Science.gov

Sample records for earth reentry breakup

  1. Inadvertent Earth Reentry Breakup Analysis for the New Horizons Mission

    NASA Technical Reports Server (NTRS)

    Ling, Lisa M.; Salama, Ahmed; Ivanov, Mark; McRonald, Angus

    2007-01-01

    The New Horizons (NH) spacecraft was launched in January 2006 aboard an Atlas V launch vehicle, in a mission to explore Pluto, its moons, and other bodies in the Kuiper Belt. The NH spacecraft is powered by a Radioisotope Thermoelectric Generator (RTG) which encases multiple General Purpose Heat Source (GPHS) modules. Thus, a pre-launch vehicle breakup analysis for an inadvertent atmospheric reentry in the event of a launch failure was required to assess aerospace nuclear safety and for launch contingency planning. This paper addresses potential accidental Earth reentries analyzed at the Jet Propulsion Laboratory (JPL) which may arise during the ascent to parking orbit, resulting in a suborbital reentry, as well as a departure from parking orbit, resulting in an orbital reentry.

  2. A methodology of MSL breakup analysis for Earth accidental reentry and its application to breakup analysis for Mars off-nominal entry

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; Ling, Lisa

    2005-01-01

    Vehicle breakup analysis has been performed for missions that may carry nuclear fuel for heating or power purposes to assess nuclear safety in case of launch failure leading to atmospheric reentry. Also, failure scenarios exist which could lead to breakup during Entry / Descent / Landing (EDL) at Mars due to off-nominal entries, with implications for planetary protection requirements. Since the Mars Science Laboratory (MSL) spacecraft may include a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), an analysis of breakup in case of launch failure is required. Also, breakup during Mars EDL due to off-nominal entries could release the RTG heat source that has implications for planetary protection requirements. This paper presents a methodology of MSL breakup analysis for launch failure with application to Mars off-nominal entry.

  3. Evaluation of Reentry Breakup and Debris Generation

    NASA Astrophysics Data System (ADS)

    Nyman, R. L.

    2012-01-01

    Orbital missions launching from Cape Canaveral typically overfly Europe or African before achieving orbital insertion and pose a risk that must be evaluated as part of the overall mission casualty expectation. During the downrange overflight phase, the vehicle is well above the atmosphere and has achieved near orbital velocity, consequently a loss of thrust, loss of control or high altitude breakup will bring either the intact upper stage or smaller secondary debris fragments into the atmosphere and subject them to intense aerodynamic heating. In order to make reasonable risk estimates, it is necessary to first predict the reentry breakup characteristics and the survival of debris fragments. ACTA has developed the Coupled Aeroheating and Thermal Network Solver (CATNS) code to help range safety analysts evaluate reentry breakup and demise.

  4. ISS Update: ATV-3 ReEntry Breakup Recorder

    NASA Video Gallery

    ISS Update Commentator Pat Ryan talks with Dr. William Ailor, Principal Investigator for the ReEntry Breakup Recorder (REBR) for The Aerospace Corporation. Ailor talks about capturing data as Europ...

  5. Radioactive satellites - Intact reentry and breakup by debris impact

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Potter, A. E., Jr.

    1991-01-01

    There is a substantial mass of radioactive material in nuclear reactors or radioisotope thermal generators (RTGs) in orbit about the earth. This paper examines the reentry of intact nuclear fuel cores and RTGs and the fragmentation and subsequent radioactive debris cloud deposition and evolution resulting from the impact of orbital debris upon an orbiting reactor, fuel core, or RTG. To assess the intact reentry, decay rates and a predicted decay date using historical and projected orbital decay data, are estimated. The current NASA debris environment model is utilized to estimate impact rates and debris cloud evolution of a fragmentation event. Results of these analyses are compared and concepts are tendered which would tend to minimize the radiological debris hazard to personnel and structures both on the earth's surface and in low earth orbit.

  6. Analysis of video imagery of the reentry and breakup of the STS-31 external tank

    NASA Technical Reports Server (NTRS)

    Snyder, Michael W.; Pitts, David E.

    1992-01-01

    Some of the major questions concerning the reentry and breakup of the STS-31 external tank (ET), which had a deactivated tumble valve, are addressed. The time of breakup, the altitude, and the geographic location of the ET at breakup were determined. The tumble rate was estimated to be between 8.59 deg and 8.84 deg/s. The ET broke up into at least 50 pieces 7 s after initial rupture.

  7. Supercontinent Breakup and the Deep Earth

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.

    2014-12-01

    As many as five supercontinents have been proposed and the deep Earth probably holds the key to understand their breakup. The African and Pacific large low shear-wave velocity provinces (LLSVPs) have been stable for the entire Phanerozoic and possibly much longer. Their edges are the dominant source of deep plumes which travel from the base of the mantle to the surface where episodic large igneous province (LIP) activity has punctuated plate tectonics by creating and modifying plate boundaries. Pangea, the best-documented supercontinent, formed at the end of the Carboniferous (320 Ma) by fusing Gondwana and Laurussia. The Panjal Traps (289 Ma) probably assisted in an early Pangea breakup phase (opening of the Neotethys) but the most important phase of breakup started when the Central Atlantic Ocean opened at around 195 Ma. Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province (201 Ma), one of the largest LIPs. The Karoo LIP (183 Ma) heralded the Jurassic breakup of Pangea (separation of East and West Gondwana) whereas Paraná-Etendeka LIP activity (134 Ma) preceded South Atlantic break-up by a few million years. The North Atlantic realm experienced prolonged Late Palaeozoic to Cenozoic extension and sedimentary basin formation but the final Early Eocene break-up occurred shortly after a massive episode of volcanism and LIP formation (North Atlantic Igneous Province, 62 Ma) as in most Pangea breakup examples. All LIPs assisting Pangea breakup were sourced by plumes from the margin of the African LLSVP.

  8. Tidal Breakup of Asteroids by the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Richardson, Derek C.; Bottke, William F., Jr.

    1996-01-01

    We report on preliminary results from simulations of the tidal breakup of 'rubble pile' asteroids by the Earth and Moon. We find that both bodies can disrupt 2 g/cm(exp -3) asteroids and the outcome depends on various adjustable factors, including the encounter distance and velocity. The results of the completed study will have implications for the origins of such geological features as crater chains.

  9. Reentry analysis

    SciTech Connect

    Biehl, F.A.

    1984-05-01

    This paper presents the criteria, previous nuclear experience in space, analysis techniques, and possible breakup enhancement devices applicable to an acceptable SP-100 reentry from space. Reactor operation in nuclear-safe orbit will minimize the radiological risk; the remaining safeguards criteria need to be defined. A simple analytical point mass reentry technique and a more comprehensive analysis method that considers vehicle dynamics and orbit insertion malfunctions are presented. Vehicle trajectory, attitude, and possible breakup enhancement devices will be integrated in the simulation as required to ensure an adequate representation of the reentry process.

  10. Controller performance improvements for reentry through Earth's atmosphere for low L/D spacecraft

    NASA Astrophysics Data System (ADS)

    Kline, Eric Michael

    Development of space-based industry created on the International Space Station is limited by reentry through Earth's atmosphere. The Lyapunov method is applied to improve reentry controller performance through Earth's atmosphere. A Predictor Corrector controller (PCCPA) derived from the Apollo program reentry guidance is the baseline against which candidate controllers are compared. Controllers designed to guide the reentry vehicle to within 1nm of the final target while satisfying a 51.55 BTU/ft2/sec heat rate constraint and a 4 g load constraint are evaluated in a six degree of freedom simulation environment. Three Lyapunov controllers developed in the initial design phase are subjected to variations in vehicle L/D. Controller gains are iteratively determined to satisfy reentry requirements for nominal reentry. However, different controller gain sets have different levels of performance robustness. Only one controller, the Lyapunov Controller, Gain Set 3, satisfies reentry requirements over a larger range of L/D variations than the PCCPA. In the final design phase, three hybrid reentry controllers are developed by combining Lyapunov based guidance routines with PCCPA transition logic and are evaluated for variations in vehicle L/D, weight and initial flight path angle (gamma0). The Hybrid Predictor Corrector/Lyapunov Controller #1 demonstrates the greatest performance robustness and satisfies all reentry requirements over a larger range of L/D, weight, and gamma 0 variations than the PCCPA. The hybrid controller, #3, meets all reentry requirements for a larger range of L/D variations than the PCCPA. The hybrid controller, #2, fails to outperform the PCCPA. All seven reentry controllers are linearized at four operating points and linear robust control analysis techniques are employed to quantify controller performance. Two robustness parameters, eta, a guaranteed domain of stability, and Jw, a measure of system performance to the worst possible direction of the

  11. A Genesis breakup and burnup analysis in off-nominal Earth return and atmospheric entry

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; Ling, Lisa; McRonald, Angus

    2005-01-01

    The Genesis project conducted a detailed breakup/burnup analysis before the Earth return to determine if any spacecraft component could survive and reach the ground intact in case of an off-nominal entry. In addition, an independent JPL team was chartered with the responsibility of analyzing several definitive breakup scenarios to verify the official project analysis. This paper presents the analysis and results of this independent team.

  12. Effects of atmospheric breakup on crater field formation. [on earth

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.; Melosh, H. J.

    1980-01-01

    This paper investigates the physics of meteoroid breakup in the atmosphere and its implications for the observed features of strewn fields. There are several effects which cause dispersion of the meteoroid fragments: gravity, differential lift of the fragments, bow shock interaction just after breakup, centripetal separation by a rotating meteroid, and possibly a dynamical transverse separation resulting from the crushing deceleration in the atmosphere. Of these, it is shown that gravity alone can produce the common pattern in which the largest crater occurs at the downrange end of the scatter ellipse. The average lift-to-drag ratio of the tumbling fragments must be less than about 0.001, otherwise small fragments would produce small craters downrange of the main crater, and this is not generally observed. The cross-range dispersion is probably due to the combined effects of bow shock interaction, crushing deceleration, and possibly spinning of the meteoroid. A number of terrestrial strewn fields are discussed in the light of these ideas, which are formulated quantitatively for a range of meteoroid velocities, entry angles, and crushing strengths. It is found that when the crater size exceeds about 1 km, the separation between the fragments upon landing is a fraction of their own diameter, so that the crater formed by such a fragmented meteoroid is almost indistinguishable from that formed by a solid body of the same total mass and velocity.

  13. The importance of momentum transfer in collision-induced breakups in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Lillie, Brian J.

    1991-01-01

    Although there is adequate information on larger objects in low Earth orbit, specifically those objects larger than about 10 cm in diameter, there is little direct information on objects from this size down to 1 mm. Yet, this is the sized regime where objects acting as projectiles represent the ability to seriously damage or destroy a functioning spacecraft if they collide with it. The observed consequences of known collisional breakups in orbit indicates no significant momentum transfer in the resulting debris cloud. The position taken in this paper is that this is an observational selection effect: what is seen in these events is an explosion-like breakup of the target structure arising from shock waves introduced into the structure by the collision, but one that occurs significantly after the collision processes are completed; the collision cloud, in which there is momentum transfer, consists of small, unobserved fragments. Preliminary computations of the contribution of one known collisional breakup, Solwind at 500 km in 1985, and Cosmos 1275 in 1981, assume no momentum transfer on breakup and indicate that these two events are the dominant contributors to the current millimeter and centimeter population. A different story would emerge if momentum transfer was taken into account. The topics covered include: (1) observation of on-orbit collisional breakups; (2) a model for momentum transfer; and (3) velocity space representation of breakup clouds.

  14. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup

    NASA Astrophysics Data System (ADS)

    Gernon, T. M.; Hincks, T. K.; Tyrrell, T.; Rohling, E. J.; Palmer, M. R.

    2016-03-01

    During Neoproterozoic Snowball Earth glaciations, the oceans gained massive amounts of alkalinity, culminating in the deposition of massive cap carbonates on deglaciation. Changes in terrestrial runoff associated with both breakup of the Rodinia supercontinent and deglaciation can explain some, but not all of the requisite changes in ocean chemistry. Submarine volcanism along shallow ridges formed during supercontinent breakup results in the formation of large volumes of glassy hyaloclastite, which readily alters to palagonite. Here we estimate fluxes of calcium, magnesium, phosphorus, silica and bicarbonate associated with these shallow-ridge processes, and argue that extensive submarine volcanism during the breakup of Rodinia made an important contribution to changes in ocean chemistry during Snowball Earth glaciations. We use Monte Carlo simulations to show that widespread hyaloclastite alteration under near-global sea-ice cover could lead to Ca2+ and Mg2+ supersaturation over the course of the glaciation that is sufficient to explain the volume of cap carbonates deposited. Furthermore, our conservative estimates of phosphorus release are sufficient to explain the observed P:Fe ratios in sedimentary iron formations from this time. This large phosphorus release may have fuelled primary productivity, which in turn would have contributed to atmospheric O2 rises that followed Snowball Earth episodes.

  15. An Analysis of Recent Major Breakups in he Low Earth Orbit Region

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Anz-Meador, P. D.

    2010-01-01

    Of the 190 known satellite breakups between 1961 and 2006, only one generated more than 500 cataloged fragments. The event was the explosion of the Pegasus Hydrazine Auxiliary Propulsion System in 1996, adding 713 fragments to the U.S. Satellite Catalog. Since the beginning of 2007; however, the near-Earth environment has been subjected to several major breakups, including the Fengyun-1C anti-satellite test and the explosion of Briz-M in 2007, the unusual breakup of Cosmos 2421 in 2008, and the collision between Iridium 33 and Cosmos 2251 in 2009. Combined, these events added more than 5000 large (> or equal 10 cm) fragments to the environment. Detailed analysis of the radar cross section measurements and orbit histories of the fragments from these major events reveals several unusual characteristics in their size and area-to-mass ratio distributions. The characteristics could be related to the material composition of the parent vehicles, the nature of the breakup, and the composition and physical property of the fragments. In addition, the majority of these fragments are expected to remain in orbit for at least decades. Their long-term impact to the environment is analyzed using the NASA orbital debris evolutionary model, LEGEND. Descriptions of these analyses and a summary are included in this paper.

  16. The reentry to Earth as a valuable option at the end-of-life of Libration Point Orbit missions

    NASA Astrophysics Data System (ADS)

    Alessi, Elisa Maria

    2015-06-01

    Nowadays the mission design must comprise the implementation of end-of-life disposal solutions to preserve the space environment and for the sustainability of the project as a whole. In this work, the Earth's reentry is presented as a disposal strategy that it is worth investigating also for Libration Point Orbit missions. Following a recent ESA study, the analysis is performed first in the Circular Restricted Three-Body Problem, and then considering a high-fidelity model. The test cases selected are Herschel, SOHO and Gaia. Attention is paid not only to the Δv -budget, but also to the reentry angle, the time of flight and the regions on the surface of the Earth involved. A review on the known cases of hypervelocity reentries and the corresponding physics is given in order to find a reasonable approach to avoid dangerous fragmentations at low altitudes.

  17. Atmospheric breakup of a small comet in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Teterev, A. V.; Misychenko, N. I.; Rudak, L. V.; Romanov, G. S.; Smetannikov, A. S.; Nemchinov, I. V.

    1993-01-01

    The aerodynamic stresses can lead to the deformation and even to destruction of the meteoroids during their flight through the atmosphere. The pressure at the blunt nose of the cosmic body moving at very high speed through the dense layers of the atmosphere may be much larger than the tensile or the compressive strength of the body. So the usage of the hydrodynamics theory is validated. The estimates show that the transverse velocity of the substance of the body U is of the order of (rho(sub a)/rho(sub o))(sup 1/2)V where V is the velocity of the body and rho(sub o) is its density, rho(sub a) is the density of the atmosphere. The separation of the fragments is larger than the diameter of the body D if D is less than D(sub c) = 2H(square root of rho(sub a)/rho(sub o)), where H is the characteristic scale of the atmosphere. For an icy body one obtains U = 1/30(V) and critical diameter D(sub C) = 500 m. The process of the disintegration of the body is still not fully understood and so one can use the numerical simulation to investigate it. Such simulations where conducted for the Venusian atmosphere and the gaseous equation of state of the body was used. For the Earth atmosphere for the velocity V = 50 km/s the pressure at the blunt nose of the body is 25 kbar, and is of the order of bulk modulus of compressibility of the water or ice. The realistic EOS of water in tabular form was used. It was assumed that the initial shape of the body was spherical and the initial diameter D(sub o) of the body is 200 m and so it is smaller than the critical diameter D(sub C). The initial kinetic energy of the icy body is equivalent to the energy of the explosion 1200 Mt of TNT. The results of the simulation of the deformation of the body during its vertical flight through the atmosphere and during its impact into the ocean are presented.

  18. Controlled reentry of the Gamma Ray Observatory (GRO)

    NASA Astrophysics Data System (ADS)

    Brown, Evette R.

    1988-09-01

    Reentry of the GRO satellite must be controlled because it is expected that a great portion of the massive spacecraft would survive the reentry into the earth's atmosphere with the debris possibly causing harm to human life and property. The intent of this paper is to present a technique, results, and conclusion for a controlled reentry scenario for GRO. The planned impact would occur in an uninhabited portion of the South Pacific Ocean. Two major areas were analyzed. First, targeting analysis examined conditions under which the orbital maneuver study was done. Finally, the debris scatter involved analyzing effects of the breakup of the spacecraft on the impact area. These two areas were the basis from which the controlled reentry study was accomplished.

  19. Assessment of the consequences of the Fengyun-1C breakup in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen

    On 11 January 2007, the 880 kg (958 kg at launch) weather spacecraft Fengyun-1C, launched on 10 May 1999 into a sun-synchronous orbit with a CZ-4B booster from the Taiyuan Satellite Launch Center, was destroyed over central China as a result of the first successful Chinese anti-satellite weapon test. It was carried out with a direct ascent interception with a kinetic energy kill vehicle launched by an SC-19 missile, fired from a mobile ground platform close to the Xichang Satellite Launch Center. While the technical details of the test, probably the third attempt, and the characteristics of the weapon used remain shrouded in secrecy, the intentional breakup of the aging weather spacecraft, fully functional until 2005, produced a huge amount of debris in one of the orbital regimes already most affected by past fragmentation events. At present, the US Space Surveillance Network has identified about 2600 objects, typically larger than 10 cm, but the fragments larger than 1 cm may be more than 100,000. After two decades of substantial international progress in the field of orbital debris mitigation, in order to preserve the low Earth and geosynchronous environments for future space missions, the Fengyun-1C destruction represented a serious turnabout. In fact, it abruptly increased by approximately 20% the number of cataloged debris in orbit. To give a rough idea of the impact of this single event on the circumterrestrial environment, it is sufficient to realize that about 15 years of global space activity - including failures and accidental breakups - had been needed to increase, by a comparable amount, the number of cataloged debris in orbit to the level observed before the Chinese anti-satellite test. The purpose of this presentation is to assess the impact of the debris cloud generated by the Fengyun-1C breakup on the low Earth environment. The anti-satellite test was carried out at an altitude of about 863 km, spreading the cataloged fragments between 200 and 4000

  20. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    SciTech Connect

    1996-12-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation.

  1. The breakup of a meteorite parent body and the delivery of meteorites to earth

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, D. W. G.

    1992-01-01

    Whether many of the 10,000 meteorites collected in the Antarctic are unlike those falling elsewhere is contentious. The Antarctic H chondrites, one of the major classes of stony meteorites, include a number of individuals with higher induced thermoluminescence peak temperatures than observed among non-Antarctic H chondrites. The proportion of such individuals decreases with the mean terrestrial age of the meteorites at the various ice fields. These H chondrites have cosmic-ray exposure ages of about 8 million years, experienced little cosmic-ray shielding, and suffered rapid postmetamorphic cooling. Breakup of the H chondrite parent body, 8 million years ago, may have produced two types of material with different size distributions and thermal histories. The smaller objects reached earth more rapidly through more rapid orbital evolution.

  2. Planet Earth Set to Broil: Thermal Radiation from Chicxulub Ejecta Reentry

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2009-03-01

    We model the thermal radiation transfer due to the atmospheric reentry of hypervelocity Chicxulub impact ejecta. Self-shielding of downward radiation by the spherules limits the magnitude and duration of the thermal pulse at the Earth’s surface.

  3. Astronaut Thermal Exposure: Re-Entry After Low Earth Orbit Rescue Mission

    NASA Technical Reports Server (NTRS)

    Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Son, Chang; Bue, Grant

    2009-01-01

    The STS-125 mission, launched May 11, 2009, is the final servicing mission to the Hubble Space Telescope. The repair mission's EVA tasks are described, including: installing a new wide field camera; installing the Cosmic Origins Spectrograph; repairing the Space Telescope Imaging Spectrograph; installing a new outer blanket layer; adding a Soft Capture and Rendezvous System for eventual controlled deorbit in about 2014; replacing the 'A' side Science Instrument Command and Data Handling module; repairing the Advanced Camera for surveys; and, replacing the rate sensor unit gyroscopes, fine guidance sensors and 3 batteries. Additionally, the Shuttle crew cabin thermal environment is described. A CFD model of per person CO2 demonstrates a discrepancy between crew breathing volume and general mid-deck levels of CO2. A follow-on CFD analysis of the mid-deck temperature distribution is provided. Procedural and engineering mitigation plans are presented to counteract thermal exposure upon reentry to the Earth atmosphere. Some of the procedures include: full cold soak the night prior to deorbit; modifying deck stowage to reduce interference with air flow; and early securing of avionics post-landing to reduce cabin thermal load prior to hatch opening. Engineering mitigation activities include modifying the location of the aft starboard ICUs, eliminating the X3 stack and eliminating ICU exhaust air directed onto astronauts; improved engineering data of ICU performance; and, verifying the adequacy of mid-deck temperature control using CFD models in addition to lumped parameter models. Post-mitigation CFD models of mid-deck temperature profiles and distribution are provided.

  4. An Analysis of Recent Major Breakups in the Low Earth Orbit Region

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Anz-Meador, P. D.

    2010-01-01

    Of the 4 recent major breakup events, the FY-1C ASAT test and the collision between Iridium 33 and Cosmos 2251 generated the most long-term impact to the environment. About half of the fragments will still remain in orbit at least 20 years after the breakup. The A/M distribution of the Cosmos 2251 fragments is well-described by the NASA Breakup Model. Satellites made of modern materials (such as Iridium 33), equipped with large solar panels, or covered with large MLI layers (such as FY-1C) may generated significant amount of high A/M fragments upon breakup.

  5. Dynamics of atmospheric re-entry

    NASA Astrophysics Data System (ADS)

    Regan, Frank J.; Anandakrishnan, Satya M.

    1993-03-01

    The present volume on dynamics of atmospheric reentry is an extention of the original book, Reentry Vehicle Dynamics. Topics addressed include atmospheric models, earth's form and gravitational field, axis transformations, force and moment equations, Keplerian motion, reentry vehicle particle mechanics, decoys and the identification of reentry vehicles, and particle motion in maneuvering reentry vehicles. Attention is also given to angular motion during the exoatmospheric (Keplerian) phase, a flowfield description, angular motion during reentry, error analysis, and inertial guidance.

  6. Reentry response of the light weight radioisotope heater unit resulting from a Venus-Earth-Earth Gravity Assist maneuver accident

    SciTech Connect

    Hagan, J.C.

    1988-10-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Light Weight Radioisotope Heater Unit for Galileo/VEEGA reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, the fuel clad, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is assumed to be recession corresponding to 50% of the wall thickness (the design criterion recommended in the DOE Overall Safety Manual). Although the analyses have been carried far beyond this limit (as presented and discussed herein), JHU/APL endorses the position that failure may occur at the time that this recession is achieved or at lower altitudes within the heat pulse considering the uncertainties in the aerodynamic, thermodynamic, and thermo-structural analyses and modeling. These uncertainties result mainly because of the high energies involved in the VEEGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact until it impacts with a clad that had been molten. 80 refs., 46 figs., 16 tabs.

  7. Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry

    NASA Astrophysics Data System (ADS)

    Zuppardi, G.; Savino, R.; Mongelluzzo, G.

    2016-10-01

    The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can be an alternative to the current "conventional" recovery capsules. The present authors already analyzed the trajectory and the aerodynamic behavior of low ballistic coefficient capsules during Earth re-entry and Mars entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and rarefied regimes. The present study is aimed at providing preliminary information about thermal and aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack and unstable around the reverse attitude or at 180° angle of attack. The analysis also pointed out the presence of extra statically stable equilibrium trim points.

  8. Effect of simulated Earth reentry exposure on mechanical properties of several oxide dispersion strengthened and superalloy sheet materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The effects of simulated multiple reentry into the earth's atmosphere on the mechanical properties of several high temperature metallic sheet materials were evaluated. The materials included five tin-gage (nominally 0.025- or 0.037-cm) oxide dispersion strengthened (ODS) alloys and two thin-gage (nominally 0.037-cm) superalloys. Multiple reentry conditions were simulated through cyclic Plasma Arc Tunnel (PAT) exposure. PAT exposure generally consisted of 100 cycles of 600 second duration at 1255, 1366, or 1477 K in a Mach 4.6 airstream with an impact pressure of nominally 800 N/m2. PAT exposure generally produced a uniform oxide scale, oxide pits or intergranular oxidation, Kirkendall porosity, and alloy depletion zones except for the aluminum-containing ODS alloys. Only a uniform oxide scale was formed on the aluminum-containing ODS alloys. PAT exposure did not significantly affect the mechanical properties of the thin-gage (nominally 0.025- or 0.037-cm) alloys evaluated. Thus it appears that the microstructural changes produced by Plasma Arc Tunnel exposure has little influence on mechanical properties.

  9. 'What on earth can this possibly mean'? French reentry courts and experts' risk assessment.

    PubMed

    Herzog-Evans, Martine

    2016-01-01

    Against the backdrop of ten years of punitive criminal justice policies, the number of cases in which risk assessments by psychiatrist experts are mandatory has considerably increased in France. Because of complex and deeply ingrained cultural factors, most experts and academics oppose the use of actuarial or other structured judgement tools, which they assimilate to these policy changes. Parallel to this, the reentry judges in charge of making release and other community sentence decisions have maintained a strong rehabilitative and desistance-focused culture. Drawing on interviews with these judges and experts, the author wanted to assess the judges' expectations of experts' reports, their opinion on actuarial tools, and how they perceived experts and their aptitude to assess risk. The study showed that French reentry judges manage to keep experts' conclusions at bay when they do not fit with their desistance goals, as they can draw upon their own expertise and that of probation services. They do not have much faith in the professionalism and methodology of experts, and would like them to better demonstrate how they reach their conclusions. Moreover, criminogenic needs assessment would be much more useful to them than static risk assessment, which raises the issue as to why this is not the French probation services' role. Reentry judges who never encountered a report which uses a structured tool are influenced by the French ideological debate; those who have read such reports are unanimously in favour of such tools. It thus seems clear that they would like experts to be more strongly guided by science, but are not yet fully aware of what this entails.

