolkit as a contribution to CSEP (Collaboratory for the Study of Earthquake Predictability). We follow a collaborative and transparent development approach along the lines of the procedures of the World Wide Web Consortium (W3C). QuakeML currently is in working draft status. The standard description will be subjected to a public Request for Comments (RFC) process and eventually reach the status of a recommendation. QuakeML can be found at http://www.quakeml.org.

  15. OpenQuake, a platform for collaborative seismic hazard and risk assessment

    NASA Astrophysics Data System (ADS)

    Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben

    2013-04-01

    Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental

  16. How to build and teach with QuakeCaster: an earthquake demonstration and exploration tool

    USGS Publications Warehouse

    Linton, Kelsey; Stein, Ross S.

    2015-01-01

    QuakeCaster is an interactive, hands-on teaching model that simulates earthquakes and their interactions along a plate-boundary fault. QuakeCaster contains the minimum number of physical processes needed to demonstrate most observable earthquake features. A winch to steadily reel in a line simulates the steady plate tectonic motions far from the plate boundaries. A granite slider in frictional contact with a nonskid rock-like surface simulates a fault at a plate boundary. A rubber band connecting the line to the slider simulates the elastic character of the Earth’s crust. By stacking and unstacking sliders and cranking in the winch, one can see the results of changing the shear stress and the clamping stress on a fault. By placing sliders in series with rubber bands between them, one can simulate the interaction of earthquakes along a fault, such as cascading or toggling shocks. By inserting a load scale into the line, one can measure the stress acting on the fault throughout the earthquake cycle. As observed for real earthquakes, QuakeCaster events are not periodic, time-predictable, or slip-predictable. QuakeCaster produces rare but unreliable “foreshocks.” When fault gouge builds up, the friction goes to zero and fault creep is seen without large quakes. QuakeCaster events produce very small amounts of fault gouge that strongly alter its behavior, resulting in smaller, more frequent shocks as the gouge accumulates. QuakeCaster is designed so that students or audience members can operate it and record its output. With a stopwatch and ruler one can measure and plot the timing, slip distance, and force results of simulated earthquakes. People of all ages can use the QuakeCaster model to explore hypotheses about earthquake occurrence. QuakeCaster takes several days and about $500.00 in materials to build.

  17. QuakeML: Recent Development and First Applications of the Community-Created Seismological Data Exchange Standard

    NASA Astrophysics Data System (ADS)

    Euchner, F.; Schorlemmer, D.; Kästli, P.; Quakeml Group, T

    2008-12-01

    QuakeML is an XML-based exchange format for seismological data which is being developed using a community-driven approach. It covers basic event description, including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Contributions have been made from ETH, GFZ, USC, SCEC, USGS, IRIS DMC, EMSC, ORFEUS, GNS, ZAMG, BRGM, and ISTI. The current release (Version 1.1, Proposed Recommendation) reflects the results of a public Request for Comments process which has been documented online at http://quakeml.org/RFC_BED_1.0. QuakeML has recently been adopted as a distribution format for earthquake catalogs by GNS Science, New Zealand, and the European-Mediterranean Seismological Centre (EMSC). These institutions provide prototype QuakeML web services. Furthermore, integration of the QuakeML data model in the CSEP (Collaboratory for the Study of Earthquake Predictability, http://www.cseptesting.org) testing center software developed by SCEC is under way. QuakePy is a Python- based seismicity analysis toolkit which is based on the QuakeML data model. Recently, QuakePy has been used to implement the PMC method for calculating network recording completeness (Schorlemmer and Woessner 2008, in press). Completeness results for seismic networks in Southern California and Japan can be retrieved through the CompletenessWeb (http://completenessweb.org). Future QuakeML development will include an extension for macroseismic information. Furthermore, development on seismic inventory information, resource identifiers, and resource metadata is under way. Online resources: http://www.quakeml.org, http://www.quakepy.org

  18. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.

    PubMed

    Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A

    2015-11-17

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

  19. The NetQuakes Project - Seeking a Balance Between Science and Citizens.

    NASA Astrophysics Data System (ADS)

    Luetgert, J. H.; Oppenheimer, D. H.

    2012-12-01

    The challenge for any system that uses volunteer help to do science is to dependably acquire quality data without unduly burdening the volunteer. The NetQuakes accelerograph and its data acquisition system were created to address the recognized need for more densely sampled strong ground motion recordings in urban areas to provide more accurate ShakeMaps for post-earthquake disaster assessment and to provide data for structural engineers to improve design standards. The recorder has 18 bit resolution with ±3g internal tri-axial MEMS accelerometers. Data are continuously recorded at 200 sps into a 1-2 week ringbuffer. When triggered, a miniSEED file is sent to USGS servers via the Internet. Data can also be recovered from the ringbuffer by a remote request through the NetQuakes servers. Following a power failure, the instrument can run for 36 hours using its internal battery. We rely upon cooperative citizens to host the dataloggers, provide power and Internet connectivity and perform minor servicing. Instrument and battery replacement are simple tasks that can be performed by hosts, thus reducing maintenance costs. Communication with the instrument to acquire data or deliver firmware is accomplished by file transfers using NetQuakes servers. The client instrument initiates all client-server interactions, so it safely resides behind a host's firewall. A connection to the host's LAN, and from there to the public Internet, can be made using WiFi to minimize cabling. Although timing using a cable to an external GPS antenna is possible, it is simpler to use the Network Time Protocol (NTP) to discipline the internal clock. This approach achieves timing accuracy substantially better than a sample interval. Since 2009, we have installed more than 140 NetQuakes instruments in the San Francisco Bay Area and have successfully integrated their data into the near real time data stream of the Northern California Seismic System. An additional 235 NetQuakes instruments have been

  20. The Quake-Catcher Network: An Innovative Community-Based Seismic Network

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.

    2009-12-01

    The Quake-Catcher Network (QCN) is a volunteer computing seismic network that engages citizen scientists, teachers, and museums to participate in the detection of earthquakes. In less than two years, the network has grown to over 1000 participants globally and continues to expand. QCN utilizes Micro-Electro-Mechanical System (MEMS) accelerometers, in laptops and external to desktop computers, to detect moderate to large earthquakes. One goal of the network is to involve K-12 classrooms and museums by providing sensors and software to introduce participants to seismology and community-based scientific data collection. The Quake-Catcher Network provides a unique opportunity to engage participants directly in the scientific process, through hands-on activities that link activities and outcomes to their daily lives. Partnerships with teachers and museum staff are critical to growth of the Quake Catcher Network. Each participating institution receives a MEMS accelerometer to connect, via USB, to a computer that can be used for hands-on activities and to record earthquakes through a distributed computing system. We developed interactive software (QCNLive) that allows participants to view sensor readings in real time. Participants can also record earthquakes and download earthquake data that was collected by their sensor or other QCN sensors. The Quake-Catcher Network combines research and outreach to improve seismic networks and increase awareness and participation in science-based research in K-12 schools.

  1. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  2. The QuakeFinder Magnetometer Network - a Platform for Earth and Space Science Research

    NASA Astrophysics Data System (ADS)

    Bleier, T.; Kappler, K. N.; Schneider, D.

    2016-12-01

    QuakeFinder (QF) is a humanitarian research and development project attempting to characterize earth-emitting electromagnetic (EM) signals as potential precursors to earthquakes. Beginning in 2005, QF designed, built, deployed and now maintains an array of 165 remote monitoring stations in 6 countries (US/California, Taiwan, Greece, Indonesia, Peru and Chile). Having amassed approximately 70 TB of data and greater than 140 earthquakes (M4+), QF is focused on the data analysis and signal processing algorithms in our effort to enable a forecasting capability. QF's autonomous stations, located along major fault lines, collect and transmit electromagnetic readings from 3-axis induction magnetometers and positive/negative ion sensors, a geophone, as well as various station health status and local conditions. The induction magnetometers, oriented N-S,E-W and vertically, have a 40 nT range and 1 pT sensitivity. Data is continuously collected at 50 samples/sec (sps), GPS time-stamped and transmitted, primarily through cell phone networks, to our data center in Palo Alto, California. The induction magnetometers routinely detect subtle geomagnetic and ionospheric disturbances as observed worldwide. QF seeks to make available both historic data and the array platform to strategic partners in the EM-related research and operation fields. The QF system will be described in detail with examples of local and regional geomagnetic activity. The stations are robust and will be undergoing a system-level upgrade in the near future. Domestically, QF maintains a 98% `up time' among the 120 stations in California while internationally our metric is typically near 80%. Irregular cell phone reception is chief among the reasons for outages although little data has been lost as the stations can store up to 90 days of data. These data are retrieved by QF personnel or, when communication is reestablished, the QF data ingest process automatically updates the database. Planned station upgrades

  3. xQuake: A Modern Approach to Seismic Network Analytics

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  4. Quaking aspen productivity recovers after repeated prescribed fire.

    Treesearch

    D. A. Perala

    1995-01-01

    Describes how quaking aspen (Populus tremuloides Michx.) stand recovered after logging, and logging and burning. Aspen suckering was profuse after each destructive episode but differences in stockability caused different yield trajectories.

  5. Seismic Monitoring with NetQuakes: The First 75 in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Vidale, J. E.; Luetgert, J. H.; Malone, S. D.; Delorey, A. A.; Steele, W. P.; Gibbons, D. A.; Walsh, L. K.

    2011-12-01

    NetQuakes accelerographs are relatively inexpensive Internet-aware appliances that we are using as part of our regional seismic monitoring program in the Pacific Northwest Seismic Network (PNSN). To date we have deployed approximately 65 units. By the end of 2011, we will have at least 75 systems sited and operating. The instruments are made by Swiss manufacturer GeoSig, Ltd., and have been obtained by PNSN through several cooperative programs with the US Geological Survey (USGS). The NetQuakes systems have increased the number of strong-motion stations in the Pacific Northwest by ~50%. NetQuakes instruments connect to the Internet via wired or wireless telemetry, obtain accurate timing vie Network Time Protocol, and are designed to be located in the ground floor of houses or small buildings. At PNSN we have concentrated on finding NetQuakes hosts by having technologically savvy homeowners self-identify as a response to news reports about the NetQuakes project. Potential hosts are prioritized by their proximity to target sites provided by a regional panel of experts who studied the region's strong-ground-motion monitoring needs. Recorded waveforms, triggered by strong motion or retrieved from a buffer of continuous data, are transmitted to Menlo Park, and then on to PNSN in Seattle. Data are available with latency of a few minutes to a little over an hour, and are automatically incorporated with the rest of PNSN network data for analysis and the generation of earthquake products. Triggered data may also be viewed by the public via the USGS website, [http://earthquake.usgs.gov/monitoring/netquakes/map/pacnw]. We present examples of ground motion recordings returned to date. Local earthquakes up to M4 (at a distance of ~60 km) reveal interesting patterns of local site effects. The 11 March M9 Tohoku, Japan earthquake produced ground motions recorded on the PNSN accelerographs, including many NetQuakes systems, that reveal the extent and severity of basin

  6. 76 FR 69279 - Notice of Intent to Prepare an Environmental Impact Statement for the Quaking Aspen Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... to 100 1.5 megawatt (MW) to 3 MW wind turbine generators with a nameplate capacity of 250 MW of power... Intent to Prepare an Environmental Impact Statement for the Quaking Aspen Wind Energy Project, Wyoming... Statement (EIS) for the Quaking Aspen Wind Energy Project (Quaking Aspen). By this notice, BLM is: (1...

  7. New insights into turbulent pedestrian movement pattern in crowd-quakes

    NASA Astrophysics Data System (ADS)

    Ma, J.; Song, W. G.; Lo, S. M.; Fang, Z. M.

    2013-02-01

    Video recordings right before the Love Parade disaster have been quantitatively analyzed to explore the bursts of unusual crowd movement patterns, crowd-quakes. The pedestrian movement pattern in this incident was special for the reason that it happened in a congested counter flow scenario, where stopped pedestrians were involved. No one was believed to have pushed others intentionally at the beginning, however, under this situation, the body contacts among the pedestrians still induced a force spread, which then led to velocity fluctuation. As indicated by the individual velocity-related features, the densely crowded pedestrian movement displayed turbulent flow features. Further analyzing the overall flow field, we also found that the pedestrian flow field shared typical patterns with turbulent fluid flow. As a result of the turbulent state, different clusters of pedestrians displayed different velocity features. Thus crowd pressure which took into account the velocity and density information was proved to be a good indicator of crowd disasters. Based on these essential features of pedestrian crowd-quakes, a minimal model, i.e., a pedestrian crowd-quake model, was established. Effects including pedestrian gait, stress conservation level and personal intention to escape were explored.

  8. Quaking aspen woodland after conifer control: herbaceous dynamics

    USDA-ARS?s Scientific Manuscript database

    Western juniper (Juniperus occidentalis Hook.) woodlands are replacing lower elevation (< 2100 m) quaking aspen (Populus tremuloides Michx.) stands in the northern Great Basin. Restoring aspen woodlands is important because they provide wildlife habitat for many species and contain a high diversity...

  9. Understanding Earthquake Fault Systems Using QuakeSim Analysis and Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Glasscoe, Margaret; Granat, Robert; Rundle, John; McLeod, Dennis; Al-Ghanmi, Rami; Grant, Lisa

    2008-01-01

    We are using the QuakeSim environment to model interacting fault systems. One goal of QuakeSim is to prepare for the large volumes of data that spaceborne missions such as DESDynI will produce. QuakeSim has the ability to ingest distributed heterogenous data in the form of InSAR, GPS, seismicity, and fault data into various earthquake modeling applications, automating the analysis when possible. Virtual California simulates interacting faults in California. We can compare output from long time history Virtual California runs with the current state of strain and the strain history in California. In addition to spaceborne data we will begin assimilating data from UAVSAR airborne flights over the San Francisco Bay Area, the Transverse Ranges, and the Salton Trough. Results of the models are important for understanding future earthquake risk and for providing decision support following earthquakes. Improved models require this sensor web of different data sources, and a modeling environment for understanding the combined data.

  10. New Zealand’s deadliest quake sounds alarm for cities on fault lines

    USGS Publications Warehouse

    Kalkan, Erol

    2012-01-01

    The catastrophic Christ Church Earthquake is a strong reminder to engineers and scientists of the hazards pose by fault lines, both mapped and unknown, near major cities. In February 2011, the relatively moderate earthquake that struck the cities of Christchurch and Lyttleton in the Canterbury region of New Zealand's South Island surprised many with its destructive power. The magnitude 6.2 temblor killed 181 people, 118 of whom were killed in the collapse of a single building in the city center. The quake damaged or destroyed more than 100,000 buildings.It was the deadliest quake to strike the nation in 80 years-since the 1931 earthquake that struck the Napier and Hastings area of the North Island. The Christchurch quake was part of the aftershock sequence following the September 2010 magnitude 7.1 earthquake near Darfield, 40 kilometers west of the city. The Darfield earthquake was in a sparsely populated area, causing to loss of life. By contrast, the Christchurch earthquake was generated on a fault in close proximity to the city.

  11. LastQuake: a comprehensive strategy for rapid engagement of earthquake eyewitnesses, massive crowdsourcing and risk reduction

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Steed, R.; Frobert, L.

    2015-12-01

    LastQuake is a smartphone app, browser add-on and the most sophisticated Twitter robot (quakebot) for earthquakes currently in operation. It fulfills eyewitnesses' needs by offering information on felt earthquakes and their effects within tens of seconds of their occurrence. Associated with an active presence on Facebook, Pinterest and on websites, this proves a very efficient engagement strategy. For example, the app was installed thousands of times after the Ghorka earthquake in Nepal. Language barriers have been erased by using visual communication; for example, felt reports are collected through a set of cartoons representing different shaking levels. Within 3 weeks of the magnitude 7.8 Ghorka earthquakes, 7,000 felt reports with thousands of comments were collected related to the mainshock and tens of its aftershocks as well as 100 informative geo-located pics. The QuakeBot was essential in allowing us to be identified so well and interact with those affected. LastQuake is also a risk reduction tool since it provides rapid information. Rapid information is similar to prevention since when it does not exist, disasters can happen. When no information is available after a felt earthquake, the public block emergency lines by trying to find out the cause of the shaking, crowds form potentially leading to unpredictable crowd movement, rumors spread. In its next release LastQuake will also provide people with guidance immediately after a shaking through a number of pop-up cartoons illustrating "do/don't do" items (go to open places, do not phone emergency services except if people are injured…). LastQuake's app design is simple and intuitive and has a global audience. It benefited from a crowdfunding campaign (and the support of the Fondation MAIF) and more improvements have been planned after an online feedback campaign organized in early June with the Ghorka earthquake eyewitnesses. LastQuake is also a seismic risk reduction tools thanks to its very rapid

  12. Advantages to Geoscience and Disaster Response from QuakeSim Implementation of Interferometric Radar Maps in a GIS Database System

    NASA Astrophysics Data System (ADS)

    Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu

    2015-08-01

    High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.

  13. Quaking aspen woodland after conifer control: tree and shrub dynamics

    USDA-ARS?s Scientific Manuscript database

    Western juniper (Juniperus occidentalis spp. occidentalis) woodlands are replacing lower elevation (< 2100 m) quaking aspen (Populus tremuloides) stands of the northern Great Basin. Recovery of aspen is important because these communities provide habitat for many wildlife species. We evaluated two...

  14. Proton transfer and protein quake in photoreceptor activation

    NASA Astrophysics Data System (ADS)

    Xie, Aihua

    2002-03-01

    Proteins are able to perform an enormous variety of functions, while using only a limited number of underlying processes. One of these is proton transfer, found in a range of receptors and enzymes. It is conceivable that proton transfer is essential in biological energy transduction, but it is less evident how proton transfer is employed in receptor activation during biological signal transduction. An important question regarding receptor activation is how a localized event of detecting a stimulus at the active site drives global conformational changes involving protein surface for signal relay. We will present structural, kinetic and energetic studies on the activation mechanism of a prototype PAS domain photoreceptor, photoactive yellow protein (PYP). Our data reveal that the putative signaling state of PYP upon absorption of a blue photon is formed during a large-amplitude protein quake triggered by the formation of a new buried charge in a hydrophobic pocket at the active site of PYP via intramolecular proton transfer. This mechanism for protein quakes driven by proton transfer and electrostatic interactions may play roles during the functioning of other receptor proteins and non-receptor proteins that require large conformational changes.

  15. Clone expansion and competition between quaking and bigtooth aspen suckers after clearcutting.

    Treesearch

    Donald A. Perala

    1981-01-01

    Quaking aspen clones expanded over more area, and regenerated greater sucker stem densities and biomass than did bigtooth aspen clones. However, sucker height growth was similar between the two species.

  16. NASA Radar Captures Earth Deformation from 2010 Baja Calif. Quake

    NASA Image and Video Library

    2011-03-04

    This radar image from NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar UAVSAR shows the deformed Earth caused by a 7.2 earthquake in Mexico state of Baja California and parts of the American Southwest on April 4, 2010.

  17. Use of QuakeSim and UAVSAR for Earthquake Damage Mitigation and Response

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Parker, J. W.; Bawden, G.; Hensley, S.

    2009-01-01

    Spaceborne, airborne, and modeling and simulation techniques are being applied to earthquake risk assessment and response for mitigation from this natural disaster. QuakeSim is a web-based portal for modeling interseismic strain accumulation using paleoseismic and crustal deformation data. The models are used for understanding strain accumulation and release from earthquakes as well as stress transfer to neighboring faults. Simulations of the fault system can be used for understanding the likelihood and patterns of earthquakes as well as the likelihood of large aftershocks from events. UAVSAR is an airborne L-band InSAR system for collecting crustal deformation data. QuakeSim, UAVSAR, and DESDynI (following launch) can be used for monitoring earthquakes, the associated rupture and damage, and postseismic motions for prediction of aftershock locations.

  18. Performance modeling codes for the QuakeSim problem solving environment

    NASA Technical Reports Server (NTRS)

    Parker, J. W.; Donnellan, A.; Lyzenga, G.; Rundle, J.; Tullis, T.

    2003-01-01

    The QuakeSim Problem Solving Environment uses a web-services approach to unify and deploy diverse remote data sources and processing services within a browser environment. Here we focus on the high-performance crustal modeling applications that will be included in this set of remote but interoperable applications.

  19. Historical patterns in lichen communities of montane quaking aspen forests

    Treesearch

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  20. Cosesimic landslides and their post-quake effects (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, R.; Fan, X.