  10. Comparison of ORSAT and SCARAB reentry analysis tools for a generic satellite test case

    NASA Astrophysics Data System (ADS)

    Kelley, Robert; Hill, Nicole; Rochelle, William; Johnson, Nicholas L.; Lips, Tobias

    Reentry analysis is essential to understanding the consequences of the full life cycle of a space-craft. Since reentry is a key factor in spacecraft development, NASA and ESA have separately developed tools to assess the survivability of objects during reentry. Criteria such as debris casualty area and impact energy are particularly important to understanding the risks posed to people on Earth. Therefore, NASA and ESA have undertaken a series of comparison studies of their respective reentry codes for verification and improvements in accuracy. The NASA Object Reentry Survival Analysis Tool (ORSAT) and the ESA Spacecraft Atmospheric Reen-try and Aerothermal Breakup (SCARAB) reentry analysis tools serve as standard codes for reentry survivability assessment of satellites. These programs predict whether an object will demise during reentry and calculate the debris casualty area of objects determined to survive, establishing the reentry risk posed to the Earth's population by surviving debris. A series of test cases have been studied for comparison and the most recent uses "Testsat," a conceptual satellite composed of generic parts, defined to use numerous simple shapes and various materials for a better comparison of the predictions of these two codes. This study is an improvement on the others in this series because of increased consistency in modeling techniques and variables. The overall comparison demonstrated that the two codes arrive at similar results. Either most objects modeled resulted in close agreement between the two codes, or if the difference was sig-nificant, the variance could be explained as a case of semantics in the model definitions. This paper presents the main results of ORSAT and SCARAB for the Testsat case and discusses the sources of any discovered differences. Discussion of the results of previous comparisons is made for a summary of differences between the codes and lessons learned from this series of tests.

  11. 14 CFR 435.7 - Payload reentry determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload...

  12. 14 CFR 435.7 - Payload reentry determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload...

  13. 14 CFR 435.7 - Payload reentry determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload...

  14. 14 CFR 435.7 - Payload reentry determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload...

  15. Re-entry survivability and risk

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.

    1998-11-01

    This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE

  16. Reentry survivability modeling

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.; Maher, Robert L.

    1997-10-01

    Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.

  17. Reentry Experiment SAT-X

    NASA Astrophysics Data System (ADS)

    Woods, Maurice; Kuhns, Casey; Honda, Motoaki; Shiely, Robert; Adamson, Aaron; Aken, Jordan; Walch, Robert; Galovich, Cynthia; Semak, Matthew

    2011-10-01

    The challenge of reentering the Earth's atmosphere is not new. For years, NASA has successfully designed vessels that have endured the harsh process of reentry. However, in most cases, this is made possible only through the act of over-engineering; designing to withstand conditions far beyond what is expected to be encountered. Though this method has been effective, there would be benefit in knowing more precisely what to expect upon atmospheric reentry. The University of Northern Colorado Reentry Experiment SAT-X project, launched from Wallops Island, Virginia on July 21, 2011, was designed to shed light on the reentry process by collecting motion data for a capsule ejected from a rocket. Moreover, a secondary objective was to test the capability of the prototype capsule to serve as a platform for future reentry experiments. The mission and preliminary results from the launch will be described.

  18. Small reentry vehicles

    NASA Astrophysics Data System (ADS)

    Sudmeijer, K. J.

    1987-12-01

    The design and potential applications of a small modular unguided reentry vehicle (SMURV) being developed for ESA are discussed. The first studies of the SMURV concept in the Spacemail program (for transporting small payloads from the Space Shuttle to earth) are recalled; the steps in a typical Spacemail operation are listed and briefly characterized; and the smaller version of SMURV (40 kg instead of 120 kg) developed for a Space Station Spacemail project (requiring 1000-1500 SMURVs) is described. This SMURV configuration comprises a detachable propulsion module and a reentry module (containing the parachute system and the recovery module). Consideration is given to a SMURV-type vehicle to return microgravity processing samples from the ESA Interim Flight Opportunity spacecraft, the technological challenges posed by SMURV design, and SMURV applications to the Comet Nucleus Sample Return and Cassini Titan Lander missions. Diagrams and drawings are provided.

  19. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.

    2015-04-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM™ lightweight ablative material with Cf/SiC (SICARBON™) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests under ambient conditions and in liquid nitrogen show that mechanical failure always takes place inside the ablative material with no decohesion of the interface of the adhesive layer with the bonded materials. Surface treatment of the ablative surface prior to bonding enhances both the shear strength and the ultimate shear strain by up to about 60%.

  20. The Breakup

    ERIC Educational Resources Information Center

    Lum, Lydia

    2011-01-01

    This article reports on the breakup between Texas Southmost College (TSC) and the upper-division University of Texas at Brownsville (UTB). The split marks the official end of an unusual 20-year partnership between TSC and the University of Texas System that, for the first time, ushered four-year university education into overwhelmingly Latino…

  1. Pico Reentry Probes: Affordable Options for Reentry Measurements and Testing

    NASA Technical Reports Server (NTRS)

    Ailor, William H.; Kapoor, Vinod B.; Allen, Gay A., Jr.; Venkatapathy, Ethiraj; Arnold, James O.; Rasky, Daniel J.

    2005-01-01

    It is generally very costly to perform in-space and atmospheric entry experiments. This paper presents a new platform - the Pico Reentry Probe (PREP) - that we believe will make targeted flight-tests and planetary atmospheric probe science missions considerably more affordable. Small, lightweight, self-contained, it is designed as a "launch and forget" system, suitable for experiments that require no ongoing communication with the ground. It contains a data recorder, battery, transmitter, and user-customized instrumentation. Data recorded during reentry or space operations is returned at end-of-mission via transmission to Iridium satellites (in the case of earth-based operations) or a similar orbiting communication system for planetary missions. This paper discusses possible applications of this concept for Earth and Martian atmospheric entry science. Two well-known heritage aerodynamic shapes are considered as candidates for PREP: the shape developed for the Planetary Atmospheric Experiment Test (PAET) and that for the Deep Space II Mars Probe.

  2. Reentry trajectory optimization and control

    NASA Astrophysics Data System (ADS)

    Strohmaier, P.; Kiefer, A.; Burkhardt, D.; Horn, K.

    1990-06-01

    There are several possible methods to increase the cross range capability of a winged reentry vehicle, for instance, skip trajectories, a powered cruise phase, or high lift/drag ratio flight. However, most of these alternative descent strategies have not yet been investigated sufficiently with respect to aero-thermodynamic effects and the design of the thermal protection system. This problem is treated by two different means. First, a nominal reentry trajectory is generated based on a phase concept, and then the same problem is again solved using a numerical optimization code to determine the control functions. The nominal reentry trajectory design presented first subdivides the total reentry trajectory into several segments with partially constant control/state parameters such as maximum heat flux and deceleration. The optimal conditions for a given segment can then be selected. In contrast, the parameterized optimization code selects the control functions freely. Both approaches consider a mass point simulation which uses realistic model assumptions for atmosphere, earth and gravity. Likewise, both approaches satisfy all flight regime limitations and boundary conditions such as thermal constraints throughout the flight path and specified speed and altitude at the final time. For the optimization of high cross reentry trajectories the cross range per total absorbed heat represents an appropriate cost function. The optimization code delivers quite a different flight strategy than that usually generated by the nominal reentry design program, first flying longer along the temperature boundary at highest possible angle of attack (AOAs) (utilizing higher average turn rates), and afterwards performing flare-dive segments to reduce heat flux and to increase range. Finally, the aspect of guiding the nominal or optimized reentry trajectory during a cross range flight is considered. The vertical guidance is performed with both angles of attack and roll angle control. The

  3. 14 CFR 435.35 - Acceptable reentry risk for reentry of a reentry vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reentry vehicle. 435.35 Section 435.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Reentry of a Reentry Vehicle §...

  4. 14 CFR 435.35 - Acceptable reentry risk for reentry of a reentry vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reentry vehicle. 435.35 Section 435.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Reentry of a Reentry Vehicle §...

  5. 14 CFR 435.35 - Acceptable reentry risk for reentry of a reentry vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reentry vehicle. 435.35 Section 435.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Reentry of a Reentry Vehicle §...

  6. 14 CFR 435.35 - Acceptable reentry risk for reentry of a reentry vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reentry vehicle. 435.35 Section 435.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Reentry of a Reentry Vehicle §...

  7. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    SciTech Connect

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.

  8. System specification for the reusable reentry satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The RRS design shall provide a relatively inexpensive method of access to micro and fractional gravity space environments for an extended period of time, with eventual intact recovery on the surface of the Earth. This specification establishes the performance, design, development, and test requirements for the Reusable Reentry Satellite (RRS) system.

  9. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  10. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  11. Spacecraft destruction during re-entry - latest results and development of the SCARAB software system

    NASA Astrophysics Data System (ADS)

    Lips, T.; Fritsche, B.; Koppenwallner, G.; Klinkrad, H.

    2004-01-01

    The calculation of destructive re-entries and the prediction of the related ground risk potential due to fragment objects reaching the ground have become of high interest in the past years. This was also evident during the re-entry of the MIR space station in 2001. In 1995, under ESA contract, HTG started an international cooperation with other companies and institutes to develop the SCARAB software system (Spacecraft Atmospheric Re-Entry and Aerothermal Break-Up). SCARAB is a quasi-deterministic tool, modeling a re-entry object down to sub-system level. The resulting aerodynamic parameters and mass distribution allow calculating a realistic 6D re-entry trajectory. Geometry and mass are continuously updated during calculation. Multi-level fragmentations due to different destruction processes are considered. The SCARAB software has been applied to several projects, namely ATV (ESA), ROSAT (Germany), Ariane-5 (ESA) and BeppoSAX (Italy). The practical application of SCARAB to project work has been demonstrated. In addition SCARAB has been compared with NASA's ORSAT code. It has also been verified with experimental data gained from re-entry vehicles, break-up observations and wind-tunnel tests. SCARAB is now on the way to become the European standard software for re-entry destruction analysis.

  12. Spacecraft Orbital Debris Reentry: Aerothermal Analysis

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Reynolds, Robert C.; Johnson, Nicholas L.

    1997-01-01

    In the past 40 years, thousands of objects have been placed in Earth orbit and are being tracked. Space hardware reentry survivability must be evaluated to assess risks to human life and property on the ground. The objective of this paper is to present results of a study to determine altitude of demise (burn-up) or survivability of reentering objects. Two NASA/JSC computer codes - Object Reentry Survival Analysis Tool (ORSAT) and Miniature ORSAT (MORSAT) were used to determine trajectories, aerodynamic aerothermal environment, and thermal response of selected spacecraft components. The methodology of the two codes is presented, along with results of a parametric study of reentering objects modeled as spheres and cylinders. Parameters varied included mass, diameter, wall thickness, ballistic coefficient, length, type of material, and mode of tumbling/spinning. Two fragments of a spent Delta second stage undergoing orbital decay, stainless steel cylindrical propellant tank and titanium pressurization sphere, were evaluated with ORSAT and found to survive entry, as did the actual objects. Also, orbital decay reentry predictions of the Japanese Advanced Earth Observing Satellite (ADEOS) aluminum and nickel box-type components and the Russian COSMOS 954 satellite beryllium cylinders were made with MORSAT. These objects were also shown to survive reentry.

  13. Lay-out of a re-usable re-entry vehicle required in a future European low earth orbit scenario

    NASA Astrophysics Data System (ADS)

    Uebelhack, H. T.; Fave, J.

    1984-10-01

    The design concept of a reusable unmanned semiballistic-reentry spacecraft to provide raw materials and return processed materials from a European automated space production facility in LEO is presented and illustrated with drawings, diagrams, graphs, and tables of parameters. A typical mission scenario includes Ariane launch; rendezvous and docking for sample exchange; center-of-mass trimming by adjustment of the load after dedocking; updating of inertial systems; deorbiting to a ballistic arc by means of four 400-N thrusters; atmospheric flight from 100-km altitude at path angle 4 deg, lift/drag ratio 0.2, and maximum deceleration 5 g; and final deceleration and landing using three-stage drogue and main-parachutes, an air-bag system, and landing gears.

  14. Surviving atmospheric spacecraft breakup.

    PubMed

    Szewczyk, Nathaniel J; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  15. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  16. A hypersonic parachute for low-temperature re-entry

    NASA Astrophysics Data System (ADS)

    Krischke, M.; Lorenzini, E. C.; Sabath, D.

    1995-09-01

    Atmospheric re-entry, even when initiated from a circular low-Earth orbit, requires heavy heat shields, ablative materials or radiative dissipation techniques. Semi-analytical and numerical simulations of the atmospheric re-entry from low-Earth orbits of a capsule with a 20-km, attached, heat resistant tether have shown that the thermal input flux on the capsule is reduced by more than one order of magnitude with respect to a comparable re-entry without tether. Long tethers have low ballistic coefficients and a large surface for heat dissipation. Moreover, a long tether is stabilized by gravity gradient and consequently tends to maintain a high angle of attack with respect to the wind velocity. The exposed surface of a 20-km-long 1-mm diameter tether is 20 m 2, which is much larger than the cross section of a re-entry capsule. The resulting strong drag decelerates the capsule during re-entry like a conceivable hypersonic parachute would do. This paper describes the methods and results of the simulation of the SEDS endmass re-entry with different tethers.

  17. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  18. Reusable Reentry Satellite (RRS): Configuration trade study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The overall Reusable Reentry Satellite (RRS) Phase B Study objective is to design a relatively inexpensive satellite to access space for extended periods of time, with eventual recovery of experiments on Earth. The expected principal use for such a system is research on the effects of variable gravity (0-1.5 g) and radiation on small animals, plants, lower life forms, tissue samples, and materials processes. The RRS will be capable of: (1) being launched by a variety of expendable launch vehicles; (2) operating in low earth orbit as a free flying unmanned laboratory; and (3) executing independent atmospheric reentry and soft landing. The RRS will be designed to be refurbished and reused up to three times a year for a period of 10 years. The information provided in this report describes the process involved in the evolution of the RRS overall configuration. This process considered reentry aerodynamics, aerothermodynamics, internal equipment layout, and vehicle mass properties. This report delineates the baseline design decisions that were used to initiate the RRS design effort. As a result, there will be deviations between this report and the RRS Final Report. In those instances, the RRS Final Report shall be considered to be the definitive reference.

  19. Shadowgraph Images of Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    1960-01-01

    These four shadowgraph images represent early re-entry vehicle concepts. A shadowgraph is a process that makes visible the disturbances that occur in a fluid flow at high velocity, in which light passing through a flowing fluid is refracted by the density gradients in the fluid resulting in bright and dark areas on a screen placed behind the fluid.H. Julian Allen pioneered and developed the Blunt Body Theory which made possible the heat shield designs that were embodied in the Mercury, Gemini and Apollo space capsules, enabling astronauts to survive the firey re-entry into Earth's atmosphere. A blunt body produces a shockwave in front of the vehicle--visible in the photo--that actually shields the vehicle from excessive heating. As a result, blunt body vehicles can stay cooler than pointy, low drag vehicles.

  20. Atmospheric breakup of meteoroids

    NASA Astrophysics Data System (ADS)

    El-Dasher, Bassem; Swift, Damian; Remington, Bruce; Mulford, Roberta; Milathianaki, Despina; Chen, Laura; Eakins, Daniel

    2013-06-01

    When meteoroids enter a planetary atmosphere, breakup is governed by the Rayleigh-Taylor instability, mitigated by the strength of the meteoritic material. Particle sizes in the breakup cascade depend on the perturbation length scales exhibiting growth. The physics of meteoroid entry is thus related closely to experiments where strength at high pressure is inferred from the Rayleigh-Taylor growth of perturbations. There are significant discrepancies between predicted and observed breakup altitudes of meteoroids, which in turn reduce the accuracy of assessments of the impact threat from asteroids. Simulations, validated by laboratory experiments of instability growth, can play a role in understanding the breakup of meteoroids and thus the threat from asteroids. Continuum dynamics simulations provide more rigorous stress distribution than are usually used in breakup analyses, and can be used to calibrate compact expressions describing the breakup conditions. We have measured the strength of samples from Fe-rich meteorites using indentation and shock-loading experiments, and found them to be significantly stronger than was previously realized. This, together with the more accurate stress analysis, removes the altitude discrepancy for Fe-rich meteorites. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Analysis of reentry into the White Sands Missile Range (WSMR) for the LifeSat mission

    NASA Technical Reports Server (NTRS)

    Hametz, M.; Roszman, L.; Snow, F.; Cooley, J.

    1993-01-01

    This study investigates the reentry of the LifeSat vehicles into the WSMR. The LifeSat mission consists of two reusable reentry satellites, each carrying a removable payload module, which scientists will use to study long-term effects of microgravity, Van Allen belt radiation, and galactic cosmic rays on living organisms. A series of missions is planned for both low-Earth circular orbits and highly elliptic orbits. To recover the payload module with the specimens intact, a soft parachute landing and recovery at the WSMR is planned. This analysis examines operational issues surrounding the reentry scenario to assess the feasibility of the reentry.

  2. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  3. Spacecraft destruction during re-entry - latest results and developments of the SCARAB software system

    NASA Astrophysics Data System (ADS)

    Lips, T.; Fritsche, B.; Koppenwallner, G.; Klinkrad, H.

    Not only since the re-entry of the MIR space station in 2001 the calculation of destructive re-entry and the prediction of ground risk potential due to space debris objects reaching the ground have become of high interest. Already in 1995 HTG started in an international cooperation with other companies and institutes under ESA contract the development of the SCARAB software system (SpaceCraft Atmospheric Re-entry and Aerothermal Break-up). SCARAB is a deterministic tool. The re-entry object is completely modelled down to sub-system level. The resulting aerodynamic parameters and mass distribution allow calculating a realistic 6D re-entry trajectory. Geometry and mass are continuously updated during calculation. Multi-level fragmentations due to different destruction processes are considered. The SCARAB software has been applied to several projects, namely ATV (Europe), ROSAT (Germany), Ariane-5 (Europe) and BeppoSAX (Italy). The practical application of SCARAB to project work has been demonstrated. In addition SCARAB has been tested against the NASA ORSAT code. It has also been verified with experimental data gained from re-entry vehicles, break-up observations and wind-tunnel tests. SCARAB is now on the way to become the European standard software for re-entry destruction analysis. This paper will give an overview of the latest results of applications of the software and a description of the interactive development process to fit the different needs of each project. The key features of planned future releases will be presented.

  4. Coulomb Breakup Problem

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.

    2008-12-05

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.

  5. Guidance and Control During Direct-Descent Parabolic Reentry

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Wingrove, Rodney C.

    1961-01-01

    The results of studies of four reentry guidance and control techniques for the energy management of vehicles returning to the earth at escape speeds are compared in this paper. The reentry trajectories are constrained to those of direct descent, that is, where the vehicle does not leave that portion of the atmosphere where useful aerodynamic forces are available after its initial entry. The guidance techniques compared are: (1) a piloted simulator study reference trajectory techniques; 2) An automatic controller using reference trajectory techniques; 3) A predictor system employing linear prediction (perturbation) techniques; and 4) A repetitive prediction system employing rapid-time computer techniques.

  6. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  7. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  8. Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH

    NASA Astrophysics Data System (ADS)

    Morita, Yasuhiro; Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Abe, Takashi

    2003-01-01

    Among a wide variety of challenging projects planned for the coming decade is the MUSES-C mission designed by the ISAS of Japan. Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to their limited information. Thus, our concern has been directed toward a sample return to carry sample from an asteroid back to the earth, which will contribute to better understanding of the system. One of the keys to success is considered the reentry technology with hyperbolic velocity, which has not been demonstrated yet. With this as background, the demonstrator of atmospheric reentry system with hyperbolic velocity, DASH, has been given a commitment to demonstrate the high-speed reentry technology, which will be launched in summer of next year by Japan's H-IIA rocket in a piggyback configuration. The spaceship, composed of a reentry capsule and its carrier, will be injected into a geostationary transfer orbit (GTO) and after several revolutions it will deorbit by burn of a solid propellant deorbit motor. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory.

  9. Application of the V-Gamma map to vehicle breakup analysis

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex

    2003-01-01

    The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.

  10. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    NASA Astrophysics Data System (ADS)

    Gafarov, Albert A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry.

  11. 14 CFR 435.9 - Issuance of a reentry license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... reentry license authorizes a licensee to reenter a reentry vehicle and payload, if any, in accordance...

  12. 14 CFR 435.9 - Issuance of a reentry license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... reentry license authorizes a licensee to reenter a reentry vehicle and payload, if any, in accordance...

  13. 14 CFR 435.9 - Issuance of a reentry license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... reentry license authorizes a licensee to reenter a reentry vehicle and payload, if any, in accordance...

  14. 14 CFR 435.9 - Issuance of a reentry license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... reentry license authorizes a licensee to reenter a reentry vehicle and payload, if any, in accordance...

  15. Lunar Return Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Wall Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Bowles, Jeff

    2007-01-01

    Thermostructural analysis was performed on generic crew exploration vehicle (GCEV) heat shielded wall structures subjected to reentry heating rates based on five potential lunar return reentry trajectories. The GCEV windward outer wall is fabricated with a graphite/epoxy composite honeycomb sandwich panel and the inner wall with an aluminum honeycomb sandwich panel. The outer wall is protected with an ablative Avcoat-5026-39H/CG thermal protection system (TPS). A virtual ablation method (a graphical approximation) developed earlier was further extended, and was used to estimate the ablation periods, ablation heat loads, and the TPS recession layer depths. It was found that up to 83 95 percent of the total reentry heat load was dissipated in the TPS ablation process, leaving a small amount (3-15 percent) of the remaining total reentry heat load to heat the virgin TPS and maintain the TPS surface at the ablation temperature, 1,200 F. The GCEV stagnation point TPS recession layer depths were estimated to be in the range of 0.280-0.910 in, and the allowable minimum stagnation point TPS thicknesses that could maintain the substructural composite sandwich wall at the limit temperature of 300 F were found to be in the range of 0.767-1.538 in. Based on results from the present analyses, the lunar return abort ballistic reentry was found to be quite attractive because it required less TPS weight than the lunar return direct, the lunar return skipping, or the low Earth orbit guided reentry, and only 11.6 percent more TPS weight than the low Earth orbit ballistic reentry that will encounter a considerable weight penalty to obtain the Earth orbit. The analysis also showed that the TPS weight required for the lunar return skipping reentry was much more than the TPS weight necessary for any of the other reentry trajectories considered.

  16. An Analysis of Ablation-Shield Requirements for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1960-01-01

    The problem of sublimation of material and accumulation of heat in an ablation shield is analyzed and the results are applied to the reentry of manned vehicles into the earth's atmosphere. The parameters which control the amount of sublimation and the temperature distribution within the ablation shield are determined and presented in a manner useful for engineering calculation. It is shown that the total mass loss from the shield during reentry and the insulation requirements may be given very simply in terms of the maximum deceleration of the vehicle or the total reentry time.

  17. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank J., Jr.

    2001-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the nominal impact target zone. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included the timing and duration of the maneuvers, propellant management, post-maneuver state determination, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired impact target zone in the event of contingencies. This paper presents the initial re-entry trajectory design and traces the evolution of that design into the maneuver sequence used for the re-entry. The paper also discusses the spacecraft systems and operational constraints imposed on the trajectory design and the required modifications to the initial design based on those constraints. Data from the reentry operation are also presented.

  18. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the predicted footprint. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included timing and duration of the maneuvers, fuel management, post maneuver position knowledge, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired landing area in the event of contingencies. This paper presents the initial re-entry trajectory design and the evolution of the design into the maneuver sequence used for the re-entry. The paper discusses the constraints on the trajectory design, the modifications made to the initial design and the reasons behind these modifications. Data from the re-entry operation are presented.

  19. History of satellite break-ups in space

    NASA Technical Reports Server (NTRS)

    Gabbard, J.

    1985-01-01

    By 28 June 1961 the 1st Aerospace Control Squadron had cataloged 115 Earth orbiting satellites from data supplied by a rather diverse collection of radar and optical sensors. On 29 June 1961, the Able Star rocket of the 1961 Omicron launch exploded causing a quantum jump in the number of Earth orbiting objects. Since that time there have been 69 Earth orbiting satellites break up in space whose debris remained in orbit long enough for orbital elements to be developed. A list of the 69 breakups is provided. The debris from some of the lower altitude breakups has all decayed. Among the 69 breakups, 44 have cataloged debris remaining in orbit. As of 1 July 1982, the size of the cataloged orbiting population was exactly 4700. Forty-nine percent of these objects are fragments of the forty-four breakups. For each breakup the various orbits of its debris represent a family of orbits that are related in characteristics due to their common impulse launch. A few examples are shown of how the families are oriented in space.

  20. Statistical Issues for Uncontrolled Reentry Hazards

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2008-01-01

    A number of statistical tools have been developed over the years for assessing the risk of reentering objects to human populations. These tools make use of the characteristics (e.g., mass, shape, size) of debris that are predicted by aerothermal models to survive reentry. The statistical tools use this information to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of the analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. This inevitably involves assumptions that simplify the problem and make it tractable, but it is often difficult to test the accuracy and applicability of these assumptions. This paper looks at a number of these theoretical assumptions, examining the mathematical basis for the hazard calculations, and outlining the conditions under which the simplifying assumptions hold. In addition, this paper will also outline some new tools for assessing ground hazard risk in useful ways. Also, this study is able to make use of a database of known uncontrolled reentry locations measured by the United States Department of Defense. By using data from objects that were in orbit more than 30 days before reentry, sufficient time is allowed for the orbital parameters to be randomized in the way the models are designed to compute. The predicted ground footprint distributions of these objects are based on the theory that their orbits behave basically like simple Kepler orbits. However, there are a number of factors - including the effects of gravitational harmonics, the effects of the Earth's equatorial bulge on the atmosphere, and the rotation of the Earth and atmosphere - that could cause them to diverge from simple Kepler orbit behavior and change the ground footprints. The measured latitude and longitude

  1. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  2. Current reduction in a pseudo-breakup event: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Pu, Z. Y.; Owen, C. J.; Fu, S. Y.; Chu, X. N.; Liu, J.; Angelopoulos, V.; Rae, I. J.; Yue, C.; Zhou, X.-Z.; Zong, Q.-G.; Cao, X.; Shi, Q. Q.; Forsyth, C.; Du, A. M.

    2014-10-01

    Pseudo-breakup events are thought to be generated by the same physical processes as substorms. This paper reports on the cross-tail current reduction in an isolated pseudo-breakup observed by three of the THEMIS probes (THEMIS A (THA), THEMIS D (THD), and THEMIS E (THE)) on 22 March 2010. During this pseudo-breakup, several localized auroral intensifications were seen by ground-based observatories. Using the unique spatial configuration of the three THEMIS probes, we have estimated the inertial and diamagnetic currents in the near-Earth plasma sheet associated with flow braking and diversion. We found the diamagnetic current to be the major contributor to the current reduction in this pseudo-breakup event. During flow braking, the plasma pressure was reinforced, and a weak electrojet and an auroral intensification appeared. After flow braking/diversion, the electrojet was enhanced, and a new auroral intensification was seen. The peak current intensity of the electrojet estimated from ground-based magnetometers, ~0.7 × 105 A, was about 1 order of magnitude lower than that in a typical substorm. We suggest that this pseudo-breakup event involved two dynamical processes: a current-reduction associated with plasma compression ahead of the earthward flow and a current-disruption related to the flow braking/diversion. Both processes are closely connected to the fundamental interaction between fast flows, the near-Earth ambient plasma, and the magnetic field.

  3. Test Cases for Reentry Survivability Modeling

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Hallman, W.; Steckel, G.; Weaver, M.

    2012-01-01

    One approved approach for minimizing the long-term hazards posed by space debris is to reenter space hardware into the atmosphere at end-of-mission or to place hardware in an orbit with a relatively short lifetime. Selection of a short lifetime orbit vice a deorbited reentry into a safe area depends on predictions of the hazards posed by random reentry of the object. If the object is left in orbit, what is the casualty expectation associated with its eventual reentry? Clearly, having high confidence in reentry hazard prediction tools is important to this decision-making process and the final choice can have significant mission and cost impacts. This paper describes a set of test cases that can be used to validate reentry hazard models. The test cases were assembled from reentry cases where "known" and tracked objects reentered the atmosphere and debris from the reentries was subsequently found on the ground and was analyzed. The test cases include best estimates of the state, mass properties, and physical description of each object prior to reentry, the wind profile through which the debris fell (for one case), and the impact location and physical description of each surviving object. The report also summarizes results of metallurgical analyses conducted on surviving debris, which places limits on the maximum temperatures reached during reentry. Details on a specific reentry are included as an example.

  4. Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule

    NASA Astrophysics Data System (ADS)

    Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi

    The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.

  5. Incarceration, Prisoner Reentry, and Communities

    PubMed Central

    Morenoff, Jeffrey D.; Harding, David J.

    2014-01-01

    Since the mid-1970s the United States has experienced an enormous rise in incarceration and accompanying increases in returning prisoners and in post-release community correctional supervision. Poor urban communities are disproportionately impacted by these phenomena. This review focuses on two complementary questions regarding incarceration, prisoner reentry, and communities:(1) whether and how mass incarceration has affected the social and economic structure of American communities, and (2) how residential neighborhoods affect the social and economic reintegration of returning prisoners. These two questions can be seen as part of a dynamic process involving a pernicious “feedback” loop, in which mass incarceration undermines the structure and social organization of some communities, thus creating more criminogenic environments for returning prisoners and further diminishing their prospects for successful reentry and reintegration. PMID:25400321

  6. Computational methods for reentry trajectories

    NASA Astrophysics Data System (ADS)

    Anselmo, L.; Pardini, C.

    The trajectory modeling of uncontrolled satellites close to reentry in the atmosphere is still a challenging activity. Tracking data may be sparse and not particularly accurate, the objects complicate shape and unknown attitude evolution may render quite tricky the aerodynamic computations and, last but not the least, the models used to predict the air density at the altitudes of interest, as a function of solar and geomagnetic activity, are affected by significant uncertainties. This paper presents the techniques developed and the experience matured in the field at ISTI (formerly CNUCE), specifically in support of the reentry predictions of risky space objects carried out for the Italian civil protection authorities. In these cases, an appropriate management of the intrinsic uncertainties of the problem is critical for the dissemination of the results, avoiding, as much as possible, misunderstandings and unjustified alarm.

  7. 14 CFR 435.3 - Types of reentry licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... authorizes a licensee to reenter one model or type of reentry vehicle, other than an RLV, to a reentry site... authorizes a licensee to reenter any of a designated family of reentry vehicles, other than an RLV,...

  8. 14 CFR 435.3 - Types of reentry licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... authorizes a licensee to reenter one model or type of reentry vehicle, other than an RLV, to a reentry site... authorizes a licensee to reenter any of a designated family of reentry vehicles, other than an RLV,...

  9. 14 CFR 435.3 - Types of reentry licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... authorizes a licensee to reenter one model or type of reentry vehicle, other than an RLV, to a reentry site... authorizes a licensee to reenter any of a designated family of reentry vehicles, other than an RLV,...

  10. 14 CFR 435.3 - Types of reentry licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV... authorizes a licensee to reenter one model or type of reentry vehicle, other than an RLV, to a reentry site... authorizes a licensee to reenter any of a designated family of reentry vehicles, other than an RLV,...

  11. Genesis Reentry Observations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Suggs, R. M.; Swift, W. R.

    2005-01-01

    The Genesis spacecraft reentry represented a unique opportunity to observe a "calibrated meteor" from northern Nevada. Knowing its speed, mass, composition, and precise trajectory made it a good subject to test some of the algorithms used to determine meteoroid mass from observed brightness. It was also a good test of an inexpensive set of cameras that could be deployed to observe future shuttle reentries. The utility of consumer-grade video cameras was evident during the STS-107 accident investigation, and the Genesis reentry gave us the opportunity to specify and test commercially available cameras that could be used during future reentries. This Technical Memorandum describes the video observations and their analysis, compares the results with a simple photometric model, describes the forward scatter radar experiment, and lists lessons learned from the expedition and implications for the Stardust reentry in January 2006 as well as future shuttle reentries.

  12. Reentry control of a low-lift maneuverable spacecraft

    NASA Astrophysics Data System (ADS)

    Roenneke, Axel J.; Well, Klaus H.

    1992-08-01

    Commercial operation of space laboratories will rely on small, unmanned reentry capsules to retrieve experimental products independent from Shuttle services. An example for such a concept is the Space Mail system studied by the ESA. This paper presents a trajectory control system based on linear state feedback to guide and control the reentry glide of low-lifting capsules. A technique to design a time-varying controller is derived and applied. Simulation results of spatial flights over a rotating earth show that the designed controller effectively responds to entry condition offsets on several reference trajectories. Also, the controller is capable of tolerating modified vehicle parameters as well as atmospheric disturbances, and the same controller gain functions are successfully applied to different reference trajectories.

  13. Reentry survival analysis of tumbling metallic hollow cylinder

    NASA Astrophysics Data System (ADS)

    Sim, Hyung-seok; Kim, Kyu-hong

    2011-09-01

    The survival of orbital debris reentering the Earth's atmosphere is considered. The numerical approach of NASA's Object Reentry Survival Analysis Tool (ORSAT) is reviewed, and a new equation accounting for reradiation heat loss of hollow cylindrical objects is presented. Based on these, a code called Survivability Analysis Program for Atmospheric Reentry (SAPAR) has been developed, and the new equation for reradiation heat loss is validated. Using this equation in conjunction with the formulation used in ORSAT, a comparative case study on the Delta-II second stage cylindrical tank is given, demonstrating that the analysis using the proposed equation is in good agreement with the actual recovered object when a practical value for thermal emissivity is used. A detailed explanation of the revised formulation is given, and additional simulation results are presented. Finally, discussions are made to address the applicability of the proposed equation to be incorporated in future survival analyses of orbital debris.

  14. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  15. Analytical and experimental heat transfer and flow-field prediction on a rectangular reentry module

    SciTech Connect

    Laganelli, A.L.

    1980-02-05

    A General Purpose Heat Source (GPHS) has been designed for the purpose of supplying power to a radioisotope thermal generator intended for interplanetary missions. The baseline configuration, nominally 2 in. x 4 in. x 4 in. with sharp edges and corners, is required to survive accidental earth reentry as well as terminal impact velocities. Several problems have been identified relative to survival criteria during reentry. This paper is concerned with the flow field and reentry heating for a broad face-on or side-on reentry orientation. Moreover, the analysis considers convective heat transfer in the absence of roughness or ablation effects during the supersonic/hypersonic regime of reentry. The anaytical results are compared with wind tunnel data. From these studies it was concluded that heat transfer distributions for non-circular shapes ca be obtained for reentry conditions using wind tunnel data for the surface distributions and a stagnation value based on a reference sphere condition. The distributions obtained at a fixed Mach number (M > 1) appear valid over an extended range of Mach numbers. The above required definition of a proper velocity gradient, and definition of an area aspect ratio. Flowfield predictions (inviscid) using the CM2DT program provide a proper definition of pressure and shock characteristics for non-similar (viscous) solutions. (LCL)

  16. Heat source reentry vehicle design study

    NASA Technical Reports Server (NTRS)

    Ryan, R. L.

    1971-01-01

    The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.

  17. Guiding Principles for Physician Reentry Programs

    ERIC Educational Resources Information Center

    Kenagy, Gretchen P.; Schneidman, Barbara S.; Barzansky, Barbara; Dalton, Claudette; Sirio, Carl A.; Skochelak, Susan E.

    2011-01-01

    Physician reentry is defined by the American Medical Association (AMA) as: "A return to clinical practice in the discipline in which one has been trained or certified following an extended period of clinical inactivity not resulting from discipline or impairment." Physician reentry programs are creating an avenue for physicians who have left…

  18. Physical Mechanism of Substorm Breakup Arcs and Onset

    NASA Astrophysics Data System (ADS)

    Peng, A.; Cheng, C.; Zaharia, S.; Gorelenkov, N.; Chang, T.

    2008-12-01

    Observations show that Pi 2 waves are excited prior to the appearance of breakup auroral arcs that break up after substorm expansion onset. The Pi2 waves and the breakup arcs are modeled by the Kinetic Ballooning Instability (KBI), which is destabilized by plasma pressure gradient and magnetic field curvature in the high beta magnetic well region in the near-Earth plasma sheet. Our model is based on the theoretical analysis and numerical solutions of the gyrokinetic mode equations for late growth phase 3D magnetospheric equilibria. The results show that the KBI has a real frequency associated with the ion magnetic drift frequency, which is in the Pi2 frequency range, and the most unstable KBI has an azimuthal mode number on the order of 200- 300. The theoretical KBI features are consistent with observational features in both the aurora breakup arcs and the near-Earth plasma sheet. Comparison between our KBI model and substorm breakup arc observations by FORMOSAT-2's ISUAL and THEMIS All Sky Imagers will be presented.

  19. Near Term Effects from Satellite Break-Ups on Manned Space Activities

    NASA Technical Reports Server (NTRS)

    Theall, J. R.; Matney, M. J.

    2000-01-01

    Since 1961, almost 160 satellite break-ups have occurred on-orbit, and have been the major contributor to the growth of the orbital debris population. When a satellite breaks up, the debris exists in a relatively concentrated form, orbiting in a loose cloud with the parent body until orbital perturbations disperse the cloud into the average background. Manned space activities, which usually take place in low Earth orbit at altitudes less than 500 km, have been continuous for the past I I years while Mir was inhabited and promise to be again continuous when the International Space Station becomes permanently manned. This paper surveys historical breakups over the last I I years to determine the number that affect altitudes lower than 500 km. Selected breakup are analyzed using NASA's Satellite Breakup Risk Assessment Model (SBRAM) to determine the specific short term risk from those breakups to manned missions.

  20. Beam breakup with longitudinal halo

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.

    1991-01-01

    We have developed an analytical model of cumulative beam breakup in linear accelerators that predicts the displacement of particles between bunches. Beam breakup is assumed to be caused by a periodic current consisting of an infinite bunch train. The particles in the halo do not contribute to the breakup but experience the deflecting fields and are displaced by them. Under certain circumstances, the displacement of particles in the halo can be considerably larger than that of the bunches. This may have important consequences for the design of high-current cw accelerators where even a small flux of particles striking components of the accelerator cannot be tolerated because of activation. 11 refs., 2 figs.

  1. NASA's new breakup model of evolve 4.0

    NASA Astrophysics Data System (ADS)

    Johnson, N. L.; Krisko, P. H.; Liou, J.-C.; Anz-Meador, P. D.

    2001-01-01

    Analyses of the fragmentation (due to explosions and collisions) of spacecraft and rocket bodies in low Earth orbit (LEO) have been performed this year at NASA/JSC. The overall goals of this study have been to achieve a better understanding of the results of fragmentations on the orbital debris environment and then to implement this understanding into the breakup model of EVOLVE 4.0. The previous breakup model implemented in EVOLVE 3.0 and other long-term orbital debris environment models was known to be inadequate in two major areas. First, it treated all fragmentational debris as spheres of a density which varied as a function of fragment diameter, where diameter was directly related to mass. Second, it underestimated the generation of fragments smaller than 10-cm in the majority of explosions. Without reliable data from both ground tests and on-orbit breakups, these inadequacies were unavoidable. Recent years, however, have brought additional data and related analyses: results of three ground tests, better on-orbit size and mass estimation techniques, more regular orbital tracking and reporting, additional radar resources dedicated to the observation of small objects, and simply a longer time period with which to observe the debris and their decay. Together these studies and data are applied to the reanalysis of the breakup model. In this paper we compare the new breakup model to the old breakup model in detail, including the size distributions for explosions and collisions, the area-to-mass and impact velocity assignments and distributions, and the delta-velocity distributions. These comparisons demonstrate a significantly better understanding of the fragmentation process as compared to previous versions of EVOLVE.

  2. Reentry thermal protection from Pioneer F RTG insulation material

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1972-01-01

    Ablation tests were performed on the insulation material used in the Pioneer F radioisotope thermoelectric generator (RTG) in the Ames Arc-Heated Planetary-Gas Wind Tunnel. Test results indicate that the material, trade name Min-K 1301, should experience little ablation for heat transfer rates below 40 BTU/sq ft-sec. If the current design were to be changed so that the various pieces of Min-K were fastened or interlocked together the total amount of heat delivered to the RTG heat source during an earth orbital decay reentry would be reduced by at least 22.7%.

  3. Impacts, tillites, and the breakup of Gondwanaland

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John R.; Aggarwal, Hans

    1993-01-01

    Mathematical analysis demonstrates that substantial impact crater deposits should have been produced during the last 2 Gy of Earth's history. Textures of impact deposits are shown to resemble textures of tillites and diamictites of Precambrian and younger ages. The calculated thickness distribution for impact crater deposits produced during 2 Gy is similar to that of tillites and diamictites of 2 Ga or younger. We suggest, therefore, that some tillites/diamictites could be of impact origin. Extensive tillite/diamictite deposits predated continental flood basalts on the interior of Gondwanaland. Significantly, other investigators have already associated impact cratering with flood basalt volcanism and continental rifting. Thus, it is proposed that the breakup of Gondwanaland could have been initiated by crustal fracturing from impacts.

  4. Momentum distributions in breakup reactions

    SciTech Connect

    Esbensen, H.

    1996-02-01

    Measurements of the breakup reactions: {sup 11}Be {yields} {sup 10}Be+n and{sup 8} {yields} {sup 7}Be+p are analyzed in a single-particle description. The signature of various structure properties associated with the valence nucleon axe discussed, as well as the significance of the different reaction mechanisms, namely Coulomb dissociation, stripping and nuclear induced diffraction.

  5. Follow-up investigations of GPHS motion during heat pulse intervals of reentries from gravity-assist trajectories

    SciTech Connect

    Sharbaugh, R.C.

    1992-03-23

    Motion studies of the General Purpose Heat Source Module, GPHS, which were conducted in the heat pulse intervals associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse of reentry, (2) determine the effect of magnus force on the roll rate and angle of attack of the GPHS during an EGA entry, (3) determine the effect of the magnitude of pitch and roll damping on the GPHS motion.

  6. Reusable Reentry Satellite (RRS) system design study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) is intended to provide investigators in several biological disciplines with a relatively inexpensive method to access space for up to 60 days with eventual recovery on Earth. The RRS will permit totally intact, relatively soft, recovery of the vehicle, system refurbishment, and reflight with new and varied payloads. The RRS is to be capable of three reflights per year over a 10-year program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is configured to permit the experimenter late access to the PM prior to launch and rapid access following recovery. The RRS will operate in one of two modes: (1) as a free-flying spacecraft in orbit, and will be allowed to drift in attitude to provide an acceleration environment of less than 10(exp -5) g. the acceleration environment during orbital trim maneuvers will be less than 10(exp -3) g; and (2) as an artificial gravity system which spins at controlled rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be rugged, easily maintained, and economically refurbishable for the next flight. Some systems may be designed to be replaced rather than refurbished, if cost effective and capable of meeting the specified turnaround time. The minimum time between recovery and reflight will be approximately 60 days. The PMs will be designed to be relatively autonomous, with experiments that require few commands and limited telemetry. Mass data storage will be accommodated in the PM. The hardware development and implementation phase is currently expected to start in 1991 with a first launch in late 1993.

  7. STS-30 deorbit and reentry ground track

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Rockwell International (RI) supplied artist concept titled 'STS-30 Deorbit and Reentry Track' shows Atlantis, Orbiter Vehicle (OV) 104, deorbit and reentry ground track. Ground track and map portray OV-104's deorbit over Madagascar, atmospheric reentry maneuvers, approach to the California coast, and landing at Edwards Air Force Base (EAFB), California. the transport trailer of the Payload Environmental Transportation System (PETS). Magellan, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1086.

  8. Atomization, drop size, and penetration for cross-stream water injection at high-altitude reentry conditions with application to the RAM C-1 and C-3 flights

    NASA Technical Reports Server (NTRS)

    Gooderum, P. B.; Bushnell, D. M.

    1972-01-01

    Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.

  9. Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag

    NASA Technical Reports Server (NTRS)

    Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott

    2016-01-01

    Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.

  10. ELECTRA © Launch and Re-Entry Safety Analysis Tool

    NASA Astrophysics Data System (ADS)

    Lazare, B.; Arnal, M. H.; Aussilhou, C.; Blazquez, A.; Chemama, F.

    2010-09-01

    French Space Operation Act gives as prime objective to National Technical Regulations to protect people, properties, public health and environment. In this frame, an independent technical assessment of French space operation is delegated to CNES. To perform this task and also for his owns operations CNES needs efficient state-of-the-art tools for evaluating risks. The development of the ELECTRA© tool, undertaken in 2007, meets the requirement for precise quantification of the risks involved in launching and re-entry of spacecraft. The ELECTRA© project draws on the proven expertise of CNES technical centers in the field of flight analysis and safety, spaceflight dynamics and the design of spacecraft. The ELECTRA© tool was specifically designed to evaluate the risks involved in the re-entry and return to Earth of all or part of a spacecraft. It will also be used for locating and visualizing nominal or accidental re-entry zones while comparing them with suitable geographic data such as population density, urban areas, and shipping lines, among others. The method chosen for ELECTRA© consists of two main steps: calculating the possible reentry trajectories for each fragment after the spacecraft breaks up; calculating the risks while taking into account the energy of the fragments, the population density and protection afforded by buildings. For launch operations and active re-entry, the risk calculation will be weighted by the probability of instantaneous failure of the spacecraft and integrated for the whole trajectory. ELECTRA©’s development is today at the end of the validation phase, last step before delivery to users. Validation process has been performed in different ways: numerical application way for the risk formulation; benchmarking process for casualty area, level of energy of the fragments entries and level of protection housing module; best practices in space transportation industries concerning dependability evaluation; benchmarking process for

  11. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  12. Statistical Issues for Uncontrolled Reentry Hazards Empirical Tests of the Predicted Footprint for Uncontrolled Satellite Reentry Hazards

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2011-01-01

    A number of statistical tools have been developed over the years for assessing the risk of reentering objects to human populations. These tools make use of the characteristics (e.g., mass, material, shape, size) of debris that are predicted by aerothermal models to survive reentry. The statistical tools use this information to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of the analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. Because this information is used in making policy and engineering decisions, it is important that these assumptions be tested using empirical data. This study uses the latest database of known uncontrolled reentry locations measured by the United States Department of Defense. The predicted ground footprint distributions of these objects are based on the theory that their orbits behave basically like simple Kepler orbits. However, there are a number of factors in the final stages of reentry - including the effects of gravitational harmonics, the effects of the Earth s equatorial bulge on the atmosphere, and the rotation of the Earth and atmosphere - that could cause them to diverge from simple Kepler orbit behavior and possibly change the probability of reentering over a given location. In this paper, the measured latitude and longitude distributions of these objects are directly compared with the predicted distributions, providing a fundamental empirical test of the model assumptions.

  13. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  14. GPHS motion studies for heat pulse intervals of reentries from gravity-assist trajectories. Aerospace Nuclear Safety Program

    SciTech Connect

    Lucero, E.F.; Sharbaugh, R.C.

    1990-03-01

    Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth`s atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0{degree} to 1000{degrees}/sec were investigated for initial reentry angles of -7{degrees} (shallow) and -90{degrees} (steep) and initial angles of attack of 0{degree} (broadface to the wind) and 90{degrees}. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, {alpha}{sub R} of 0{degree}, 30{degrees}, 90{degrees} and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, {gamma}{sub 0}, and two values of {alpha}{sub R}. have been investigated. Further the probability for any given initial rate on orientation is not known.

  15. Women offenders and reentry issues.

    PubMed

    Taylor, S D

    1996-01-01

    Women parallel men in their profile of physical disease, psychosocial configuration, addictive patterns, and criminal deviance. For women offenders in particular, the prison environment reinforces a victim role that originated in childhood and adolescence. In addition, such settings discourage both emotional expression (except for aggression) and responsibility, since basic needs such as food, lodging, and clothing are provided. Incarcerated women have significant treatment issues, including the lack of social and vocational role definition, psychological dependence and psychic craving, poorly developed social skills, and conflicts in social, family, and intimate relationships. This article describes the unique psychoeducational and skills-training needs of women offenders as they adjust to community living, and outlines specific treatment interventions that have proven to effect successful patient outcomes. Case studies are used to illustrate the reentry experiences of three women offenders with distinct backgrounds. One example illustrates how a woman who had been involved in the criminal justice system for 24 years overcame her addiction and self-confidence issues. A second case study profiles an offender with three children who had experienced sexual trauma during her childhood and adult years. A third case reports on an African-American woman whose crack-cocaine addiction resulted in the birth of a drug-exposed son. The treatment model tested in all three cases emphasized the practical and often overlooked treatment issues of incarcerated women.

  16. Women offenders and reentry issues.

    PubMed

    Taylor, S D

    1996-01-01

    Women parallel men in their profile of physical disease, psychosocial configuration, addictive patterns, and criminal deviance. For women offenders in particular, the prison environment reinforces a victim role that originated in childhood and adolescence. In addition, such settings discourage both emotional expression (except for aggression) and responsibility, since basic needs such as food, lodging, and clothing are provided. Incarcerated women have significant treatment issues, including the lack of social and vocational role definition, psychological dependence and psychic craving, poorly developed social skills, and conflicts in social, family, and intimate relationships. This article describes the unique psychoeducational and skills-training needs of women offenders as they adjust to community living, and outlines specific treatment interventions that have proven to effect successful patient outcomes. Case studies are used to illustrate the reentry experiences of three women offenders with distinct backgrounds. One example illustrates how a woman who had been involved in the criminal justice system for 24 years overcame her addiction and self-confidence issues. A second case study profiles an offender with three children who had experienced sexual trauma during her childhood and adult years. A third case reports on an African-American woman whose crack-cocaine addiction resulted in the birth of a drug-exposed son. The treatment model tested in all three cases emphasized the practical and often overlooked treatment issues of incarcerated women. PMID:8714337

  17. Coronas-F Orbit Monitoring and Re-Entry Prediction

    NASA Technical Reports Server (NTRS)

    Ivanov, N. M.; Kolyuka, Yu. F.; Afanasieva, T. I.; Gridchina, T. A.

    2007-01-01

    Russian scientific satellite CORONAS-F was launched on July, 31, 2001. The object was inserted in near-circular orbit with the inclination 82.5deg and a mean altitude approx. 520 km. Due to the upper atmosphere drag CORONAS-F was permanently descended and as a result on December, 6, 2005 it has finished the earth-orbital flight, having lifetime in space approx. 4.5 years. The satellite structural features and its flight attitude control led to the significant variations of its ballistic coefficient during the flight. It was a cause of some specific difficulties in the fulfillment of the ballistic and navigation support of this space vehicle flight. Besides the main mission objective CORONAS-F also has been selected by the Inter-Agency Space Debris Coordination Committee (IADC) as a target object for the next regular international re-entry test campaign on a program of surveillance and re-entry prediction for the hazard space objects within their de-orbiting phases. Spacecraft (S/C) CORONAS-F kept its working state right up to the end of the flight - down to the atmosphere entry. This fact enabled to realization of the additional research experiments, concerning with an estimation of the atmospheric density within the low earth orbits (LEO) of the artificial satellites, and made possible to continue track the S/C during final phase of its flight by means of Russian regular command & tracking system, used for it control. Thus there appeared a unique possibility of using for tracking S/C at its de-orbiting phase not only passive radar facilities, belonging to the space surveillance systems and traditionally used for support of the IADC re-entry test campaigns, but also more precise active trajectory radio-tracking facilities from the ground control complex (GCC) applied for this object. Under the corresponding decision of the Russian side such capability of additional high-precise tracking control of the CORONAS-F flight in this period of time has been implemented

  18. Application of numerical methods to extend capabilities for optimal rocket guidance: report on reentry guidance of shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Analytical models are presented for optimal trajectories and reentry guidance of the space shuttle orbiter. Major emphasis is placed on the development of a "footprint', which refers to a set of reachable destination positions attainable by the shuttle at a specified terminal altitude. An unconstrained reentry footprint was calculated for a shuttle vehicle which enters the earth's atmosphere at 93 km initial altitude after a deboost from a near earth orbit. The method of computation is briefly described, and graphs are presented which illustrate the footprint and the variation of state and control variables along it. The effects of constraints and of variations in initial state upon the footprint are discussed.

  19. Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Structure

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie; Quinn, Robert D.

    2007-01-01

    Comparative studies were performed on the heat-shielding characteristics of honeycomb-core sandwich panels fabricated with different materials for possible use as wall panels for the proposed crew exploration vehicle. Graphite/epoxy sandwich panel was found to outperform aluminum sandwich panel under the same geometry due to superior heat-shielding qualities and lower material density. Also, representative reentry heat-transfer analysis was performed on the windward wall structures of a generic crew exploration vehicle. The Apollo low Earth orbit reentry trajectory was used to calculate the reentry heating rates. The generic crew exploration vehicle has a graphite/epoxy composite honeycomb sandwich exterior wall and an aluminum honeycomb sandwich interior wall, and is protected with the Apollo thermal protection system ablative material. In the thermal analysis computer program used, the TPS ablation effect was not yet included; however, the results from the nonablation heat-transfer analyses were used to develop a "virtual ablation" method to estimate the ablation heat loads and the thermal protection system recession thicknesses. Depending on the severity of the heating-rate time history, the virtual ablation period was found to last for 87 to 107 seconds and the ablation heat load was estimated to be in the range of 86 to 88 percent of the total heat load for the ablation time period. The thermal protection system recession thickness was estimated to be in the range of 0.08 to 0.11 inches. For the crew exploration vehicle zero-tilt and 18-degree-tilt stagnation points, thermal protection system thicknesses of h = {0.717, 0.733} inches were found to be adequate to keep the substructural composite sandwich temperature below the limit of 300 F.

  20. GPHS motion studies for heat pulse intervals of reentries from gravity-assist trajectories. [General Purpose Heat Source Module (GPHS)

    SciTech Connect

    Lucero, E.F.; Sharbaugh, R.C.

    1990-03-01

    Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0[degree] to 1000[degrees]/sec were investigated for initial reentry angles of -7[degrees] (shallow) and -90[degrees] (steep) and initial angles of attack of 0[degree] (broadface to the wind) and 90[degrees]. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, [alpha][sub R] of 0[degree], 30[degrees], 90[degrees] and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, [gamma][sub 0], and two values of [alpha][sub R]. have been investigated. Further the probability for any given initial rate on orientation is not known.

  1. 14 CFR 435.15 - Rights not conferred by reentry license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) General § 435.15 Rights not conferred by reentry license. Issuance of a reentry license...

  2. 14 CFR 435.15 - Rights not conferred by reentry license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) General § 435.15 Rights not conferred by reentry license. Issuance of a reentry license...

  3. 14 CFR 435.15 - Rights not conferred by reentry license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) General § 435.15 Rights not conferred by reentry license. Issuance of a reentry license...

  4. 14 CFR 435.15 - Rights not conferred by reentry license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) General § 435.15 Rights not conferred by reentry license. Issuance of a reentry license...

  5. German experiments developed for reentry missions

    NASA Astrophysics Data System (ADS)

    Auweter-Kurtz, M.; Hald, H.; Koppenwallner, G.; Speckmann, H.-D.