    2013-12-01

    On May 12, 2008, a devastating earthquake of magnitude Mw 7.9 hit China's Sichuan province. The quake, originating in the Longmen Shan fault zone at the eastern margin of Tibetan Plateau, was the country's largest seismic event in more than 50 years. It triggered more than 60,000 destructive landslides and 828 landslide dams over an area of 35,000 square kilometers, that caused about one third of the total fatalities. The combination of strong and long-lasting ground shaking, steep, rugged topography and a fragile and densely jointed lithology probably controlled the occurrence of landslides during the earthquake, but we found that other two factors (fault type and slip rate during the earthquake), may also have played a role. Landslides were clustered in a much wider corridor along the thrusting part of the Yingxiu-Beichuan fault than the strike-slip part. Large-scale landslides with an area of more than 50,000 m2 were concentrated where fault slip-rates were highest, near the intersections and junctures of individual segments of the fault. After the earthquake, debris flow hazard has become a significant concern. A tremendous amount of loose material from landslides that occurred during the earthquake is suspended on the hillslopes, ready to be eroded and transported by rain. More than 2000 occurrences of debris flow have been recorded by the Land and Resources Department of Sichuan Province following the 2008 quake till 2012. The threshold in hourly rainfall intensity for triggering debris flows was found to be around 60% lower after the earthquake than it had been before, according to the record in Beichuan. How long it will take for the debris flow frequency to return to pre-earthquake levels depends on a large number of factors, including rainfall intensity, natural re-vegetation and self-stabilization processes on slopes. We anticipate that - despite large uncertainties - debris flows that directly result from sediment movement during the 2008 earthquake may

  1. Defensive effects of extrafloral nectaries in quaking aspen differ with scale

    Treesearch

    Brent Mortensen; Diane Wagner; Patricia Doak

    2010-01-01

    The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectarines (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides...

  2. Decline of quaking aspen in the Interior West - examples from Utah

    Treesearch

    Dale L. Bartos; Robert B. Campbell

    1998-01-01

    Quaking aspen (Populus tremuloides) are unique because, in contrast to most western forest trees, they reproduce primarily by suckering from the parent root system. Generally disturbance or dieback is necessary to stimulate regeneration of aspen stands. These self-regenerating stands have existed for thousands of years. If they are lost from the...

  3. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  4. RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation*

    PubMed Central

    Thangaraj, Merlin P.; Furber, Kendra L.; Gan, Jotham K.; Ji, Shaoping; Sobchishin, Larhonda; Doucette, J. Ronald; Nazarali, Adil J.

    2017-01-01

    Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3′ untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation. PMID:28188285

  5. Rapid scientific response to Landers quake

    NASA Astrophysics Data System (ADS)

    Mori, J.; Hudnut, K.; Jones, L.; Hauksson, E.; Hutton, K.

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake (Ms 7.5, Mw 7.4) in the western U.S. in the past 40 years. The quake initiated near the town of Landers, Calif., at 11:57 (GMT) and ruptured to the north and then the northwest along a 70-km stretch of the Mojave Shear Zone. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave desert, but one child was killed in Yucca Valley and 400 people were injured in the surrounding area. The communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino County sustained significant ($100 million) damage to buildings and roads. Damage to water and power lines also caused problems in many of the desert areas.

  6. The NetQuakes Project - Research-quality Seismic Data Transmitted via the Internet from Citizen-hosted Instruments (Invited)

    NASA Astrophysics Data System (ADS)

    Luetgert, J. H.; Oppenheimer, D. H.; Hamilton, J.

    2010-12-01

    The USGS seeks accelerograph spacing of 5-10 km in selected urban areas of the US to obtain spatially un-aliased recordings of strong ground motions during large earthquakes. These dense measurements will improve our ability to make rapid post-earthquake assessments of expected damage and contribute to the continuing development of engineering standards for construction. To achieve this goal the USGS and its university partners are deploying “NetQuakes” seismographs, designed to record moderate to large earthquakes from the near field to about 100 km. The instruments have tri-axial Colibrys 2005SF MEMS sensors, clip at 3g, and have 18-bit resolution. These instruments are uniquely designed for deployment in private homes, businesses, public buildings and schools where there is an existing Broadband connection to the Internet. The NetQuakes instruments connect to a local network using WiFi and then via the Internet to USGS servers to a) upload triggered accelerograms in miniSEED format, P arrival times, and computed peak ground motion parameters immediately after an earthquake; b) download software updates; c) respond to requests for log files, execute UNIX scripts, and upload waveforms from long-term memory for quakes with peak motions below the trigger threshold; d) send state-of-health (SOH) information in XML format every 10 minutes; and e) synchronize instrument clocks to 1ms accuracy using the Network Time Protocol. NetQuakes instruments cost little to operate and save about $600/yr/site compared to instruments that transmit data via leased telemetry. After learning about the project through press releases, thousands of citizens have registered to host an instrument at http://earthquake.usgs.gov/netquakes using a Google Map interface that depicts where we seek instrument sites. The website also provides NetQuakes hosts access to waveform images recorded by instruments installed in their building. Since 3/2009, the NetQuakes project has installed over 100

  7. Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastrukov, S.; Xu, R.-X.; Molodtsova, I.

    2010-11-15

    Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst fluxmore » from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.« less

  8. NASA Looks at Land Surface Changes Following Chilean Quake

    NASA Image and Video Library

    2015-10-12

    On Sept. 16, 2015, a magnitude 8.3 earthquake struck near the coast of central Chile along the boundary of the Nazca and South American tectonic plates. Dubbed the Illapel earthquake, the shaking lasted at least three minutes and propelled a 15-foot (4.5-meter) tsunami that washed into Coquimbo and other coastal areas. Smaller tsunami waves raced across the Pacific and showed up on the shores of Hawaii and other islands. The earthquake and tsunami caused substantial damage in several Chilean coastal towns, and at least 13 deaths have been reported. Demanding building codes and extensive disaster preparedness helped to limit the loss of life and property. The maps above, known as interferograms, show how the quake moved the ground, as observed by the Copernicus Sentinel-1A satellite (operated by the European Space Agency) and reported by ground stations to the U.S. Geological Survey. Sentinel-1A carries a synthetic aperture radar (SAR) instrument, which beams radio signals toward the ground and measures the reflections to determine the distance between the ground and the satellite. By comparing measurements made on Aug. 24 and Sept. 17, Cunren Liang, Eric Fielding, and other researchers from NASA's Jet Propulsion Laboratory were able to determine how the land surface shifted during and after the earthquake. Interferograms can be used to estimate where the fault moved deep in Earth and which areas have increased stress and higher likelihood of future earthquakes. The details can also provide important information to better understand the earthquake process. On both the close-up and the broad-view maps, the amount of land motion is represented in shades from yellow to purple. Areas where the ground shifted the most (vertically, horizontally, or both) are represented in yellow, while areas with little change are represented in purple. Circles show the location of earthquakes and aftershocks in the two days after the initial 8.3 earthquake, as reported by the USGS

  9. How citizen seismology is transforming rapid public earthquake information: the example of LastQuake smartphone application and Twitter QuakeBot

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Etivant, C.; Roussel, F.; Mazet-Roux, G.; Steed, R.

    2014-12-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public. Wherever someone's own location is, they can be automatically informed when an earthquake has struck just by setting a magnitude threshold and an area of interest. No need to browse the internet: the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? A while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones of societal importance even when of small magnitude. LastQuake app and Twitter feed (QuakeBot) focuses on these earthquakes that matter for the public by collating different information threads covering tsunamigenic, damaging and felt earthquakes. Non-seismic detections and macroseismic questionnaires collected online are combined to identify felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the USGS, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. We will present the identification process of the felt earthquakes, the smartphone application and the 27 automatically generated tweets and how, by providing better public services, we collect more data from citizens.

  10. An original approach to fill the gap in the earthquake disaster experience - a proposal for 'the archive of the quake experience' -

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Hirayama, Y.; Kuroda, S.; Yoshida, M.

    2015-12-01

    People without severe disaster experience infallibly forget even the extraordinary one like 3.11 as time advances. Therefore, to improve the resilient society, an ingenious attempt to keep people's memory of disaster not to fade away is necessary. Since 2011, we have been caring out earthquake disaster drills for residents of high-rise apartments, for schoolchildren, for citizens of the coastal area, etc. Using a portable earthquake simulator (1), the drill consists of three parts, the first: a short lecture explaining characteristic quakes expected for Japanese people to have in the future, the second: reliving experience of major earthquakes hit Japan since 1995, and the third: a short lecture for preparation that can be done at home and/or in an office. For the quake experience, although it is two dimensional movement, the real earthquake observation record is used to control the simulator to provide people to relive an experience of different kinds of earthquake including the long period motion of skyscrapers. Feedback of the drill is always positive because participants understand that the reliving the quake experience with proper lectures is one of the best method to communicate the past disasters to their family and to inherit them to the next generation. There are several kinds of archive for disaster as inheritance such as pictures, movies, documents, interviews, and so on. In addition to them, here we propose to construct 'the archive of the quake experience' which compiles observed data ready to relive with the simulator. We would like to show some movies of our quake drill in the presentation. Reference: (1) Kuroda, S. et al. (2012), "Development of portable earthquake simulator for enlightenment of disaster preparedness", 15th World Conference on Earthquake Engineering 2012, Vol. 12, 9412-9420.

  11. Latest Results From the QuakeFinder Statistical Analysis Framework

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.; MacLean, L. S.; Schneider, D.; Bleier, T.

    2017-12-01

    Since 2005 QuakeFinder (QF) has acquired an unique dataset with outstanding spatial and temporal sampling of earth's magnetic field along several active fault systems. This QF network consists of 124 stations in California and 45 stations along fault zones in Greece, Taiwan, Peru, Chile and Indonesia. Each station is equipped with three feedback induction magnetometers, two ion sensors, a 4 Hz geophone, a temperature sensor, and a humidity sensor. Data are continuously recorded at 50 Hz with GPS timing and transmitted daily to the QF data center in California for analysis. QF is attempting to detect and characterize anomalous EM activity occurring ahead of earthquakes. There have been many reports of anomalous variations in the earth's magnetic field preceding earthquakes. Specifically, several authors have drawn attention to apparent anomalous pulsations seen preceding earthquakes. Often studies in long term monitoring of seismic activity are limited by availability of event data. It is particularly difficult to acquire a large dataset for rigorous statistical analyses of the magnetic field near earthquake epicenters because large events are relatively rare. Since QF has acquired hundreds of earthquakes in more than 70 TB of data, we developed an automated approach for finding statistical significance of precursory behavior and developed an algorithm framework. Previously QF reported on the development of an Algorithmic Framework for data processing and hypothesis testing. The particular instance of algorithm we discuss identifies and counts magnetic variations from time series data and ranks each station-day according to the aggregate number of pulses in a time window preceding the day in question. If the hypothesis is true that magnetic field activity increases over some time interval preceding earthquakes, this should reveal itself by the station-days on which earthquakes occur receiving higher ranks than they would if the ranking scheme were random. This can

  12. Adaptations of quaking aspen for defense against damage by herbivores and related environmental agents

    Treesearch

    Richard L. Lindroth

    2001-01-01

    Quaking aspen (Populus tremuloides) employs two major systems of defense against damage by environmental agents: chemical defense and tolerance. Aspen accumulates appreciable quantities of phenolic glycosides (salicylates) and condensed tannins in most tissues and accumulates coniferyl benzoate in flower buds. Phenolic glycosides are toxic and/or deterrent to pathogens...

  13. A severe epidemic of Marssonina leaf blight on quaking aspen in Northern Utah

    Treesearch

    Roy O. Harniss; David L. Nelson

    1984-01-01

    The extent of Marssonina leaf blight (Marssonina populi) on quaking aspen (Populus tremuloides) was observed in northern Utah and adjacent States in 1981 aand 1982. Area of the epidemic and symptoms of the disease are described. On 1,000 acres (405 hal) in northern Utah, infection levels were 6 percent slight, 12 percent light, 32 percent moderate, 16 percent...

  14. LastQuake app: a tool for risk reduction that focuses on earthquakes that really matter to the public!

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.; Frobert, L.

    2015-12-01

    Many seismic events are only picked up by seismometers but the only earthquakes that really interest the public (and the authorities) are those which are felt by the population. It is not a magnitude issue only; even a small magnitude earthquake, if widely felt can create a public desire for information. In LastQuake, felt events are automatically discriminated through the reactions of the population on the Internet. It uses three different and complementary methods. Twitter Earthquake detection, initially developed by the USGS, detects surges in the number of tweets containing the word "earthquake" in different languages. Flashsourcing, developed by EMSC, detects traffic surges caused by eyewitnesses on its website - one of the top global earthquake information websites. Both detections happen typically within 2 minutes of an event's occurrence. Finally, an earthquake is also confirmed as being felt when at least 3 independent felt reports (questionnaires) are collected. LastQuake automatically merges seismic data, direct (crowdsourced) and indirect eyewitnesses' contributions, damage scenarios and tsunami alerts to provide information on felt earthquakes and their effects in a time ranging from a few tens of seconds to 90 minutes. It is based on visual communication to erase language hurdles, for instance, it crowdsources felt reports through simple cartoons as well as geo-located pics. It was massively adopted in Nepal within hours of the Gorkha earthquake and collected thousands of felt reports and more than 100 informative pics. LastQuake is also a seismic risk reduction tools thanks to its very rapid information. When such information does not exist, people tend to call emergency services, crowds emerge and rumors spread. In its next release, LastQuake will also have "do/don't do" cartoons popping up after an earthquake to encourage appropriate behavior.

  15. Climate variability and fire effects on quaking aspen in the central Rocky Mountains, USA

    Treesearch

    Vachel A. Carter; Andrea Brunelle; Thomas A. Minckley; John D. Shaw; R. Justin DeRose; Simon Brewer

    2017-01-01

    Our understanding of how climate and fire have impacted quaking aspen (Populus tremuloides Michx.) communities prior to the 20th century is fairly limited. This study analysed the period between 4500 and 2000 cal. yr BP to assess the pre-historic role of climate and fire on an aspen community during an aspen-dominated period.

  16. Quaking aspen reproduce from seed after wildfire in the mountains of southeastern Arizona

    Treesearch

    Ronald D. Quinn; Lin Wu

    2001-01-01

    Quaking aspen regenerated from seed after a stand replacement wildfire in the Chiricahua Mountains of southeastern Arizona. The wildfire had created gaps in the canopy so that aspen were able to establish from seed. Seedlings were found at a mean density of 0.17 m-2, 30 m or more from the nearest potential seed trees. Six clumps of aspen seedlings contained 18-186...

  17. Herbivory and advance reproduction influence quaking aspen regeneration response to management in southern Utah, USA

    Treesearch

    Justin M. Britton; R. Justin DeRose; Karen E. Mock; James N. Long

    2016-01-01

    Recent concern regarding the potential decline of quaking aspen (Populus tremuloides Michx.) forests in the western United States has sparked concern over whether the species can be effectively regenerated. Using a retrospective approach, we quantified the response of regenerating aspen stems to an ordinary set of silvicultural treatments conducted over...

  18. Aftershocks to Philippine quake found within nearby megathrust fault

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-02-01

    On 31 August 2012 a magnitude 7.6 earthquake ruptured deep beneath the sea floor of the Philippine Trench, a powerful intraplate earthquake centered seaward of the plate boundary. In the wake of the main shock, sensors detected a flurry of aftershocks, counting 110 in total. Drawing on seismic wave observations and rupture mechanisms calculated for the aftershocks, Ye et al. found that many were located near the epicenter of the main intraplate quake but at shallower depth; all involved normal faulting. Some shallow thrusting aftershocks were located farther to the west, centered within the potentially dangerous megathrust fault formed by the subduction of the Philippine Sea plate beneath the Philippine microplate, the piece of crust housing the Philippine Islands.

  19. A landslide-quake detection algorithm with STA/LTA and diagnostic functions of moving average and scintillation index: A preliminary case study of the 2009 Typhoon Morakot in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Jie; Lin, Guan-Wei

    2017-04-01

    Since 1999, Taiwan has experienced a rapid rise in the number of landslides, and the number even reached a peak after the 2009 Typhoon Morakot. Although it is proved that the ground-motion signals induced by slope processes could be recorded by seismograph, it is difficult to be distinguished from continuous seismic records due to the lack of distinct P and S waves. In this study, we combine three common seismic detectors including the short-term average/long-term average (STA/LTA) approach, and two diagnostic functions of moving average and scintillation index. Based on these detectors, we have established an auto-detection algorithm of landslide-quakes and the detection thresholds are defined to distinguish landslide-quake from earthquakes and background noises. To further improve the proposed detection algorithm, we apply it to seismic archives recorded by Broadband Array in Taiwan for Seismology (BATS) during the 2009 Typhoon Morakots and consequently the discrete landslide-quakes detected by the automatic algorithm are located. The detection algorithm show that the landslide-detection results are consistent with that of visual inspection and hence can be used to automatically monitor landslide-quakes.

  20. [Strategy and effect of schistosomiasis emergency control after earthquake in Lushan County].

    PubMed

    Wang, Chao-Fu; Wang, Cheng-Xiang; Mou, Li-Rong; Zhong, Bo; Liu, Yang; Wu, Zi-Song; Xu, Liang; Meng, Xian-Hong; Yang, Zong-Cai; Cheng, Yong; Zhu, Jin-Hua; Zhou, Qi-Fu

    2014-10-01

    To evaluate the effects of measures on the schistosomiasis control after the earth quake in Lushan County, so as to provide the experiences for post-disaster schistosomiasis control. The measures taken in schistosomiasis control after the earth quake were reviewed in Lushan County in 2013, and the epidemic situation of schistosomiasis was investigated and the results were analyzed. The schistosomiasis control in floating population and the control of Oncomelania hupensis snails were enhanced, and no schistosome infections were found in both human and livestock. No infected snails and infested water were found. The measures of schistosomiasis control after the disaster are effective in Lushan County, and the goal to prevent major plague after the earth quake is achieved.

  1. Influence of climate on the growth of quaking aspen (Populus tremuloides) in Colorado and southern Wyoming

    Treesearch

    M. M. Dudley; Jose Negron; N. A. Tisserat; W. D. Shepperd; W. R. Jacobi

    2015-01-01

    We analyzed a series of increment cores collected from 260 adult dominant or co-dominant quaking aspen (Populus tremuloides Michx.) trees from national forests across Colorado and southern Wyoming in 2009 and 2010. Half of the cores were collected from trees in stands with a high amount of crown dieback, and half were from lightly damaged stands. We define the level of...

  2. ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location

    NASA Astrophysics Data System (ADS)

    Denolle, M.; Perol, T.; Gharbi, M.

    2017-12-01

    Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.

  3. Structural analysis of the Quaking homodimerization interface

    PubMed Central

    Beuck, Christine; Qu, Song; Fagg, W. Samuel; Ares, Manuel; Williamson, James R.

    2012-01-01

    Quaking is a prototypical member of the STAR protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and bind to bipartite RNA sequences, however, the structural and functional roles of homo- and hetero-dimerization are still unclear. Here, we present the crystal structure of the QkI dimerization domain, which adopts a similar stacked helix-turn-helix arrangement as its homologs GLD-1 and Sam68, but differs by an additional helix inserted in the dimer interface. Variability of the dimer interface residues likely ensures selective homodimerization by preventing association with non-cognate STAR family proteins in the cell. Mutations that inhibit dimerization also significantly impair RNA binding in vitro, alter QkI-5 protein levels, and impair QkI function in a splicing assay in vivo. Together our results indicate that a functional Qua1 homodimerization domain is required for QkI-5 function in mammalian cells. PMID:22982292

  4. Sensitive and specific detection of classical scrapie prions in the brain of goats by real-time quaking-induced conversion

    USDA-ARS?s Scientific Manuscript database

    The real-time quaking-induced conversion (RT-QuIC) is a rapid, specific, and sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect sub-infectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully us...

  5. Habitone analysis of quaking aspen in the Utah Book Cliffs: Effects of site water demand and conifer cover

    Treesearch

    Joseph O. Sexton; R. Douglas Ramsey; Dale L. Bartos

    2006-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widely distributed tree species in North America, but its presence is declining across much of the Western United States. Aspen decline is complex, but results largely from two factors widely divergent in temporal scale: (1) Holocene climatic drying of the region has led to water limitation of aspen seedling...

  6. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-22

    ISS022-E-035426 (22 Jan. 2010) --- Photographed from the International Space Station orbiting Earth at an altitude of 211 statute miles, this image of the Port au Prince area of Haiti from Jan. 22 is centered on the area that was heavily damaged by a magnitude 7.0 earthquake on Jan. 12. According to the United States Geological Survey (USGS) Earthquake Center, a number of tremors of varying magnitudes up to 6.0 were recorded in ensuing days. Ships can be easily delineated in the harbor. The single runway of the airport, heavily damaged by the quake, is seen near center of the frame. The airport?s control tower was destroyed and has since been rebuilt and is now in service, thanks to part of the huge world-wide aid offered to the nation

  7. NetQuakes - A new approach to urban strong-motion seismology

    NASA Astrophysics Data System (ADS)

    Luetgert, J. H.; Evans, J. R.; Hamilton, J.; Hutt, C. R.; Jensen, E. G.; Oppenheimer, D. H.