    1996-01-01

    For the development of reentry technology it is essential that the knowledge gained from ground test facilities and numerical methods is tested and broadened in real reentry flights. The first of such projects was the space reentry capsule EXPRESS, which was designed as a German—Japanese enterprise for both microgravity research and reentry experiments. The capsule was built by the Russian company DB Saljut as part of the Khrunichev State Research and Production Space Center and modified by DASA. The capsule was launched from Kagoshima by a Japanese M-3 SII rocket in January 1995. Due to a failure of the rocket, the nominal orbital altitude could not be reached, which led to an early reentry of the capsule in Ghana after two and a half orbits. In the stagnation region of the reentry module an experiment was planned with a fibre reinforced ceramic tile of 300 mm in diameter integrated in the ablative heat shield. This experiment, called "CETEX", was designed by the German Aerospace Research Establishment (DLR) in Stuttgart. The aim of CETEX is to qualify lightweight fibre reinforced ceramics and related structural concepts in terms of heat shield applications for space vehicles as well as to compare the erosion behaviour shown in flight experiments and ground tests. An integral part of the CETEX experiment is the PYREX experiment of the University of Stuttgart. With PYREX a pyrometer shall be qualified, which is designed for high precision temperature measurement of heat shield materials made of fibre reinforced ceramic compounds during the reentry phase of space vehicles and probes. A third German experiment, RAFLEX, projected by Hyperschall Technologie Göttingen (HTG), was also integrated in the CETEX tile. RAFLEX is designed for the measurement of dynamic and static pressures and heat transfer at various positions on the EXPRESS capsule. Two small SiC tubes are fed through the CETEX tile for the RAFLEX and RTEX experiments. RTEX is a Japanese spectroscopy

  6. Revised Capillary Breakup Rheometer Method

    NASA Astrophysics Data System (ADS)

    Lu, Louise; Schultz, William; Solomon, Michael

    2014-11-01

    Rather than integrate the one-dimensional equation of motion for a capillary breakup rheometer, we take the axial derivative of that equation. This avoids the determination of the axial force with all of its complications and correction factors. The resulting evolutionary equation that involves either two or four derivatives of the capillary radius as a function of the axial coordinate determines the ratio of elongational viscosity to surface tension coefficient. We examine several silicone and olive oils to show the accuracy of the method for Newtonian fluids. We will discuss our surface tension measurement techniques and briefly describe measurements of viscoelastic materials, including saliva.

  7. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom–diatom and molecule–molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  8. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  9. 14 CFR 435.43 - Payload reentry review requirements and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 435.43 Payload reentry review requirements and... shall apply to the payload reentry review conducted for a license to reenter a reentry vehicle...

  10. 14 CFR 435.43 - Payload reentry review requirements and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 435.43 Payload reentry review requirements and... shall apply to the payload reentry review conducted for a license to reenter a reentry vehicle...

  11. 14 CFR 435.43 - Payload reentry review requirements and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 435.43 Payload reentry review requirements and... shall apply to the payload reentry review conducted for a license to reenter a reentry vehicle...

  12. 14 CFR 435.43 - Payload reentry review requirements and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 435.43 Payload reentry review requirements and... shall apply to the payload reentry review conducted for a license to reenter a reentry vehicle...

  13. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  14. Communication with reentry vehicle through modulated plasma

    NASA Astrophysics Data System (ADS)

    Hesse, Philip W.; Uhm, Han S.; Choe, Joon

    1994-05-01

    Signal antennae are mounted on the casing wall between forward nose and rear tail ends of an aerospace launched vehicle for radio communication through a conducting sheath of plasma formed thereon by atmospheric ionization during descent of the vehicle along a non-gliding reentry path. The reentry path is maintained by vehicle guidance at a steep angle in response to data transmitted to the antennae through the plasma of the conducting sheath which is thereby maintained in complete surrounding relation to the vehicle and modulated to enhance data transmission during the entire duration of vehicle descent.

  15. YPF uses horizontal reentry to aid thin bed production

    SciTech Connect

    Acosta, M.R.; Leiro, F.A.; Sesano, G.S.; Hill, D.

    1997-01-01

    Reentry and horizontal drilling/completion techniques have proven themselves useful in exploiting thin beds. A pilot horizontal reentry contracted by Yacimiento Petroliferos Fiscales (YPF) for a marginal well in its Lomita Sur field resulted in decreased water coning and production rates four times greater than expected. Further horizontal reentries in this thin-bed field are planned.

  16. 14 CFR 435.13 - Transfer of a reentry license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transfer of a reentry license. 435.13 Section 435.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE...

  17. 14 CFR 435.13 - Transfer of a reentry license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transfer of a reentry license. 435.13 Section 435.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE...

  18. 14 CFR 435.13 - Transfer of a reentry license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transfer of a reentry license. 435.13 Section 435.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE...

  19. 14 CFR 435.13 - Transfer of a reentry license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transfer of a reentry license. 435.13 Section 435.13 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING REENTRY OF A REENTRY VEHICLE OTHER THAN A REUSABLE LAUNCH VEHICLE...

  20. Exclusive breakup measurements for {sup 9}Be

    SciTech Connect

    Fulton, B.R.; Cowin, R.L.; Woolliscroft, R.J.; Clarke, N.M.; Donadille, L.; Freer, M.; Leask, P.J.; Singer, S.M.; Nicoli, M.P.; Benoit, B.; Hanappe, F.; Ninane, A.; Orr, N.A.; Tillier, J.; Stuttge, L.

    2004-10-01

    The first exclusive breakup measurements for the nucleus {sup 9}Be are presented. Breakup via several discrete states is observed following scattering off {sup 12}C and {sup 208}Pb. The results support the prediction of a recent microscopic cluster calculation for a strong n+{sup 8}Be(2{sup +}) state component in the second excited state.

  1. Computations Of Breakup Of A Capillary Jet

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Lundgren, Thomas S.

    1993-01-01

    Report describes computations of breakup of round jet of liquid in gas or vacuum. Breakup occurs both spontaneously and when stimulated by vibrations giving rise to surface waves, some of which grow until drops pinch off. Study focusses on formation of satellite drops, taking advantage of advanced computers and computational methods to carry theoretical analysis beyond small-perturbation, linear regime.

  2. Droplet Breakup in Expansion-contraction Microchannels.

    PubMed

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  3. Droplet Breakup in Expansion-contraction Microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-02-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices.

  4. Observations of auroral fading before breakup

    NASA Technical Reports Server (NTRS)

    Pellinen, R. J.; Heikkila, W. J.

    1978-01-01

    The onset of auroral breakup was studied by using a variety of instruments with time resolution of some tens of second. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. This optical activity is closely correlated with the development of auroral radar echoes. Data from a magnetometer network provide some indication of a correlated response by the local auroral and ionospheric currents. Riometer recordings show a slow decrease in ionspheric radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup.

  5. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  6. Tiny Traces of a Big Asteroid Breakup

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2004-03-01

    Ancient geologic conditions in southern Sweden were ideal to preserve meteorites that fell to Earth about half a billion years ago. Researcher Birger Schmitz (working as a visiting professor at Rice University and now at the University of Lund, Sweden) and his colleagues in Goteborg, Sweden have analyzed over 40 of these rare fossil meteorites along with relict chromite grains collected from sites in a 250,000-square-kilometer area of 480-million-year-old limestone. They attribute the abundance and wide distribution of this space debris to a meteorite influx at least one hundred times more intense than the influx today. Rather than a smorgasbord of different types, cosmochemical evidence shows that the fossil meteorites are L or LL chondrites leading the team to conclude that these meteorites and chromite grains derived from a major collision in the asteroid belt. The age of the limestone is very close to the impact age of many L chondrites suggesting that this major collision was the breakup of the L chondrite parent body, possibly the largest impact in the asteroid belt in the last few billion years.

  7. Characterization of the breakup of the Pegasus rocket body 1994-029B

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Settecerri, Tom; Johnson, Nicholas; Stansbery, Eugene

    1997-01-01

    The breakup of a Pegasus hydrazine auxiliary propulsion system in June 1996, officially recognized as the worst satellite breakup in terms of cataloged debris, is considered. The fragmentation event is analyzed and it is discussed how these debris contribute to the current and future near earth space environment. The low altitude of the breakup and the large range of ejection velocities present concerns for other earth orbiting space vehicles, especially the Space Shuttle and the Hubble Space Telescope. In addition to orbit data collected by the U.S. Space Surveillance Network, observations were conducted with ground-based radar observatories. These observations show that the overabundance of debris is not limited to the trackable population, but also extends down to debris with sizes of less than 1 cm. Attempts to detect the debris with optical sensors were less successful.

  8. The Energy Interaction Model: A promising new methodology for projecting GPHS-RTG cladding failures, release amounts & respirable release fractions for postulated pre-launch, launch, and post-reentry earth impact accidents

    NASA Astrophysics Data System (ADS)

    Coleman, James R.; Sholtis, Joseph A.; McCulloch, William H.

    1998-01-01

    Safety analyses and evaluations must be scrutable, defensible, and credible. This is particularly true when nuclear systems are involved, with their attendant potential for releases of radioactive materials (source terms) to the unrestricted environment. Analytical projections of General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) source terms, for safety analyses conducted to date, have relied upon generic data correlations using a single parameter of cladding damage, termed ``distortion.'' However, distortion is not an unequivocal measure of cladding insult, failure, or release. Furthermore, the analytical foundation, applicability, and broad use of distortion are argumentative and, thus, somewhat troublesome. In an attempt to avoid the complications associated with the use of distortion, a new methodology, referred to as the Energy Interaction Model (EIM), has been preliminarily developed. This new methodology is based upon the physical principles of energy and energy exchange during mechanical interactions. Specifically, the EIM considers the energy imparted to GPHS-RTG components (bare fueled clads, GPHS modules, and full GPHS-RTGs) when exposed to mechanical threats (blast/overpressure, shrapnel and fragment impacts, and Earth surface impacts) posed by the full range of potential accidents. Expected forms are developed for equations intended to project cladding failure probabilities, the number of cladding failures expected, release amounts, and the fraction released as respirable particles. The coefficients of the equations developed are then set to fit the GPHS-RTG test data, ensuring good agreement with the experimental database. This assured, fitted agreement with the test database, along with the foundation of the EIM in first principles, provides confidence in the model's projections beyond the available database. In summary, the newly developed EIM methodology is described and discussed. The conclusions reached are that the EIM

  9. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    NASA Technical Reports Server (NTRS)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  10. Assessment of the ATV-1 Re-Entry Observation Campaign for Future Re-Entry Missions

    NASA Astrophysics Data System (ADS)

    Lips, T.; Lohle, S.; Marynowsky, T.; Rees, D.; Stenbeak-Nielsen, H. C.; Beks, M. L.; Hatton, J.

    2010-09-01

    This paper summarizes the midterm results of the currently ongoing ESA study “Assessment of the ATV-1 Reentry Observation Campaign for Future Re-entry Missions”. The primary objective of this study is to investigate the data obtained during a joint ESA/NASA airborne observation campaign of the destructive re-entry of ATV-1 Jules Verne which occurred on September 29, 2008. The presented results are focused on spectroscopic fragment characterization(material identification), frame-by-frame fragment tracking(manual and automatic) for various video recordings, 3D triangulation of the tracked fragments, and fragment propagation until complete demise or ground impact, including the actual size and location of the ATV-1 debris footprint. Fragment propagation analyses comprise also the derivation of aerodynamic fragment properties and potential delta velocities. These parameters are of high importance for the re-entry safety analysis for ATV-2 Johannes Kepler.

  11. Optimal nonlinear guidance for a reentry vehicle

    NASA Astrophysics Data System (ADS)

    Harel, D.; Guelman, M.

    Using the exact nonlinear equations of motion an optimal guidance law for a reentry vehicle to achieve at impact a zero miss and a predefined flight path angle is derived. The application of the optimal guidance law in feedback form is based on the on-line solution of a nonlinear algebraic equation. Numerical results are presented.

  12. Re-Entry Women: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Porterfield, Patricia Lamb

    This is an annotated bibliography on topics related to reentry women. Topic categories include general and administrative issues, programs and services, needs assessment and evaluation, counseling and personal development, career planning and job placement, curriculum and instruction, admissions and recruiting, and financial aid. Annotations cite…

  13. Prisoner Reentry Programming: Who Recidivates and when?

    ERIC Educational Resources Information Center

    Severson, Margaret E.; Bruns, Kimberly; Veeh, Christopher; Lee, Jaehoon

    2011-01-01

    This article provides the results of a multi-year evaluation of one state's prison reentry program and its impact on the success of offender participants as measured by certain recidivism outcomes, defined here as yielding a positive urinalysis, returning to prison, and having a new conviction. Using propensity score matching, the recidivism…

  14. Reusable Reentry Satellite (RRS): Launch tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A goal of the Phase B study is to define the launch system interfaces for the reusable reentry satellite (RRS) program. The focus of the launch tradeoff study, documented in this report, is to determine which expendable launch vehicles (ELV's) are best suited for the RRS application by understanding the impact of all viable launch systems on RRS design and operation.

  15. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  16. The {ital Energy Interaction Model}: A promising new methodology for projecting GPHS-RTG cladding failures, release amounts & respirable release fractions for postulated pre-launch, launch, and post-reentry earth impact accidents

    SciTech Connect

    Coleman, J.R.; Sholtis, J.A. Jr.; McCulloch, W.H.

    1998-01-01

    Safety analyses and evaluations must be scrutable, defensible, and credible. This is particularly true when nuclear systems are involved, with their attendant potential for releases of radioactive materials (source terms) to the unrestricted environment. Analytical projections of General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) source terms, for safety analyses conducted to date, have relied upon generic data correlations using a single parameter of cladding damage, termed {open_quotes}distortion.{close_quotes} However, distortion is not an unequivocal measure of cladding insult, failure, or release. Furthermore, the analytical foundation, applicability, and broad use of distortion are argumentative and, thus, somewhat troublesome. In an attempt to avoid the complications associated with the use of distortion, a new methodology, referred to as the {ital Energy Interaction Model (EIM)}, has been preliminarily developed. This new methodology is based upon the physical principles of energy and energy exchange during mechanical interactions. Specifically, the {ital EIM} considers the energy imparted to GPHS-RTG components (bare fueled clads, GPHS modules, and full GPHS-RTGs) when exposed to mechanical threats (blast/overpressure, shrapnel and fragment impacts, and Earth surface impacts) posed by the full range of potential accidents. Expected forms are developed for equations intended to project cladding failure probabilities, the number of cladding failures expected, release amounts, and the fraction released as respirable particles. The coefficients of the equations developed are then set to fit the GPHS-RTG test data, ensuring good agreement with the experimental database. This assured, fitted agreement with the test database, along with the foundation of the {ital EIM} in first principles, provides confidence in the model{close_quote}s projections beyond the available database. In summary, the newly developed {ital EIM} methodology is

  17. Analysis of the inadvertent reentry of the Cassini Spacecraft's Radioisotope Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Frank, Michael V.; Ailor, William H.

    1999-01-01

    As part of the launch approval process, the Interagency Nuclear Safety Review Panel (INSRP) provides an independent safety assessment of space missions, such as the Cassini mission, that carry a significant amount of nuclear materials. This paper describes potential accident scenarios that might lead to release of Plutonium from an accidental reentry during an Earth swingby maneuver. Because of large extrapolations from the current knowledge base, the analysis emphasized treatment of uncertainties.

  18. A hypersonic parachute for low-temperature reentry

    NASA Astrophysics Data System (ADS)

    Krischke, M.; Lorenzini, E.; Sabath, D.

    1992-08-01

    Results are presented on a simulations of the atmospheric reentry from LEO of the Small Expendable Tether Deployer (described by Grumbly and Harrison, 1991), a capsule with an attached heat-resistant tether that can act as a hypersonic parachute for returning spacecraft. Results obtained for the endmass reentry with different tethers show that a tether, which can reduce the heat loads of reentry by an order of magnitude, replaces the retromotor for the initiation of the reentry and simplifies the necessary heat protection of the reentry capsule. A heat-resistant tether would be very advantageous for sample returns from the Space Station and for manned Mars missions.

  19. DEBRISK, a Tool for Re-Entry Risk Analysis

    NASA Astrophysics Data System (ADS)

    Omaly, P.; Spel, M.

    2012-01-01

    An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the

  20. Current Status on Radiation Modeling for the Hayabusa Re-entry

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; McDaniel, Ryan D.; Chen, Yih-Kang; Liu, Yen; Saunders, David

    2011-01-01

    On June 13, 2010 the Japanese Hayabusa capsule performed its reentry into the Earths atmosphere over Australia after a seven year journey to the asteroid Itokawa. The reentry was studied by numerous imaging and spectroscopic instruments onboard NASA's DC-8 Airborne Laboratory and from three sites on the ground, in order to measure surface and plasma radiation generated by the Hayabusa Sample Return Capsule (SRC). Post flight, the flow solutions were recomputed to include the whole flow field around the capsule at 11 points along the reentry trajectory using updated trajectory information. Again, material response was taken into account to obtain most reliable surface temperature information. These data will be used to compute thermal radiation of the glowing heat shield and plasma radiation by the shock/post-shock layer system to support analysis of the experimental observation data. For this purpose, lines of sight data are being extracted from the flow field volume grids and plasma radiation will be computed using NEQAIR [4] which is a line-by-line spectroscopic code with one-dimensional transport of radiation intensity. The procedures being used were already successfully applied to the analysis of the observation of the Stardust reentry [5].

  1. Empirical Accuracies of U.S. Space Surveillance Network Reentry Predictions

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2008-01-01

    The U.S. Space Surveillance Network (SSN) issues formal satellite reentry predictions for objects which have the potential for generating debris which could pose a hazard to people or property on Earth. These prognostications, known as Tracking and Impact Prediction (TIP) messages, are nominally distributed at daily intervals beginning four days prior to the anticipated reentry and several times during the final 24 hours in orbit. The accuracy of these messages depends on the nature of the satellite s orbit, the characteristics of the space vehicle, solar activity, and many other factors. Despite the many influences on the time and the location of reentry, a useful assessment of the accuracies of TIP messages can be derived and compared with the official accuracies included with each TIP message. This paper summarizes the results of a study of numerous uncontrolled reentries of spacecraft and rocket bodies from nearly circular orbits over a span of several years. Insights are provided into the empirical accuracies and utility of SSN TIP messages.

  2. Negative Emotions and Behaviors are Markers of Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeanette

    2013-01-01

    Method: University students who experienced a recent romantic breakup were given several self-report measures and were then divided into high versus low breakup distress groups. Results: The high breakup distress versus the low breakup distress groups had higher scores on negative emotions scales including depression, anxiety and anger and…

  3. Intrusive Thoughts: A Primary Variable in Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2013-01-01

    University students who were high versus low on breakup distress scores were given self-report measures to assess their intrusive thoughts about the romantic breakup and their somatic symptoms that followed the breakup as well as their extracurricular activities and social support that might alleviate their breakup distress. In a regression…

  4. BREAKUP. Prepares Overset Grids for Processing

    SciTech Connect

    Barnette, D.W.; Ober, C.C.

    1996-02-01

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically load balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.

  5. Modeling of spray droplets deformation and breakup

    NASA Technical Reports Server (NTRS)

    Ibrahim, E. A.; Yang, H. Q.; Przekwas, A. J.

    1993-01-01

    A droplet deformation and breakup (DDB) model is proposed to study shear-type mechanism of spray droplets in pure extentional flows. A numerical solution of the DDB model equation is obtained using a fourth-order Runge-Kutta initial-value solver. The predictions of the DDB model as well as semianalytical and the Taylor analogy models are compared with the experimental data (Krzeczkowski, 1980) for shear breakup, which depict the dimensionless deformation of the drop vs dimensionless time.

  6. Electrostatic breakup in a misty plasma.

    PubMed

    Coppins, M

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks. PMID:20366826

  7. Electrostatic Breakup in a Misty Plasma

    SciTech Connect

    Coppins, M.

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks.

  8. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Landing Energy Dissipation for Manned Reentry Vehicles. The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact. [Entire movie available on DVD from CASI as Doc ID 20070030945. Contact help@sti.nasa.gov

  9. On the breakup of viscous liquid threads

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1995-01-01

    A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.

  10. Inferences Concerning the Magnetospheric Source Region for Auroral Breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.

  11. Impact of tidal density variability on orbital and reentry predictions

    NASA Astrophysics Data System (ADS)

    Leonard, J. M.; Forbes, J. M.; Born, G. H.

    2012-12-01

    Since the first satellites entered Earth orbit in the late 1950's and early 1960's, the influences of solar and geomagnetic variability on the satellite drag environment have been studied, and parameterized in empirical density models with increasing sophistication. However, only within the past 5 years has the realization emerged that "troposphere weather" contributes significantly to the "space weather" of the thermosphere, especially during solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep tropical convection, and solar radiation absorption primarily by water vapor and ozone in the stratosphere and mesosphere, respectively. We know that this tidal spectrum significantly modifies the orbital (>200 km) and reentry (60-150 km) drag environments, and that these tidal components induce longitude variability not yet emulated in empirical density models. Yet, current requirements for improvements in orbital prediction make clear that further refinements to density models are needed. In this paper, the operational consequences of longitude-dependent tides are quantitatively assessed through a series of orbital and reentry predictions. We find that in-track prediction differences incurred by tidal effects are typically of order 200 ± 100 m for satellites in 400-km circular orbits and 15 ± 10 km for satellites in 200-km circular orbits for a 24-hour prediction. For an initial 200-km circular orbit, surface impact differences of order 15° ± 15° latitude are incurred. For operational problems with similar accuracy needs, a density model that includes a climatological representation of longitude-dependent tides should significantly reduce errors due to this source.

  12. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  13. Analysis of the inadvertent reentry of the Cassini Spacecraft's Radioisotope Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Daywitt, James E.; Bhutta, Bilal A.; Vacek, Daniel J.; Letts, William R.; Tobery, E. Wayne

    1999-01-01

    A rigorous multi-discipline approach has been developed to compute the aero/thermal/structural response of the Cassini Spacecraft's G_eneral P_urpose H_eat S_ource (GPHS) modules in the unlikely event of accidental reentry of the spacecraft during its Earth gravity-assist maneuver. A new r_eacting, a_blating, c_hemical e_quilibrium/nonequilibrium with r_adiation (RACER) full Navier-Stokes code is applied, along with an in-depth, transient-heating code, a nonlinear structural analysis code, and a six-degree-of-freedom flight-dynamics code. Attention is focused on the GPHS modules that would breakaway from the R_adioisotope T_hermoelectric G_enerators (RTGs) at high altitude. In addition, detailed analyses are performed to determine the survival/failure of the Graphite Impact Shells that would be released if the GPHS fails. The reentry velocity of the GPHS module (20 km/sec) is higher than any previously analyzed Earth reentry trajectory.

  14. Analysis of the inadvertent reentry of the Cassini Spacecraft{close_quote}s Radioisotope Thermoelectric Generators

    SciTech Connect

    Tobery, E.W.; Bhutta, B.A.

    1999-01-01

    A rigorous multi-discipline approach has been developed to compute the aero/thermal/structural response of the Cassini Spacecraft{close_quote}s G{underscore}eneral P{underscore}urpose H{underscore}eat S{underscore}ource (GPHS) modules in the unlikely event of accidental reentry of the spacecraft during its Earth gravity-assist maneuver. A new r{underscore}eacting, a{underscore}blating, c{underscore}hemical e{underscore}quilibrium/nonequilibrium with r{underscore}adiation (RACER) full Navier-Stokes code is applied, along with an in-depth, transient-heating code, a nonlinear structural analysis code, and a six-degree-of-freedom flight-dynamics code. Attention is focused on the GPHS modules that would breakaway from the R{underscore}adioisotope T{underscore}hermoelectric G{underscore}enerators (RTGs) at high altitude. In addition, detailed analyses are performed to determine the survival/failure of the Graphite Impact Shells that would be released if the GPHS fails. The reentry velocity of the GPHS module (20 km/sec) is higher than any previously analyzed Earth reentry trajectory. {copyright} {ital 1999 American Institute of Physics.}

  15. Reusable Reentry Satellite (RRS) system design study: System cost estimates document

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.

  16. EV13 Genesis Reentry Observations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.

    2006-01-01

    The Genesis spacecraft reentry represented a unique opportunity to observe a "calibrated meteor" from northern Nevada. Knowing its speed, mass, composition, and precise trajectory made it a good subject to test some of the algorithms used to determine meteoroid mass from observed brightness. It was also a good test of an inexpensive set of cameras which could be deployed to observe future shuttle reentries. The utility of consumer grade video cameras was evident during the STS-107 accident investigation and the Genesis reentry gave us the opportunity to specify and test commercially available cameras which could be used during future reentries. This report describes the video observations and their analysis, compares the results with a simple photometric model, describes the forward scatter radar experiment, and lists lessons learned from the expedition and implications for the Stardust reentry in January 2006 as well as future shuttle reentries.

  17. Direct optimization method for reentry trajectory design

    NASA Astrophysics Data System (ADS)

    Jallade, S.; Huber, P.; Potti, J.; Dutruel-Lecohier, G.

    The software package called `Reentry and Atmospheric Transfer Trajectory' (RATT) was developed under ESA contract for the design of atmospheric trajectories. It includes four software TOP (Trajectory OPtimization) programs, which optimize reentry and aeroassisted transfer trajectories. 6FD and 3FD (6 and 3 degrees of freedom Flight Dynamic) are devoted to the simulation of the trajectory. SCA (Sensitivity and Covariance Analysis) performs covariance analysis on a given trajectory with respect to different uncertainties and error sources. TOP provides the optimum guidance law of a three degree of freedom reentry of aeroassisted transfer (AAOT) trajectories. Deorbit and reorbit impulses (if necessary) can be taken into account in the optimization. A wide choice of cost function is available to the user such as the integrated heat flux, or the sum of the velocity impulses, or a linear combination of both of them for trajectory and vehicle design. The crossrange and the downrange can be maximized during reentry trajectory. Path constraints are available on the load factor, the heat flux and the dynamic pressure. Results on these proposed options are presented. TOPPHY is the part of the TOP software corresponding to the definition and the computation of the optimization problemphysics. TOPPHY can interface with several optimizes with dynamic solvers: TOPOP and TROPIC using direct collocation methods and PROMIS using direct multiple shooting method. TOPOP was developed in the frame of this contract, it uses Hermite polynomials for the collocation method and the NPSOL optimizer from the NAG library. Both TROPIC and PROMIS were developed by the DLR (Deutsche Forschungsanstalt fuer Luft und Raumfahrt) and use the SLSQP optimizer. For the dynamic equation resolution, TROPIC uses a collocation method with Splines and PROMIS uses a multiple shooting method with finite differences. The three different optimizers including dynamics were tested on the reentry trajectory of the

  18. The secret of guided missile re-entry

    NASA Astrophysics Data System (ADS)

    Chen, Jingzhong; An, Sehua

    1986-06-01

    The history and development of reentry vehicles especially as related to guided missiles is studied. The development of fiber reinforced composites to avoid the combustion of reentry vehicle heads is described. The ionization of molecules caused by high temperature friction with the air during high speed reeentry is briefly described. Reentry remote sensing as an important basis for developing configuration and predicting accuracy of point of impact of the guided missile is also discussed.

  19. Assessment of the Breakup of the Antarctic Polar Vortex in Two New Chemistry-Climate Models

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Li, F.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.

  20. Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.; Li, F.; Oman, L. D.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.

    2010-04-01

    Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60°S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.

  1. Effective reentry methods reduce costs and optimize production

    SciTech Connect

    Szutiak, G.; Walker, D.

    1996-10-21

    Favorable oil prices and tax incentives have spawned an increase in reentry drilling, adding new life to fields once abandoned in Canada. (The provincial government in Alberta has stimulated reentry drilling in western Canada by its tax royalty relief and incentives.) A review of four reentry projects covering 19 horizontal wells in western Canada illustrates a number of planning considerations that can save an operator money while ensuring optimization of the production. The paper recommends several standard steps in planning and executing slim hole reentries drawn from these projects.

  2. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  3. 75 FR 75619 - Waiver of Acceptable Mission Risk Restriction for Reentry and a Reentry Vehicle

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... waiver concerns two petitions for waiver submitted to the FAA by Space Exploration Technologies Corp. (SpaceX): A petition to waive the requirement that a waiver petition be submitted at least sixty days... Space Transportation Reusable Launch Vehicle and Reentry Licensing Regulations, NPRM, 64 FR 19626,...

  4. 75 FR 75621 - Office of Commercial Space Transportation; Waiver of Autonomous Reentry Restriction for a Reentry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Commercial Space Transportation Reusable Launch Vehicle and Reentry Licensing Regulations, 64 FR 19626, 19645..., 2010 launch date planned at the time of the filing of the petition. However, in its petition, SpaceX... left in orbit to reenter randomly at some later time. SpaceX's mitigation measures are of...

  5. Reentry Works: The Implementation and Effectiveness of a Serious and Violent Offender Reentry Initiative

    ERIC Educational Resources Information Center

    Bouffard, Jeffrey A.; Bergeron, Lindsey E.

    2006-01-01

    Spurred by large increases in prison populations and other recent sentencing and correctional trends, the federal government has supported the development and implementation of Serious and Violent Offender Reentry Initiatives (SVORI) nationwide. While existing research demonstrates the effectiveness of the separate components of these programs…

  6. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.57 Information requirements for...

  7. 14 CFR 431.61 - Incorporation of payload reentry determination in license application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.61 Incorporation of...

  8. 14 CFR 431.61 - Incorporation of payload reentry determination in license application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.61 Incorporation of...

  9. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.57 Information requirements for...

  10. 14 CFR 431.61 - Incorporation of payload reentry determination in license application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.61 Incorporation of...

  11. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.57 Information requirements for...

  12. 14 CFR 431.57 - Information requirements for payload reentry review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.57 Information requirements for...

  13. 14 CFR 431.61 - Incorporation of payload reentry determination in license application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload Reentry Review and Determination § 431.61 Incorporation of...

  14. Status of 'HIMES' reentry flight test project

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Kawaguchi, Jun'ichiro; Yonemoto, Koichi

    1990-10-01

    The salient features of the Highly Maneuverable Experimental Space (HIMES) vehicle which is being developed by the Institute of Space and Astronautical Science of Japan are discussed together with the results of tests conducted. Analytical studies carried out so far include system analyses, aerodynamic design, the navigation/guidance and control systems, the propulsion system, and structural studies. Results of flight tests conducted to verify these analyses include the low-speed gliding flight test and the atmospheric reentry flight test, as well as a ground firing test of the hydrogen-fueled propulsion system. Diagrams are presented of the HIMES vehicle and its propulsion engines.

  15. Nonlinear and adaptive estimation in reentry.

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.

    1972-01-01

    The problem of real-time estimation of a lifting reentry vehicle trajectory of the shuttle orbiter type is considered. Simulations feature large position and velocity uncertainties at radar acquisition and realistic model errors in lift, drag and other model parameters. Radar tracking and accelerometer data are simulated. Significant nonlinearities are found to exist on spacecraft acquisition. An iterated nonlinear filter is shown to perform optimally during the radar acquisition phase. An adaptive filter is shown to track time-varying model errors, such as errors in the lift and drag coefficients, down to the noise level. Such real-time model tracking (identification) is frequently required for guidance and control implementation.

  16. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Fisher, Loyd. L.

    1960-01-01

    The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact.

  17. Kiernan reentry measurements system on Kwajalein atoll

    SciTech Connect

    Roth, K.R.; Austin, M.E.; Frediani, D.J.; Knittel, G.H.; Mrstik, A.V.

    1989-01-01

    The Kiernan Reentry Measurements System (KREMS), located on Kwajalein Atoll in the Pacific, is the United States' most sophisticated and important research and development radar site. Consisting of four one-of-a-kind instrumentation radars, KREMS has played a major role for the past 25 years in the collection of data associated with ICBM testing. Furthermore, it has served as an important space-surveillance facility that provides an early U.S. view of many Soviet and Chinese satellite launches. Finally, the system is slated to play a key role in Strategic Defense Initiative experiments.

  18. Reentry and Renegotiating Motherhood: Maternal Identity and Success on Parole

    ERIC Educational Resources Information Center

    Brown, Marilyn; Bloom, Barbara

    2009-01-01

    Parenting women emerging from prison on parole face numerous challenges to their successful reentry into the community. Along with finding housing, employment, and satisfying the conditions of their supervision, parenting women must also reassume their roles as mothers. This article adds to the literature on reentry by placing women's maternal…

  19. Reentry in Ohio Corrections: A Catalyst for Change

    ERIC Educational Resources Information Center

    Wilkinson, Reginald A.; Rhine, Edward E.; Henderson-Hurley, Martha

    2006-01-01

    In 2002, the Ohio Department of Rehabilitation and Correction (DRC) published The Ohio Plan for Productive Offender Reentry and Recidivism Reduction. The document listed forty-four recommendations designed to contribute significantly to the development of a reentry transition system that providing a seamless service and program delivery beginning…

  20. 40 CFR 161.390 - Reentry protection data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Data Requirement Tables § 161.390 Reentry protection data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the reentry protection data requirements and the substance to...

  1. 40 CFR 161.390 - Reentry protection data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Data Requirement Tables § 161.390 Reentry protection data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the reentry protection data requirements and the substance to...

  2. 40 CFR 161.390 - Reentry protection data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Data Requirement Tables § 161.390 Reentry protection data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the reentry protection data requirements and the substance to...

  3. Gender Differences and Offender Reentry: A Review of the Literature

    ERIC Educational Resources Information Center

    Spjeldnes, Solveig; Goodkind, Sara

    2009-01-01

    Historically, men have been incarcerated at rates far greater than women. As a result, reentry and reintegration programs have focused mainly on men's needs. The Second Chance Act of 2007 authorized funding for offender reentry programs and research on special populations--including about women and parents acknowledging the importance of…

  4. 14 CFR 431.55 - Payload reentry review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Payload reentry review. 431.55 Section 431.55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload...

  5. 14 CFR 431.59 - Issuance of payload reentry determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Issuance of payload reentry determination. 431.59 Section 431.59 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE...

  6. 14 CFR 431.55 - Payload reentry review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payload reentry review. 431.55 Section 431.55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload...

  7. 14 CFR 431.59 - Issuance of payload reentry determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Issuance of payload reentry determination. 431.59 Section 431.59 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE...

  8. 14 CFR 431.55 - Payload reentry review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Payload reentry review. 431.55 Section 431.55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload...

  9. 14 CFR 431.55 - Payload reentry review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload reentry review. 431.55 Section 431.55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Payload...

  10. 14 CFR 431.59 - Issuance of payload reentry determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Issuance of payload reentry determination. 431.59 Section 431.59 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE...

  11. 14 CFR 431.59 - Issuance of payload reentry determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Issuance of payload reentry determination. 431.59 Section 431.59 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE...

  12. An Evaluation Guide for College Women's Re-entry Programs.

    ERIC Educational Resources Information Center

    Mezirow, Jack; Rose, Amy D.

    Since 1970, over 300 community colleges have established re-entry programs designed especially for women who are either continuing their education or entering the job market after an extended hiatus. Re-entry programs vary in scope and in the nature of services provided, with some offering specific skills on vocational training, and others…

  13. Reentry Body Stability Tests Conducted in Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Reentry Body Stability Tests Conducted in Langley Spin Tunnel. Reentry body stability tests were conducted in an initial configuration, with a small drogue chute, with an extendable flare, and in an alternate configuration with a covered flare. [Entire movie available on DVD from CASI as Doc ID 20070030957. Contact help@sti.nasa.gov

  14. The International Association of Reentry: Mission and Future

    ERIC Educational Resources Information Center

    Wilkinson, Reginald A.; Rhine, Edward E.

    2005-01-01

    There is a growing national movement in corrections embracing offender reentry. In a very brief period of time, innovative and ambitious initiatives have been launched at all levels of government and by untold groups and community organizations to build more effective responses to the myriad of challenges presented by reentry. The International…

  15. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  16. Female Arab-Muslim nursing students' reentry transitions.

    PubMed

    McDermott-Levy, Ruth

    2013-01-01

    As nursing students are increasingly studying abroad and returning to their home countries to practice, it is important to identify international nursing students' reentry transition to understand their reentry needs. Phenomenological inquiry was used to describe the reentry experience of seven Omani nurses after studying in the United States. The nurses' reentry experience was influenced by the personal and professional transformation from studying abroad and included themes of adaptation to cultural differences and service to themselves, their profession, and their nation. These nurses returned home to resume previous roles; they were changed and this required them to redefine and adapt to their roles within their families and workplace. Nurses returning from international study could benefit from a formal reentry program to assist their transition to family, community, and professional life and to enhance the nurses' contribution from their international education. PMID:23832951

  17. Female Arab-Muslim nursing students' reentry transitions.

    PubMed

    McDermott-Levy, Ruth

    2013-07-04

    As nursing students are increasingly studying abroad and returning to their home countries to practice, it is important to identify international nursing students' reentry transition to understand their reentry needs. Phenomenological inquiry was used to describe the reentry experience of seven Omani nurses after studying in the United States. The nurses' reentry experience was influenced by the personal and professional transformation from studying abroad and included themes of adaptation to cultural differences and service to themselves, their profession, and their nation. These nurses returned home to resume previous roles; they were changed and this required them to redefine and adapt to their roles within their families and workplace. Nurses returning from international study could benefit from a formal reentry program to assist their transition to family, community, and professional life and to enhance the nurses' contribution from their international education.

  18. Orbit re-entry experiment vehicle development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masataka; Yamawaki, Kouji; Akimoto, Toshio; Murakami, Atsushi; Inaba, Motoyuki; Kaneko, Yutaka; Shimoda, Takayuki; Ishii, Yasuo; Izumi, Tatsushi; Kawano, Isao

    1992-08-01

    An overview of the Orbital Re-entry Experiment (OREX) vehicle development, including detail design, analyses on the overall system, guidance and control, propulsion, and data acquisition systems is presented. The outline of the experiment vehicle is shown. OREX flight is analyzed and the splash down point variance ellipse is shown. Vehicle body aerodynamic characteristics were analyzed and validated by supersonic wind tunnel and dynamically balanced wind tunnel tests. Analyses on onboard equipment environmental resistance, controllability from on orbit to re-entry phases and navigation and guidance of the space plane were conducted. It was confirmed that there was no problem on the guidance and control system. Review on the propellant volume and analyses on the propulsion system performance, propulsion system heat exchanger performance, and thruster and piping system temperature were conducted and possibility of hard starting of the 150 N hydrazine thruster was noticed. RF (Radio Frequency) link analyses were conducted around Tanegashima, Ogasawara, and the splash down area and prospect of continuously acquiring good link margin for 300 seconds was obtained. Semi unitized structure of truncated cone shape with main body made of aluminum alloy, which has application record for rockets, laid with skin, stringers, and frames was employed for the structure. Data acquisition systems for tracking and operation, including those at Tanegashima, Ogasawara, Christmas, down range ship, and airplane tracking stations were studied.

  19. Statistical Issues for Calculating Reentry Hazards

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Bacon, John

    2016-01-01

    A number of statistical tools have been developed over the years for assessing the risk of reentering object to human populations. These tools make use of the characteristics (e.g., mass, shape, size) of debris that are predicted by aerothermal models to survive reentry. This information, combined with information on the expected ground path of the reentry, is used to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of this analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. This inevitably involves assumptions that simplify the problem and make it tractable, but it is often difficult to test the accuracy and applicability of these assumptions. This paper builds on previous IAASS work to re-examine many of these theoretical assumptions, including the mathematical basis for the hazard calculations, and outlining the conditions under which the simplifying assumptions hold. This study also employs empirical and theoretical information to test these assumptions, and makes recommendations how to improve the accuracy of these calculations in the future.

  20. Statistical Issues for Calculating Reentry Hazards

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Matney, Mark

    2016-01-01

    A number of statistical tools have been developed over the years for assessing the risk of reentering object to human populations. These tools make use of the characteristics (e.g., mass, shape, size) of debris that are predicted by aerothermal models to survive reentry. This information, combined with information on the expected ground path of the reentry, is used to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of this analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. This inevitably involves assumptions that simplify the problem and make it tractable, but it is often difficult to test the accuracy and applicability of these assumptions. This paper builds on previous IAASS work to re-examine one of these theoretical assumptions.. This study employs empirical and theoretical information to test the assumption of a fully random decay along the argument of latitude of the final orbit, and makes recommendations how to improve the accuracy of this calculation in the future.

  1. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  2. On the driving forces of the Pangea breakup and northward drift of the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki; Hamano, Yozo

    2015-04-01

    During the breakup of the supercontinent Pangea, the Indian subcontinent became isolated from the southern part of Pangea, called Gondwanaland, at around 130 Ma, moved northwards, and eventually collided with Eurasia to form the Himalayas at around 40-50 Ma. The reason why the Indian subcontinent moved at such a high speed of up to c. 20 cm/yr remains a controversial issue in geodynamics. Here, numerical simulation of 3-D spherical mantle convection with an Earth-like Rayleigh number is reported, considering the assembly of highly viscous continental blocks with the configuration of Pangea, to determine the geodynamic mechanisms of the Pangea breakup, the subsequent continental drift, and the high-speed northward drift of the Indian subcontinent. Our numerical simulations approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. References: [1] Yoshida, M., Effects of various lithospheric yield stresses and different mantle-heating modes on the breakup of the Pangea supercontinent, Geophys. Res. Lett., 41(9), 3060-3067, doi:10.1002/2014GL060023, 2014. [2] Yoshida, M. and Y. Hamano, Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection, Submitted to Scientific Reports, 2015

  3. Space debris characterization in support of a satellite breakup model

    NASA Technical Reports Server (NTRS)

    Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.

    1992-01-01

    The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.

  4. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    NASA Technical Reports Server (NTRS)

    Kelley, Robert L.; Johnson, Nicholas L.

    2011-01-01

    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population it is important to design satellites and rocket bodies with end of life considerations in mind. In addition to considering the possible consequences of deorbiting a vehicle, consideration must also be given to the possible risks associated with a vehicle failing to become operational or reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion system. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle which has reached its scheduled end of mission the contents of the tanks are typically depleted. In this scenario the use of stainless steel and titanium results in the tanks posing a risk to people and property do to the high melting point and large heat of ablation of these materials leading to likely survival of the tank during reentry. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of hazardous substance being released when the tank impact the ground. This paper presents a discussion of proactive methods which have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular it will address the design of a demiseable fuel tank as well as the evaluation of off the shelf designs which are selected to burst during reentry.

  5. Breakup of Threads of Power Law Fluids

    NASA Astrophysics Data System (ADS)

    Basaran, Osman A.; Suryo, Ronald

    2004-11-01

    Non-Newtonian liquids are used in many applications involving drop/jet breakup, e.g. atomization coating and crop spraying. Much has been learned on the breakup of Newtonian threads through local scaling analyses, experiment, and simulation. By contrast, little is known about pinch-off of non-Newtonian threads. Recently, we have studied the pinch-off of a thread of a power law fluid by solving a set of 1-d slender-jet equations in physical and self-similar spaces [Doshi et al. JNNFM 113, 1 (2003); PF 16, 585 (2004)]. Dynamics close to pinch-off is of course self-similar and local analysis yields scaling exponents that govern the variation with time to breakup of thread radius, axial length, and axial velocity. Remarkably, interface shapes in the vicinity of the singularity are found to be non-slender if the power law exponent n<0.6 for breakup under creeping flow conditions and if n<2/3 when inertia is important. The governing system of 3-d, axisymmetric (2-d) equations are solved here to elucidate the pinch-off dynamics when thread profiles in the vicinity of the singularity are non-slender.

  6. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  7. Breakup branches of Borromean beryllium-9

    SciTech Connect

    Smith, R. Freer, M.; Wheldon, C.; Curtis, N.; Ashwood, N. I.; Barr, M.; Kokalova, Tz.; Malcolm, J. D.; Ziman, V. A.; Almaraz-Calderon, S.; Aprahamian, A.; Bucher, B.; Couder, M.; Fang, X.; Jung, F.; Lu, W.; Roberts, A.; Tan, W. P.; Copp, P.; Lesher, S. R.; and others

    2015-10-15

    The breakup reaction {sup 9}Be({sup 4}He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in {sup 9}Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in {sup 9}Be have been explored including the {sup 8}Be{sub g.s.} + n, {sup 8}Be{sub 2{sup +}} + n and {sup 5}He{sub g.s.} + {sup 4}He channels. By imposing the condition that the breakup proceeded via the {sup 8}Be ground state, clean excitation spectra for {sup 9}Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  8. Projectile deformation effects in the breakup of 37Mg

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2016-05-01

    We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  9. Supercontinent break-up: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Li, Z. X.

    2014-12-01

    Supercontinent break-up has most commonly been linked to plume or superplume events, and/or supercontinent thermal insulation, but precise mechanisms are yet to be worked out. Even less know is if and what roles other factors may play. Key factors likely include gravitational force due to the continental superswell driven by both the lower-mantle superplume and continental thermal insulation, mental convention driven by the superplume and individual plumes atop the superplume, assisted by thermal/magmatic weakening of the supercontinent interior (both plume heat and thermal insulation heat). In addition, circum-supercontinent slab downwelling may not only drive the formation of the antipodal superplumes (thus the break-up of the supercontinent), the likely roll-back of the subduction system would also create extension within the supercontinent, facilitating supercontinent break-up. Consequences of supercontinent break-up include long-term sea-level rise, climatic changes due to changes in ocean circulation pattern and carbon cycle, and biodiversification. It has long been demonstrated that the existence of the supercontinent Pangea corresponds to a long-term sea-level drop, whereas the break-up of the supercontinent corresponds to a long-term sea-level rise (170 m higher than it is today). A recent analysis of Neoproterozoic sedimentary facies illustrates that the time of Neoproterozoic supercontinent Rodinia corresponds to a low in the percentage of deep marine facies occurrence, whereas the time of Rodinia break-up corresponds to a significantly higher percentage of deep marine facies occurrence. The long-tern sea-level drop during supercontinent times were likely caused by both plume/superplume dynamic topography and an older mean age of the oceanic crust, whereas long-tern sea-level rise during supercontinent break-up (720-580 Ma for Rodinia and Late Jurassic-Cretaceous for Pangea) likely corresponds to an younger mean age of the oceanic crust, massive plume

  10. Second-order analytic solutions for re-entry trajectories

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Kyou

    1993-01-01

    With the development of aeroassist technology, either for near-earth orbital transfer with or without a plane change or for planetary aerocapture, it is of interest to have accurate analytic solutions for reentry trajectories in an explicit form. Starting with the equations of motion of a non-thrusting aerodynamic vehicle entering a non-rotating spherical planetary atmosphere, a normalization technique is used to transform the equations into a form suitable for an analytic integration. Then, depending on the type of planar entry modes with a constant angle-of-attack, namely, ballistic fly-through, lifting skip, and equilibrium glide trajectories, the first-order solutions are obtained with the appropriate simplification. By analytic continuation, the second-order solutions for the altitude, speed, and flight path angle are derived. The closed form solutions lead to explicit forms for the physical quantities of interest, such as the deceleration and aerodynamic heating rates. The analytic solutions for the planar case are extended to three-dimensional skip trajectories with a constant bank angle. The approximate solutions for the heading and latitude are developed to the second order. In each type of trajectory examined, explicit relations among the principal variables are in a form suitable for guidance and navigation purposes. The analytic solutions have excellent agreement with the numerical integrations. They also provide some new results which were not reported in the existing classical theory.

  11. An Overview of JAXA's Ground-Observation Activities for HAYABUSA Reentry

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Yamamoto, Masa-Yuki; Abe, Shinsuke; Ishihara, Yoshiaki; Iiyama, Ohmi; Kakinami, Yoshihiro; Hiramatsu, Yoshihiro; Furumoto, Muneyoshi; Takayanagi, Hiroki; Suzuki, Toshiyuki; Yanagisawa, Toshifumi; Kurosaki, Hirohisa; Shoemaker, Michael; Ueda, Masayoshi; Shiba, Yasuo; Suzuki, Masaharu

    2011-10-01

    On 2010 June 13, the HAYABUSA asteroid explorer returned to Earth and underwent a super-orbital atmospheric reentry. In order to recover the sample return capsule and to take ground-based measurements, the Japan Aerospace Exploration Agency organized a ground-observation team and performed optical tracking of the capsule, spectroscopy of the fireball, and measurements of infrasounds and shock waves generated by the fireball. In this article, an overview of the ground-based observation is presented, and an outline of the preliminary results derived from observations is reported.

  12. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  13. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  14. A NLP Based Reentry Flight Guidance Algorithm

    NASA Astrophysics Data System (ADS)

    Gräßlin, M.; Schöttle, U.

    A major cost driving factor for space transportation systems, especially for reusable systems, are the operation costs. The Guidance, Navigation and Control (GNC) system of a vehicle determines the amount of autonomy and ground support required. Current systems demand high manpower effort from the ground, which makes a mission costly and inflexible. Next generation space transportation systems demand a high cost saving in order to be commercially successful. One possibility to cut down costs is a highly autonomous and flexible guidance system. The paper addresses an approach to achieve this goal by using onboard flight path prediction in combination with numerical optimisation routines to guide a vehicle in its reentry mission. Some numerical results are given to demonstrate the capabilities of such an approach.

  15. Thermoacoustic environments to simulate reentry conditions

    NASA Technical Reports Server (NTRS)

    Bayerdoerfer, Gerhard

    1994-01-01

    Aerothermal environments as encountered during the reentry of spaceplanes or during the cruise of hypersonic aircrafts represent complex loading conditions for the external structures of those vehicles. In order to shield against the aerodynamic heating a special Thermal Protection System (TPS) is required which is designed as a light weight structure to reduce the weight penalty. TPS is therefore vulnerable to vibroacoustic fatigue caused by the pressure fluctuations of the environment. Because of the complex interactions between the loading forces and the resulting structural response which make an analytical treatment difficult and in order to provide means for fatigue testing IABG has designed and built a thermoacoustic facility which recently became operational. The facility is capable to produce surface temperatures up to 1.300 C at sound pressure levels up to 160 dB. This paper describes the design of the facility, some operational test work it also deals with problems associated with the facility instrumentation.

  16. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  17. Characterization of the 2012-044C Briz-M Upper Stage Breakup

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Hamilton, J.; Horstman, M.; Papanyan, V.

    2013-01-01

    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.

  18. Characterization of the 2012-044c Briz-M Upper Stage Breakup

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Hamilton, Joseph; Papanyan, Valen

    2013-01-01

    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to request radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.

  19. Follow-up investigations of GPHS motion during heat pulse intervals of reentries from gravity-assist trajectories. Aerospace Nuclear Safety Program

    SciTech Connect

    Sharbaugh, R.C.

    1992-03-23

    Motion studies of the General Purpose Heat Source Module, GPHS, which were conducted in the heat pulse intervals associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine whether the GPHS module entering the earth`s atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse of reentry, (2) determine the effect of magnus force on the roll rate and angle of attack of the GPHS during an EGA entry, (3) determine the effect of the magnitude of pitch and roll damping on the GPHS motion.

  20. Empirical Tests of the Predicted Footprint for Uncontrolled Satellite Reentry Hazards

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2011-01-01

    A number of statistical tools have been developed over the years for assessing the risk of reentering object to human populations. These tools make use of the characteristics (e.g., mass, material, shape, size) of debris that are predicted by aerothermal models to survive reentry. The statistical tools use this information to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of the analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. Because this information is used in making policy and engineering decisions, it is important that these assumptions be tested using empirical data. This study uses the latest database of known uncontrolled reentry locations measured by the United States Department of Defense. The predicted ground footprint distributions of these objects are based on the theory that their orbits behave basically like simple Kepler orbits. However, there are a number of factors in the final stages of reentry - including the effects of gravitational harmonics, the effects of the Earth s equatorial bulge on the atmosphere, and the rotation of the Earth and atmosphere - that could cause them to diverge from simple Kepler orbit behavior and possibly change the probability of reentering over a given location. In this paper, the measured latitude and longitude distributions of these objects are directly compared with the predicted distributions, providing a fundamental empirical test of the model assumptions.

  1. Coupled map lattice model of jet breakup

    SciTech Connect

    Minich, R W; Schwartz, A J; Baker, E L

    2001-01-25

    An alternative approach is described to evaluate the statistical nature of the breakup of shaped charge liners. Experimental data from ductile and brittle copper jets are analyzed in terms of velocity gradient, deviation of {Delta}V from linearity, R/S analysis, and the Hurst exponent within the coupled map lattice model. One-dimensional simulations containing 600 zones of equal mass and using distinctly different force-displacement curves are generated to simulate ductile and brittle behavior. A particle separates from the stretching jet when an element of material reaches the failure criterion. A simple model of a stretching rod using brittle, semi-brittle, and ductile force-displacement curves is in agreement with the experimental results for the Hurst exponent and the phase portraits and indicates that breakup is a correlated phenomenon.

  2. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  3. Critical role of inhomogeneities in pacing termination of cardiac reentry

    NASA Astrophysics Data System (ADS)

    Sinha, Sitabhra; Stein, Kenneth M.; Christini, David J.

    2002-09-01

    Reentry around nonconducting ventricular scar tissue, a cause of lethal arrhythmias, is typically treated by rapid electrical stimulation from an implantable cardioverter defibrillator. However, the dynamical mechanisms of termination (success and failure) are poorly understood. To elucidate such mechanisms, we study the dynamics of pacing in one- and two-dimensional models of anatomical reentry. In a crucial realistic difference from previous studies of such systems, we have placed the pacing site away from the reentry circuit. Our model-independent results suggest that with such off-circuit pacing, the existence of inhomogeneity in the reentry circuit is essential for successful termination of tachycardia under certain conditions. Considering the critical role of such inhomogeneities may lead to more effective pacing algorithms.

  4. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  5. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV... launch a payload unless the proposed payload is exempt from payload review under § 415.53 of this...

  6. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV... launch a payload unless the proposed payload is exempt from payload review under § 415.53 of this...

  7. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV... launch a payload unless the proposed payload is exempt from payload review under § 415.53 of this...

  8. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV... launch a payload unless the proposed payload is exempt from payload review under § 415.53 of this...

  9. Re-entry and reintegration: returning home after combat.

    PubMed

    Doyle, Michael E; Peterson, Kris A

    2005-01-01

    Soldier life exists on a continuum of readiness for deployment. Re-entry and reintegration-the return home and reunion with family and community-key the success of the deployment cycle. In current and projected future operations, the Army and society will both bear the burden of this re-entry and re-integration. Programs and procedures in place work towards improving communication, mitigating distress and resolving crises during reentry and reintegration. Key elements include: inclusion of families and communities early into the planning for reentry and reintegration; normalization (non-medicalization of distress); easy access to behavioral health professionals; and education of families on resources and benefits. Through broad collaboration, maximal benefit to the Soldier, family members and society be realized.

  10. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  11. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  12. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  13. The Beam Break-Up Numerical Simulator

    SciTech Connect

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  14. Charts Depicting Kinematic and Heating Parameters for a Ballistic Reentry at Speeds of 26,000 to 45,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Lovelace, Uriel M.