    2009-12-01

    There is a recognized need for more densely sampled strong ground motion recordings in urban areas to provide more accurate ShakeMaps for post-earthquake disaster assessment and to provide data for structural engineers to improve design standards. Ideally, the San Francisco Bay area would have a strong ground motion recorder every 1-2 km to adequately sample the region’s varied geology and built environment. This would require the addition of thousands of instruments to the existing network. There are several fiscal and logistical constraints that prevent us from doing this with traditional strong motion instrumentation and telemetry. In addition to the initial expense of instruments and their installation, there are the continuing costs of telemetry and maintenance. To address these issues, the USGS implemented the NetQuakes project to deploy small, relatively inexpensive seismographs for installation in 1-2 story homes and businesses that utilize the host’s existing Internet connection. The recorder has 18 bit resolution with ±3g internal tri-axial MEMS accelerometers. Data is continuously recorded at 200 sps into a 1-2 week ringbuffer. When triggered, a miniSEED file is sent to USGS servers via the Internet. Data can also be recovered from the ringbuffer by a remote request through the servers. Following a power failure, the instrument can run for 36 hours using its internal battery. All client-server interactions are initiated by the instrument, so it safely resides behind a host’s firewall. Instrument and battery replacement can be performed by hosts to reduce maintenance costs. A connection to the host’s LAN, and thence to the public Internet, can be made using WiFi to minimize cabling. Although timing via a cable to an external GPS antenna is possible, it is simpler to use the Network Time Protocol (NTP) to synchronize the internal clock. NTP achieves timing accuracy generally better than a sample interval. Since February, 2009, we have installed

  8. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and

  9. Seismic generated infrasounds on Telluric Planets: Modeling and comparisons between Earth, Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.

    2015-12-01

    Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and

  10. Emerging Trends in China’s Development of Unmanned Systems

    DTIC Science & Technology

    2015-01-01

    missions is another area of emphasis, as highlighted by reports about such systems’ use during the 2008 Sichuan earth - quake , and unmanned systems could...China Strategic Perspectives No. 5, National Defense University, September 2012. 27 “Drones Dispatched to Capture Images of Quake -Hit Regions,” Xinhua...china-deliver-packages-even-a- birthday-cake/ “Drones Dispatched to Capture Images of Quake -Hit Regions,” Xinhua, April 20, 2013. Easton, Ian M

  11. As the Earth Quakes... What Happens?

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1990-01-01

    Discussed are several phenomena associated with earthquakes. Included are seismic waves, plate movement, and earthquake measurement. Diagrams of different plate boundary types are included. An activity for teaching these events to elementary school children is provided. (CW)

  12. Earthquakes - on the moon

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1981-01-01

    Information obtained with the Apollo lunar seismic stations is discussed. The four types of natural seismic sources that have been identified are described, viz., thermal moonquakes, deep moonquakes, meteoroid impacts, and shallow moonquakes. It is suggested that: (1) the thermal quakes represent the slow cracking and movement of surface rocks; (2) the deep quakes are induced by the tide-generating force of the earth's gravity; (3) the meteoroids responsible for most of the observed impacts are in the mass range from 1 to 100 kg and are clustered in groups near the earth's orbit; and (4) the shallow quakes are similar to intraplate earthquakes and indicate that the moon is as seismically active as the interior regions of the earth's tectonic plates. The structure of the lunar interior as inferred from seismic signals due to both the last three natural sources and 'artificial' impacts of used spacecraft is examined in detail.

  13. Citizen Science and Event-Based Science Education with the Quake-Catcher Network

    NASA Astrophysics Data System (ADS)

    DeGroot, R. M.; Sumy, D. F.; Benthien, M. L.

    2017-12-01

    The Quake-Catcher Network (QCN, quakecatcher.net) is a collaborative, citizen-science initiative to develop the world's largest, low-cost strong-motion seismic network through the utilization of sensors in laptops and smartphones or small microelectromechanical systems (MEMS) accelerometers attached to internet-connected computers. The volunteer computers monitor seismic motion and other vibrations and send the "triggers" in real-time to the QCN server hosted at the University of Southern California. The QCN servers sift through these signals and determine which ones represent earthquakes and which ones represent cultural noise. Data collected by the Quake-Catcher Network can contribute to better understanding earthquakes, provide teachable moments for students, and engage the public with authentic science experiences. QCN partners coordinate sensor installations, develop QCN's scientific tools and engagement activities, and create next generation online resources. In recent years, the QCN team has installed sensors in over 225 K-12 schools and free-choice learning institutions (e.g. museums) across the United States and Canada. One of the current goals of the program in the United States is to establish several QCN stations in K-12 schools around a local museum hub as a means to provide coordinated and sustained educational opportunities leading up to the yearly Great ShakeOut Earthquake Drill, to encourage citizen science, and enrich STEM curriculum. Several school districts and museums throughout Southern California have been instrumental in the development of QCN. For educators QCN fulfills a key component of the Next Generation Science Standards where students are provided an opportunity to utilize technology and interface with authentic scientific data and learn about emerging programs such as the ShakeAlert earthquake early warning system. For example, Sunnylands Center in Rancho Mirage, CA leads Coachella Valley Hub, which serves 31 K-12 schools, many of

  14. Tidal effects on Earth, Planets, Sun by far visiting moons

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  15. Activites to Support and Assess Student Understanding of Earth Data

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Regev, J.

    2004-12-01

    In order to use data effectively, learners must construct a mental model that allows them to understand and express spatial relationships in data, relationships between different data types, and relationships between the data and a theoretical model. Another important skill is the ability to identify gross patterns and distinguish them from details that may require increasingly sophisticated models. Students must also be able to express their understanding, both to help them frame their understanding for themselves, and for assessment purposes. Research in learning unequivocally shows that writing about a subject increases understanding of that subject. In UCSB's general education oceanography class, a series of increasingly demanding activities culminates in two science papers that use earth data. These activities are: 1) homework problems, 2) in-class short writing activities, 3) lab section exploration activities and presentations, and 4) the science paper. The subjects of the two papers are: Plate Tectonics and Ocean and Climate. Each student is a member of a group that adopts a country and must relate their paper to the environment of their country. Data are accessed using the "Our Dynamic Planet" and "Global Ocean Data Viewer" (GLODV) CD's. These are integrated into EarthEd Online, a software package which supports online writing, review, commenting, and return to the student. It also supports auto-graded homework assignments, grade calculation, and other class management functions. The writing assignments emphasize the construction of a scientific argument. This process is explained explicitly, requiring statements that: 1) include an observation or description of an observation (e.g. elevation profiles, quakes), 2) name features based on the observation (e.g. trench, ridge), 3) describe of features (e.g. trends NW, xxxkm long), 4) describe relationships between features (e.g. quakes are parallel to trench), 5) describe a model or theory (e.g. cartoon type

  16. On the reliability of Quake-Catcher Network earthquake detections

    USGS Publications Warehouse

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  17. Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen.

    Treesearch

    Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze

    2008-01-01

    The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...

  18. The QuakeSim Project: Web Services for Managing Geophysical Data and Applications

    NASA Astrophysics Data System (ADS)

    Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet

    2008-04-01

    We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.

  19. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.

    PubMed

    Milton, John G

    2012-07-01

    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. On the powerful use of simulations in the quake-catcher network to efficiently position low-cost earthquake sensors

    USGS Publications Warehouse

    Benson, K.; Estrada, T.; Taufer, M.; Lawrence, J.; Cochran, E.

    2011-01-01

    The Quake-Catcher Network (QCN) uses low-cost sensors connected to volunteer computers across the world to monitor seismic events. The location and density of these sensors' placement can impact the accuracy of the event detection. Because testing different special arrangements of new sensors could disrupt the currently active project, this would best be accomplished in a simulated environment. This paper presents an accurate and efficient framework for simulating the low cost QCN sensors and identifying their most effective locations and densities. Results presented show how our simulations are reliable tools to study diverse scenarios under different geographical and infrastructural constraints. ?? 2011 IEEE.

  1. Sentinel-1 Radar Shows Ground Motion From Sept. 2017 Oaxaca-Chiapas, Mexico Quake

    NASA Image and Video Library

    2017-09-20

    NASA and its partners are contributing important observations and expertise to the ongoing response to the Sept. 7, 2017 (local time), magnitude 8.1 Oaxaca-Chiapas earthquake in Mexico. This earthquake was the strongest in more than a century in Mexico. It has caused a significant humanitarian crisis, with widespread building damage and triggered landslides throughout the region. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory in Pasadena, California; and Caltech, also in Pasadena, analyzed interferometric synthetic aperture radar images from the radar instrument on the Copernicus Sentinel-1A and Sentinel-1B satellites operated by the European Space Agency (ESA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a six-day interval between radar images acquired by the two Sentinel-1 satellites on Sept. 7 and Sept. 13, 2017. In this map, the colors of the surface displacements are proportional to the surface motion. The red tones show the areas along the coast of Chiapas and Oaxaca have moved toward the satellite by as much as 9 inches (22 centimeters) in a combination of up and eastward motion. The area in between and farther north with various shades of blue moved away from the satellite, mostly downward or westward, by as much as 6 inches (15 centimeters). Areas without color are open water or heavy vegetation, which prevent the radar from measuring change between the satellite images. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The green star shows the location of the earthquake epicenter estimated by the United States Geological Survey (USGS) National Earthquake Information Center. Map

  2. The Next Lightweight Fighter: Not Your Grandfather’s Combat Aircraft

    DTIC Science & Technology

    2013-08-01

    devastat- ing Arabian quake in Somalia, which has almost no infrastructure and suffers from ongoing clan warfare. The United States deployed forces to...Kassim, which the quake had virtually leveled. A joint task force based in Djibouti stood up to direct the relief effort, exercising airborne com- mand...the earth prevent low-altitude or dis- tant aircraft from looking into “the next valley” directly. Consequently, many a reconnaissance mission or

  3. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  4. Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm, Spodoptera eridania.

    PubMed

    Manuwoto, S; Scriber, J M; Hsia, M T; Sunarjo, P

    1985-08-01

    Previous studies have shown leaves of tulip tree, Liriodendron tulipifera L. (of the Magnoliaceae) and of Populus tremuloides Michx. (of the Salicaceae) to be antixenotic/antibiotic to many Lepidoptera, including one of the most polyphagous of all phytophagous insects, the southern armyworm, Spodoptera eridania Cramer (Noctuidae). We investigated the physiological responses to this phytochemical activity on neonate and late instar armyworm larvae in controlled environments with particular emphasis upon the leaf extracts containing condensed tannins and hydrolysable tannins. These tannin-containing extracts of tulip tree leaves and quaking aspen leaves were generally toxic to neonate larvae. For later instars, growth suppression was not due to digestibility-reduction, but instead to suppressed consumption rates and greatly increased metabolic (respiratory) costs as reflected in reduced biomass conversion efficiencies.

  5. A Chance in Hell: Evaluating the Efficacy of U.S. Military Health Systems in Foreign Disaster Relief

    DTIC Science & Technology

    2013-12-10

    no direct access to rail or sea. Many of these roads were severed in the 2005 quake due to landslides.127 Regional tensions with India and...to the timing of the quake , many of the dead and injured were schoolchildren whose classrooms collapsed around them. 132Sharon Wiharta et al., The...139According to NATO’s Euro-Atlantic Response Center Report dated October 8, the top two priorities were rescue/cargo helicopters and earth moving

  6. A review of the potential effects of climate change on quaking aspen (Populus tremuloides) in the Western United States and a new tool for surveying sudden aspen decline

    Treesearch

    Toni Lyn Morelli; Susan C. Carr

    2011-01-01

    We conducted a literature review of the effects of climate on the distribution and growth of quaking aspen (Populus tremuloides Michx.) in the Western United States. Based on our review, we summarize models of historical climate determinants of contemporary aspen distribution. Most quantitative climate-based models linked aspen presence and growth...

  7. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  8. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation

    PubMed Central

    Hall, Megan P.; Nagel, Roland J.; Fagg, W. Samuel; Shiue, Lily; Cline, Melissa S.; Perriman, Rhonda J.; Donohue, John Paul; Ares, Manuel

    2013-01-01

    Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA (“STAR” motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3′ UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation. PMID:23525800

  9. Fundamentals studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Research in geodynamics, seismology, and planetary quakes is presented. Terradynamics and plate tectonics are described using dynamic models. The early evolution of the Earth's mantle is also discussed.

  10. Operational Models of Infrastructure Resilience

    DTIC Science & Technology

    2015-01-01

    Wiemer S. A stochastic forecast of California earth - quakes based on fault slip and smoothed seismicity. Bulletin of the Seismological Society of America...California faults. Journal of Geophysical Research: Solid Earth , 2011; 116:1978–2012. 29. Hiemer S, Jackson DD, Wang Q, Kagan YY, Woessner J, Zechar J

  11. Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion

    PubMed Central

    Tennant, Joanne M.; Haley, Nicholas J.; Denkers, Nathaniel D.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases. PMID:28703697

  12. NASA Radar Images Show Continued Deformation from Mexico Quake

    NASA Image and Video Library

    2010-08-04

    This image shows a UAVSAR interferogram swath overlaid atop a Google Earth image. New NASA airborne radar images show the continuing deformation in Earth surface resulting from the magnitude 7.2 temblor in Baja California on April 4, 2010.

  13. Testing the Rapid Detection Capabilities of the Quake-Catcher Network

    NASA Astrophysics Data System (ADS)

    Chung, A. I.; Cochran, E.; Yildirim, B.; Christensen, C. M.; Kaiser, A. E.; Lawrence, J. F.

    2013-12-01

    The Quake-Catcher Network (QCN) is a versatile network of MEMS accelerometers that are used in combination with distributed volunteer computing to detect earthquakes around the world. Using a dense network of QCN stations installed in Christchurch, New Zealand after the 2010 M7.1 Darfield earthquake, hundreds of events in the Christchurch area were detected and rapidly characterized. When the M6.3 Christchurch event occurred on 21 February 2011, QCN sensors recorded the event and calculated its magnitude, location, and created a map of estimated shaking intensity within 7 seconds of the earthquake origin time. Successive iterations improved the calculations and, within 24 seconds of the earthquake, magnitude and location values were calculated that were comparable to those provided by GeoNet. We have rigorously tested numerous methods to create a working magnitude scaling relationship. In this presentation, we show a drastic improvement in the magnitude estimates using the maximum acceleration at the time of the first trigger and updated ground accelerations from one to three seconds after the initial trigger. 75% of the events rapidly detected and characterized by QCN are within 0.5 magnitude units of the official GeoNet reported magnitude values, with 95% of the events within 1 magnitude unit. We also test the QCN detection algorithms using higher quality data from the SCSN network in Southern California. We examine a dataset of M5 and larger earthquakes that occurred since 1995. We present the performance of the QCN algorithms for this dataset, including time to detection as well as location and magnitude accuracy.

  14. Imperial Parallels: Analyzing the U.S. Army Regionally Aligned Force Strategy in the Context of Historical Imperialism

    DTIC Science & Technology

    2014-06-13

    bicycle. If it slows down, it could fall off, and the earth might quake ” (Behar 2008c). In order to maintain this momentum, China aggressively...ANALYSIS Rise like Lions after slumber In unvanquishable number — Shake your chains to earth like dew Which in your sleep had fallen on you— Ye are

  15. Crowd-Sourcing Seismic Data: Lessons Learned from the Quake-Catcher Network

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Sumy, D. F.; DeGroot, R. M.; Clayton, R. W.

    2015-12-01

    The Quake Catcher Network (QCN; qcn.caltech.edu) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, when the first citizen scientists joined the QCN project, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records. We present and describe the rapid installations of very dense sensor networks that have been undertaken following several large earthquakes including the 2010 M8.8 Maule Chile, the 2010 M7.1 Darfield, New Zealand, and the 2015 M7.8 Gorkha, Nepal earthquake. These large data sets allowed seismologists to develop new rapid earthquake detection capabilities and closely examine source, path, and site properties that impact ground shaking at a site. We show how QCN has engaged a wide sector of the public in scientific data collection, providing the public with insights into how seismic data are collected and used. Furthermore, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate earthquakes that they felt, as part of 'teachable moment' exercises.

  16. The "LARSE" Project - Working Toward a Safer Future for Los Angeles

    USGS Publications Warehouse

    Henyey, Thomas L.; Fuis, Gary S.; Benthien, Mark L.; Burdette, Thomas R.; Christofferson, Shari A.; Clayton, Robert W.; Davis, Paul M.; Hendley, James W.; Kohler, Monica D.; Lutter, William J.; McRaney, John K.; Murphy, Janice M.; Okaya, David A.; Ryberg, Trond; Similia, Gerald W.; Stauffer, Peter H.

    1999-01-01

    The Los Angeles region is underlain by a network of active faults, including many that are deep and do not break the Earth's surface. These hidden faults include the previously unknown one responsible for the devastating January 1994 Northridge earthquake, the costliest quake in U.S. history. So that structures can be built or strengthened to withstand the quakes that are certain in the future, the Los Angeles Region Seismic Experiment (LARSE) is locating hidden earthquake hazards beneath the region to help scientists determine where the strongest shaking will occur.

  17. Reviews Equipment: Time Trial R/C Race Track Timer Book: A Universe from Nothing Equipment: Locktronics Electronics, Magnestism and Materials Unit Report: Nuclear Physics and Technology Book: Particle Physics Booklet: Radiation and You Book: The Million Death Quake Web Watch

    NASA Astrophysics Data System (ADS)

    2013-03-01

    WE RECOMMEND Locktronics Electronics, Magnestism and Materials Unit Robust, reliable and proven classroom kit The Million Death Quake: the Science of Predicting the Earth's Deadliest Natural Disaster Accessible and well-written book covers everything you might (and perhaps should) want to know about earthquakes WORTH A LOOK Time Trial R/C Race Track Timer Fun kit for use with toy cars but little flexibility for other uses A Universe From Nothing: Why There is Something Rather Than Nothing Up-to-date account of cosmology explains very well but becomes polemical and loses focus Nuclear physics and technology—inside the atom IOP report useful for students considering a career in physics Particle Physics: A Very Short Introduction Passages of good writing undermined by editing as the structure and illustrations disappoint Radiation and You Report is an interesting insight into radiation information from 25 years back, but some errors and a slow start let it down WEB WATCH App that aids star identification is highly recommended and videos for students and teachers also make the grade

  18. Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

    PubMed

    Mortensen, Brent; Wagner, Diane; Doak, Patricia

    2011-04-01

    The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.

  19. Interpreting the strongest deep earthquake ever observed

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-12-01

    Massive earthquakes that strike deep within the Earth may be more efficient at dissipating pent-up energy than similar quakes near the surface, according to new research by Wei et al. The authors analyzed the rupture of the most powerful deep earthquake ever recorded.

  20. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    NASA Astrophysics Data System (ADS)

    Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne

    2016-10-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  1. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.

    2016-12-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  2. Structure–function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    PubMed Central

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-01-01

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins. PMID:23630077

  3. NASA/Caltech Team Images Nepal Quake Fault Rupture, Surface Movements

    NASA Image and Video Library

    2015-05-04

    Using a combination of GPS-measured ground motion data, satellite radar data, and seismic observations from instruments distributed around the world, scientists have constructed preliminary estimates of how much the fault responsible for the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal moved below Earth's surface (Figure 1). This information is useful for understanding not only what happened in the earthquake but also the potential for future events. It can also be used to infer a map of how Earth's surface moved due to the earthquake over a broader region (Figure 2). The maps created from these data can be viewed at PIA19384. In the first figure, the modeled slip on the fault is shown as viewed from above and indicated by the colors and contours within the rectangle. The peak slip in the fault exceeds 19.7 feet (6 meters). The ground motion measured with GPS is shown by the red and purple arrows and was used to develop the fault slip model. In the second figure, color represents vertical movement and the scaled arrows indicate direction and magnitude of horizontal movement. In both figures, aftershocks are indicated by red dots. Background color and shaded relief reflect regional variations in topography. The barbed lines show where the main fault reaches Earth's surface. The main fault dives northward into the Earth below the Himalaya. http://photojournal.jpl.nasa.gov/catalog/PIA19384

  4. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    PubMed

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  5. Earth Science Computational Architecture for Multi-disciplinary Investigations

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.

    2005-12-01

    Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with

  6. The Quake Catcher Network: Cyberinfrastructure Bringing Seismology into Schools and Homes

    NASA Astrophysics Data System (ADS)

    Lawrence, J. F.; Cochran, E. S.

    2007-12-01

    We propose to implement a high density, low cost strong-motion network for rapid response and early warning by placing sensors in schools, homes, and offices. The Quake Catcher Network (QCN) will employ existing networked laptops and desktops to form the world's largest high-density, distributed computing seismic network. Costs for this network will be minimal because the QCN will use 1) strong motion sensors (accelerometers) already internal to many laptops and 2) nearly identical low-cost universal serial bus (USB) accelerometers for use with desktops. The Berkeley Open Infrastructure for Network Computing (BOINC!) provides a free, proven paradigm for involving the public in large-scale computational research projects. As evidenced by the SETI@home program and others, individuals are especially willing to donate their unused computing power to projects that they deem relevant, worthwhile, and educational. The client- and server-side software will rapidly monitor incoming seismic signals, detect the magnitudes and locations of significant earthquakes, and may even provide early warnings to other computers and users before they can feel the earthquake. The software will provide the client-user with a screen-saver displaying seismic data recorded on their laptop, recently detected earthquakes, and general information about earthquakes and the geosciences. Furthermore, this project will install USB sensors in K-12 classrooms as an educational tool for teaching science. Through a variety of interactive experiments students will learn about earthquakes and the hazards earthquakes pose. For example, students can learn how the vibrations of an earthquake decrease with distance by jumping up and down at increasing distances from the sensor and plotting the decreased amplitude of the seismic signal measured on their computer. We hope to include an audio component so that students can hear and better understand the difference between low and high frequency seismic signals

  7. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  8. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion.

    PubMed

    Haley, Nicholas J; Rielinger, Rachel; Davenport, Kristen A; O'Rourke, Katherine; Mitchell, Gordon; Richt, Jürgen A

    2017-11-01

    In mammals, susceptibility to prion infection is primarily modulated by the host's cellular prion protein (PrP C ) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrP C amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrP C allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrP C alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrP C substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility - permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted.

  9. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion

    PubMed Central

    Haley, Nicholas J.; Rielinger, Rachel; Davenport, Kristen A.; O'Rourke, Katherine; Mitchell, Gordon; Richt, Jürgen A.

    2017-01-01

    In mammals, susceptibility to prion infection is primarily modulated by the host’s cellular prion protein (PrPC) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrPC amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrPC allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrPC alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrPC substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility – permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted. PMID:29058651

  10. Ice, quakes, and a wobble shake San Francisco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1995-01-06

    The fall meeting of the American Geophysical Union (AGU) in San Francisco last month was bumped to the Moscone Center while the Civic Auditorium, its venue in past years, was being reinforced against earthquakes. And that may have been fitting, given the meeting`s focus on sudden events in Earth history; the first moments of fault rupture, repeated outbursts of icebergs during the last ice age, and a shift in the seasons in the middle of this century.

  11. Ice, quakes, and a wobble shake san francisco.

    PubMed

    Kerr, R A

    1995-01-06

    The fall meeting of the American Geophysical Union (AGU) in San Francisco last month was bumped to the Moscone Center while the Civic Auditorium, its venue in past years, was being reinforced against earthquakes. And that may have been fitting, given the meeting's focus on sudden events in Earth history: the first moments of fault rupture, repeated outbursts of icebergs during the last ice age, and a shift in the seasons in the middle of this century.

  12. NASA Satellite Image of Japan Captured March 11, 2011

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Japan one hour and 41 minutes before the quake hit. At the time Aqua passed overhead, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible of Japan covered by clouds. The image was taken at 0405 UTC on March 11 (1:05 p.m. local time Japan /11:05 p.m. EST March 10). The quake hit at 2:46 p.m. local time/Japan. Satellite: Aqua Credit: NASA/GSFC/Aqua NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking.

    PubMed

    Pillman, Katherine A; Phillips, Caroline A; Roslan, Suraya; Toubia, John; Dredge, B Kate; Bert, Andrew G; Lumb, Rachael; Neumann, Daniel P; Li, Xiaochun; Conn, Simon J; Liu, Dawei; Bracken, Cameron P; Lawrence, David M; Stylianou, Nataly; Schreiber, Andreas W; Tilley, Wayne D; Hollier, Brett G; Khew-Goodall, Yeesim; Selth, Luke A; Goodall, Gregory J; Gregory, Philip A

    2018-06-05

    Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Fire regimes of quaking aspen in the Mountain West

    USGS Publications Warehouse

    Shinneman, Douglas J.; Baker, William L.; Rogers, Paul C.; Kulakowski, Dominik

    2013-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and it is found throughout much of the Mountain West (MW) across a broad range of bioclimatic regions. Aspen typically regenerates asexually and prolifically after fire, and due to its seral status in many western conifer forests, aspen is often considered dependent upon disturbance for persistence. In many landscapes, historical evidence for post-fire aspen establishment is clear, and following extended fire-free periods senescing or declining aspen overstories sometimes lack adequate regeneration and are succeeding to conifers. However, aspen also forms relatively stable stands that contain little or no evidence of historical fire. In fact, aspen woodlands range from highly fire-dependent, seral communities to relatively stable, self-replacing, non-seral communities that do not require fire for persistence. Given the broad geographic distribution of aspen, fire regimes in these forests likely co-vary spatially with changing community composition, landscape setting, and climate, and temporally with land use and climate – but relatively few studies have explicitly focused on these important spatiotemporal variations. Here we reviewed the literature to summarize aspen fire regimes in the western US and highlight knowledge gaps. We found that only about one-fourth of the 46 research papers assessed for this review could be considered fire history studies (in which mean fire intervals were calculated), and all but one of these were based primarily on data from fire-scarred conifers. Nearly half of the studies reported at least some evidence of persistent aspen in the absence of fire. We also found that large portions of the MW have had little or no aspen fire history research. As a result of this review, we put forth a classification framework for aspen that is defined by key fire regime parameters (fire severity and probability), and that reflects underlying biophysical

  15. Venusian Earthquakes Detection by Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Lognonne, P.; Garcia, R. F.; Gudkova, T.

    2010-12-01

    Thanks to technological advances over the past fifteen years the ionosphere is now a new medium for seismological investigation. As a consequence of density structure in Venus atmosphere, the coupling between solid and fluid part of Venus induce a more significant atmospheric responce to quakes and volcanic eruptions (Lognonné & Johnson, 2007). Equivalent perturbation induced by internal activity has been detected on Earth through their subsequent ionospheric signature imaged by ionospheric tools (Doppler sounding or GPS) (Lognonné et al., 2006, Occhipinti et al., 2010). The strong solid/atmosphere coupling on Venus (Garcia et al., 2005, 2009), the thin ionospheric layer as well as absence of magnetic field present optimal circumstances for a better detection of these signals on Venus than on Earth. Consequently, ionospheric Doppler sounders on-board orbiters or balloons will provide informations on the infrasonic response of the atmosphere/ionosphere to quakes, and will help to constrain the interior structure of Venus through the solid/atmosphere coupling. With this paper we explore the future mission possibility and constrains.

  16. A direct assessment of human prion adhered to steel wire using real-time quaking-induced conversion

    PubMed Central

    Mori, Tsuyoshi; Atarashi, Ryuichiro; Furukawa, Kana; Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Nakagaki, Takehiro; Ishibashi, Daisuke; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Nishida, Noriyuki

    2016-01-01

    Accidental transmission of prions during neurosurgery has been reported as a consequence of re-using contaminated surgical instruments. Several decontamination methods have been studied using the 263K-hamster prion; however, no studies have directly evaluated human prions. A newly developed in vitro amplification system, designated real-time quaking-induced conversion (RT-QuIC), has allowed the activity of abnormal prion proteins to be assessed within a few days. RT-QuIC using human recombinant prion protein (PrP) showed high sensitivity for prions as the detection limit of our assay was estimated as 0.12 fg of active prions. We applied this method to detect human prion activity on stainless steel wire. When we put wires contaminated with human Creutzfeldt–Jakob disease brain tissue directly into the test tube, typical PrP-amyloid formation was observed within 48 hours, and we could detect the activity of prions at 50% seeding dose on the wire from 102.8 to 105.8 SD50. Using this method, we also confirmed that the seeding activities on the wire were removed following treatment with NaOH. As seeding activity closely correlated with the infectivity of prions using the bioassay, this wire-QuIC assay will be useful for the direct evaluation of decontamination methods for human prions. PMID:27112110

  17. Ionospheric Effects Prior to the Napa Earthquake of August 24, 2014

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Swartz, W. E.; Komjathy, A.; Mannucci, A. J.; Shume, E. B.; Heki, K.; Fraser-Smith, A. C.; McCready, M. A.

    2014-12-01

    Recently, evidence that the ionosphere reacts in a reliable, reproducible manner before major earthquakes has been increasing. Fraser-Smith (1990) reported ULF magnetic field fluctuations prior to the Loma Prieta quake. Although not an ionospheric measurement, such magnetic fields before a quake are part of our explanation for the ionospheric effect. Heki (2011) and Heki and Enomoto (2013) reported in great detail the devastating March 11, 2011 Tohoku-Oki earthquake in which numerous GPS satellite/ground-station pairs showed apparent changes, both increases and decreases, starting 40 minutes before the event. We say "apparent" since our theory is that electric fields associated with stresses before an earthquake map through the ionosphere at the speed of light and raise or lower the main ionosphere. Both effects have been detected. Heki's results for four quakes exceeding M = 7 are shown in Figure 4 of Heki (2011). Based on the inserted curve of Heki's Figure 4 relating the size of the ionospheric effect to the quake's magnitude, we were not optimistic about detecting an effect for the 6.0 Napa quake. However, it occurred at night, when the well-known shielding effect of the ionospheric D and lower E regions for EM fields becomes very small. When this special session with a later abstract deadline was announced, JPL researchers were asked to examine GPS data from California stations. Based on their data, the plot shown (left panel) combined with a similar plot for the Tohoku-Oki earthquake (right panel, based on Heki's data) was produced. Both panels show fluctuations of STEC (Slant Total Electron Content) before the quake times (indicated by asterisks showing the positions of ionospheric penetration points (IPP) at the respective quake times). Although alternative explanations for the TEC fluctuations cannot be ruled out entirely, these results suggest that a patent-pending system able to predict an earthquake some 30 minutes before an event by using satellites

  18. Anomalous decrease in relatively large shocks and increase in the p and b values preceding the April 16, 2016, M7.3 earthquake in Kumamoto, Japan

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.; Yoshida, A.

    2017-01-01

    The 2016 Kumamoto earthquakes in Kyushu, Japan, started with a magnitude ( M) 6.5 quake on April 14 on the Hinagu fault zone (FZ), followed by active seismicity including an M6.4 quake. Eventually, an M7.3 quake occurred on April 16 on the Futagawa FZ. We investigated if any sign indicative of the M7.3 quake could be found in the space-time changes in seismicity after the M6.5 quake. As a quality control, we determined in advance the threshold magnitude, above which all earthquakes are completely recorded. We then showed that the occurrence rate of relatively large ( M ≥ 3) earthquakes significantly decreased 1 day before the M7.3 quake. Significance of this decrease was evaluated by one standard deviation of sampled changes in the rate of occurrence. We next confirmed that seismicity with M ≥ 3 was well modeled by the Omori-Utsu law with p 1.5 ± 0.3, which indicates that the temporal decay of seismicity was significantly faster than a typical decay with p = 1. The larger p value was obtained when we used data of the longer time period in the analysis. This significance was confirmed by a bootstrapping approach. Our detailed analysis shows that the large p value was caused by the rapid decay of the seismicity in the northern area around the Futagawa FZ. Application of the slope (the b value) of the Gutenberg-Richter frequency-magnitude distribution to the spatiotemporal change in the seismicity revealed that the b value in the northern area increased significantly, the increase being Δ b = 0.3-0.5. Significance was verified by a statistical test of Δ b and a test using bootstrapping errors. Based on our findings, combined with the results obtained by a stress inversion analysis performed by the National Research Institute for Earth Science and Disaster Resilience, we suggested that stress near the Futagawa FZ had reduced just prior to the occurrence of the M7.3 quake. We proposed, with some other observations, that a reduction in stress might have been

  19. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis

    PubMed Central

    Cochrane, Amy; Kelaini, Sophia; Tsifaki, Marianna; Bojdo, James; Vilà‐González, Marta; Drehmer, Daiana; Caines, Rachel; Magee, Corey; Eleftheriadou, Magdalini; Hu, Yanhua; Grieve, David; Stitt, Alan W.; Zeng, Lingfang; Xu, Qingbo

    2017-01-01

    Abstract The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144

  20. Defeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  1. Crowd-Sourcing Seismic Data for Education and Research Opportunities with the Quake-Catcher Network

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; DeGroot, R. M.; Benthien, M. L.; Cochran, E. S.; Taber, J. J.

    2016-12-01

    The Quake Catcher Network (QCN; quakecatcher.net) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records, including the 2010 M8.8 Maule, Chile, the 2010 M7.1 Darfield, New Zealand, and 2015 M7.8 Gorkha, Nepal earthquakes. In 2016, the QCN in the United States transitioned to the Incorporated Research Institutions for Seismology (IRIS) Consortium and the Southern California Earthquake Center (SCEC), which are facilities funded through the National Science Foundation and the United States Geological Survey, respectively. The transition has allowed for an influx of new ideas and new education related efforts, which include focused installations in several school districts in southern California, on Native American reservations in North Dakota, and in the most seismically active state in the contiguous U.S. - Oklahoma. We present and describe these recent educational opportunities, and highlight how QCN has engaged a wide sector of the public in scientific data collection, particularly through the QCN-EPIcenter Network and NASA Mars InSight teacher programs. QCN provides the public with information and insight into how seismic data are collected, and how researchers use these data to better understand and characterize seismic activity. Lastly, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate felt earthquakes, and look towards the bright future of the network.

  2. Geohazards on the Moon and the Importance of the International Lunar Network

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    Seven of the 28 shallow seismic events recorded by the Apollo passive seismic experiment (PSE) network released energy equivalent to earthquakes with magnitudes of 5 or greater. On Earth, such quakes can cause extensive damage to structures near the epicenter. Unexpected structural damage to a lunar habitat could have devastating results and thus, lunar seismicity may present a significant geohazard to long-term human habitation.

  3. Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating Quaking gene isoform 6.

    PubMed

    Xi, Zhuo; Wang, Ping; Xue, Yixue; Shang, Chao; Liu, Xiaobai; Ma, Jun; Li, Zhiqing; Li, Zhen; Bao, Min; Liu, Yunhui

    2017-04-11

    Glioblastoma is the most common type of malignant primary brain tumor and has high recurrence and lethality rates. Glioblastoma stem cells (GSCs), a subpopulation of glioblastoma cells, may promote rapid tumor recurrence and therapy resistance. Because altered microRNA (miR) expression in GSCs may lead to glioblastoma progression, we assessed the effects of miR-29a expression on the oncogenic behavior of GSCs. MiR-29a expression was lower in GSCs than non-GSCs, and overexpression of miR-29a in GSCs inhibited cell proliferation, migration and invasion, but promoted apoptosis. MiR-29a directly inhibited the expression of Quaking gene isoform 6 (QKI-6) by binding to its 3'-UTR, and thus inhibited GSC malignant behavior. In addition, Wilms' tumor 1-associating protein (WTAP) was identified as a downstream target of QKI-6. Overexpression of miR-29a in GSCs inhibited expression of WTAP and suppressed both phosphoinositide 3-kinase/AKT and extracellular signal-related kinase pathways by downregulating QKI-6, thereby inhibiting cell proliferation, migration, and invasion but promoting apoptosis. We have characterized a novel miR-29a/QKI-6/WTAP axis in GSCs, which may provide theoretical support for the treatment of glioblastoma with miR-29a agomirs.

  4. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  5. The Virtual Quake Earthquake Simulator: Earthquake Probability Statistics for the El Mayor-Cucapah Region and Evidence of Predictability in Simulated Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Schultz, K.; Yoder, M. R.; Heien, E. M.; Rundle, J. B.; Turcotte, D. L.; Parker, J. W.; Donnellan, A.

    2015-12-01

    We introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert based forecasting metric similar to those presented in Keilis-Borok (2002); Molchan (1997), and show that it exhibits significant information gain compared to random forecasts. We also discuss the long standing question of activation vs quiescent type earthquake triggering. We show that VQ exhibits both behaviors separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California USA and northern Baja California Norte, Mexico.

  6. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    DOE PAGES

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; ...

    2015-11-17

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less

  7. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    PubMed Central

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.

    2015-01-01

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103

  8. Technological Lessons from the Fukushima Dai-Ichi Accident

    DTIC Science & Technology

    2016-06-01

    for human consumption . Fish from the area are now being assessed using a non-destructive testing regimen developed by Tohoku University. Monitoring...radioactivity limits for human consumption , even though much of the rice was grown in con- taminated soil. Fish were contaminated both by the initial event...a devastating earth- quake and tsunami. One of the many secondary effects of these disas- ters was a loss of control of the Fukushima Dai-Ichi nuclear

  9. The Shock and Vibration Digest. Volume 18, Number 9

    DTIC Science & Technology

    1986-09-01

    microprocessors. ods for mobility measurements, methods for Modeling and computation of transient rotor analyzing mobility data, mathematical modeling...behavior and nonlinear fluid-film bearing from mobility data, and applications of modal behavior will be described. Sessions will be test results will be...Zoned Viscoelastic Analysis of the Response of Dams to Earth- soil, quakesR. Abascal, J. Dominguez V. Lotfi , N6 445 • . , .-e ’SJ. PP %-’ , Ph.D. Thesis

  10. The Virtual Quake earthquake simulator: a simulation-based forecast of the El Mayor-Cucapah region and evidence of predictability in simulated earthquake sequences

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Schultz, Kasey W.; Heien, Eric M.; Rundle, John B.; Turcotte, Donald L.; Parker, Jay W.; Donnellan, Andrea

    2015-12-01

    In this manuscript, we introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert-based forecasting metric, and show that it exhibits significant information gain compared to random forecasts. We also discuss the long-standing question of activation versus quiescent type earthquake triggering. We show that VQ exhibits both behaviours separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California, USA and northern Baja California Norte, Mexico.

  11. Antonino D'Antona (1842-1913) was the first in describing the crush syndrome with renal failure following the Messina earthquake of December 28, 1908.

    PubMed

    Bisaccia, Carmela; De Santo, Natale Gaspare; De Santo, Luca S

    2016-02-01

    There is confusion about the first description of the association between crush syndrome and renal failure. It has been traditionally attributed to Bywaters and Beall. The present study aims to analyze the problem by analyzing medical reports on the Messina-Reggio Calabria earth-quake of December 28, 1908 by using documents heretofore unknown. It demonstrates that first description of rabdomyolysis with renal failure is attributed to Antonino DAntona (1842- 1913). DAntona, professor of surgery at the University of Naples, coordinated the health net organized in Naples to assist persons wounded during the quake. Many of them in shock were transferred to Naples by ships. Franz von Colmers (1875-1960) was the chief surgeon of the German Mission of the Red Cross after the quake. Because his late arrival, he did not treat patients with shock. He described rabdomyolysis. The third medical report is that of Rocco Caminiti (1868-1946), collaborator of DAntona at the University of Naples, and chief of surgery at the Loreto Hospital. He directed a rescue group in Villa San Giovanni and Reggio Calabria. In 1910, he reported on rabdomyolysis in patients treated in the place of the disaster. Therefore the present study indicates that Antonino DAntona holds the priority for description of rabdomyolysis and kidney injury. There is no longer a place for the eponym Bywaters syndrome.

  12. Moonquakes and lunar tectonism results from the Apollo passive seismic experiment.

    NASA Technical Reports Server (NTRS)

    Latham, G.; Ewing, M.; Dorman, J.; Lammlein, D.; Press, F.; Toksoz, N.; Sutton, G.; Duennebier, F.; Nakamura, Y.

    1972-01-01

    The natural seismicity of the moon appears to be very low relative to that of the earth. However, moonquakes do occur. They are detected by the stations of the Apollo seismic network at an average rate of 1800/yr at Station 14 and at lower rates at Stations 12 and 15. All of the moonquakes are small, and in the few cases for which the foci have been located, they occur at great depth (about 800 km). The frequency of occurrence of moonquakes is strongly correlated with lunar tides. The dynamic processes that generate quakes are clearly much less vigorous within the moon than they are within the earth.

  13. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  14. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  15. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  16. JPRS Report, Soviet Union, Military Affairs, The Armed Forces Disaster Relief Effort in Armenia.

    DTIC Science & Technology

    1988-12-23

    coordinate nationwide efforts to eliminate the effects of the strong earthquake which shook northern Armenia on December 7 and which inflicted consider...involved in efforts dealing with the earth- quake’s effects . The whole country at this hour of trial shares the grief that has befallen Armenia... effects of the earthquake in Arme- nia, the death of many people, it has been decided to proclaim 10 December 1988 a day of national mourning in the

  17. SINGER: A Computer Code for General Analysis of Two-Dimensional Reinforced Concrete Structures. Volume 1. Solution Process

    DTIC Science & Technology

    1975-05-01

    Conference on Earthquake Engineering, Santiago de Chile, 13-18 January 1969, Vol. I , Session B2, Chilean Association oil Seismology and Earth- quake...Nuclear Agency May 1975 DISTRIBUTED BY: KJ National Technical Information Service U. S. DEPARTMENT OF COMMERCE ^804J AFWL-TR-74-228, Vol. I ...CM o / i ’•fu.r ) V V AFWL-TR- 74-228 Vol. I SINGER: A COMPUTER CODE FOR GENERAL ANALYSIS OF TWO-DIMENSIONAL CONCRETE STRUCTURES Volum« I

  18. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  19. A probabilistic framework for single-station location of seismicity on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.

    2017-01-01

    Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of

  20. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  1. Region Hit by Large Pakistan Quake as Shown by NASA Spacecraft

    NASA Image and Video Library

    2017-12-08

    On September 24 at 11:29 GMT, a magnitude 7.7 earthquake struck in south-central Pakistan at a relatively shallow depth of 20 kilometers. The earthquake occurred as the result of oblique strike-slip motion, consistent with rupture within the Eurasian tectonic plate. Tremors were felt as far away as New Delhi as well as Karachi in Pakistan. Even though the immediate area to the epicenter is sparsely populated, the majority of houses are of mud brick construction and damage is expected to be extensive. The perspective view, looking to the east, shows the location of the epicenter in Pakistan's Makran fold belt. The image is centered near 27 degrees north latitude, 65.5 degrees east longitude, and was acquired December 13, 2012. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information

  2. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  4. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  5. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. Ein Konzept für den energieeffizienten Betrieb von Mobilfunknetzen

    NASA Astrophysics Data System (ADS)

    Bayer, N.; von Hugo, D.