    1961-01-01

    Reentry trajectories, including computations of convective and radiative stagnation-point heat transfer, have been calculated by using equations for a point-mass reentry vehicle entering the atmosphere of a rotating, oblate earth. Velocity was varied from 26,000 to 45,000 feet per second; reentry angle, from the skip limit to -20 deg; ballistic drag parameter, from 50 to 200. Initial altitude was 400,000 feet. Explicit results are presented in charts which were computed for an initial latitude of 38 deg N and an azimuth of 90 deg from north. A method is presented whereby these results may be made valid for a range of initial latitude and azimuth angles.

  15. Flow bursts, breakup arc, and substorm current wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-04-01

    Energy liberated by the reconnection process in the near-Earth tail is transported via flow bursts toward the dipolar magnetosphere during substorms. The breakup arc is a manifestation of the arrival of the bursts under flow braking and energy deposition. Its structure and behavior is analyzed on the basis of five striking spatial, temporal, and energetic properties, qualitatively and in part also quantitatively. A key element is the formation of stop layers. They are thin layers, of the width of an ion gyro radius, in which the magnetic field makes a transition from tail to near-dipolar magnetosphere configurations and in which the kinetic energy of fast flows is converted into electromagnetic energy of kinetic Alfvén waves. The flows arise from the relaxation of the strong magnetic shear stresses in the leading part of the flow bursts. The bright narrow arcs of less than 10 km width inside the broad poleward expanding breakup arc, Alfvénic in nature and visually characterized by erratic short-lived rays, are seen as traces of the stop layers. The gaps between two narrow and highly structured arcs are filled with more diffuse emissions. They are attributed to the relaxation of the less strained magnetic field of the flow bursts. Eastward flows along the arcs are linked to the shrinking gaps between two successive arcs and the entry of auroral streamers into the dipolar magnetosphere in the midnight sector. Flow braking in the stop layers forms multiple pairs of narrow balanced currents and cannot be behind the formation of the substorm current wedge. Instead, its origin is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the high-beta plasma, after the high magnetic shears have relaxed and the fast flows and stop layer process have subsided, in other words, to the "dying flow bursts."

  16. Reusable Reentry Satellite (RRS): Telemetry, Tracking, and Command (TT/C) Coverage Tradeoff Study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) Telemetry, Tracking & Command (TT&C) Coverage Tradeoff Study described herein was performed during Part 1 of the RRS Phase B contract. This report is one of several that describes the results of various trade studies performed to arrive at a recommended design for the RRS satellite system. The overall RRS Phase B Study objective is to design a relatively inexpensive satellite to access space for extended periods of time, with eventual recovery of experiments on Earth. The RRS will be capable of: (1) being launched by a variety of expendable launch vehicles; (2) operating in low earth orbit as a free flying unmanned laboratory; and (3) executing an independent atmospheric reentry and soft landing. The RRS will be designed to be refurbished and reused up to three times a year for a period of 10 years. The expected principal use for such a system is research on the effects of variable gravity (0 to 1.5 g) and radiation on small animals, plants, lower life forms, tissue samples, and materials processes. This Summary Report provides a description of the RRS Telemetry, Tracking & Command Analysis performed to study the ground station coverage available to meet RRS requirements. Concepts were considered that used off-the-shelf technology, had generous margins of capability, and high reliability, were easily maintained, cost effective, and were compatible with existing support networks. From this study, a recommended RRS TT&C configuration will be developed.

  17. Evaluation of Ceramic Foams and Simulated Reentry Environments

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead

    2003-01-01

    NASA and Ames is conducting ongoing research in lower density reusable TPS material for future reentry vehicles. Ceramic foams from pre ceramic polymer routes have potential for use in both acreage TPS and as tile leading edges for reentry vehicles. One of the key factors to investigate, when developing new materials for reentry applications, is their oxidation behavior in the appropriate reentry environment whrch can be simulated using ground based arc jet (plasma jet) testing. Studies have shown that oxidation rates of materials will differ when exposed to either monatomatic or molecular oxygen and the amount of monoatomic oxygen depends on the conditions particular to a given test situation. Monoatomic oxygen is always present in reentry environment, therefore arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This preliminary work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the materials response.

  18. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  19. Preliminary reentry safety assessment of the General Purpose Heat Source module for the Cassini mission: Aerospace Nuclear Safety Program

    SciTech Connect

    Conn, D.W.; Brenza, P.T.

    1993-04-01

    As asked by the U. S. Department of Energy/Office of Special Applications, and in support of the Environmental Impact Statement for the Cassini mission, The Johns Hopkins University/Applied Physics Laboratory (JHU/APL) has conducted preliminary one-dimensional ablation and thermal analyses of the General Purpose Heat Source (GPHS). The predicted earth entry conditions provided by the Jet Propulsion Laboratory (JPL) for a Cassini Venus-Venus-Earth-Jupiter Gravity Assist (VVEJGA) trajectory were used as initial conditions. The results of this study which constitute the initial reentry analysis assessment leading to the Cassini Updated Safety, Analysis Report (USAR) are discussed in this document.

  20. Preliminary reentry safety assessment of the General Purpose Heat Source module for the Cassini mission: Aerospace Nuclear Safety Program

    NASA Astrophysics Data System (ADS)

    Conn, D. W.; Brenza, P. T.

    1993-04-01

    As asked by the U.S. Department of Energy/Office of Special Applications, and in support of the Environmental Impact Statement for the Cassini mission, The Johns Hopkins University/Applied Physics Laboratory (JHU/APL) has conducted preliminary one dimensional ablation and thermal analyses of the General Purpose Heat Source (GPHS). The predicted earth entry conditions provided by the Jet Propulsion Laboratory (JPL) for a Cassini Venus - Venus - Earth - Jupiter gravity assist (VVEJGA) trajectory were used as initial conditions. The results of this study, which constitute the initial reentry analysis assessment leading to the Cassini Updated Safety Analysis Report (USAR), are discussed in this document.

  1. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Water Landing Characteristics of a Reentry Capsule. Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions. [Entire movie available on DVD from CASI as Doc ID 20070030955. Contact help@sti.nasa.gov

  2. Inferences concerning the magnetospheric source region for auroral breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    Inferences concerning the magnetospheric source region for auroral arcs obtained from particle measurements on polar orbiting satellites are presented and contrasted with other ideas. An argument that the magnetospheric source region for auroral arc breakup and substorm initiation is along Boundary Plasma Sheet (BPS) magnetic field lines is given. This source region lies beyond a distinct central plasma sheet region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field aligned potential drops on precipitating particles.

  3. Sharing Remote and Local Information for Tracking Spring Breakup in the Mackenzie Delta and Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Forbes, D. L.; Whalen, D.; Fraser, P.

    2015-12-01

    The Mackenzie Delta is the second largest on the Arctic Ocean, covering 13 000 km2. The annual flood regime in the delta is dominated by the spring snowmelt freshet and associated ice breakup, as water from the south arrives in the ice-covered delta and spreads over bottomfast and adjacent floating sea ice at the delta front. The complex processes of water-ice interaction, flow partitioning, and overbank flooding to replenish waters in 43 000 delta lakes threaten community, transportation, subsistence, and energy infrastructure in the delta. The annual breakup season is a time of rejuvenation, excitement, and anxiety for delta residents and stakeholders. To track the progress of breakup and meet the need for knowledge dissemination to the local communities, a Mackenzie-Beaufort breakup newsletter has been produced by Natural Resources Canada on a quasi-daily basis during the May-June spring flood season for 10 years, and distributed to an e-mail list that grew to over 300 subscribers. This provides near real-time tracking of water levels and breakup using on-line gauges (Environment Canada), daily MODIS satellite imagery (NASA), Landsat imagery (USGS) and intermittent radar imagery (various sources). In earlier years, information was also supplied from field programs operating in the delta during breakup, but changing priorities and funding have reduced the number of outside researchers present during these critical weeks. Meanwhile the number of local contributors has grown, providing observations and photographs to share with the local, regional and global readership. In this way the newsletter evolved into a two-way communication tool and community portal. The newsletter is a chronicle of each breakup season and a key resource for territorial and municipal managers, subsistence organizations, and emergency response agencies, with routine requests for specific imagery in areas of concern. With the completion of 10 years under the present model, we are exploring

  4. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J., Jr.

    1960-01-01

    Analytical and experimental investigations have been made to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices discussed are crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact. It appears feasible to readily evaluate landing-gear systems for internal or external application in hard-surface or water landings by using computational procedures and free-body landing techniques with dynamic models. The systems investigated have shown very interesting energy-dissipation characteristics over a considerable range of landing parameters. Acceptable gear can be developed along lines similar to those presented if stroke requirements and human-tolerance limits are considered.

  5. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  6. In situ observations of wave-induced sea ice breakup

    NASA Astrophysics Data System (ADS)

    Kohout, A. L.; Williams, M. J. M.; Toyota, T.; Lieser, J.; Hutchings, J.

    2016-09-01

    Ocean waves can propagate hundreds of kilometers into sea ice, leaving behind a wake of broken ice floes. Three floe breakup events were observed during the second Sea Ice Physics and Ecosystem Experiment (SIPEX-2). We show that the three breakup events were likely influenced by ocean waves. We compare the observations to a wave induced floe breakup model which includes an empirical wave attenuation model, and show that the model underestimates the extent of floe breaking for long period waves.

  7. Breakup locations: Intertwining effects of nuclear structure and reaction dynamics

    NASA Astrophysics Data System (ADS)

    Dasgupta, M.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Cook, K. J.; Carter, I. P.; Hinde, D. J.; Williams, E.

    2016-05-01

    Studies at the Australian National University aim to distinguish breakup of the projectile like-nucleus that occurs when approaching the target from that when receding from the target. Helped by breakup simulations, observables have been found that are sensitive to the breakup location, and thus to the mean-lives of unbound states; sensitivity to even sub-zeptosecond lifetime is found. These results provide insights to understand the reaction dynamics of weakly bound nuclei at near barrier energies.

  8. Velocity perturbation distributions in the breakup of artificial satellites

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Tan, Arjun; Reynolds, Robert C.

    1990-01-01

    A method is presented for calculating the three orthogonal components of the velocity perturbations of satellite fragments, with a view to ascertaining the nature and intensity of the satellite breakup. The method employs three simultaneous equations furnished by changes in fragment specific energy, specific angular momentum, and plane orientation. Velocity perturbations are thereby calculated for fragments from 20 major satellite breakup events; these results, in conjunction with a technique for determining fragment masses, yield a description of the breakup process.

  9. A Study of Pseudo Breakup Events in the Aurora Using Polar/UVI

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Fillingim, M. O.; Parks, G. K.

    2008-12-01

    We have analyzed pseudo breakup events in the aurora using 37 second LBHL Polar/UVI data during the months of November and December 2007 to study the relationship between breakups and pseudo breakups. Historically, the distinction between pseudo breakups, which expand locally, and normal breakups, which expand more globally, has been ill defined. We now present an explicit definition based on MLat expanse and peak auroral power. Often, the aurora will exhibit a series of pseudo breakup events before the commencement of a normal breakup. Sometimes a normal breakup does not occur. We analyze the properties of pseudo breakups and parameters that might make a normal breakup more or less likely to occur after a series of pseudo breakup events. There is no statistical difference in MLat location, peak area, peak power dissipation, and total energy deposition for individual pseudo breakups leading to a normal breakup and those that do not. A normal breakup is likely to occur only during the first 100 minutes of a sequence of pseudo breakups. Pseudo breakup sequences leading to a breakup are much shorter than those not leading to a breakup. However, distributions of total energy (in electron precipitation) for sequences leading and not leading to a normal breakup are the same. Although the physical implications of our results are complicated and unclear, pseudo breakup events should be incorporated in any magnetospheric substorm model.

  10. Near-limit drop deformation and secondary breakup

    NASA Astrophysics Data System (ADS)

    Hsiang, Lien-Peng

    1994-01-01

    An experimental study of the deformation and breakup of liquid drops subjected to both shock wave and steady disturbances is described, emphasizing effects of Weber number, We, and Ohnesorge number, Oh, for various deformation and breakup regimes. Measurements included pulsed shadowgraphy and holography to find drop deformation and drag properties prior to breakup, as well as drop sizes and velocities after breakup. Simplified phenomenological theories were used to help interpret and correlate the measurements. For shock wave disturbances, drop deformation and breakup regimes were identified in terms of We and Oh: regimes at low Oh included no deformation, nonoscillatory deformation, oscillatory deformation, bag breakup, multimode breakup, and shear breakup as We is increased. For We less than 1000, breakup no longer is possible for Oh greater than 10 while 5 percent deformation no longer is possible for Oh greater than 1000. Unified temporal scaling of deformation and breakup processes was observed in terms of a characteristic breakup time that largely was a function of Oh. Prior to breakup, the drag coefficient evolved from the properties of spheres to those of thin disks as drop deformation progressed. Measurements of drop properties after secondary breakup were limited to low Oh conditions. Drop size distributions after breakup satisfied Simmon's universal root normal distribution function in all three breakup regimes, after removing the core drop from the drop population for shear breakup. The Sauter mean diameter after breakup was correlated successfully, independent of the breakup regime, based on consideration of drop stripping in the shear breakup regime. The size and velocity of the core drop after shear breakup were correlated separately, based on the observation that the end of drop stripping corresponded to a constant Eotvos number. The relative velocities of the drop liquid were significantly reduced during secondary breakup, due both to the large

  11. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  12. Multipass Beam Breakup in Energy Recovery Linacs

    SciTech Connect

    Eduard Pozdeyev; Christopher Tennant; Joseph Bisognano; M Sawamura; R. Hajima; T.I. Smith

    2005-03-19

    This paper is a compilation of several presentations on multipass beam breakup (BBU) in energy recovery linacs (ERL) given at the 32nd Advanced ICFA Beam Workshop on ERLs. The goal of this paper is to summarize the progress achieved in analytical, numerical, and experimental studies of the instability and outline available and proposed BBU mitigation techniques. In this paper, a simplified theory of multipass BBU in recirculating linacs is presented. Several BBU suppression techniques and their working principles are discussed. The paper presents an overview of available BBU codes. Results of experimental studies of multipass BBU at the Jefferson Laboratory (JLab) FEL Upgrade are described.

  13. Pangea formation and break-up

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond

    2013-04-01

    The Palaeozoic was dominated by the great continent Gondwana. Other continents included Laurentia and Baltica that fused (together with Avalonia), forming Laurussia after the closure of the Iapetus Ocean, making the second largest continental entity in the Silurian. By the Carboniferous at around 320 Ma, Gondwana and Laurussia amalgamated, forming Pangea that was surrounded by the Panthalassa and Paleotethys Oceans. Pangea did not include all continental crust. For example, the South and North China Blocks were not part of Pangea at any given time and also during the Early Permian phase of Pangea assembly, the Neotethys opened, and Cimmerian terranes drifted away from the NE Gondwana margin while the Paleotethys was being subducted beneath Eurasia. An additional, unresolved question is whether Siberia was fully joined to Pangea before the eruption of the Siberian Traps (251 Ma). Practically all Permian Pangea reconstructions using palaeomagnetic data result in considerable overlap between Laurussia and Gondwana, as both are straddling the equator, and thus Gondwana must be moved sideways to avoid this overlap, and at a younger time displaced dextrally to achieve the well established starting point for Pangea break-up in the Jurassic. Octupole contributions can eliminate this overlap, but just by changing the internal fits within Laurussia and correcting all detrital sedimentary poles for inclination shallowing using a use a benchmark flattening (f) value of 0.6 (unless previously corrected using either the inclination-elongation method or anisotropy of magnetic susceptibility information) lead to an almost perfect Pangea-A type fit. Pangea break-up profoundly changed our planet, and the most important phase of break-up started when the Central Atlantic Ocean opened (ca. 195 Ma). Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province, one of the largest large igneous

  14. SINGLE BUNCH BEAM BREAKUP - A GENERAL SOLUTION.

    SciTech Connect

    WANG,J.M.; MANE,S.R.; TOWNE,N.

    2000-06-26

    Caporaso, Barletta and Neil (CBN) found in a solution to the problem of the single-bunch beam breakup in a linac[1]. However, their method applies only to the case of a beam traveling in a strongly betatron-focused linac under the influence of the resistive wall impedance. We suggest in this paper a method for dealing with the same problem. Our methods is more general; it applies to the same problem under any impedance, and it applies to a linac with or without external betatron focusing.

  15. NASA Team Captures Hayabusa Spacecraft Reentry

    NASA Video Gallery

    A group of astronomers from NASA, the Japan Aerospace Exploration Agency (JAXA) and other organizations had a front row seat to observe the Hayabusa spacecraft's fiery plunge into Earth's atmospher...

  16. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  17. Surviving the breakup: the DNA damage checkpoint.

    PubMed

    Harrison, Jacob C; Haber, James E

    2006-01-01

    In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.

  18. Infrasound and Seismic Observation of Hayabusa Reentry as An Artificial Meteorite Fall

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Hiramatsu, Y.; Yamamoto, M.; Furumoto, M.; Fujita, K.

    2011-12-01

    The Hayabusa, the world first sample-return minor body explorer, came back to the Earth, and reentered into the Earth's atmosphere on June 13, 2010. Following the reentries of the Genesis in 2004 and the Stardust in 2006, the return of the Hayabusa Sample Return Capsule (H-SRC) was the third direct reentry event from the interplanetary transfer orbit to the Earth at a velocity of over 11.2 km/s. In addition, it was the world first case of the direct reentry of the spacecraft (H-S/C) itself from the interplanetary transfer orbit. The H-SRC and the H-S/C reentries are very good analogue for studying bolide size meteors and meteorite falls. We, therefore, conducted a ground observation campaign for aspects of meteor sciences. We carried out multi-site ground observations of the Hayabusa reentry in the Woomera Prohibited Area (WPA), Australia. The observations were configured with optical imaging with still and video recordings, spectroscopies, and shockwave detection with infrasound and seismic sensors. In this study, we report details of the infrasound/seismic observations and those results. To detect shockwaves from the H-SRC and the H-S/C, we installed three small aperture infrasound/seismic arrays as the main stations. In addition, we also installed three single component seismic sub stations and an audible sound recorder. The infrasound and seismic sensors clearly recorded sonic boom type shockwaves from the H-SRC and disrupted fragments of the H-S/C itself. The audible recording also detected those shockwave sounds in the human audible band. Positive overpressure values of shockwaves (corresponding to the H-SRC) recorded at three main stations are 1.3 Pa, 1.0 Pa, and 0.7 Pa with the slant distance of 36.9 km, 54.9 km, and 67.8 km (i.e., the source altitude of 36.5 km, 38.9km, and 40.6 km), respectively. These amplitudes of shockwave overpressures are systematically smaller than those of theoretical predictions. We tried to identify the sources of shockwaves

  19. Maternal distress and women's reentry into family and community life.

    PubMed

    Arditti, Joyce; Few, April

    2008-09-01

    This paper advances conceptualization of maternal distress following incarceration. We utilized a multiple case study methodology based on interviews with 10 mothers who demonstrated various permutations of "the triple threat" (depression, domestic violence, and substance abuse; Arditti & Few, 2006). Findings suggest that depressive symptomology persisted and worsened for mothers in our study and that maternal distress was indicative not only of women's psychological state, but also a relational and situational construct that embodied women's core experience. Maternal distress was largely characterized by health challenges, dysfunctional intimate relationships, loss related trauma, guilt and worry over children, and economic inadequacy. Further, maternal distress seemed to be intensified by the punitive traumatic context of prison and lessened by rehabilitation opportunities as well as support by kin and probation officers after reentry. Recommendations for clinicians and professionals who work with reentry mothers center around the need to alleviate maternal distress and better address women's emotional and physical health needs during incarceration and reentry.

  20. Predictions of cardiovascular responses during STS reentry using mathematical models

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Srinivasan, R.

    1985-01-01

    The physiological adaptation to weightless exposure includes cardiovascular deconditioning arising in part from a loss of total circulating blood volume and resulting in a reduction of orthostatic tolerance. The crew of the Shuttle orbiter are less tolerant to acceleration forces in the head-to-foot direction during the reentry phase of the flight at a time they must function at a high level of performance. The factors that contribute to orthostatic intolerance during and following reentry and to predict the likelihood of impaired crew performance are evaluated. A computer simulation approach employing a mathematical model of the cardiovascular system is employed. It is shown that depending on the severity of blood volume loss, the reentry acceleration stress may be detrimental to physiologic function and may place the physiologic status of the crew near the borderline of some type of impairment. They are in agreement with conclusions from early ground-based experiments and from observations of early Shuttle flights.

  1. Emittance of TD-NiCr after simulated reentry

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Dicus, D. L.; Lisagor, W. B.

    1978-01-01

    The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.

  2. University Students' Experiences of Nonmarital Breakups: A Grounded Theory

    ERIC Educational Resources Information Center

    Hebert, Sarah; Popadiuk, Natalee

    2008-01-01

    Prior nonmarital breakup research has been focused on negative outcomes, rarely examining the personal growth aspects of this experience. In this study, we used a qualitative grounded theory methodology to explore the changes that university students reported experiencing as a result of a heterosexual nonmarital breakup and how those changes…

  3. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  4. Breakup Effects on University Students' Perceived Academic Performance

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2012-01-01

    The Problem: Problems that might be expected to affect perceived academic performance were studied in a sample of 283 university students. Results: Breakup Distress Scale scores, less time since the breakup and no new relationship contributed to 16% of the variance on perceived academic performance. Variables that were related to academic…

  5. Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission

    NASA Astrophysics Data System (ADS)

    Arnal, M.-H.; Laine, N.; Aussilhou, C.

    2012-01-01

    To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.

  6. Near-Optimal Re-Entry Trajectories for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Chou, H.-C.; Ardema, M. D.; Bowles, J. V.

    1997-01-01

    A near-optimal guidance law for the descent trajectory for earth orbit re-entry of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. A methodology is developed to investigate using both bank angle and altitude as control variables and selecting parameters that maximize various performance functions. The method is based on the energy-state model of the aircraft equations of motion. The major task of this paper is to obtain optimal re-entry trajectories under a variety of performance goals: minimum time, minimum surface temperature, minimum heating, and maximum heading change; four classes of trajectories were investigated: no banking, optimal left turn banking, optimal right turn banking, and optimal bank chattering. The cost function is in general a weighted sum of all performance goals. In particular, the trade-off between minimizing heat load into the vehicle and maximizing cross range distance is investigated. The results show that the optimization methodology can be used to derive a wide variety of near-optimal trajectories.

  7. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  8. An Explicit Reentry Guidance Law Using Bezier Curves

    NASA Astrophysics Data System (ADS)

    Esmaelzadeh, Reza; Naghash, Abolghasem; Mortazavi, Mehdi

    An explicit guidance law is developed for a reentry vehicle. Motion is constrained to a three-dimensional Bezier curve. Acceleration commands are derived by solving an inverse problem related to Bezier parameters. A comparison with pure proportional navigation shows the same accuracy, but a higher capability for optimal trajectory to some degree. Other advantages such as trajectory representation with minimum parameters, applicability to any reentry vehicle configuration and any control scheme, and Time-to-Go independency make this guidance approach more favorable.

  9. School reentry for children with acquired central nervous systems injuries.

    PubMed

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special education is not necessarily a special classroom, but an individualized set of educational needs, determined by a multidisciplinary school team, to promote educational success. The purpose of this article is to inform those pediatricians and pediatric allied health professionals treating children with CNS injury of the systems in place to support successful school reentry and their role in contributing to developing an appropriate educational plan. PMID:19489086

  10. Aerothermodynamic performance and thermal protection design for blunt re-entry bodies at L/D = 0.3

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Kowal, T. J.

    1993-01-01

    Aerodynamic heating and thermal protection design analyses were performed for three blunt re-entry bodies at an L/D = 0.3 returning from low earth orbit. These configurations consisted of a scaled up Apollo command module, a Viking re-entry vehicle, and an Aeroassist Flight Experiment (AFE) aerobrake, each with a maximum diameter of 4.42 m. The aerothermodynamic analysis determined the equilibrium stagnation point heating rate and heat load for nominal and 3-sigma re-entry trajectories and the distribution of heating along the pitch and yaw planes for each of the vehicles at the time of highest heat flux. Using the predicted heating rates and heating distributions, a Thermal Protection System (TPS) design with flight certified materials was tailored for each of the configurations. Results indicated that the heating to the corner of the Viking aeroshell would exceed current limits of reusable tile material. Also, the maximum heating for the AFE would be 15 percent greater than the maximum heating for the Apollo flying the same trajectory. TPS designs showed no significant advantage in TPS weight between the different vehicles; however, heat-shield areal density comparisons showed the Apollo configuration to be the most efficient in terms of TPS weight.

  11. Who Goes Back to Prison; Who Does Not: A Multiyear View of Reentry Program Participants

    ERIC Educational Resources Information Center

    Severson, Margaret E.; Veeh, Christopher; Bruns, Kimberly; Lee, Jaehoon

    2012-01-01

    Existing studies of reentry programs in the United States focus on the successes and failures of reentering offenders when compared to matched reentering offenders who did not receive structured reentry services. Little attention has been focused solely on the reentry participants themselves, and on how the level of program exposure may be related…

  12. A Qualitative Study of Returning Study Abroad Students: The Critical Role of Reentry Support Programs

    ERIC Educational Resources Information Center

    Arouca, Raquel Alexandra de Moura

    2013-01-01

    Reentry Shock had been studied through psychological symptoms and inter-relationship problems. Previous research also focused on quantitative data of post-experience questionnaires. This dissertation examines how reentry support programs help students during the reentry process and how participants integrate the study abroad experience into their…

  13. Adapting to Bad News: Lessons from the Harlem Parole Reentry Court

    ERIC Educational Resources Information Center

    Hamilton, Zachary K.

    2011-01-01

    The reentry court model was created to address the risks and needs of offenders returning to the community during the period immediately following release. While there is growing interest in reentry courts, research to date has been limited. This study utilized a quasi-experimental design, comparing reentry court participants with traditional…

  14. From the Classroom to the Community: Exploring the Role of Education during Incarceration and Reentry

    ERIC Educational Resources Information Center

    Brazzell, Diana; Crayton, Anna; Mukamal, Debbie A.; Solomon, Amy L.; Lindahl, Nicole

    2009-01-01

    Recognizing the pressing need to explore the issues surrounding education, incarceration, and reentry, the Prisoner Reentry Institute at John Jay College of Criminal Justice and the Urban Institute hosted the Reentry Roundtable on Education on March 31 and April 1, 2008, at John Jay College of Criminal Justice in New York City. The two-day…

  15. The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Stansbery, Eugene; Liou, Jer-chyi; Horstman, Matt; Stokeley, Christopher; Whitlock, David

    2007-01-01

    The intentional break-up of the Fengyun-1C spacecraft on 11 January 2007 via hypervelocity collision with a ballistic object created the most severe artificial debris cloud in Earth orbit since the beginning of space exploration. More than 900 debris on the order of 10 cm or greater in size have been identified by the U.S. Space Surveillance Network (SSN). The majority of these debris reside in long-lived orbits. The NASA Orbital Debris Program Office has conducted a thorough examination of the nature of the Fengyun-1C debris cloud, using SSN data for larger debris and special Haystack radar observations for smaller debris. These data have been compared with the NASA standard satellite break-up model for collisions, and the results are presented in this paper. The orbital longevity of the debris have also been evaluated for both small and large debris. The consequent long-term spatial density effects on the low Earth orbit (LEO) regime are then described. Finally, collision probabilities between the Fengyun-1C debris cloud and the resident space object population of 1 January 2007 have been calculated. The potential effect on the growth of the near-Earth satellite population is presented.