    2015-11-01

    Der flächendeckende Betrieb mehrerer Mobilfunknetze unterschiedlicher Technologie in einem Land sorgt aufgrund der ständigen Bereithaltung von Übertragungskapazität für Dienste mit zunehmend höherem Datenvolumenbedarf für einen erheblichen Energieverbrauch. Das Forschungsförderungsprojekt ComGreen hat sich zur Aufgabe gesetzt, durch lastadaptiven Betrieb und intelligente dynamische Rekonfiguration des Funkzugangsnetzes zur Energieeinsparung beizutragen. Konzept, Herausforderungen, ausgewählte Ergebnisse von Simulationen und prototypischem Betrieb werden ebenso wie typische Erwartungswerte des künftigen Energieverbrauchs im Mobilfunkbereich vorgestellt. Sowohl Berechnungen als auch Messungen zeigen, dass durch kontext-basierte dynamische Rekonfiguration von zellularen Funknetzen Energieeinsparungen im Bereich von 25-40 % ermöglicht werden.

  8. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  9. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  10. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  11. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  12. Impact of Earthquake Preperation Process On Hydrodeformation Field Evolution In The Caucasus

    NASA Astrophysics Data System (ADS)

    Melikadze, G.; Aliev, A.; Bendukidze, G.; Biagi, P. F.; Garalov, B.; Mirianashvili, V.

    The paper studies relation between geodeformation regime variations of underground water observed in boreholes and deformation processes in the Earth crust, asso- ciated with formation of earthquakes with M=3 and higher. Monitoring of hydro- geodeformation field (HGDF) has been carried out thanks to the on-purpose gen- eral network of Armenia, Azerbaijan, Georgia and Russia. The wells are uniformly distributed throughout the Caucasus and cover all principal geological blocks of the region. The paper deals with results associated with several earthquakes occured in Georgia and one in Azerbaijan. As the network comprises boreholes of different depths, varying from 250 m down to 3,500 m, preliminary calibration of the boreholes involved was carried out, based on evaluation of the water level variation due to known Earth tide effect. This was necessary for sensitivity evaluation and normalization of hydro-dynamic signals. Obtained data have been processed by means of spectral anal- ysis to dissect background field of disturbances from the valid signal. The processed data covered the period of 1991-1993 comprising the following 4 strong earthquakes of the Caucasus, namely in: Racha (1991, M=6.9), Java (1991, M=6.2), Barisakho (1992, M=6.5) and Talish (1993, M=5.6). Formation of the compression zone in the east Caucasus and that of extension in the western Georgia and north Caucasus was observed 7 months prior to Racha quake. Boundary between the above 2 zones passed along the known submeridional fault. The area where maximal gradient was observed, coincided with the joint of deep faults and appeared to be the place for origination of the earthquake. After the quake occurred, the zone of maximal gradient started to mi- grate towards East and residual deformations in HGDF have outlined source first of Java quake (on 15.06.1991), than that of Barisakho (on 23.10.1992) and Talish (on 2.10.1993) ones. Thus, HGDF indicated migration of the deformation field along the slope of

  13. Quake Estate (board game). Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  14. Changes in metabolic profiles after the Great East Japan Earthquake: a retrospective observational study.

    PubMed

    Tsubokura, Masaharu; Takita, Morihito; Matsumura, Tomoko; Hara, Kazuo; Tanimoto, Tetsuya; Kobayashi, Kazuhiko; Hamaki, Tamae; Oiso, Giichiro; Kami, Masahiro; Okawada, Tadaichi; Tachiya, Hidekiyo

    2013-03-23

    A magnitude 9.0 earthquake struck off eastern Japan in March 2011. Many survivors have been living in temporary houses provided by the local government since they lost their houses as a result of the great tsunami (tsunami group) or the expected high-dose radiation resulting from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (radiation group). The tsunami was more than 9 m high in Soma, Fukushima, which is located 30 km north of the Fukushima Daiichi Nuclear Power Plant and adjacent to the mandatory evacuation area. A health screening program was held for the evacuees in Soma in September 2011. The aim of this study was to compare the metabolic profiles of the evacuees before and after the disaster. We hypothesized that the evacuees would experience deteriorated metabolic status based on previous reports of natural disasters. Data on 200 subjects who attended a health screening program in September or October of 2010 (pre-quake) and 2011 (post-quake) were retrospectively reviewed and included in this study. Pre-quake and post-quake results of physical examinations and laboratory tests were compared in the tsunami and radiation groups. A multivariate regression model was used to determine pre-quake predictive factors for elevation of hemoglobin A1c (HbA1c) in the tsunami group. Significantly higher values of body weight, body mass index, waist circumference, and HbA1c and lower high-density lipoprotein cholesterol levels were found at the post-quake screening when compared with the pre-quake levels (p = 0.004, p = 0.03, p = 0.008, p < 0.001, and p = 0.03, respectively). A significantly higher proportion of subjects in the tsunami group with high HbA1c, defined as ≥ 5.7%, was observed after the quake (34.3%) than before the quake (14.8%) (p < 0.001). Regional factors, periodic clinic visits, and waist circumference before the quake were identified as predictive factors on multivariate analysis for the deterioration of HbA1c. Post-quake metabolic

  15. ISS EarthKam: Taking Photos of the Earth from Space

    ERIC Educational Resources Information Center

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  16. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  17. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  18. Use of "Crowd-Sourcing" and other collaborations to solve the short-term, earthquake forecasting problem

    NASA Astrophysics Data System (ADS)

    Bleier, T.; Heraud, J. A.; Dunson, J. C.

    2015-12-01

    QuakeFinder (QF) and its international collaborators have installed and currently maintain 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. The data from these instruments are being analyzed for pre-quake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, PUCC in Chile, NOA in Greece, Syiah Kuala University in Indonesia, LASP at U of Colo., Stanford, and USGS). Recently, NASA Hq and QuakeFinder tried a new approach to help with the analysis of this huge (50+TB) data archive. A collaboration with Apirio/TopCoder, Harvard University, Amazon, QuakeFinder, and NASA Hq. resulted in an open algorithm development contest called "Quest for Quakes" in which contestants (freelance algorithm developers) attempted to identify quakes from a subset of the QuakeFinder data (3TB). The contest included a $25K prize pool, and contained 100 cases where earthquakes (and null sets) included data from up to 5 remote sites, near and far from quakes greater than M4. These data sets were made available through Amazon.com to hundreds of contestants over a two week contest period. In a more traditional approach, several new algorithms were tried by actively sharing the QF data with universities over a longer period. These algorithms included Principal Component Analysis-PCA and deep neural networks in an effort to automatically identify earthquake signals within typical, noise-filled environments. This presentation examines the pros and cons of employing these two approaches, from both logistical and scientific perspectives.

  19. "Price-quakes" shaking the world's stock exchanges.

    PubMed

    Andersen, Jørgen Vitting; Nowak, Andrzej; Rotundo, Giulia; Parrott, Lael; Martinez, Sebastian

    2011-01-01

    Systemic risk has received much more awareness after the excessive risk taking by major financial instituations pushed the world's financial system into what many considered a state of near systemic failure in 2008. The IMF for example in its yearly 2009 Global Financial Stability Report acknowledged the lack of proper tools and research on the topic. Understanding how disruptions can propagate across financial markets is therefore of utmost importance. Here, we use empirical data to show that the world's markets have a non-linear threshold response to events, consistent with the hypothesis that traders exhibit change blindness. Change blindness is the tendency of humans to ignore small changes and to react disproportionately to large events. As we show, this may be responsible for generating cascading events--pricequakes--in the world's markets. We propose a network model of the world's stock exchanges that predicts how an individual stock exchange should be priced in terms of the performance of the global market of exchanges, but with change blindness included in the pricing. The model has a direct correspondence to models of earth tectonic plate movements developed in physics to describe the slip-stick movement of blocks linked via spring forces. We have shown how the price dynamics of the world's stock exchanges follows a dynamics of build-up and release of stress, similar to earthquakes. The nonlinear response allows us to classify price movements of a given stock index as either being generated internally, due to specific economic news for the country in question, or externally, by the ensemble of the world's stock exchanges reacting together like a complex system. The model may provide new insight into the origins and thereby also prevent systemic risks in the global financial network.

  20. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  1. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  2. Exploring physical and chemical factors influencing the properties of recombinant prion protein and the real-time quaking-induced conversion (RT-QuIC) assay.

    PubMed

    Cheng, Keding; Sloan, Angela; Avery, Kristen M; Coulthart, Michael; Carpenter, Michael; Knox, J David

    2014-01-01

    Real-time quaking-induced conversion (RT-QuIC), a highly specific and sensitive assay able to detect low levels of the disease-inducing isoform of the prion protein (PrP(d)) in brain tissue biopsies and cerebral spinal fluid, has great potential to become a method for diagnosing prion disease ante mortem. In order to standardize the assay method for routine analysis, an understanding of how physical and chemical factors affect the stability of the recombinant prion protein (rPrP) substrate and the RT-QuIC assay's sensitivity, specificity, and reproducibility is required. In this study, using sporadic Creutzfeldt-Jakob Disease brain homogenate to seed the reactions and an in vitro-expressed recombinant prion protein, hamster rPrP, as the substrate, the following factors affecting the RT-QuIC assay were examined: salt and substrate concentrations, substrate storage, and pH. Results demonstrated that both the generation of the quality and quantities of rPrP substrate critical to the reaction, as well as the RT-QuIC reaction itself required strict adherence to specific physical and chemical conditions. Once optimized, the RT-QuIC assay was confirmed to be a very specific and sensitive assay method for sCJD detection. Findings in this study indicate that further optimization and standardization of RT-QuIC assay is required before it can be adopted as a routine diagnostic test.

  3. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  4. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  5. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be

  6. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  7. Changes in metabolic profiles after the Great East Japan Earthquake: a retrospective observational study

    PubMed Central

    2013-01-01

    Background A magnitude 9.0 earthquake struck off eastern Japan in March 2011. Many survivors have been living in temporary houses provided by the local government since they lost their houses as a result of the great tsunami (tsunami group) or the expected high-dose radiation resulting from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (radiation group). The tsunami was more than 9 m high in Soma, Fukushima, which is located 30 km north of the Fukushima Daiichi Nuclear Power Plant and adjacent to the mandatory evacuation area. A health screening program was held for the evacuees in Soma in September 2011. The aim of this study was to compare the metabolic profiles of the evacuees before and after the disaster. We hypothesized that the evacuees would experience deteriorated metabolic status based on previous reports of natural disasters. Methods Data on 200 subjects who attended a health screening program in September or October of 2010 (pre-quake) and 2011 (post-quake) were retrospectively reviewed and included in this study. Pre-quake and post-quake results of physical examinations and laboratory tests were compared in the tsunami and radiation groups. A multivariate regression model was used to determine pre-quake predictive factors for elevation of hemoglobin A1c (HbA1c) in the tsunami group. Results Significantly higher values of body weight, body mass index, waist circumference, and HbA1c and lower high-density lipoprotein cholesterol levels were found at the post-quake screening when compared with the pre-quake levels (p = 0.004, p = 0.03, p = 0.008, p < 0.001, and p = 0.03, respectively). A significantly higher proportion of subjects in the tsunami group with high HbA1c, defined as ≥5.7%, was observed after the quake (34.3%) than before the quake (14.8%) (p < 0.001). Regional factors, periodic clinic visits, and waist circumference before the quake were identified as predictive factors on multivariate analysis for the deterioration

  8. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  9. Detection and partial discrimination of atypical and classical bovine spongiform encephalopathies in cattle and primates using real-time quaking-induced conversion assay.

    PubMed

    Levavasseur, Etienne; Biacabe, Anne-Gaëlle; Comoy, Emmanuel; Culeux, Audrey; Grznarova, Katarina; Privat, Nicolas; Simoneau, Steve; Flan, Benoit; Sazdovitch, Véronique; Seilhean, Danielle; Baron, Thierry; Haïk, Stéphane

    2017-01-01

    The transmission of classical bovine spongiform encephalopathy (C-BSE) through contaminated meat product consumption is responsible for variant Creutzfeldt-Jakob disease (vCJD) in humans. More recent and atypical forms of BSE (L-BSE and H-BSE) have been identified in cattle since the C-BSE epidemic. Their low incidence and advanced age of onset are compatible with a sporadic origin, as are most cases of Creutzfeldt-Jakob disease (CJD) in humans. Transmissions studies in primates and transgenic mice expressing a human prion protein (PrP) indicated that atypical forms of BSE may be associated with a higher zoonotic potential than classical BSE, and require particular attention for public health. Recently, methods designed to amplify misfolded forms of PrP have emerged as promising tools to detect prion strains and to study their diversity. Here, we validated real-time quaking-induced conversion assay for the discrimination of atypical and classical BSE strains using a large series of bovine samples encompassing all the atypical BSE cases detected by the French Centre of Reference during 10 years of exhaustive active surveillance. We obtained a 100% sensitivity and specificity for atypical BSE detection. In addition, the assay was able to discriminate atypical and classical BSE in non-human primates, and also sporadic CJD and vCJD in humans. The RT-QuIC assay appears as a practical means for a reliable detection of atypical BSE strains in a homologous or heterologous PrP context.

  10. Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.

    2017-12-01

    Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.

  11. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  12. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Phoebe Cohen, Professor of Geosciences, Williams College, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  13. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Christopher House, Professor of Geosciences, Pennsylvania State University, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  14. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Dawn Sumner, Professor of Geology, UC Davis, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  15. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Timothy Lyons, Professor of Biogeochemistry, UC Riverside, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  16. Morbidity pattern and impact of rehabilitative services in Earth quake victims of kashmir, India.

    PubMed

    Ali, Imtiyaz; Mir, Abid Ali; Jabeen, Rohul; Ahmad, Muzafar; Fazili, Anjum; Kaul, Rauf-Ur Rashid; Kumar, Ratenesh; Keshkar, S

    2010-01-01

    The Kashmir earthquake also known as South Asia earthquake, hit both sides of Jammu & Kashmir on October 8th 2005 and was quite devastating with official toll of deaths being 73,276 in Pakistan Administered Kashmir (POK) and 1,360 deaths in the Indian administered Kashmir. The injured registering on the two sides were around 100,000 and 6,300 respectively. This was followed by a series of aftershocks on both sides for another 3 weeks A follow up (retrospective) survey was conducted by the Department of Community Medicine SKIMS, Srinagar in collaboration with National Institute of Orthopedically Handicapped (NIOH), Kolkata, immediately after the devastating earthquake of October 2008 that hit Kashmir (Jammu & Kashmir- India) and northern parts of India with the objectives to know the nature of the injuries, magnitude of disabilities, rehabilitative services provided, and service satisfaction. Addresses of earthquake victims registered with various health institutions, Tertiary Care Centre, orthopaedic hospital, district hospital and Composite Regional Centre (CRC)(through which rehabilitative services were provided initially) were collected and referral details, if any, to various health institutions. They were visited at their residence and interviewed for the desired information as per proforma by a team comprising of a doctor, physiotherapist, prosthetist and orthotist by making house to house survey in the earthquake areas. An effort for non registered injured victims, if any in the locality, was also made with health or district authorities to trace non registered injured persons The study shows that majority of injured were young adults and adolescent females, and primarily upper extremities, cervical spine and head were injured. The severely injured were shifted within 12-24 hrs to referral hospitals. In 2/3rd of affected families, single member was injured, whereas in 1/3rd at least two were injured. The case fatality rate was <1% because of low prevalence of crush injuries, and quick medical relief/management of the injured. A significant number of seriously injured victims (40%) required rehabilitative services and assistive devices. Probably a quick intervention by medical rehabilitative services, including facility of assistive aids and necessary customised prosthetics and orthotics first time in such disaster, has resulted in high client satisfaction, early restoration of functional and psychological status of the injured victims. A collective effort by various public and private agencies with timely response at referral hospitals to various injuries reduced the frequency and chances of major disabling conditions. Intervention by CRC for providing assistive devices has also significantly helped in bringing back the functional and psychological status of the injured victims. Proper inter-sectorial coordination, better managerial skills, training of community volunteers (NGOs), and professionals on disaster management may further reduce the injury related disability and its impact. There is need of updating medico-surgical disaster management training for health care workers on continuous basis at various levels.

  17. Morbidity Pattern and Impact of Rehabilitative Services in Earth Quake Victims of Kashmir, India.

    PubMed Central

    Ali, Imtiyaz; Mir, Abid Ali; Jabeen, Rohul; Ahmad, Muzafar; Fazili, Anjum; Kaul, Rauf-ur Rashid; kumar, Ratenesh; Keshkar, S.

    2010-01-01

    Background: The Kashmir earthquake also known as South Asia earthquake, hit both sides of Jammu & Kashmir on October 8th 2005 and was quite devastating with official toll of deaths being 73,276 in Pakistan Administered Kashmir (POK) and 1,360 deaths in the Indian administered Kashmir. The injured registering on the two sides were around 100,000 and 6,300 respectively. This was followed by a series of aftershocks on both sides for another 3 weeks Method: A follow up (retrospective) survey was conducted by the Department of Community Medicine SKIMS, Srinagar in collaboration with National Institute of Orthopedically Handicapped (NIOH), Kolkata, immediately after the devastating earthquake of October 2008 that hit Kashmir (Jammu & Kashmir- India) and northern parts of India with the objectives to know the nature of the injuries, magnitude of disabilities, rehabilitative services provided, and service satisfaction. Addresses of earthquake victims registered with various health institutions, Tertiary Care Centre, orthopaedic hospital, district hospital and Composite Regional Centre (CRC)(through which rehabilitative services were provided initially) were collected and referral details, if any, to various health institutions. They were visited at their residence and interviewed for the desired information as per proforma by a team comprising of a doctor, physiotherapist, prosthetist and orthotist by making house to house survey in the earthquake areas. An effort for non registered injured victims, if any in the locality, was also made with health or district authorities to trace non registered injured persons Results: The study shows that majority of injured were young adults and adolescent females, and primarily upper extremities, cervical spine and head were injured. The severely injured were shifted within 12–24 hrs to referral hospitals. In 2/3rd of affected families, single member was injured, whereas in 1/3rd at least two were injured. The case fatality rate was <1% because of low prevalence of crush injuries, and quick medical relief/management of the injured. A significant number of seriously injured victims (40%) required rehabilitative services and assistive devices. Probably a quick intervention by medical rehabilitative services, including facility of assistive aids and necessary customised prosthetics and orthotics first time in such disaster, has resulted in high client satisfaction, early restoration of functional and psychological status of the injured victims. Conclusion: A collective effort by various public and private agencies with timely response at referral hospitals to various injuries reduced the frequency and chances of major disabling conditions. Intervention by CRC for providing assistive devices has also significantly helped in bringing back the functional and psychological status of the injured victims. Proper inter-sectorial coordination, better managerial skills, training of community volunteers (NGOs), and professionals on disaster management may further reduce the injury related disability and its impact. There is need of updating medico-surgical disaster management training for health care workers on continuous basis at various levels PMID:21475527

  18. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion.

    PubMed

    Dassanayake, Rohana P; Orrú, Christina D; Hughson, Andrew G; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A; Knowles, Donald P; Schneider, David A

    2016-03-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200  mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10(- )3 dilution within 15  h. Our findings indicate that RT-QuIC was at least 10,000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples.

  19. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion

    PubMed Central

    Dassanayake, Rohana P.; Orrú, Christina D.; Hughson, Andrew G.; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A.; Knowles, Donald P.; Schneider, David A.

    2016-01-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200 mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10− 3 dilution within 15 h. Our findings indicate that RT-QuIC was at least 10 000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples. PMID:26653410

  20. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  1. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  2. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  3. Complex Faulting Across the Los Angeles Portion of the Pacific-North American Plate Boundary

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Granat, Robert; Glasscae, Maggi; Lyzenga, Greg; Grant Ludwig, Lisa; Rundle, John

    2011-01-01

    We propose to observe seismically and tectonically active regions in northern and southern California using UAVSAR to support EarthScope activities. We will test the earthquake forecasting methodology developed by Rundle through NASA's QuakeSim project by observing regions indicated as having high probability for earthquakes in the near future (5-10 years). The UAVSAR flights will serve as a baseline for pre-earthquake activity. Should an earthquake occur during the course of this project, we will also be able to observe postseismic motions associated with the earthquakes.

  4. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Shawn Domagal-Goldman, Research Space Scientist, NASA Goddard Space Flight Center, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  5. Earth - South America (first frame of Earth Spin Movie)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  6. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  7. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  8. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  9. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  10. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  11. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  12. Earth Science

    NASA Image and Video Library

    1992-07-18

    Workers at Launch Complex 17 Pad A, Kennedy Space Center (KSC) encapsulate the Geomagnetic Tail (GEOTAIL) spacecraft (upper) and attached payload Assist Module-D upper stage (lower) in the protective payload fairing. GEOTAIL project was designed to study the effects of Earth's magnetic field. The solar wind draws the Earth's magnetic field into a long tail on the night side of the Earth and stores energy in the stretched field lines of the magnetotail. During active periods, the tail couples with the near-Earth magnetosphere, sometimes releasing energy stored in the tail and activating auroras in the polar ionosphere. GEOTAIL measures the flow of energy and its transformation in the magnetotail and will help clarify the mechanisms that control the imput, transport, storage, release, and conversion of mass, momentum, and energy in the magnetotail.