  16. Capillary breakup of discontinuously rate thickening suspensions.

    PubMed

    Zimoch, Pawel J; McKinley, Gareth H; Hosoi, A E

    2013-07-19

    Using discontinuously rate thickening suspensions (DRTS) as a model system, we show that beads-on-a-string morphologies can arise as a result of external viscous drag acting during capillary-driven breakup of a non-Newtonian fluid. To minimize the perturbative effect of gravity, we developed a new experimental test platform in which the filament is supported in a horizontal position at the surface of an immiscible oil bath. We show that the evolution of thin DRTS filaments during the capillary thinning process is well described by a set of one-dimensional slender filament equations. The strongly rate-dependent rheology of the test fluid and the aspect ratio of the filament couple to control the thinning dynamics and lead to a simple criterion describing the localized arrest of the capillary thinning process and the subsequent formation of complex, high aspect ratio beads-on-a-string structures. PMID:23909338

  17. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  18. Early breakup of Gondwana: constraints from global plate motion models

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Zahirovic, Sabin; Williams, Simon; Whittaker, Joanne; Gibbons, Ana; Muller, Dietmar; Brune, Sascha; Heine, Christian

    2015-04-01

    Supercontinent break-up and amalgamation is a fundamental Earth cycle, contributing to long-term sea-level fluctuations, species diversity and extinction events, long-term greenhouse-icehouse cycles and changes in the long-wavelength density structure of the mantle. The most recent and best-constrained example involves the fragmentation of Gondwana, starting with rifting between Africa/Madagascar and Antarctica in the Early Jurassic and ending with the separation of the Lord Howe microcontinental blocks east of Australia in the Late Cretaceous. Although the first order configuration of Gondwana within modern reconstructions appears similar to that first proposed by Wegener a century ago, recent studies utilising a wealth of new geophysical and geological data provide a much more detailed picture of relative plate motions both during rifting and subsequent seafloor spreading. We present our latest global plate motion model that includes extensive, new regional analyses. These include: South Atlantic rifting, which started at 150 Ma and propagated into cratonic Africa by 145 Ma (Heine et al., 2013); rifting and early seafloor spreading between Australia, India and Antarctica, which reconciles the fit between Broken Ridge-Kergulean Plateau and the eastern Tasman region (Whittaker et al., 2013); rifting of continental material from northeastern Gondwana and its accretion onto Eurasia and SE Asia including a new model of microcontinent formation and early seafloor spreading in the eastern Indian Ocean (Gibbons et al., 2012; 2013; in review; Williams et al., 2013; Zahirovic et al., 2014); and a new model for the isolation of Zealandia east of Australia, with rifting initiating at 100 Ma until the start of seafloor spreading in the Tasman Sea at ~85 Ma (Williams et al., in prep). Using these reconstructions within the open-source GPlates software, accompanied by a set of evolving plates and plate boundaries, we can explore the factors that govern the behavior of plate

  19. Probabilities of escape, re-entry, and orbit decay due to misdirected injection maneuvers

    NASA Astrophysics Data System (ADS)

    Longuski, James M.

    1992-04-01

    Whenever a space vehicle is injected from low earth orbit to high orbit or to escape, there is a small probability of misdirection. Once misdirection is assumed, then up to three major families of trajectories may result: escape, re-entry, or orbit decay. Analytic models of these trajectories provide contours on the injection sphere. Analytic integration of the areas between the contours gives the relative probability of each family occurring. The approximate analytic models are much faster in providing solutions than the numerical methods currently in use and have comparable accuracy. The new method provides a useful tool in the safety analysis of both single and multistage injection maneuvers. Recent applications have included analysis of the Galileo and the Ulysses injections into interplanetary trajectories.

  20. Trajectory optimization and guidance for a Hermes-type reentry vehicle

    NASA Astrophysics Data System (ADS)

    Jaensch, C.; Markl, A.

    Trajectory-optimization principles are applied to the reentry of a vehicle in a low-earth orbit, and a related guidance algorithm is developed. The approach calls for the substitution of linearization by on-line optimization for range control. The on-line technique, an extension of the Space Shuttle guidance algorithm, employs fully nonlinear dynamics and low parameterization for the velocity-dependent drag profile. A mathematical model for the aerothermodynamics and the thermal-protection-system heating model are developed, and the extensions of the Space Shuttle algorithm are listed. The method accounts for path constraints by including bounds for the parameters in the optimization algorithm, and the algorithm is used to derive trajectories that minimize the weight of thermal protection. The algorithm compares well with open-loop optimal trajectories for the same angle of attack, and when the angle of attack is an optimal control, the integrated heat flux can also be optimized.

  1. A real-time digital computer program for the simulation of automatic spacecraft reentries

    NASA Technical Reports Server (NTRS)

    Kaylor, J. T.; Powell, L. F.; Powell, R. W.

    1977-01-01

    The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.

  2. Inflatable re-Entry and Descent Technology - Results of the IRDT-2 Mission and Future Applications

    NASA Astrophysics Data System (ADS)

    Walther, S.

    2002-01-01

    This paper will present the results of the second IRDT flight, a mission which is planned for May 2002. The first testflight successfully demonstrated its performance in 2000. The Inflatable Re-entry and Descent Technology (IRDT), an innovative lightweight return technology, is designed to provide significant mass and cost savings compared to conventionally fixed heat shield and parachute systems for returning elements from space. This technology is highly attractive for a broad range of applications, e.g. return of small capsules, larger objects like ATV or launcher elements from an Earth orbit and may also be used for planetary missions. IRDT can be adapted to existing vehicles or be used as baseline for new vehicles. Potential future application scenarios, e.g. a Download System to return payload from the ISS, will also be described.

  3. Probabilistic analysis of the inadvertent reentry of the Cassini spacecraft's radioisotope thermoelectric generators.

    PubMed

    Frank, M V

    2000-04-01

    As part of the launch approval process, the Interagency Nuclear Safety Review Panel provides an independent safety assessment of space missions--such as the Cassini mission--that carry a significant amount of nuclear materials. This survey article describes potential accident scenarios that might lead to release of fuel from an accidental reentry during an Earth swingby maneuver, the probabilities of such scenarios, and their consequences. To illustrate the nature of calculations used in this area, examples are presented of probabilistic models to obtain both the probability of scenario events and the resultant source terms of such scenarios. Because of large extrapolations from the current knowledge base, the analysis emphasizes treatment of uncertainties.

  4. Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data

    SciTech Connect

    Fritts, D.C. ); Dingyi Wang ); Blanchard, R.C. )

    1993-03-15

    This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are interpreted in terms of gravity waves and tides and provide evidence of the importance of such motions well into the thermosphere. Height profiles of fractional density variance reveal that wave amplitudes increase at a rate consistent with observations at lower levels up to [approximately]90 km. The rate of amplitude growth decreases at greater heights, however, and appears to cease above [approximately]110 km. Wave amplitudes are nevertheless large at these heights and suggest that gravity waves may play an important role in forcing of the lower thermosphere.

  5. Simulation for Prediction of Entry Article Demise (SPEAD): an Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a probable offnominal suborbital/orbital atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. This report discusses the capabilities, modeling, and validation of the SPEAD analysis tool. SPEAD is applicable for Earth or Mars, with the option for 3 or 6 degrees-of-freedom (DOF) trajectory propagation. The atmosphere and aerodynamics data are supplied in tables, for linear interpolation of up to 4 independent variables. The gravitation model can include up to 20 zonal harmonic coefficients. The modeling of a single motor is available and can be adapted to multiple motors. For thermal analysis, the aerodynamic radiative and free-molecular/continuum convective heating, black-body radiative cooling, conductive heat transfer between adjacent nodes, and node ablation are modeled. In a 6- DOF simulation, the local convective heating on a node is a function of Mach, angle-ofattack, and sideslip angle, and is dependent on 1) the location of the node in the spacecraft and its orientation to the flow modeled by an exposure factor, and 2) the geometries of the spacecraft and the node modeled by a heating factor and convective area. Node failure is evaluated using criteria based on melting temperature, reference heat load, g-load, or a combination of the above. The failure of a liquid propellant tank is evaluated based on burnout flux from nucleate boiling or excess internal pressure. Following a component failure, updates are made as needed to the spacecraft mass and aerodynamic properties, nodal exposure and heating factors, and nodal convective and conductive areas. This allows

  6. 38 CFR 21.8022 - Entry and reentry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reentry. (a) Date of program entry. VA may not enter a child into a vocational training program or provide an evaluation or any training, services, or assistance under this subpart before the date VA first...) VOCATIONAL REHABILITATION AND EDUCATION Vocational Training and Rehabilitation for Certain Children...

  7. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  8. 40 CFR 161.390 - Reentry protection data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... crop Nonfood Greenhouse Food crop Nonfood Forestry Domestic outdoor Indoor Test substance Data to... oncogenic effects or other adverse effects as evidenced by subchronic, chronic, and reproduction studies... could cause adverse effects on persons entering treated sites. In the last situation, reentry...

  9. STS-107 Debris Characterization Using Re-entry Imaging

    NASA Technical Reports Server (NTRS)

    Raiche, George A.

    2009-01-01

    Analysis of amateur video of the early reentry phases of the Columbia accident is discussed. With poor video quality and little theoretical guidance, the analysis team estimated mass and acceleration ranges for the debris shedding events observed in the video. Camera calibration and optical performance issues are also described.

  10. Planned Flight of the Terrestrial HIAD Orbital Reentry (THOR)

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; Hughes, Stephen; DiNonno, John; Bodkin, Richard; White, Joseph; DelCorso, Joseph; Cheatwood, F. M.

    2014-01-01

    The Terrestrial HIAD Orbital Reentry (THOR) is planned for flight in 2016 as a secondary payload on an Orbital Sciences commercial resupply mission to the International Space Station. THOR will launch with its Hypersonic Inflatable Aerodynamic Decelerator (HIAD) stowed as a small cylinder between the second stage motor and the launch vehicle fairing. Once the Cygnus cargo vehicle has separated from the second stage, THOR will likewise separate, autonomously re-orient itself, perform a deorbit burn, then inflate the HIAD to a 3.5m diameter cone before atmospheric interface. THOR is a follow-on mission to the IRVE-3 flight test of 2012. The high energy of orbital reentry will allow THOR to demonstrate the performance of its improved, second-generation inflatable structure and flexible TPS materials, in a more energetic entry environment than previous suborbital test flights.This paper discusses the sequence of events planned to occur as part of the THOR mission. Specific topics will include the THOR mission concept, reentry vehicle design for the expected flight environment, the on-board sensors that will allow quantification of vehicle performance, and how we intend to retrieve the flight data from a reentry vehicle splashing down in international waters.

  11. Estimates of nitric oxide production for lifting spacecraft reentry

    NASA Technical Reports Server (NTRS)

    Park, C.

    1971-01-01

    The amount of nitric oxide which may be produced by heating of air during an atmospheric reentry of a lifting spacecraft is estimated by three different methods. Two assume nitrogen fixation by the process of sudden freezing, and the third is a computer calculation using chemical rate equations.

  12. Reusable Reentry Satellite (RRS): Thermal control trade study

    NASA Technical Reports Server (NTRS)

    Wallace, Clark

    1990-01-01

    The design and assessment work performed in defining the on-orbit Thermal Control Subsystem (TCS) requirements for the Reusable Reentry Satellite (RRS) is discussed. Specifically, it describes the hardware and design measures necessary for maintaining the Payload Module (PM) Environmental Control Life Support System (ECLSS) heat exchanger, the hydrazine propellant, and PM water supply within their required temperature limits.

  13. Study Abroad Reentry: Behavior, Affect, and Cultural Distance

    ERIC Educational Resources Information Center

    Gray, Kelsey M.; Savicki, Victor

    2015-01-01

    Reentry has become a more focused aspect of study abroad in recent years as the field has moved away from a laissez-faire approach and toward an emphasis on intervention and support of study abroad students in their efforts to make sense of their experiences (Vande Berg, Paige & Lou, 2012). Although not a new concept (Brathurst & La Brack,…

  14. Reentry Issues upon Returning from Study Abroad Programs

    ERIC Educational Resources Information Center

    Wielkiewicz, Richard M.; Turkowski, Laura W.

    2010-01-01

    The impact of returning from studying abroad was surveyed in 669 college students. Students who studied abroad scored significantly higher on a Reentry Shock scale, reflecting skepticism toward U.S. culture, than those who did not. They were also more likely to consume alcohol. Study abroad had no detectable influence on students' romantic…

  15. 38 CFR 21.8022 - Entry and reentry.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Entry and reentry. 21.8022 Section 21.8022 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VOCATIONAL REHABILITATION AND EDUCATION Vocational Training and Rehabilitation for Certain Children of Vietnam Veterans and Veterans with...

  16. Young Men's Reentry after Incarceration: A Developmental Paradox

    ERIC Educational Resources Information Center

    Arditti, Joyce A.; Parkman, Tiffaney

    2011-01-01

    We apply a life course perspective to study young men's transition to adulthood within the context of their return to family after a period of incarceration. Our phenomenological analysis was based on 9 in-depth, semi-structured interviews with formerly incarcerated men between the age of 18 and 24. Our findings revealed that reentry was a…

  17. Kuder Occupational Interest Survey Profiles of Reentry Women

    ERIC Educational Resources Information Center

    Tittle, Carol K.; Denker, Elenor R.

    1977-01-01

    The Kuder Occupational Interest Survey was administered to 202 women considering reentry into education. It was found that the KOIS does differentiate between women and individual interests are reflected for this sample of women. It was concluded that examination of male-normed scales is very useful in counseling. (Author)

  18. A School Reentry Program for Chronically Ill Children.

    ERIC Educational Resources Information Center

    Worchel-Prevatt, Frances F.; Heffer, Robert W.; Prevatt, Bruce C.; Miner, Jennifer; Young-Saleme, Tammi; Horgan, Daniel; Lopez, Molly A.; Frankel, Lawrence; Rae, William A.

    1998-01-01

    Describes a school reintegration program aimed at overcoming the numerous psychological, physical, environmental, and family-based deterrents to school reentry for chronically ill children. The program uses a systems approach to children's mental health with an emphasis on multiple aspects of the child's environment (i.e., family, medical…

  19. Thermal protection of reentry vehicles by actively cooled nosetips

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Hidahl, J. W.

    1980-01-01

    Analytical modeling efforts and clear-air ground test results of a transportation-cooled nosetips (TCNT) design are presented. The discrete water injection platelet TCNT described was conceived and created to achieve the performance requirements for severe reentry vehicle trajectories. Thermal performance computer modeling techniques, combing both local heat blockage and boundary layer recovery enthalpy reduction are outlined.

  20. Calibration of Radar Based Re-Entry Predictions

    NASA Astrophysics Data System (ADS)

    Lemmens, S.; Bastida Virgili, B.; Flohrer, T.; Gini, F.; Krag, H.; Steiger, C.

    2015-03-01

    The availability of GPS observations via the telemetry during GOCE’s (Gravity Field and Steady-State Ocean Circulation Explorer) entire re-entry campaign enabled the generation of high quality orbit products which can be used as input to re-entry predictions. These high precision orbits can be used as reference to assess the quality of orbits generated from other sources. Here we verify the accuracy of orbits based on radar tracking data, obtained by dedicated observations with the Tracking & Imaging Radar system from the Fraunhofer High Frequency Physics and Radar Techniques institute, with respect to the a post-processed GPS based reference orbit. This leads to time-depended quantification of the orbit determination uncertainties on the re-entry predictions. Furthermore, the ballistic coefficient determined by the orbit determination and its time dependent evolution can be used to a priori estimate the attitude behaviour of GOCE, which can be compared to the telemetry. The attitude behaviour can be analysed by the use of inverse synthetic aperture radar (ISAR) images, also obtained by dedicated observation by TIRA. The effect of adding this knowledge on the attitude evolution to the re-entry predictions is evaluated.

  1. Motion and Heating During Atmosphere Reentry of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Wong, Thomas J.; Goodwin, Glen; Slye, Robert E.

    1960-01-01

    The results of an analysis of the motion and heating during atmospheric reentry of manned space vehicles has shown the following: 1. Flight-corridor depths which allow reentry in a single pass decrease rapidly as the reentry speed increases if the maximum deceleration is limited to 10 g. 2. Use of aerodynamic lift can result in a three-to five fold increase in corridor depth over that available to a ballistic vehicle for the same deceleration limits. 3. Use of aerodynamic lift to widen these reentry corridors causes a heating penalty which becomes severe for values of the lift-drag ratio greater than unity for constant lift-drag entry. 4. In the region of most intense convective heating the inviscid flow is generally in chemical equilibrium but the boundary-layer flows are out of equilibrium. Heating rates for the nonequilibrium boundary layer are generally lower than for the corresponding equilibrium case. 5. Radiative heating from the hot gas trapped between the shock wave and the body stagnation region may be as severe as the convective heating and unfortunately occurs at approximately the same time in the flight.

  2. Childhood cancer survivors' school (re)entry: Australian parents' perceptions.

    PubMed

    McLoone, J K; Wakefield, C E; Cohn, R J

    2013-07-01

    Starting or returning to school after intense medical treatment can be academically and socially challenging for childhood cancer survivors. This study aimed to evaluate the school (re)entry experience of children who had recently completed cancer treatment. Forty-two semi-structured telephone interviews were conducted to explore parents' perceptions of their child's (re)entry to school after completing treatment (23 mothers, 19 fathers, parent mean age 39.5 years; child mean age 7.76 years). Interviews were analysed using the framework of Miles and Huberman and emergent themes were organised using QSR NVivo8. Parents closely monitored their child's school (re)entry and fostered close relationships with their child's teacher to ensure swift communication of concerns should they arise. The most commonly reported difficulty related to aspects of peer socialisation; survivors either displayed a limited understanding of social rules such as turn taking, or related more to older children or teachers relative to their peers. Additionally, parents placed a strong emphasis on their child's overall personal development, above academic achievement alone. Improved parent, clinician and teacher awareness of the importance of continued peer socialisation during the treatment period is recommended in order to limit the ongoing ramifications this may have on school (re)entry post-treatment completion.

  3. Controlled Re-Entry of the H-IIB Launch Vehicle Upper Stage with the Use of the Re-Entry Safety System

    NASA Astrophysics Data System (ADS)

    Ida, K.; Mori, S.; Sakamoto, K.; Ikeda, S.; Sato, T.; Kawabata, H.

    2012-01-01

    On January 22, 2011, during flight No. 2 of the H-IIB launch vehicle, the Japan Aerospace Exploration Agency (JAXA) succeeded in performing a controlled re-entry experiment for the upper stage. This is the first time this has been done for the upper stage of a Japanese launch vehicle. For flight No. 1, the upper stage performed a random re- entry. With a view to avoiding debris generation and debris-related impact accidents, JAXA resolved to develop a more refined re-entry process. Consequently, the "Re-entry Safety System" was developed in order to achieve controlled re-entry with certainty. After one orbit, while executing controlled re-entry, the Re-entry Safety System monitored the upper stage's function and orbit. Subsequently, a command disengaging the lockout of the deorbit manoeuvre was issued from ground and re-entry commenced. The details of the Re-entry Safety System, which facilitated the controlled re-entry, are described herein.

  4. Breakup of a liquid jet in supersonic crossflow

    NASA Technical Reports Server (NTRS)

    Li, H.-S.; Karagozian, A. R.

    1991-01-01

    A theoretical study of the breakup of a circular liquid jet injected transversely into a supersonic air stream is conducted. Two different criteria for breakup are explored in the context of a previously developed model for the behavior of liquid jets in compressible crossflow (Heister et al., 1989). The local sonic point criterion first proposed by Schetz, et al. (1980) is explored, in addition to an auxiliary criterion put forth by Clark (1964) based on surface-tension stability. It is found that the local sonic point appears to provide a more reasonable approximation to the actual location of jet breakup, based on comparisons with limited experimental data.

  5. The Role of Prevention in Promoting Continuity of Health Care in Prisoner Reentry Initiatives

    PubMed Central

    Lanza, A. Stephen; Dyson, William; Gordon, Derrick M.

    2013-01-01

    Most incarcerated individuals will return to the community, and their successful reentry requires consideration of their health and how their health will affect their families and communities. We propose the use of a prevention science framework that integrates universal, selective, and indicated strategies to facilitate the successful reentry of men released from prison. Understanding how health risks and disparities affect the transition from prison to the community will enhance reentry intervention efforts. To explore the application of the prevention rubric, we evaluated a community-based prisoner reentry initiative. The findings challenge all involved in reentry initiatives to reconceptualize prisoner reentry from a program model to a prevention model that considers multilevel risks to and facilitators of successful reentry. PMID:23488516

  6. Ground Observation of the Hayabusa Reentry: The Third Opportunity of Man-made Fireball from Interplanetary Orbit

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamamoto, M.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.

    2010-12-01

    After 7 years and 6,000,000,000 km of challenging cruise in the solar system, the Hayabusa did come back to the Earth on June 13, 2010. The Hayabusa, the first sample-return explorer to NEA, landed on 25243 Itokawa in 2005, capturing surface particles on the S-type asteroid into its sample return capsule (SRC). Following to the reentries of the Genesis in 2004 and the Stardust in 2006, the return of the Hayabusa SRC was the third direct reentry event from the interplanetary transfer orbit to the Earth at a velocity of over 11.2 km/s. In addition, it was world first case of direct reentry of spacecraft from interplanetary transfer orbit. After the successful resumption of the SRC, it was carefully sent to ISAS/JAXA, and at present, small particles expected to be the first sample-return materials from the minor planet are carefully investigated. In order to obtain precise trajectory information to ensure the quick procedure for the Hayabusa SRC resumption team, we observed the Hayabusa SRC reentry by optically in Australian night sky. High-resolution imaging and spectroscopy were carried out with several high-sensitivity instruments to investigate thermal-protection process of thermal protection ablator (TPA) as well as interaction process between SRC surface materials and upper atmospheric neutral and plasma components. Moreover, shockwaves were observed by infrasound/seismic sensor arrays on ground to investigate reentry related shockwaves as well as air-to-ground coupling process at the extremely rare opportunity. With respect to nominal trajectory of the Hayabusa SRC reentry, four optical stations were set inside and near the Woomera Prohibited Area, Australia, targeting on peak-heat and/or front-heat profiles of ablating TPA for engineering aspect. Infrasound and seismic sensors were also deployed as three arrayed stations and three single stations to realize direction findings of sonic boom type shockwaves from the SRC and spacecraft and point source type

  7. Analysis of the Low and List Drop-Breakup Formulation.

    NASA Astrophysics Data System (ADS)

    Brown, Philip S., Jr.

    1986-03-01

    An analysis of the Low and List drop-breakup formulation has uncovered several computational problems that arise in calculating both the fragment distribution function and the Bleck expansion coefficients that appear in the discrete coalcacence/breakup equation. Special procedures have been developed to deal effectively with these problems. The discrete coalescence/breakup equation has been solved using the Low and List breakup formulation and the earlier List and Gillespie formulation. Comparison shows that the Low and List model solutions approach equilibrium more slowly than do the earlier model solutions; moreover, the Low and List equilibrium drop spectra exhibit a bimodality in the small-drop end of the spectrum. The longer time constants associated with the Low and List equations ease somewhat the severe computational stability problem associated with List and Gillespie equations.

  8. The Lockerbie disaster and other aircraft breakups in midair.

    PubMed

    Eckert, W G

    1990-06-01

    This is a review of the experiences and activities of various specialty groups that constituted the organization developed to investigate the Lockerbie air disaster. Circumstances surrounding other aircraft midair breakup crashes are also discussed.

  9. Coincident UVI and Wind Observations of Pseudo-Breakups

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.; Lin, R. P.

    1998-01-01

    Using images taken by the Ultraviolet Imager (UVI) onboard the Polar spacecraft, we identify periods of pseudo-breakup activity coincident with perigee passes of the WIND spacecraft through the magnetotail. Previous studies have shown that from both observations on the ground and in the magnetotail there is very little difference phenomenologically between substorm onset and pseudo-breakups except for the degree of localization and the absence of global expansion. This raises the question of what prevents a pseudo-breakup from expanding globally. For the time intervals studied, we find a high correlation between pseudo-breakups and short-lived particle flux enhancements in the magnetotail. The velocity distribution of the plasma during some of these flux enhancements are indicative of bursty bulk flows.

  10. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles

    NASA Astrophysics Data System (ADS)

    Cawood, Peter A.; Strachan, Robin A.; Pisarevsky, Sergei A.; Gladkochub, Dmitry P.; Murphy, J. Brendan

    2016-09-01

    Periodic assembly and dispersal of continental fragments has been a characteristic of the solid Earth for much of its history. Geodynamic drivers of this cyclic activity are inferred to be either top-down processes related to near surface lithospheric stresses at plate boundaries or bottom-up processes related to mantle convection and, in particular, mantle plumes, or some combination of the two. Analysis of the geological history of Rodinian crustal blocks suggests that internal rifting and breakup of the supercontinent were linked to the initiation of subduction and development of accretionary orogens around its periphery. Thus, breakup was a top-down instigated process. The locus of convergence was initially around north-eastern and northern Laurentia in the early Neoproterozoic before extending to outboard of Amazonia and Africa, including Avalonia-Cadomia, and arcs outboard of Siberia and eastern to northern Baltica in the mid-Neoproterozoic (∼760 Ma). The duration of subduction around the periphery of Rodinia coincides with the interval of lithospheric extension within the supercontinent, including the opening of the proto-Pacific at ca. 760 Ma and the commencement of rifting in east Laurentia. Final development of passive margin successions around Laurentia, Baltica and Siberia was not completed until the late Neoproterozoic to early Paleozoic (ca. 570-530 Ma), which corresponds with the termination of convergent plate interactions that gave rise to Gondwana and the consequent relocation of subduction zones to the periphery of this supercontinent. The temporal link between external subduction and internal extension suggests that breakup was initiated by a top-down process driven by accretionary tectonics along the periphery of the supercontinent. Plume-related magmatism may be present at specific times and in specific places during breakup but is not the prime driving force. Comparison of the Rodinia record of continental assembly and dispersal with that

  11. Breakup and coalescence characteristics of a hollow cone swirling spray

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Lee, Joshua D.; Basu, Saptarshi; Kumar, Ranganathan

    2012-12-01

    This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data.

  12. The breakup of a liquid jet at microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Honohan, Andrew

    1994-01-01

    The parameter ranges in which a viscous liquid jet emanating into a viscous gas will breakup in three different modes are calculated. The three modes of jet breakup are: Rayleigh mode of capillary pinching, Taylor mode of atomization, and the absolute instability mode. The apparatus designed for elucidating these three different modes of instability is described. Some preliminary results of the ongoing ground based experiments will be reported.

  13. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  14. Interference between vibrational modes in bubble break-up

    NASA Astrophysics Data System (ADS)

    Oberdick, Samuel D.; Lai, Lipeng; Zhang, Wendy W.

    2010-11-01

    Recent works reveal that the dynamics near the break-up of an underwater bubble does not evolve into a singular, universal form independent of initial conditions. Instead, any initial azimuthal distortion excites vibrations in the neck shape that dominate the final break-up. Here we investigate how the final break-up is affected by the presence of several different vibrational modes. Approximating the Hamiltonian evolution of the interface as integrable by treating the amplitudes and the phases of the vibrations as action-angle variables gives a simple model of the break-up dynamics. We find that the outcomes of the model are in reasonable agreement with simulation results for most initial distortions. The cross-section of the bubble neck shrinks radially while vibrating. The first break-up occurs when two opposing sides of the interface osculate, creating a smooth contact. One consequence of this vibration-induced break-up is that there exists narrow intervals of initial distortions that evolve into "near-miss" events. In such an event, the two sides of the vibrating interface nearly osculate but pull back just in time. For such initial conditions, the simulated evolution deviates significantly from the model prediction. The action-angle variable approximation also fails.