  13. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  14. Earth Observation

    NASA Image and Video Library

    2014-06-01

    ISS040-E-006327 (1 June 2014) --- A portion of International Space Station solar array panels and Earth?s horizon are featured in this image photographed by an Expedition 40 crew member on the space station.

  15. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  16. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  17. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  18. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  19. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  20. Employing the Quake-Catcher Network (QCN) to Investigate Site Effects in Christchurch, New Zealand Using the κ Method

    NASA Astrophysics Data System (ADS)

    Neighbors, C.; Liao, E. J.; Cochran, E. S.; Chung, A. I.; Lawrence, J.; Kaiser, A. E.; Fry, B.; Christensen, C. M.

    2011-12-01

    The 3 September 2010 Mw 7.1 Darfield earthquake was felt over 900 km from the source. The maximum felt-intensity was estimated to be at Modified Mercalli Intensity (MMI) 9 and measured near-field accelerations were found to exceed 1 g. The mainshock damaged or destroyed over 100,000 buildings and spatially variable effects (such as liquefaction, slumping, and amplification) were observed throughout the city of Christchurch. Following the mainshock, a vigorous aftershock sequence has continued for months in the region. To record the aftershocks for early warning and other hazard mitigation efforts, a network of over 192 low-cost, 14-bit accelerometers were deployed in local buildings as part of the Quake-Catcher Network Rapid Aftershock Mobilization Project (RAMP). With a large number of sensors covering a city area of ~300 km2, the RAMP collected vastly more data and at a finer scale relative to the deployment of costly traditional broadband sensors. Recent comparison of the signal-to-noise quality of the 14-bit QCN sensors to the strong motion 24-bit New Zealand GeoNet sensors show similar responses. Initial analyses of the data show that aftershocks of magnitude >M4.5 within 30 km of the hypocentral distance were well recorded by QCN sensors. Utilizing the dense coverage, we investigate local site amplification by analyzing the spectra decay parameter, kappa (κ). Following the routine outlined in Douglas et al. (2010, Pure Appl. Geophys.), whereby a 5-sec S-wave window is used to calculate the Fourier spectra and κ for each station, investigations of κ values between stations are used to estimate site conditions on seismic wave behavior at each location. Results from this study will be compared to work performed by New Zealand researchers using other methods to calculate site response, such as the spectral ratio method. Together, these studies will highlight areas of the Christchurch region that may be more susceptible to ground shaking, which can be used to

  1. Earth - South America First Frame of Earth Spin Movie

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA's Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics. A movie is availalble at http://photojournal.jpl.nasa.gov/catalog/PIA00114

  2. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  3. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  4. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  5. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  6. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  7. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  8. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  9. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  10. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  11. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  12. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  13. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    NASA Technical Reports Server (NTRS)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  14. Earth Science

    NASA Image and Video Library

    1976-01-01

    The LAGEOS I (Laser Geodynamics Satellite) was developed and launched by the Marshall Space Flight Center on May 4, 1976 from Vandenberg Air Force Base, California . The two-foot diameter satellite orbited the Earth from pole to pole and measured the movements of the Earth's surface.

  15. Raising awareness for research on earth walls, and earth scientific aspects

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  16. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Lehnert, K. A.; Hofmann, A. W.; Sarbas, B.; Carlson, R. W.

    2005-12-01

    The current on-line information systems for igneous rock geochemistry - PetDB, GEOROC, and NAVDAT - convincingly demonstrate the value of rigorous scientific data management of geochemical data for research and education. The next generation of hypothesis formulation and testing can be vastly facilitated by enhancing these electronic resources through integration of available datasets, expansion of data coverage in location, time, and tectonic setting, timely updates with new data, and through intuitive and efficient access and data analysis tools for the broader geosciences community. PetDB, GEOROC, and NAVDAT have therefore formed the EarthChem consortium (www.earthchem.org) as a international collaborative effort to address these needs and serve the larger earth science community by facilitating the compilation, communication, serving, and visualization of geochemical data, and their integration with other geological, geochronological, geophysical, and geodetic information to maximize their scientific application. We report on the status of and future plans for EarthChem activities. EarthChem's development plan includes: (1) expanding the functionality of the web portal to become a `one-stop shop for geochemical data' with search capability across databases, standardized and integrated data output, generally applicable tools for data quality assessment, and data analysis/visualization including plotting methods and an information-rich map interface; and (2) expanding data holdings by generating new datasets as identified and prioritized through community outreach, and facilitating data contributions from the community by offering web-based data submission capability and technical assistance for design, implementation, and population of new databases and their integration with all EarthChem data holdings. Such federated databases and datasets will retain their identity within the EarthChem system. We also plan on working with publishers to ease the assimilation

  17. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  18. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded

  19. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  20. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  1. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  2. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  3. Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.

    1989-01-01

    The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.

  4. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  5. Earth observation images taken as part of the EarthKAM educational program

    NASA Image and Video Library

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  6. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  7. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  8. Earth Science

    NASA Image and Video Library

    1994-09-02

    This image depicts a full view of the Earth, taken by the Geostationary Operational Environment Satellite (GOES-8). The red and green charnels represent visible data, while the blue channel represents inverted 11 micron infrared data. The north and south poles were not actually observed by GOES-8. To produce this image, poles were taken from a GOES-7 image. Owned and operated by the National Oceanic and Atmospheric Administration (NOAA), GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. They circle the Earth in a geosynchronous orbit, which means they orbit the equatorial plane of the Earth at a speed matching the Earth's rotation. This allows them to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth, high enough to allow the satellites a full-disc view of the Earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms, and hurricanes. When these conditions develop, the GOES satellites are able to monitor storm development and track their movements. NASA manages the design and launch of the spacecraft. NASA launched the first GOES for NOAA in 1975 and followed it with another in 1977. Currently, the United States is operating GOES-8, positioned at 75 west longitude and the equator, and GOES-10, which is positioned at 135 west longitude and the equator. (GOES-9, which malfunctioned in 1998, is being stored in orbit as an emergency backup should either GOES-8 or GOES-10 fail. GOES-11 was launched on May 3, 2000 and GOES-12 on July 23, 2001. Both are being stored in orbit as a fully functioning replacement for GOES-8 or GOES-10 on failure.

  9. Disasters as a necessary part of benefit-cost analyses.

    PubMed

    Mark, R K; Stuart-Alexander, D E

    1977-09-16

    Benefit-cost analyses for water projects generally have not included the expected costs (residual risk) of low-probability disasters such as dam failures, impoundment-induced earthquakes, and landslides. Analysis of the history of these types of events demonstrates that dam failures are not uncommon and that the probability of a reservoir-triggered earth-quake increases with increasing reservoir depth. Because the expected costs from such events can be significant and risk is project-specific, estimates should be made for each project. The cost of expected damage from a "high-risk" project in an urban area could be comparable to project benefits.

  10. News and Views: Take the long view; Postgraduate degrees produce employable people - it's official; Airborne radar reveals fault rupture

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Academics in the field have long thought that postgraduate degrees in astronomy, astrophysics and planetary science and particle physics are a good bet for careers. But now a survey has confirmed that they bring excellent long-term employment prospects and above-average salaries, within sciences and elsewhere, boosting the case for funding studentships in order to support science and industry. Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects.

  11. Odua Weston Jambi Hotel’s Structural Building Design with Prestressed Concrete Slab System Approach

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Rofiq, M. A.; Santoso, S. E.; Hardiyanto, E.

    2017-11-01

    Odua Weston Jambi Hotel is an eight-floor hotel and located in a prone to earth-quake area. This building used conventional concrete to its structural beam and column. This research’s purpose was to maximize the second-floor’s function by modifing its architectural design. Special Moment Resisting Frame System (SMRFS) approach was used in the structural design, referred to SNI 03-2847-2013 dan SNI 1726-2012 and to compensate the needs of a spacious hall without any column in the centre of the hall, so therefore, prestressed concrete plate is used to solve this problem.

  12. [Dentist's work at the treatment of maxillofacial injuries under extraordinary circumstances].

    PubMed

    Novosel, M

    1990-01-01

    In the article the author describes the possibilities of dentist's work with maxillo-facially injured persons in cases of greater mass disasters as earth-quakes, floods, greater traffic accidents, and recently also the accidents at sports stadiums and demonstrations. Owing to extraordinary circumstances and a great number of injured people on a small place, and short time available, simple methods of temporary immobilisation are used, which are carried out from the place of the injury to the transport in a specialist institution, where the final specialist treatment begins. Some of these methods are described by the author.

  13. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  14. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden poses for a quick selfie with students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  15. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans

    PubMed Central

    Akay, Alper; Craig, Ashley; Lehrbach, Nicolas; Larance, Mark; Pourkarimi, Ehsan; Wright, Jane E.; Lamond, Angus; Miska, Eric; Gartner, Anton

    2013-01-01

    Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways. PMID:24258276

  16. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  17. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  18. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    NASA Astrophysics Data System (ADS)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  19. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    USGS Publications Warehouse

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  20. Earth - Moon Conjunction

    NASA Technical Reports Server (NTRS)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  1. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  2. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Astronaut John Mace Grunsfeld takes a quick selfie with astronauts at the International Space Station at the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  3. Curiosity Mars Rover First Image of Earth and Earth Moon

    NASA Image and Video Library

    2014-02-06

    The two bodies in this portion of an evening-sky view by NASA Mars rover Curiosity are Earth and Earth moon. The rover Mast Camera Mastcam imaged them in the twilight sky of Curiosity 529th Martian day, or sol Jan. 31, 2014.

  4. Earthing: health implications of reconnecting the human body to the Earth's surface electrons.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits-including better sleep and reduced pain-from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  5. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

  6. Next-generation Digital Earth

    PubMed Central

    Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346

  7. People and the Earth

    NASA Astrophysics Data System (ADS)

    Rogers, John James William; Feiss, P. Geoffrey

    1998-03-01

    People and the Earth examines the numerous ways in which this planet enhances and limits our lifestyles. Written with wit and remarkable insight, and illustrated with numerous case histories, it provides a balanced view of the complex environmental issues facing our civilization. The authors look at the geologic restrictions on our ability to withdraw resources--food, water, energy, and minerals--from the earth, the effect human activity has on the earth, and the lingering damage caused by natural disasters. People and the Earth examines the basic components of our interaction with this planet, provides a lucid, scientific discussion of each issue, and speculates on what the future may hold. It provides the fundamental concepts that will enable us to make wise and conscientious choices on how to live our day-to-day lives. People and the Earth is an ideal introductory textbook and will also appeal to anyone concerned with our evolving relationship to the earth.

  8. Next-generation Digital Earth.

    PubMed

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  9. Galileo's Earth-Moon portrait

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.

  10. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  11. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  12. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  13. The Earth & Moon

    NASA Image and Video Library

    1998-06-04

    During its flight, NASA’s Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. http://photojournal.jpl.nasa.gov/catalog/PIA00342

  14. A carbon dioxide radiance model of the earth planet using the conical earth sensor data

    NASA Astrophysics Data System (ADS)

    Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi

    2013-10-01

    Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with

  15. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  16. The Hayward Fault - Is It Due for a Repeat of the Powerful 1868 Earthquake?

    USGS Publications Warehouse

    Brocher, Thomas M.; Boatwright, Jack; Lienkaemper, James J.; Prentice, Carol S.; Schwartz, David P.; Bundock, Howard

    2008-01-01

    On October 21, 1868, a magnitude 6.8 earthquake struck the San Francisco Bay region. Although the region was then sparsely populated, this quake on the Hayward Fault was one of the most destructive in California?s history. Recent studies show that such powerful Hayward Fault quakes have repeatedly jolted the region in the past. U.S. Geological Survey (USGS) scientists describe this fault as a tectonic time bomb, due anytime for another magnitude 6.8 to 7.0 earthquake. Because such a quake could cause hundreds of deaths, leave thousands homeless, and devastate the region?s economy, the USGS and other organizations are working together with new urgency to help prepare Bay Area communities for this certain future quake.

  17. The elastic energy and character of quakes in solid stars and planets

    NASA Technical Reports Server (NTRS)

    Pines, D.; Shaham, J.

    1972-01-01

    The quadrupolar mechanical energy of a rotating axially symmetric solid planet (with or without a liquid interior) is calculated using methods previously developed for neutron stars in which an elastic reference tensor is introduced to describe the build-up of elastic energy in the star. The basic parameters of the theory (the gravitational energy A and elastic energy B) depend upon the internal structure of the planet and may be calculated from specific planetary models. Explicit expressions are obtained for the Love numbers, and for the planetary wobble frequency. The theory provides a simple relationship between changes in shape or axis of figure of the planet and elastic energy release. The theory is extended to describe the Earth by taking into account isostasy, triaxiality and the observed lithospheric configuration.

  18. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  19. Earth Day 2017

    NASA Image and Video Library

    2017-12-08

    Happy Earth Day! Explore the diverse colors, unique shapes and striking patterns of our very favorite planet, Earth - as only NASA can see it. Credit: NASA/Goddard #nasagoddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Earth - Pacific Ocean

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA’s Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00123

  1. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  2. Early Earth slab stagnation

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.

    2016-12-01

    At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.

  3. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  4. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  5. Earth's earliest atmospheres.

    PubMed

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-10-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.

  6. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  7. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  8. Earth Orientation - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation USNO Logo USNO Navigation Earth Orientation Products GPS -based Products VLBI-based Products EO Information Center Publications about Products Software Info Earth

  9. Earthing Spiritual Literacy: How to Link Spiritual Development and Education to a New Earth Consciousness?

    ERIC Educational Resources Information Center

    King, Ursula

    2010-01-01

    This article discusses the development of spiritual literacy in relation to a new consciousness of the Earth and what Thomas Berry calls "Earth literacy". It draws on the metaphor of "earthing" to argue for a close link between spiritual literacy and Earth literacy, considered of great importance for both personal spiritual…

  10. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  11. Exploring Spaceship Earth

    ERIC Educational Resources Information Center

    McInnis, Noel F.

    1973-01-01

    Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)

  12. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  13. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  14. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  15. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  16. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  17. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  18. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    USGS Publications Warehouse

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  19. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  20. Forecasting California's earthquakes: What can we expect in the next 30 years?

    USGS Publications Warehouse

    Field, Edward H.; Milner, Kevin R.; ,

    2008-01-01

    In a new comprehensive study, scientists have determined that the chance of having one or more magnitude 6.7 or larger earthquakes in the California area over the next 30 years is greater than 99%. Such quakes can be deadly, as shown by the 1989 magnitude 6.9 Loma Prieta and the 1994 magnitude 6.7 Northridge earthquakes. The likelihood of at least one even more powerful quake of magnitude 7.5 or greater in the next 30 years is 46%?such a quake is most likely to occur in the southern half of the State. Building codes, earthquake insurance, and emergency planning will be affected by these new results, which highlight the urgency to prepare now for the powerful quakes that are inevitable in California?s future.

  1. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  2. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  3. Earth on the Horizon

    NASA Image and Video Library

    2004-03-13

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560

  4. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  5. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  6. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory

    NASA Astrophysics Data System (ADS)

    Xu, Changyi; Sun, Wenke

    2014-12-01

    In this paper, we propose an approach to compute the coseismic Earth's volume change based on a spherical-Earth elastic dislocation theory. We present a general expression of the Earth's volume change for three typical dislocations: the shear, tensile and explosion sources. We conduct a case study for the 2004 Sumatra earthquake (Mw9.3), the 2010 Chile earthquake (Mw8.8), the 2011 Tohoku-Oki earthquake (Mw9.0) and the 2013 Okhotsk Sea earthquake (Mw8.3). The results show that mega-thrust earthquakes make the Earth expand and earthquakes along a normal fault make the Earth contract. We compare the volume changes computed for finite fault models and a point source of the 2011 Tohoku-Oki earthquake (Mw9.0). The big difference of the results indicates that the coseismic changes in the Earth's volume (or the mean radius) are strongly dependent on the earthquakes' focal mechanism, especially the depth and the dip angle. Then we estimate the cumulative volume changes by historical earthquakes (Mw ≥ 7.0) since 1960, and obtain an Earth mean radius expanding rate about 0.011 mm yr-1.

  7. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  8. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  9. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  10. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  11. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  12. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  13. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  14. Earth Science

    NASA Image and Video Library

    1994-03-08

    Workers at the Astrotech processing facility in Titusville prepared for a news media showing of the Geostationary Operational Environmental Satellite-1 (GOES-1). GOES-1 was the first in a new generation of weather satellites deployed above Earth. It was the first 3-axis, body-stabilized meteorological satellite to be used by the National Oceanic Atmospheric Administration (NOAA) and NASA. These features allowed GOES-1 to continuously monitor the Earth, rather than viewing it just five percent of the time as was the case with spin-stabilized meteorological satellites. GOES-1 also has independent imaging and sounding instruments which can operate simultaneously yet independently. As a result, observations provided by each instrument will not be interrupted. The imager produces visual and infrared images of the Earth's surface, oceans, cloud cover and severe storm development, while the prime sounding products include vertical temperature and moisture profiles, and layer mean moisture.

  15. Earth Observations

    NASA Image and Video Library

    2010-09-09

    ISS024-E-014071 (9 Sept. 2010) --- This striking panoramic view of the southwestern USA and Pacific Ocean is an oblique image photographed by an Expedition 24 crew member looking outwards at an angle from the International Space Station (ISS). While most unmanned orbital satellites view Earth from a nadir perspective?in other words, collecting data with a ?straight down? viewing geometry?crew members onboard the space station can acquire imagery at a wide range of viewing angles using handheld digital cameras. The ISS nadir point (the point on Earth?s surface directly below the spacecraft) was located in northwestern Arizona, approximately 260 kilometers to the east-southeast, when this image was taken. The image includes parts of the States of Arizona, Nevada, Utah, and California together with a small segment of the Baja California, Mexico coastline at center left. Several landmarks and physiographic features are readily visible. The Las Vegas, NV metropolitan area appears as a gray region adjacent to the Spring Mountains and Sheep Range (both covered by white clouds). The Grand Canyon, located on the Colorado Plateau in Arizona, is visible (lower left) to the east of Las Vegas with the blue waters of Lake Mead in between. The image also includes the Mojave Desert, stretching north from the Salton Sea (left) to the Sierra Nevada mountain range. The Sierra Nevada range is roughly 640 kilometers long (north-south) and forms the boundary between the Central Valley of California and the adjacent Basin and Range. The Basin and Range is so called due to the pattern of long linear valleys separated by parallel linear mountain ranges ? this landscape, formed by extension and thinning of Earth?s crust, is particularly visible at right.

  16. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  17. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  18. Earth before life.

    PubMed

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  19. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    DOT National Transportation Integrated Search

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  20. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  1. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    NASA's Earth Dome is seen at Union Station, Monday, April 22, 2013 in Washington. The Earth Dome housed two of NASA's Science Gallery exhibits as part of a NASA-sponsored Earth Day event at Union Station. Photo Credit: (NASA/Carla Cioffi)

  2. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070424 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Lightning has been given as the cause of the Ochoco Complex fires in the Ochoco National Forest in central Oregon. The complex has gotten larger since this photo was taken.

  3. Earth as art three

    USGS Publications Warehouse

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  4. Clementine Images of Earth and Moon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    During its flight and lunar orbit, the Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth.

    The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission

  5. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine

  6. Kinect Technology Game Play to Mimic Quake Catcher Network (QCN) Sensor Deployment During a Rapid Aftershock Mobilization Program (RAMP)

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Yang, A.; Rohrlick, D.; Cochran, E. S.; Lawrence, J.; Chung, A. I.; Neighbors, C.; Choo, Y.

    2011-12-01

    The Kinect technology allows for hands-free game play, greatly increasing the accessibility of gaming for those uncomfortable using controllers. How it works is the Kinect camera transmits invisible near-infrared light and measures its "time of flight" to reflect off an object, allowing it to distinguish objects within 1 centimeter in depth and 3 mm in height and width. The middleware can also respond to body gestures and voice commands. Here, we use the Kinect Windows SDK software to create a game that mimics how scientists deploy seismic instruments following a large earthquake. The educational goal of the game is to allow the players to explore 3D space as they learn about the Quake Catcher Network's (QCN) Rapid Aftershock Mobilization Program (RAMP). Many of the scenarios within the game are taken from factual RAMP experiences. To date, only the PC platform (or a Mac running PC emulator software) is available for use, but we hope to move to other platforms (e.g., Xbox 360, iPad, iPhone) as they become available. The game is written in programming language C# using Microsoft XNA and Visual Studio 2010, graphic shading is added using High Level Shader Language (HLSL), and rendering is produced using XNA's graphics libraries. Key elements of the game include selecting sensor locations, adequately installing the sensor, and monitoring the incoming data. During game play aftershocks can occur unexpectedly, as can other problems that require attention (e.g., power outages, equipment failure, and theft). The player accrues points for quickly deploying the first sensor (recording as many initial aftershocks as possible), correctly installing the sensors (orientation with respect to north, properly securing, and testing), distributing the sensors adequately in the region, and troubleshooting problems. One can also net points for efficient use of game play time. Setting up for game play in your local environment requires: (1) the Kinect hardware ( $145); (2) a computer

  7. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    USGS Publications Warehouse

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  8. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  9. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  10. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  11. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  12. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  13. Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth

    NASA Astrophysics Data System (ADS)

    Kandel, Robert S.

    1994-06-01

    Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.

  14. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  15. A volatile rich Earth's core?

    NASA Astrophysics Data System (ADS)

    Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.

    2017-12-01

    The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.

  16. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  17. Lightcurve Analysis for Two Near-Earth Asteroids Eclipsed by the Earth's Shadow

    NASA Astrophysics Data System (ADS)

    Birtwhistle, Peter

    2018-07-01

    Photometry was obtained from Great Shefford Observatory of near-Earth asteroids 2012 XE54 in 2012 and 2016 VA in 2016 during close approaches. A superfast rotation period has been determined for 2012 XE54 and H-G magnitude system coefficients have been estimated for 2016 VA. While under observation, 2012 XE54 underwent a deep penumbral eclipse by the Earth's shadow and 2016 VA also experienced a total eclipse by the Earth's shadow. The dimming due to the eclipses is modeled taking into account solar limb darkening.

  18. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  19. The Earth is a Planet Too!

    NASA Technical Reports Server (NTRS)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  20. Earth

    NASA Image and Video Library

    2012-01-30

    Behold one of the more detailed images of the Earth yet created. This Blue Marble Earth montage shown above -- created from photographs taken by the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument on board the new Suomi NPP satellite -- shows many stunning details of our home planet. The Suomi NPP satellite was launched last October and renamed last week after Verner Suomi, commonly deemed the father of satellite meteorology. The composite was created from the data collected during four orbits of the robotic satellite taken earlier this month and digitally projected onto the globe. Many features of North America and the Western Hemisphere are particularly visible on a high resolution version of the image. http://photojournal.jpl.nasa.gov/catalog/PIA18033

  1. Searching for topological defect dark matter via nongravitational signatures.

    PubMed

    Stadnik, Y V; Flambaum, V V

    2014-10-10

    We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.

  2. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  3. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  4. Clementine Images of Earth and Moon

    NASA Image and Video Library

    1999-06-12

    During its flight and lunar orbit, NASA’s Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth. The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission. http://photojournal.jpl.nasa.gov/catalog/PIA00432

  5. The Earth Charter

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2010

    2010-01-01

    Humanity is part of a vast evolving universe. Earth is alive with a unique community of life. The forces of nature make existence a demanding and uncertain adventure, but Earth has provided the conditions essential to life's evolution. The resilience of the community of life and the well-being of humanity depend upon preserving a healthy biosphere…

  6. Workshop on Dynamic Fracture Held at Pasadena, California on 17-18 February 1983.

    DTIC Science & Technology

    1983-10-01

    class of materials seems to be the basis for deliberate attempts to devise (small) test geometries that lead to quai-static str fields under rapid loading...23- 22. Kalthoff, J.F., Beinert, J., and Winkler, S., "Einflu# dynamischer Effekte auf die Bestim- mung von Rioarfestzihigkeiten und auf die

  7. From Earth Algebra to Earth Math: An Expansion and Dissemination of the Methods of Earth Algebra [and] Proceedings, Earth Math Conference (Kennesaw, Georgia, April 19-20, 1996).

    ERIC Educational Resources Information Center

    Zumoff, Nancy; Schaufele, Christopher

    This final report and appended conference proceedings describe activities of the Earth Math project, a 3-year effort at Kennesaw State University (Georgia) to broaden and disseminate the concept of Earth Algebra to precalculus and mathematics education courses. Major outcomes of the project were the draft of a precalculus textbook now being…

  8. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Fowler

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  9. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2017-12-11

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  10. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  11. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  12. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  13. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  14. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  15. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  16. Earth Education: A New Beginning.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    The Institute for Earth Education is a nonprofit volunteer group made up of an international network of individuals and member organizations devoted to helping people live more lightly on the earth. This book proposes an alternative path to solve environmental problems. The program, called the earth education path, seeks to accomplish one of…

  17. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan,

    2018-05-30

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  18. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while NASA's Director, Earth Science Division, Mike Freilich, speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  19. Raman scattering of rare earth hexaborides

    NASA Astrophysics Data System (ADS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-06-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  20. CERES Detects Earth's Heat and Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Clouds and the Earth's Radiant Energy System, CERES, monitors solar energy reflected from the Earth and heat energy emitted from the Earth. In this image, heat energy radiated from the earth is shown in varying shades of yellow, red, blue and white. The brightest yellow areas, such as the Sahara Desert and Arabian Peninsula, are emitting the most energy out to space, while the dark blue polar regions and bright white clouds are the coldest areas on Earth, and are emitting the least energy. The animation (1.5MB) (high-res (4MB)) shows roughly a week of CERES data. For more information: CERES images through Visible Earth. CERES web site Image courtesy of the CERES instrument team

  1. The Earth's Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  2. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  3. Intrinsic Hydrophobicity of Rammed Earth

    NASA Astrophysics Data System (ADS)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  4. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Jennifer Brennan, NASA EOSDIS Outreach Lead at NASA's Goddard Spaceflight Center, speaks to participants at a NASA Earth Day sponsored exhibit about satellite earth imagery, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  5. Earth - India and Australia

    NASA Image and Video Library

    1996-02-08

    This color image of the Earth was obtained by NASA’s Galileo spacecraft on Dec. 11, 1990, when the spacecraft was about 1.5 million miles from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00122

  6. Oblique Shot of Earth

    NASA Image and Video Library

    2008-09-05

    This highly oblique image shot over northwestern part of the African continent captures the curvature of the Earth and shows its atmosphere as seen by NASA EarthKAM. You can see clouds and even the occasional thunderhead.

  7. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  8. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  9. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  10. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  11. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  12. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  13. Guided earth boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe,more » a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.« less

  14. California quake assessed

    NASA Astrophysics Data System (ADS)

    Wuethrich, Bernice

    On January 17, at 4:31 A.M., a 6.6 magnitude earthquake hit the Los Angeles area, crippling much of the local infrastructure and claiming 51 lives. Members of the Southern California Earthquake Network, a consortium of scientists at universities and the United States Geological Survey (USGS), entered a controlled crisis mode. Network scientists, including David Wald, Susan Hough, Kerry Sieh, and a half dozen others went into the field to gather information on the earthquake, which apparently ruptured an unmapped fault.

  15. Quake Final Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Critical infrastructures of the world are at constant risks for earthquakes. Most of these critical structures are designed using archaic, seismic, simulation methods that were built from early digital computers from the 1970s. Idaho National Laboratory’s Seismic Research Group are working to modernize the simulation methods through computational research and large-scale laboratory experiments.

  16. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  17. Earth-approaching asteroid streams

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.

    1991-01-01

    Three association patterns have been noted among 139 earth-approaching asteroids on the basis of current orbital similarity; these asteroid streams, consisting of two groups of five members and one of four, can be matched to three of the four meteorite-producing fireball streams determined by Halliday et al. (1990). If the asteroid streams are true nonrandom associations, the opportunity arises for studies of an 'exploded' asteroid in the near-earth environment. Near-earth asteroid-search projects are encouraged to search the mean orbit of the present streams in order to discover additional association members.

  18. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  19. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  20. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  1. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  2. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  3. Earth Orientation Help - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Earth Orientation Help USNO Logo USNO Info Earth Orientation Help Send an e-mail regarding Earth Orientation products. Privacy Advisory Your E-Mail Address Subject ■ Select

  4. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  5. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  6. Ecology of Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Nikoghosyan, E. H.

    2017-12-01

    The technical achievements of our civilization are accompanied by certain negative consequences affect the near-Earth space. The problem of clogging of near-Earth space by "space debris" as purely theoretical arose essentially as soon as the first artificial satellite in 1957 was launched. Since then, the rate of exploitation of outer space has increased very rapidly. As a result, the problem of clogging of near-Earth space ceased to be only theoretical and transformed into practical. Presently, anthropogenic factors of the development of near-Earth space are divided into several categories: mechanical, chemical, radioactive and electromagnetic pollution.

  7. Visualizing Earth Materials

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  8. Phase stable rare earth garnets

    DOEpatents

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  9. Earth on the Move.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  10. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070412 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 panorama featuring wildfires which are plaguing the Northwest and causing widespread destruction. (Note: south is at the top of the frame). The orbital outpost was flying 223 nautical miles above Earth at the time of the photo. Parts of Oregon and Washington are included in the scene. Mt. Jefferson, Three Sisters and Mt. St. Helens are all snow-capped and visible in the photo, and the Columbia River can also be delineated.

  11. Earth observation

    NASA Image and Video Library

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  12. Earth Science

    NASA Image and Video Library

    2004-08-13

    This panoramic view of Hurricane Charley was photographed by the Expedition 9 crew aboard the International Space Station (ISS) on August 13, 2004, at a vantage point just north of Tampa, Florida. The small eye was not visible in this view, but the raised cloud tops near the center coincide roughly with the time that the storm began to rapidly strengthen. The category 2 hurricane was moving north-northwest at 18 mph packing winds of 105 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  13. Earth Science

    NASA Image and Video Library

    2004-09-11

    This image hosts a look at the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm topped the western Caribbean Sea on Saturday, September 11, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, the category 5 storm sustained winds in the eye of the wall that were reported at about 160 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  14. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  15. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  16. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  17. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  18. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  19. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  20. Earthing the human body influences physiologic processes.

    PubMed

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  1. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  2. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  3. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley; Olson, V.; Trenchard, M.; Willis, K.; Baskin, P.

    2006-01-01

    This viewgraph presentation asks the question "Is the observation of earth from the ISS a positive (salutogenic) experience for crew members?"All images are distributed to the public via the "Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov. The objectives of the study are (1) Mine the dataset of Earth Observation photography--What can it tell us about the importance of viewing the Earth as a positive experience for the crewmembers? (2) Quantify extent to which photography was self-initiated (not requested by scientists) (3) Identify patterns photography activities versus scientific requested photography.

  4. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    An attendee of NASA's Earth Day event observes the glow from a bracelet that is part of an exhibit at the event. The Earth Day event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  5. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  6. NASA to Survey Earth's Resources

    NASA Technical Reports Server (NTRS)

    Mittauer, R. T.

    1971-01-01

    A wide variety of the natural resources of earth and man's management of them will be studied by an initial group of foreign and domestic scientists tentatively chosen by the National Aeronautics and Space Administration to analyze data to be gathered by two earth-orbiting spacecraft. The spacecraft are the first Earth Resources Technology Satellite (ERTS-A) and the manned Skylab which will carry an Earth Resources Experiment Package (EREP). In the United States, the initial experiments will study the feasibility of remote sensing from a satellite in gathering information on ecological problems. The objective of both ERTS and EREP aboard Skylab is to obtain multispectral images of the surface of the earth with high resolution remote sensors and to process and distribute the images to scientific users in a wide variety of disciplines. The ERTS-A, EREP, and Skylab systems are described and their operation is discussed.

  7. Evidence against a chondritic Earth.

    PubMed

    Campbell, Ian H; O'Neill, Hugh St C

    2012-03-28

    The (142)Nd/(144)Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry--that the composition of the silicate Earth is 'chondritic', meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.

  8. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid.

  9. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    NASA Technical Reports Server (NTRS)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of

  10. Sun-Earth Day, 2001

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  11. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  12. Earthing the Human Body Influences Physiologic Processes

    PubMed Central

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  13. A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.

  14. The Earth's Biosphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  15. Seeded amplification of chronic wasting disease prions in nasal brushings and recto-anal mucosal associated lymphoid tissues from elk by real time quaking-induced conversion

    USGS Publications Warehouse

    Haley, Nicholas J.; Siepker, Chris; Hoon-Hanks , Laura L.; Mitchell, Gordon; Walter, W. David; Manca, Matteo; Monello, Ryan J.; Powers, Jenny G.; Wild, Margaret A.; Hoover, Edward A.; Caughey, Byron; Richt, Jürgen a.; Fenwick, B.W.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni; n = 323), and nasal brush samples were collected from a subpopulation of these animals (n = 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both the PRNP genotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.

  16. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  17. Ancient and Medieval Earth in Armenia

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  18. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  20. The Role of Military Forces in Disaster Response: Remove the Impediments

    DTIC Science & Technology

    2012-03-08

    5Alicia Acuna, “As U.S. Preps for Nuclear Disaster Drills, Scientists Reassure About Quake Zone Facilities,” March 28, 2011, http...www.foxnews.com/politics/2011/03/28/preps- nuclear - disaster -drills-scientists-reassure-quake-zone-facilities (accessed January 1, 2012). 30 6The Federal

  1. Earth as art 4

    USGS Publications Warehouse

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  2. Venus - Lessons for earth

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1992-01-01

    The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

  3. Tsunami Damage in Northwest Sumatra

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The island of Sumatra suffered from both the rumblings of the submarine earthquake and the tsunamis that were generated on December 26, 2004. Within minutes of the quake, the sea surged ashore, bringing destruction to the coasts of the northern Sumatra. This pair of images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite shows the Aceh province of northern Sumatra, Indonesia, on December 17, 2004, before the quake (bottom), and on December 29, 2004 (top), three days after the catastrophe. Although MODIS was not specifically designed to make the very detailed observations that are usually necessary for mapping coastline changes, the sensor nevertheless observed obvious differences in the Sumatran coastline. On December 17, the green vegetation along the west coast appears to reach all the way to the sea, with only an occasional thin stretch of white that is likely sand. After the earthquake and tsunamis, the entire western coast is lined with a noticeable purplish-brown border. The brownish border could be deposited sand, or perhaps exposed soil that was stripped bare of vegetation when the large waves rushed ashore and then raced away. Another possibility is that parts of the coastline may have sunk as the sea floor near the plate boundary rose. On a moderate-resolution image such as this, the affected area may seem small, but each pixel in the full resolution image is 250 by 250 meters. In places the brown strip reaches inland roughly 13 pixels, equal to a distance of 3.25 kilometers, or about 2 miles. On the northern tip of the island (shown in the large image), the incursion is even larger. NASA images created by Jesse Allen, Earth Observatory, using data obtained from the MODIS Rapid Response team and the Goddard Earth Sciences DAAC.

  4. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, W.; Hough, S.; Martin, S.; Bilham, R.

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earth-quakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental-with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earth-quakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  5. Earth Observation

    NASA Image and Video Library

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  6. Earth Science

    NASA Image and Video Library

    2004-09-15

    Except for a small portion of the International Space Station (ISS) in the foreground, Hurricane Ivan, one of the strongest hurricanes on record, fills this image over the northern Gulf of Mexico. As the downgraded category 4 storm approached landfall on the Alabama coast Wednesday afternoon on September 15, 2004, sustained winds in the eye of the wall were reported at about 135 mph. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the ISS at an altitude of approximately 230 miles. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  7. Earth Science

    NASA Image and Video Library

    2004-09-15

    This image hosts a look into the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm approached landfall on the central Gulf coast Wednesday afternoon on September 15, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, sustained winds in the eye of the wall were reported at about 135 mph as the downgraded category 4 storm approached the Alabama coast. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  8. E-DECIDER: Using Earth Science Data and Modeling Tools to Develop Decision Support for Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, Margaret T.; Wang, Jun; Pierce, Marlon E.; Yoder, Mark R.; Parker, Jay W.; Burl, Michael C.; Stough, Timothy M.; Granat, Robert A.; Donnellan, Andrea; Rundle, John B.; Ma, Yu; Bawden, Gerald W.; Yuen, Karen

    2015-08-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing new capabilities for decision making utilizing remote sensing data and modeling software to provide decision support for earthquake disaster management and response. E-DECIDER incorporates the earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools allows us to provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). This in turn is delivered through standards-compliant web services for desktop and hand-held devices.

  9. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsies from white-tailed deer by real time quaking-induced conversion

    USGS Publications Warehouse

    Haley, Nicholas J.; Siepker, Chris; Walter, W. David; Thomsen, Bruce V.; Greenlee, Justin J.; Lehmkuhl, Aaron D.; Richt, Jürgen a.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since spread to cervids in 23 states, two Canadian provinces, and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction of farmed or free-ranging deer and elk or surveillance studies of private or protected herds, where depopulation is contraindicated. This study sought to evaluate the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay by using recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brush samples collected antemortem from farmed white-tailed deer (n = 409). Antemortem findings were then compared to results from ante- and postmortem samples (RAMALT, brainstem, and medial retropharyngeal lymph nodes) evaluated by using the current gold standard in vitro assay, immunohistochemistry (IHC) analysis. We hypothesized that the sensitivity of RT-QuIC would be comparable to IHC analysis in antemortem tissues and would correlate with both the genotype and the stage of clinical disease. Our results showed that RAMALT testing by RT-QuIC assay had the highest sensitivity (69.8%) compared to that of postmortem testing, with a specificity of >93.9%. These data suggest that RT-QuIC, like IHC analysis, is an effective assay for detection of PrPCWD in rectal biopsy specimens and other antemortem samples and, with further research to identify more sensitive tissues, bodily fluids, or experimental conditions, has potential for large-scale and rapid automated testing for CWD diagnosis.

  10. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  11. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  12. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  13. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  14. Accessible Near-Earth Objects (NEOs)

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2015-01-01

    Near Earth Objects (NEOs) are asteroids and comets whose orbits are in close proximity to Earth's orbit; specifically, they have perihelia less than 1.3 astronomical units. NEOs particularly near Earth asteroids (NEAs) are identified as potential destinations for future human exploration missions. In this presentation I provide an overview of the current state of knowledge regarding the astrodynamical accessibility of NEAs according to NASA's Near Earth Object Human Space Flight Accessible Targets Study (NHATS). I also investigate the extremes of NEA accessibility using case studies and illuminate the fact that a space-based survey for NEOs is essential to expanding the set of known accessible NEAs for future human exploration missions.

  15. Spaceship Earth Curriculum Project.

    ERIC Educational Resources Information Center

    McInnis, Noel; And Others

    Three separate papers from the Project are included in this document. One of these, by the Center staff, is entitled "Potentials of the Spaceship Earth Metaphor". It discusses static, dynamic, and analogic representations of spaceship earth and their educational value. A second paper, "Some Resources for Introducing Environmental…

  16. Crescent Earth and Moon

    NASA Image and Video Library

    1996-08-29

    This picture of a crescent-shaped Earth and Moon, the first of its kind ever taken by a spacecraft, was recorded Sept. 18, 1977, by NASA Voyager 1 when it was 7.25 million miles 11.66 million kilometers from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00013

  17. Detecting Water on Super-Earths Using JAVST

    NASA Technical Reports Server (NTRS)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  18. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  19. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  20. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  1. Earth Eclipses the Sun

    NASA Image and Video Library

    2017-02-21

    Several times a day for a few days the Earth completely blocked the Sun for about an hour due to NASA's Solar Dynamics Observatory's orbital path (Feb. 15, 2017). The edge of the Earth is not crisp, but kind of fuzzy due to Earth's atmosphere. This frame from a video shows the ending of one such eclipse over -- just seven minutes. The sun is shown in a wavelength of extreme ultraviolet light. These eclipses re-occur about every six months. The Moon blocks SDO's view of the sun on occasion as well. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21461

  2. Pre-earthquake Magnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J. A.; Freund, F. T.

    2015-12-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  3. On the Sun, Earth, and Clocks.

    ERIC Educational Resources Information Center

    Easton, D.

    1985-01-01

    Discusses motions of the sun and earth in relation to the accuracy of clocks. Effect of eccentricity of the earth's orbit, efect of inclination of the earth's axis, and combination of these two effects are considered. The accuracy of sundials is also discussed. (DH)

  4. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  5. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    NASA Astrophysics Data System (ADS)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  6. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  7. Thermal evolution of the earth

    NASA Technical Reports Server (NTRS)

    Spohn, T.

    1984-01-01

    The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.

  8. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  9. Better Than Earth

    NASA Astrophysics Data System (ADS)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  10. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  11. Recovering heavy rare earth metals from magnet scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  12. Google Earth: A Virtual Globe for Elementary Geography

    ERIC Educational Resources Information Center

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  13. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  14. Another Earth 2.0? Not So Fast.

    PubMed

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive ( 2016 ). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty. Key Words: Habitable zone-Second Earth-Habitable planet-Habitability-Life. Astrobiology 16, 817-821.

  15. Deep Space Earth Observations from DSCOVR

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Herman, J.

    2018-02-01

    The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.

  16. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  17. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  18. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  19. Time variations in the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Eanes, R. J.

    1992-01-01

    At the present time, the causes and consequences of changes in the Earth's gravity field due to geophysical and meteorological phenomena are not well understood. The Earth's gravity field represents the complicated distribution of all of the matter that makes up our planet. Its variations are caused by the motions of the solid Earth interacting with the gravitational attraction of the Sun and the Moon (tides) and with the Earth's atmosphere, oceans, polar ice caps and groundwater due to changing weather patterns. These variations influence the rotation of the Earth, alter the orbits of Earth satellites, cause sea level fluctuations, and indirectly affect the global climate pattern.

  20. News and Views: CSR: the devil will be in the detail; MPs invite researchers to show off success; Earthquake movies reveal ground movements

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The UK Government's Comprehensive Spending Review set out a distinctly tighter budget all round in October, but science funding as a whole was not as badly cut as some had feared. What this means for astronomy, planetary science and geophysics remains to be seen, as individual research council allocations have yet to be agreed. Early-career researchers with results to shout about have the opportunity to display and discuss their work at the House of Commons next year, as part of the SET for Britain event on 14 March. Seismology took a great step forward when international cooperation at the time of International Geophysical Year 1957/8 meant that earth movements resulting from quakes could be compared worldwide.

  1. Soil quality as a factor of the distribution of damages at the meizoseismal area of the Kozani-Grevena 1995 earthquake, in Greece ( Ms = 6.6)

    NASA Astrophysics Data System (ADS)

    Christaras, B.; Dimitriou, An; Lemoni, Hel

    The physical and mechanical properties of the soil formations were related to the damages observed in Kozani and Grevena area, in Northern Greece, after the earth-quake of 13th May 1995 ( Ms = 6.6). Properties such as grain size distribution, plasticity, shear strength, compression index, permeability and ultrasonic velocity were measured in order to classify the suitability of the soil formations, for urban planning, and correlate their mechanical behaviour with the damages observed in the construction. According to our observations, a great number of recent buildings were damaged also in areas far away from the seismotectonic zones, where silty and clayey soils dominate, presenting very low permeability, low ultrasonic velocity together with high plasticity and compressibility.

  2. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  3. iSTEM: Celebrating Earth Day with Sustainability

    ERIC Educational Resources Information Center

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  4. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  5. Geology, Geochronology, and EarthScope: The EarthScope AGeS Program and a new idea for a 4D Earth Initiative

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Arrowsmith, R.; Metcalf, J. R.; Rittenour, T. M.; Schoene, B.; Hole, J. A.; Pavlis, T. L.; Wagner, L. S.; Whitmeyer, S. J.; Williams, M. L.

    2015-12-01

    The EarthScope AGeS (Awards for Geochronology Student Research) program is a multi-year educational initiative aimed at enhancing interdisciplinary, innovative, and high-impact science by promoting training and new interactions between students, scientists, and geochronology labs at different institutions. The program offers support of up to $10,000 for graduate students to collect and interpret geochronology data that contribute to EarthScope science targets through visits to participating geochronology labs (www.earthscope.org/geochronology). The program was launched by a 2-day short course held before the 2014 National GSA meeting in Vancouver, at which 16 geochronology experts introduced 43 participants to the basic theory and applications of geochronology methods. By the first proposal submission deadline in spring 2015, 33 labs representing a broad range of techniques had joined the program by submitting lab plans that were posted on the EarthScope website. The lab plans provide information about preparation, realistic time frames for visits, and analytical costs. In the first year of the program, students submitted 47 proposals from 32 different institutions. Proposals were ranked by an independent panel, 10 were funded, and research associated with these projects is currently underway. The next proposal deadline will be held in spring 2016. The 4D-Earth initiative is an idea for a natural successor to the EarthScope program aimed at expanding the primarily 3D geophysical focus that captured a snapshot of present day North America into the 4th dimension of time (hence the connection to the prototypical AGeS program), and illuminating the crustal component that was below the resolution of much of the USArray image. Like EarthScope, the notion is that this initiative would integrate new infrastructure and usher in a new way of doing science. The overarching scientific motivation is to develop a Community Geologic Model for the 4-D Evolution of the North

  6. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  7. Earth Observation

    NASA Image and Video Library

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  8. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  9. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  10. Automatische Kamerapositionierung für intra-operative Visualisierungen in der onkologischen Leberchirurgie

    NASA Astrophysics Data System (ADS)

    Mühler, Konrad; Hansen, Christian; Neugebauer, Mathias; Preim, Bernhard

    In diesem Beitrag wird ein Verfahren vorgestellt, mit dessen Hilfe automatisch gute Blickpunkte auf dreidimensionale Planungsmodelle für die Leberchirurgie berechnet werden können. Das Verfahren passt die Position der virtuellen Kamera während einer Operation dynamisch an, insbesondere im Falle einer Aktualisierung von onkologischen Planungsdaten durch neue intra-operative Befunde.

  11. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  12. Learning Science in the 21st century - a shared experience between schools

    NASA Astrophysics Data System (ADS)

    Pinto, Tânia; Soares, Rosa; Ruas, Fátima

    2015-04-01

    Problem Based Learning is considered an innovative teaching and learning inquiry methodology that is student centered, focused in the resolution of an authentic problem and in which the teacher acts like a facilitator of the work in small groups. In this process, it is expected that students develop attitudinal, procedural and communication skills, in addition to the cognitive typically valued. PBL implementation also allows the use of multiple educational strategies, like laboratorial experiments, analogue modeling or ICT (video animations, electronic presentations or software simulations, for instance), which can potentiate a more interactive environment in the classroom. In this study, taken in three schools in the north of Portugal, which resulted from the cooperation between three science teachers, with a 75 individuals sample, were examined students' opinions about the main difficulties and strengths concerning the PBL methodology, having as a common denominator the use of a laboratorial experiment followed by an adequate digital software as educational resource to interpret the obtained results and to make predictions (e.g. EarthQuake, Virtual Quake, Stellarium). The data collection methods were based on direct observation and questionnaires. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life and that the use of software was relevant, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.

  13. Surface rupture of the 1933 M 7.5 Diexi earthquake in eastern Tibet: implications for seismogenic tectonics

    NASA Astrophysics Data System (ADS)

    Ren, Junjie; Xu, Xiwei; Zhang, Shimin; Yeats, Robert S.; Chen, Jiawei; Zhu, Ailan; Liu, Shao

    2018-03-01

    The 1933 M 7.5 Diexi earthquake is another catastrophic event with the loss of over 10 000 lives in eastern Tibet comparable to the 2008 Mw 7.9 Wenchuan earthquake. Because of its unknown surface rupture, the seismogenic tectonics of the 1933 earthquake remains controversial. We collected unpublished reports, literatures and old photos associated with the 1933 earthquake and conducted field investigations based on high-resolution Google Earth imagery. Combined with palaeoseismological analysis, radiocarbon dating and relocated earthquakes, our results demonstrate that the source of the 1933 earthquake is the northwest-trending Songpinggou fault. This quake produced a > 30 km long normal-faulting surface rupture with the coseismic offset of 0.9-1.7 m. Its moment magnitude (Mw) is ˜6.8. The Songpinggou fault undergoes an average vertical slip rate of ˜0.25 mm yr-1 and has a recurrence interval of ˜6700 yr of large earthquakes. The normal-faulting surface rupture of this quake is probably the reactivation of the Mesozoic Jiaochang tectonic belt in gravitational adjustment of eastern Tibet. Besides the major boundary faults, minor structures within continental blocks may take a role in strain partitioning of eastern Tibet and have the potential of producing large earthquake. This study contributes to a full understanding of seismotectonics of large earthquakes and strain partitioning in eastern Tibet.

  14. Earth Observation

    NASA Image and Video Library

    2014-07-19

    ISS040-E-070439 (19 July 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station recorded this July 19 image of wildfires which are plaguing the Northwest and causing widespread destruction. The orbital outpost was flying 223 nautical miles above a point on Earth located at 48.0 degrees north latitude and 116.9 degrees west longitude when the image was exposed. The state of Washington is especially affected by the fires, many of which have been blamed on lightning. This particular fire was part of the Carlton Complex Fire, located near the city of Brewster in north central Washington. The reservoir visible near the center of the image is Banks Lake.

  15. Earthquakes in Hawai‘i—an underappreciated but serious hazard

    USGS Publications Warehouse

    Okubo, Paul G.; Nakata, Jennifer S.

    2011-01-01

    The State of Hawaii has a history of damaging earthquakes. Earthquakes in the State are primarily the result of active volcanism and related geologic processes. It is not a question of "if" a devastating quake will strike Hawai‘i but rather "when." Tsunamis generated by both distant and local quakes are also an associated threat and have caused many deaths in the State. The U.S. Geological Survey (USGS) and its cooperators monitor seismic activity in the State and are providing crucial information needed to help better prepare emergency managers and residents of Hawai‘i for the quakes that are certain to strike in the future.

  16. The Near-Earth Plasma Environment

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  17. The Visibility of Earth Transits

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Doyle, Laurance; McIntosh, Dawn; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The recent photometric detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet across a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of solar-like stars that satisfy the geometric condition for Earth transit visibility are presented.

  18. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  19. Another Earth 2.0? Not So Fast

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive (2016). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty.

  20. EARTHS (Earth Albedo Radiometer for Temporal Hemispheric Sensing)

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.; Bowles, J. H.; Mouroulis, P.; Philpot, W. D.

    2018-02-01

    We propose a concept for measuring the hemispherical Earth albedo in high temporal and spectral resolution using a hyperspectral imaging sensor deployed on a lunar satellite, such as the proposed NASA Deep Space Gateway.

  1. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  2. Evidence for a near-Earth asteroid belt

    NASA Technical Reports Server (NTRS)

    Rabinowitz, D. L.; Gehrels, T.; Scotti, J. V.; Mcmillan, R. S.; Perry, M. L.; Wisniewski, W.; Larson, S. M.; Howell, E. S.; Mueller, B. E. A.

    1993-01-01

    In January 1991, the 0.9-m Spacewatch telescope made the first observation of an asteroid outside Earth's atmosphere but in the neighborhood of the Earth-moon system. Since then, more than 40 Earth-approaching asteroids have been discovered, including 13 smaller than 50 m. Using these data, one of us has shown that there is an excess of Earth-approaching asteroids with diameters less than 50 m, relative to the population inferred from the distribution of larger objects. Here we argue that these smaller objects - characterized by low eccentricities, widely ranging inclinations and unusual spectral properties - form a previously undetected asteroid belt concentrated near Earth. The recent discovery of additional small Earth-approaching asteroids supports this conclusion.

  3. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  4. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  5. 3D-model: Earth's seasons

    NASA Astrophysics Data System (ADS)

    Meirlaen, Koen

    2017-04-01

    A lot of subjects in geography and geology are linked to the seasons of the earth. Most of the students think that the earth's seasons are caused by the differences in the distance from the sun throughout the year. So as a teacher I tried year after year to explain the motion of the earth around the sun. Even when I used animations/movies/… it still seemed difficult for the students to understand the 3D-situation. Most of the animations only show the start of every season but it's important to demonstrate to the students the motion of the earth during a year so they can see that the tilt of our planet causes the seasons. The earth's axis is tilted by 23.4 degrees to the plane in which it travels around the sun, the ecliptic. So I started to work on a 3D-model on a scale to use in a classroom. It measures approximately 2m by 1m. You can buy all the materials in DIY-shop for less than € 100: wooden plank, lamp, styrofoam spheres (= earth), … I have been using the model for over 4 years now and it's very nice to work with. You can involve the students more and let them investigate for themselves what causes the seasons. The model demonstrates the start of every season, why it is dark for several months in several places on Earth. They can draw the positions of the Tropic of Cancer, Tropic of Capricorn, Arctic Circle and Antarctic Circle on the styrofoam spheres. Also the difference between day and night is well shown on the globes. A lot of subjects in geography and geology are linked to the seasons of the earth: the changes in weather, ocean currents, winds, tropical storms, vegetation, fauna and flora, hours of daylight, … even economy, migration and social health. This way the model can be used in many lessons during the year. The poster session will demonstrate how you can make the 3D-model, some exercises, …

  6. Earth Day 2018 Activities

    NASA Image and Video Library

    2018-04-17

    During the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, Shari Blissett-Clark of the Florida Bat Conservancy displays one of the mammals. The event took place during the annual Earth Day celebration at the Kennedy Space Center Visitor Complex, guests have an opportunity to learn more about energy awareness, the environment and sustainability.

  7. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  8. The Earth Needs You!

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    Celebrated annually on April 22, schools and communities organize numerous activities during Earth Day to promote awareness. To help teachers plan their own initiatives and to learn more about what is happening around the world, they can join the Earth Day Network at: http://network.earthday.net/. Once they have joined, they can create a webpage…

  9. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  10. Rare Earth Element Mines, Deposits, and Occurrences

    USGS Publications Warehouse

    Orris, Greta J.; Grauch, Richard I.

    2002-01-01

    Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.

  11. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  12. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  13. Spacewatch discovery of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1992-01-01

    Our overall scientific goal is to survey the solar system to completion - that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers in the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6-300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids. One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far. We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques.

  14. Behaviour of Rare Earth Elements during the Earth's core formation

    NASA Astrophysics Data System (ADS)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  15. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  16. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  17. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  18. Rare Earths; The Fraternal Fifteen (Rev.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl A.

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  19. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  20. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  1. Earth Observation

    NASA Image and Video Library

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  2. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  3. Non-rocket Earth-Moon transport system

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  4. Aqua Satellite Orbiting Earth Artist Concept

    NASA Image and Video Library

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  5. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent.

    PubMed

    Carbon, Claus-Christian

    2010-07-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  6. The young age of Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1998-09-01

    Patterson (1956) established that the age of Earth is close to that of meteorites. Over the last 20 years, workers argued for younger age for core differentiation based on Pb-Pb model ages and tungsten isotopic data and for gas retention based on I-Xe modeling. However, disagreement is abundant, and the young age of Earth has not been widely accepted. In this work, I examine all radiogenic noble gases in the atmosphere and use a model-independent approach and total inversion to show that (1) the Xe-closure age of Earth is 109 ± 23 million years younger than the formation of meteorite Bjurbole (˜4560 Ma) and (2) all radiogenic components of noble gases in the atmosphere can be quantitatively accounted for by production and degassing ˜60% of the bulk silicate earth. The agreement between the 129I- 129Xe clock and 244Pu- 238U- 136Xe- 134Xe- 132Xe- 131Xe clock suggests that the volatility of iodine does not affect the 129I- 129Xe clock. Earth's Xe-closure age is 4.45 ± 0.02 Ga, consistent with the model age of Pb and the 146Sm- 142Nd, 147Sm- 143Nd and 182Hf- 182W systematics. On the basis of the consistency of these ages, 4.45 ± 0.02 Ga probably represents the time when the last Martian-sized planetesimal hit Earth and reinitialized the global clocks.

  7. The Earth and Environmental Systems Podcast, and the Earth Explorations Video Series

    NASA Astrophysics Data System (ADS)

    Shorey, C. V.

    2015-12-01

    The Earth and Environmental Systems Podcast, a complete overview of the theoretical basics of Earth Science in 64 episodes, was completed in 2009, but has continued to serve the worldwide community as evidenced by listener feedback (e.g. "I am a 65 year old man. I have been retired for awhile and thought that retirement would be nothing more than waiting for the grave. However I want to thank you for your geo podcasts. They have given me a new lease on life and taught me a great deal." - FP, 2015). My current project is a video series on the practical basics of Earth Science titled "Earth Explorations". Each video is under 12 minutes long and tackles a major Earth Science concept. These videos go beyond a talking head, or even voice-over with static pictures or white-board graphics. Moving images are combined with animations created with Adobe After Effects, and aerial shots using a UAV. The dialog is scripted in a way to make it accessible at many levels, and the episodes as they currently stand have been used in K-12, and Freshman college levels with success. Though these videos are made to be used at this introductory level, they are also designed as remedial episodes for upper level classes, freeing up time given to review for new content. When completed, the series should contain close to 200 episodes, and this talk will cover the full range of resources I have produced, plan to produce, and how to access these resources. Both resources are available on iTunesU, and the videos are also available on YouTube.

  8. Jupyter meets Earth: Creating Comprehensible and Reproducible Scientific Workflows with Jupyter Notebooks and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2016-12-01

    Deriving actionable information from Earth observation data obtained from sensors or models can be quite complicated, and sharing those insights with others in a form that they can understand, reproduce, and improve upon is equally difficult. Journal articles, even if digital, commonly present just a summary of an analysis that cannot be understood in depth or reproduced without major effort on the part of the reader. Here we show a method of improving scientific literacy by pairing a recently developed scientific presentation technology (Jupyter Notebooks) with a petabyte-scale platform for accessing and analyzing Earth observation and model data (Google Earth Engine). Jupyter Notebooks are interactive web documents that mix live code with annotations such as rich-text markup, equations, images, videos, hyperlinks and dynamic output. Notebooks were first introduced as part of the IPython project in 2011, and have since gained wide acceptance in the scientific programming community, initially among Python programmers but later by a wide range of scientific programming languages. While Jupyter Notebooks have been widely adopted for general data analysis, data visualization, and machine learning, to date there have been relatively few examples of using Jupyter Notebooks to analyze geospatial datasets. Google Earth Engine is cloud-based platform for analyzing geospatial data, such as satellite remote sensing imagery and/or Earth system model output. Through its Python API, Earth Engine makes petabytes of Earth observation data accessible, and provides hundreds of algorithmic building blocks that can be chained together to produce high-level algorithms and outputs in real-time. We anticipate that this technology pairing will facilitate a better way of creating, documenting, and sharing complex analyses that derive information on our Earth that can be used to promote broader understanding of the complex issues that it faces. http://jupyter.orghttps://earthengine.google.com

  9. Crescent-shaped Earth and Moon

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA.

  10. The Visibility of Earth Transits

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The recent detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet around a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming, of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of candidate target stars, their properties, and simulations of the photometric Earth transit signal detectability at each target is presented.

  11. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  12. Earth as Seen from Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth.

    Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance.

    The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.

  13. Dark Matter Hairs Around Earth

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20176

  14. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  15. Physical conditions on the early Earth.

    PubMed

    Lunine, Jonathan I

    2006-10-29

    The formation of the Earth as a planet was a large stochastic process in which the rapid assembly of asteroidal-to-Mars-sized bodies was followed by a more extended period of growth through collisions of these objects, facilitated by the gravitational perturbations associated with Jupiter. The Earth's inventory of water and organic molecules may have come from diverse sources, not more than 10% roughly from comets, the rest from asteroidal precursors to chondritic bodies and possibly objects near Earth's orbit for which no representative class of meteorites exists today in laboratory collections. The final assembly of the Earth included a catastrophic impact with a Mars-sized body, ejecting mantle and crustal material to form the Moon, and also devolatilizing part of the Earth. A magma ocean and steam atmosphere (possibly with silica vapour) existed briefly in this period, but terrestrial surface waters were below the critical point within 100 million years after Earth's formation, and liquid water existed continuously on the surface within a few hundred million years. Organic material delivered by comets and asteroids would have survived, in part, this violent early period, but frequent impacts of remaining debris probably prevented the continuous habitability of the Earth for one to several hundred million years. Planetary analogues to or records of this early time when life began include Io (heat flow), Titan (organic chemistry) and Venus (remnant early granites).

  16. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  17. South Polar Projection of Earth

    NASA Image and Video Library

    1997-09-10

    This view of the Earth shows a wonderfully unique but physically impossible view of the southern hemisphere and Antarctica. While a spacecraft could find itself directly over the Earth pole, roughly half of the image should be in darkness!

  18. Determining Possible Building Blocks of the Earth

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; O'Brien, K. M.

    2003-01-01

    Introduction: One of the fundamental questions concerning the formation of the Earth is what is it made out of. The Earth appears to have condensed out of material from the solar nebula. We sample this "primitive" material in the form of chondritic meteorites. One of the most important constraints on possible building blocks for the Earth is the Earth#s oxygen iso-topic composition. Rocks from the Earth and Moon plot along a line (the terrestrial fractionation line) in diagrams of delta(sup 17)O (% relative to Standard Mean Ocean Water or SMOW) versus delta(sup 18)O (% relative to SMOW). Chondritic meteorites fall above and below this line. Distances from this line are given as Delta(sup 17)O (%) (= delta(sup 17)O - 0.52 x delta(sup 18)O).

  19. Cosmic Influence on the Sun-Earth Environment

    PubMed Central

    Mukherjee, Saumitra

    2008-01-01

    SOHO satellite data reveals geophysical changes before sudden changes in the Earth's Sun-Earth environment. The influence of extragalactic changes on the Sun as well as the Sun-Earth environment seems to be both periodic and episodic. The periodic changes in terms of solar maxima and minima occur every 11 years, whereas the episodic changes can happen at any time. Episodic changes can be monitored by cosmic ray detectors as a sudden increase or decrease of activity. During these solar and cosmic anomaly periods the environment of the Earth is affected. The Star-Sun-Earth connection has the potential to influence the thermosphere, atmosphere, ionosphere and lithosphere. Initial correlation of the cosmic and Sun-Earth connection has shown the possibility of predicting earthquakes, sudden changes in atmospheric temperatures and erratic rainfall/snowfall patterns. PMID:27873955

  20. Mars at 43 Million Miles From Earth

    NASA Image and Video Library

    2001-06-26

    NASA Earth-orbiting Hubble Space Telescope took the picture on June 26, 2001 when Mars was approximately 43 million miles 68 million km from Earth -- the closest Mars has ever been to Earth since 1988.