  15. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor 4th; Meck, Janice V.

    2003-01-01

    BACKGROUND: Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. METHODS: We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. RESULTS: Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). CONCLUSIONS: The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  16. Analysis of Damped Oscillations during Reentry: A New Approach to Evaluate Cardiac Restitution☆

    PubMed Central

    Munteanu, Adelina; Kondratyev, Aleksandar A.; Kucera, Jan P.

    2008-01-01

    Abstract Reentry is a mechanism underlying numerous cardiac arrhythmias. During reentry, head-tail interactions of the action potential can cause cycle length (CL) oscillations and affect the stability of reentry. We developed a method based on a difference-delay equation to determine the slopes of the action potential duration and conduction velocity restitution functions, known to be major determinants of reentrant arrhythmogenesis, from the spatial period P and the decay length D of damped CL oscillations. Using this approach, we analyzed CL oscillations after the induction of reentry and the resetting of reentry with electrical stimuli in rings of cultured neonatal rat ventricular myocytes grown on microelectrode arrays and in corresponding simulations with the Luo-Rudy model. In the experiments, P was larger and D was smaller after resetting impulses compared to the induction of reentry, indicating that reentry became more stable. Both restitution slopes were smaller. Consistent with the experimental findings, resetting of simulated reentry caused oscillations with gradually increasing P, decreasing D, and decreasing restitution slopes. However, these parameters remained constant when ion concentrations were clamped, revealing that intracellular ion accumulation stabilizes reentry. Thus, the analysis of CL oscillations during reentry opens new perspectives to gain quantitative insight into action potential restitution. PMID:17921218

  17. Inflatable Re-entry Vehicle Experiment (IRVE-4) Overview

    NASA Technical Reports Server (NTRS)

    Litton, Daniel K.; Bose, David M.; Cheatwood, F. McNeil; Hughes, Stephen; Wright, Henry S.; Lindell, Michael C.; Derry, Stephen D.; Olds, Aaron

    2011-01-01

    The suite of Inflatable Re-Entry Vehicle Experiments (IRVE) is designed to further our knowledge and understanding of Hypersonic Inflatable Aerodynamic Decelerators (HIADs). Before infusion into a future mission, three challenges need to be addressed: surviving the heat pulse during re-entry, demonstrating system performance at relevant scales, and demonstrating controllability in the atmosphere. IRVE-4 will contribute to a better understanding of controllability by characterizing how a HIAD responds to a set of controlled inputs. The ability to control a HIAD is vital for missions that are g-limited, require precision targeting and guidance for aerocapture or entry, descent, and landing. The IRVE-4 flight test will focus on taking a first look into controlling a HIAD. This paper will give an overview of the IRVE-4 mission including the control response portion of the flight test sequence, and will provide a review of the mission s development.

  18. Reentry Programming for High-Risk Offenders: Insights From Participants.

    PubMed

    Bender, Kimberly A; Cobbina, Jennifer E; McGarrell, Edmund F

    2016-10-01

    The mass increase in imprisonment of the last two decades has led to an increasing number of adults released from prison. Scholarly accounts of prisoner reentry have demonstrated that incarcerated individuals face barriers on release from prison and that intervention programs are necessary to assist their transition to the community. Here, we build from the insights of previous research by examining how high-risk offenders perceive a reentry program. Using a qualitative approach, our findings suggest that procedural and substantive justice affect their satisfaction and involvement with the program. This study highlights the importance of providing employment opportunities, social support, and fair and respectful delivery of services to assist incarcerated individuals transitioning to the community.

  19. Upper atmospheric disturbance effects on reentry satellite landing accuracy

    NASA Astrophysics Data System (ADS)

    Seyler, T. A.; Florence, D. E.

    1992-08-01

    Upper atmosphere disturbances can seriously affect the landing accuracy of a reentry satellite, causing it to miss its target by possibly hundreds of miles. Specifically, geomagnetic storms typically can cause significant density variation in the upper atmosphere, as much as double, for periods of up to a week. The effect of this density variation on groundtrack synchronization for the terminal recovery phase of the orbital mission is examined. Fuel synchronization requirements for a nominal life sciences mission vehicle, the RRS (Reusable Reentry Satellite), are determined for a case of moderately high geomagnetic activity occurring for seven days before landing. A simple strategy for making the necesary corrections and the associated propellant expenditure are presented.

  20. Impact of space shuttle orbiter reentry on mesospheric NOx.

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Cicerone, R. J.; Nagy, A. F.

    1973-01-01

    Shuttle orbiter reentry will produce large amounts of nitric oxide (NO) through shock heating at mesospheric altitudes. The effects of this reentry are modeled by considering an impulsive source of NO in time-dependent equations including photochemistry and transport. The model uses an odd-nitrogen approach similar to Strobel's. Parameterized flux boundary conditions are imposed at the mesopause and stratopause and concentrations of the odd nitrogen species (NO, NO2, NO+, N(4S) and N(2D) are found numerically by a finite difference scheme. A localized disturbance can last many hours, depending on the effectiveness of eddy transport. Although the model is one-dimensional, effects of horizontal transport are also included approximately.

  1. Analysis of catalysis effects for orbital reentry vehicles

    NASA Astrophysics Data System (ADS)

    Bisceglia, Stefano; Grasso, Francesco; Ranuzzi, Giuliano

    2004-11-01

    An analisys of the hypersonic flow in thermochemical nonequilibrium around the forebody of the Orbital Reentry Experiment (OREX) is presented for typical reentry conditions. The numerical approach relies on a k-ɛ turbulence model that accounts for the coupling of turbulence with chemistry. The numerical fluxes are computed with a 2nd order TVD scheme incorporating finite-rate chemistry with costant wall temperature and finite-rate wall catalysis by means of Scott's model. The computed flow fields are analyzed by considering the most relevant flow properties and comparing grid converged solutions with stagnation heat flux data. In order to investigate the effect of molecule production due to recombination and its contribution to catalytic process, numerical studies with both fully catalytic and non-catalytic wall boundary conditions have been carried out.

  2. Design of a recovery system for a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  3. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size

  4. Comparison of laser gyro IMU configurations for reentry systems

    NASA Astrophysics Data System (ADS)

    Majure, Robert G.; Robinson, Thomas A.

    An evaluation is made of future system accuracy requirements, physical criteria, and environmental constraints for ring laser gyro systems that are to be used in reentry vehicles. Attention is given to the configurational issues of inertial measurement unit (IMU) orientation in the vehicle, size and weight reduction, ring laser gyro selection, and tradeoffs of potential integration options for the IMU and the processor. A minimization of external interfaces is accomplished by IMU/data processor integration.

  5. A study on method of reentry guidance for manned spacecraft

    NASA Astrophysics Data System (ADS)

    Zhao, Hanyuan; Xie, Xiaoquan

    In this paper, the methods of reentry guidance for manned spacecraft are chiefly studied. To the longitudinal guidance law, the method of choosing feedback gains coefficients k1, k2, and k3 is given. As for the lateral guidance law, the bang-bang control method similar to the 'funnel' is discussed. Calculation indicates that the guidance precision of these means is satisfied with the index of demand.

  6. Reentry control to a drag vs. energy profile

    NASA Astrophysics Data System (ADS)

    Roenneke, Axel J.; Markl, Abert

    We present trajectory control for a winged re-entry vehicle based on drag versus energy guidance. A linear control law is derived to track the drag reference guaranteeing satisfactory drag error dynamics. For the controller design, the vehicle's motion in the vertical plane is transformed into a drag state space, and the transformed system is linearized along the drag reference. Flight simulation results show that the control system operates effectively while subject to considerable atmospheric variations.

  7. Aerodynamic characteristics of reentry vehicles at supersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.; Dyad'kin, A. A.; Kazakov, M. I.; Krylov, A. N.; Skorovarov, A. Yu.

    2015-09-01

    Models of promising reentry vehicles, experimental equipment, and test program are described. The method used to determine the total aerodynamic characteristics of these models on the AB-313 mechanical balance in the T-313 supersonic wind tunnel and the method used for simulations are presented. The aerodynamic coefficients of the examined objects in wide ranges of Mach numbers and angles of attack are obtained. The experimental data are compared with the results of simulations.

  8. Ares I-X Separation and Reentry Trajectory Analyses

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Starr, Brett R.

    2011-01-01

    The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.

  9. The concept of reentry in the addicted anesthesia provider.

    PubMed

    Valdes, Jorge A

    2014-04-01

    Substance abuse among healthcare providers is a serious issue affecting patient care and patient outcomes. Substance abuse among anesthesia providers is of extreme concern because of the type of drugs and easy access providers are granted. Impaired anesthesia providers jeopardize not only their own safety but also the safety of their patients. Accidental death of either the healthcare provider or the patient is often the unfortunate first sign of addiction among anesthesia providers. Most states, in the United States offer treatment programs for anesthesia providers as an option to disciplinary action, and on completion of the Substance abuse is the primary occupational program, the provider is allowed to reenter practice. Successful reentry is sometimes rare, and providers are plagued with the stigma of abuse, shame, and a high incidence of relapse. This article is an analysis of the concept of reentry into anesthesia practice, using Walker and Avant's model of concept analysis. Tenets of successful reentry are discussed. Implications for further concept analysis, practice, and research are presented. PMID:24902450

  10. Displacements of Metallic Thermal Protection System Panels During Reentry

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.

    2006-01-01

    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  11. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  12. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is less than 13 km/s (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/cm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to greater than 20 km/s; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current

  13. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heat shields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kWcm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses.With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  14. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  15. Breakup of Droplets in an Accelerating Gas Flow

    NASA Technical Reports Server (NTRS)

    Dickerson, R. A.; Coultas, T. A.

    1966-01-01

    A study of droplet breakup phenomena by an accelerating gas flow is described. The phenomena are similar to what propellant droplets experience when exposed to accelerating combustion gas flow in a rocket engine combustion zone. Groups of several dozen droplets in the 100-10 750-micron-diameter range were injected into a flowing inert gas in a transparent rectangular nozzle. Motion photography of the behavior of the droplets at various locations in the accelerating gas flow has supplied quantitative and qualitative data on the breakup phenomena which occur under conditions similar to those found in large rocket engine combustors. A blowgun injection device, used to inject very small amounts of liquid at velocities of several hundred feet per second into a moving gas stream, is described. The injection device was used to inject small amounts of liquid RP-1 and water into the gas stream at a velocity essentially equal to the gas velocity where the group of droplets was allowed to stabilize its formation in a constant area section before entering the convergent section of the transparent nozzle. Favorable comparison with the work of previous investigators who have used nonaccelerating gas flow is found with the data obtained from this study with accelerating gas flow. The criterion for the conditions of minimum severity required to produce shear-type droplet breakup in an accelerating gas flow is found to agree well with the criterion previously established at Rocketdyne for breakup in nonaccelerating flow. An extension of the theory of capillary surface wave effects during droplet breakup is also presented. Capillary surface waves propagating in the surface of the droplet, according to classical hydrodynamical laws, are considered. The waves propagate tangentially over the surface of the droplet from the forward stagnation point to the major diameter. Consideration of the effects of relative gas velocity on the amplitude growth of these waves allows conclusions to be

  16. An Empirically Based Shaped Charge Jet Break-Up Model

    NASA Astrophysics Data System (ADS)

    Baker, Ernest; Pham, James; Vuong, Tan

    2013-06-01

    This paper discusses an empirically based shaped charge jet break-up model based around Walsh's breakup theory and provides significant experimental confirmation over a broad range of velocity gradients. The parameters which affect jet length and breakup times are fairly well known, but there is some controversy over the exact nature of the dependencies. Walsh theorized that the dependence of jet length would take a particular form, based on his determination of a dimensionless parameter for the problem and numerical experiments in which initial perturbation strengths were varied. Walsh did not present comparisons with experimental results. Chou has presented a variety of different jet break-up models with some data comparisons. Mostert [3] has suggested that breakup time is proportional to (Δm/Δv) 1/3. It is shown here that the parameter (Δm/Δv)1/2 or (dm/dv)1/3, closely related to Walsh's dimensionless parameter, whose values were obtained from either experiments or simulations correlates quite well with jet breakup times for a very wide variety of shaped charge devices. The values of Δm and Δv are respectively the jet mass and the velocity difference of the portion of jet in question. For a typical shaped charge Δm/Δv is essentially invariant with respect to time. In this paper, we present the mathematical basis for an empirically based break-up model with a similar basis to Walsh and Mostert, as well as supporting empirical data for a broad range of shaped charge geometries.

  17. Middle-high latitude N2O distributions related to the arctic vortex breakup

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Zou, H.; Gao, Y. Q.

    2006-03-01

    The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (K,,) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and K,, after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.

  18. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Li, Wei-Feng; Xu, Jian-Liang

    2010-11-01

    To investigate the effect of Rayleigh-Taylor wave number in the region of maximum cross stream dimension (NRT) on drop breakup morphology, the breakup properties of accelerating low viscosity liquid drops (water and ethanol drops, diameter=1.2-6.6 mm, Weber number=10-80) were investigated using high-speed digital photography. The results of morphological analysis show a good correlation of the observed breakup type with NRT; bag breakup occurred when NRT was 1/√3 -1, bag-stamen breakup at 1-2, and dual-bag breakup at 2-3. The number of nodes in bag breakup, bag-stamen breakup, and dual-bag breakup all increased with Weber number. The experimental results are consistent with the model estimates and in good agreement with those reported in the literature.

  19. Sonic boom measurement test plan for Space Shuttle STS-3 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1982-01-01

    The lateral area from the reentry ground track affected by sonic boom overpressure levels is determined. Four data acquisition stations are deployed laterally to the STS-3 reentry flight track. These stations provide six intermediate band FM channels of sonic boom data, universal time synchronization, and voice annotation. All measurements are correlated with the vehicle reentry flight track information along with atmospheric and vehicle operation conditions.

  20. A Fragment-Cloud Approach for Modeling Atmospheric Breakup of Asteroids with Varied Internal Structures

    NASA Astrophysics Data System (ADS)

    Wheeler, Lorien; Mathias, Donovan; NASA Engineering Risk Assessment Team, NASA Asteroid Threat Assessment Project

    2016-10-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, an analytic asteroid fragmentation model has been developed to model the atmospheric breakup and resulting energy deposition of asteroids with a range of internal structures. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, and the size-strength scaling used to increase the robustness of smaller fragments. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, or can be defined as a monolith with an outer regolith layer. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  1. Drop breakup and deformation in sudden onset strong flows

    NASA Astrophysics Data System (ADS)

    Marks, Charles Raphael

    This work characterizes the deformation and breakup of a single drop subjected to a sudden onset shear flow. The drop is immersed in a second fluid (the matrix) with which it is immiscible. A cylindrical couette device is used to create a flow field which, in the absence of the drop, would constitute a close approximation of simple shear flow. The magnitude of the imposed shear rate was greater than that which would be necessary to just break the drop. The experiments conducted were limited to matrix fluid viscosities above 7Pa˙ s and shear rates below 15/s, ensuring that the flows considered were inertialess. The matrix fluid was a corn syrup solution. The drop fluids were polybutadiene, paraffin oil and silicone oil, leading to a range of interfacial tensions. At the shear rates used in these experiments the fluids used Newtonian. Viscosity ratios (drop/matrix) ranging from 0.01 to 1 were considered. Two breakup mechanisms were observed to contribute to the dispersion of the original drop. In all cases elongative end pinching, defined by this study, caused the ends of a stretching drop to break off and form daughter drops. Breakup due to elongative end pinching was always the first breakup observed. The daughter drops formed by elongative end pinching were always the largest daughter drops formed. In cases when the experimental conditions were sufficiently stronger than the critical conditions (needed to just barely break up the drop), a second type of breakup, capillary wave breakup, was also observed. Measurement of the characteristic time scales and length scales were made of each type of breakup. The lengths (a) were found to scale as capillary numbers: Ca=a mg/s. The times (t) were found to scale as strains: s=t g. A qualitative explanation for the capillary number scaling is presented and quantitatively compared to predictions based on small deformation analysis. Additionally the daughter drop size distributions resulting from drop breakup is characterized

  2. Selective breakup of lipid vesicles under acoustic microstreaming flow

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Garbin, Valeria

    2014-11-01

    The dynamics of lipid vesicles under small deformation in simple shear flow is well characterized: complex behaviors such as tumbling, breathing, and tank-treading are observed depending on the viscosity contrast between inner and outer fluid, vesicle excess area, membrane viscosity, and bending modulus. In contrast, phenomena upon large deformation are still poorly understood, in particular vesicle breakup. Simple shear flow geometries do not allow to reach the large stresses necessary to cause vesicle breakup. We use the acoustic microstreaming flow generated by an oscillating microbubble to study the large deformation and breakup of giant unilamellar vesicles. The deformation is governed by a capillary number based on the membrane elasticity K : Ca = ηγ˙a / K where η is the viscosity of the outer fluid, a the vesicle radius, and γ˙ the shear rate. We explore the effect of the mechanical properties of the membrane, and demonstrated selective breakup of vesicles based on the difference in membrane elasticity. The results reveal the influence of membrane mechanical properties in shear-induced vesicle breakup and the possibility to control in a quantitative way the selectivity of the process, with potential applications in biomedical technologies. The authors acknowledge funding from EU/FP7 Grant Number 618333.

  3. Dynamics of bubble breakup at a T junction.

    PubMed

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time. PMID:26986389

  4. Dynamics of bubble breakup at a T junction

    NASA Astrophysics Data System (ADS)

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z.

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time.

  5. Academic Continuity and School Reentry Support as a Standard of Care in Pediatric Oncology.

    PubMed

    Thompson, Amanda L; Christiansen, Heather L; Elam, Megan; Hoag, Jennifer; Irwin, Mary Kay; Pao, Maryland; Voll, Megan; Noll, Robert B; Kelly, Katherine Patterson

    2015-12-01

    Clinicians agree that return to school after diagnosis promotes the positive adjustment of children and adolescents with cancer; however, the school reentry process can present challenges. The aim of this review was to critically evaluate the literature on school reentry support for youth with cancer. Seventeen publications were identified. School reentry services were well-received by families and educators; increased teacher and peer knowledge about childhood cancer; influenced peer and educator attitudes toward the patient; and improved communication and collaboration between patients/families, school, and the healthcare team. Evidence supports a strong recommendation for school reentry support for youth with cancer.

  6. Infrasound/seismic observation of the Hayabusa reentry: Observations and preliminary results

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiaki; Hiramatsu, Yoshihiro; Yamamoto, Masa-yuki; Furumoto, Muneyoshi; Fujita, Kazuhisa

    2012-07-01

    The Hayabusa, the world's first sample-return minor body explorer, returned to the Earth, and reentered the Earth's atmosphere on June 13, 2010. Multi-site ground observations of the Hayabusa reentry were carried out in the Woomera Prohibited Area (WPA), Australia. The ground observations were configured with optical imaging with still and video recordings, spectroscopies, and shockwave detection with infrasound and seismic sensors. At three main stations, we installed small aperture infrasound/seismic arrays, as well as three single component seismic sub stations. The infrasound and seismic sensors clearly recorded sonic-boom-type shockwaves from the Hayabusa Sample Return Capsule (H-SRC) and the disrupted fragments of the Hayabusa Spacecraft (H-S/C) itself. Positive overpressure values of shockwaves (corresponding to the H-SRC) recorded at the three main stations were 1.3 Pa, 1.0 Pa, and 0.7 Pa with slant distances of 36.9 km, 54.9 km, and 67.8 km, respectively. Incident vectors of the shockwave from the H-SRC at all three arrays are estimated by an F-K spectrum and agree well with those predicted. Particle motions of ground motions excited by the shockwave show characteristics of a typical Rayleigh wave.

  7. Experimental investigation of the aerodynamic breakup of liquid drops

    NASA Astrophysics Data System (ADS)

    Wierzba, A.; Takayama, K.

    1988-11-01

    An experimental investigation was made of the deformation and the mechanism of stripping-type breakup of liquid drops. Experiments were conducted in a 60 x 150 mm cross-sectional shock tube equipped with pulsed laser holographic interferometry. Water drops having diameters of 1030 and 4300 microns were examined for shock wave Mach numbers from 1.3 to 1.5 in atmospheric air. The Weber and Reynolds numbers under these conditions were in the range of 600 to 7600 and 13,800-104,000, respectively. The purpose of the present work is, by using holographic interferometry, to reexamine the classical problem of the stripping-type breakup of liquid drops. As a result, a four-stage mechanism of the stripping-type breakup of liquid drops was established.

  8. Modeling Tear Film Evaporation and Breakup with Duplex Films

    NASA Astrophysics Data System (ADS)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  9. Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission

    NASA Astrophysics Data System (ADS)

    Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.

    International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that

  10. Effect of boiling regime on melt stream breakup in water

    SciTech Connect

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  11. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  12. On the breakup of tectonic plates by polar wandering

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1974-01-01

    The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).

  13. Electrophysiology of postinfarction ventricular tachycardia: a paradigm of stable reentry.

    PubMed

    Richardson, A W; Callans, D J; Josephson, M E

    1999-09-01

    Sustained monomorphic ventricular tachycardia (VT) is a paradigm of a stable reentrant rhythm. The hallmark of stable reentry is the presence of an excitable gap, which in reentrant VT composes 15% to 45% of the tachycardia cycle length. Resetting allows definition of the extent and pattern of the excitable gap. Site-specific resetting responses suggest that the VT circuit has both functionally and anatomically derived characteristics. Entrainment provides information regarding the effects of overdrive pacing on properties of the tissue composing the circuit rather than on properties of the tachycardia itself. These data help us to understand the mechanisms of pharmacologic agents and to direct ablation of reentrant VT.

  14. Conceptual study of a small semiballistic reentry experiment vehicle

    NASA Astrophysics Data System (ADS)

    Schoettle, U. M.; Bregman, E. R.; Hillesheimer, M.; Inatani, Y.

    1990-10-01

    A semiballistic reentry capsule is proposed as testbed for flight experiments to validate computational prediction methods for aerothermochemical effects encountered during hypersonic flights and vehicle performance and to verify new guidance and control concepts. This paper addresses aspects of mission and vehicle requirements as derived from numerical simulations. A critical design problem is guiding and controlling the vehicle of limited lift capabilities to a predetermined recovery site. A predictive guidance scheme using flight state information obtained by means of the GPS is examined and the dynamic performance discussed. In spite of its drawback of information loss during the blackout phase, GPS navigation is found to be a viable option for vehicle guidance.

  15. Heat Transfer of Reentry Vehicles During Atmosphere Flight

    NASA Astrophysics Data System (ADS)

    Churakov, D. A.; Gorshkov, A. B.; Kovalev, R. V.; Vlasov, V. I.; Beloshitsky, A. V.; Dyadkin, A. A.; Zhurin, S. V.

    2009-01-01

    An atmosphere reentry of a winged space vehicle was investigated with a specially profiled windward surface in order to attain a reduced heat flux to wing edges in comparison with conventional airplane configurations as "Buran" and "Space Shuttle". Aerodynamics forces acting on the space vehicle were determined and it was shown that the considered vehicle configuration secures necessary aerodynamics characteristics in main parts of the trajectory. Heat transfer calculations were made for equilibrium and nonequilibrium air approaches using two methods: in the frame of Navier-Stokes equations and Euler equations with an approximate integral method of local similarity.

  16. Flap effectiveness appraisal for winged re-entry vehicles

    NASA Astrophysics Data System (ADS)

    de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio

    2016-05-01

    The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.

  17. New tool allows selective multi-lateral re-entry

    SciTech Connect

    1997-05-01

    This article overviews the world`s first application of a downhole tool installed after the drilling and completion of a lateral borehole from a larger backbone casing, to allow future access to the lateral using through-tubing, coiled tubing operations. The system described is based on the Multi Lateral Selective Re-Entry System, or MLR (trademark), supplied by Pressure Control Engineering Ltd. (PCE) of Poole, Dorset, England. Primary equipment used in creating the lateral completion and its tieback to the backbone liner was supplied by Sperry Sun.

  18. A conceptual design study of the reusable reentry satellite

    NASA Technical Reports Server (NTRS)

    Swenson, Byron L.; Mascy, Alfred C.; Carter, Bruce; Cartledge, Alan; Corridan, Robert E.; Edsinger, Larry E.; Jackson, Robert W.; Keller, Robert; Murbach, Marcus S.; Wercinski, Paul F.

    1988-01-01

    Experimentation leading to an understanding of life processes under reduced and extremely low gravitational forces will profoundly contribute to the success of future space missions involving humans. In addition to research on gravitational biology, research on the effects of cosmic radiation and the interruption and change of circadian rhythms on life systems is also of prime importance. Research in space, however, is currently viewed by biological scientists as an arena that is essential, yet largely inaccessible to them for their experimentation. To fulfill this need, a project and spacecraft system described as the Reusuable Reentry Satellite or Lifesat has been proposed by NASA.

  19. Some Landing Studies Pertinent to Glider-Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Houbolt, John C.; Batterson, Sidney A.

    1960-01-01

    Results are presented of some landing studies that may serve as guidelines in the consideration of landing problems of glider-reentry configurations. The effect of the initial conditions of sinking velocity, angle of attack, and pitch rate on impact severity and the effect of locating the rear gear in various positions are discussed. Some information is included regarding the influence of landing-gear location on effective masses. Preliminary experimental results on the slideout phase of landing include sliding and rolling friction coefficients that have been determined from tests of various skids and all-metal wheels.

  20. Successful Reentry: The Perspective of Private Correctional Health Care Providers

    PubMed Central

    Greifinger, Robert B.

    2006-01-01

    Due to public health and safety concerns, discharge planning is increasingly prioritized by correctional systems when preparing prisoners for their reintegration into the community. Annually, private correctional health care vendors provide $3 billion of health care services to inmates in correctional facilities throughout the U.S., but rarely are contracted to provide transitional health care. A discussion with 12 people representing five private nationwide correctional health care providers highlighted the barriers they face when implementing transitional health care and what templates of services health care companies could provide to state and counties to enhance the reentry process. PMID:17131191

  1. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  2. Alternans amplification following a two-stimulus protocol in a one-dimensional cardiac ionic model of reentry: From annihilation to double-wave quasiperiodic reentry

    NASA Astrophysics Data System (ADS)

    Comtois, P.; Vinet, A.

    2007-06-01

    Electrical pacing is a common procedure in both experimental and clinical settings to study and/or annihilate anatomical reentry. A previous study [Comtois and Vinet, Chaos 12, 903 (2002)] has described new ways to terminate reentry in a one-dimensional loop model by a protocol consisting of only two stimulations. Annihilation of the reentrant activity was much more likely with these new scenarios than through a unidirectional block. This paper investigates the sensitivity of these scenarios of annihilation to the length of the pathway. It shows that double-pulse stimulation can stop the reentry if the circuit is shorter than a limiting length. Beyond this upper limit, stimulation rather yields sustained double-wave reentry. The same dynamical mechanism, labeled alternans amplification, is found to be responsible for these two types of post-stimulus dynamics.

  3. Recidivism among Participants of a Reentry Program for Prisoners Released without Supervision

    ERIC Educational Resources Information Center

    Wikoff, Nora; Linhorst, Donald M.; Morani, Nicole

    2012-01-01

    As higher numbers of individuals are released from prison and rejoin society, reentry programs can help former offenders reintegrate into society without continuing to engage in crime. This quasi-experimental study examined whether participation in reentry programming was associated with reduced recidivism among offenders who were no longer under…

  4. A Randomized Trial of a Multimodal Community-Based Prisoner Reentry Program Emphasizing Substance Abuse Treatment

    ERIC Educational Resources Information Center

    Grommon, Eric; Davidson, William S., II; Bynum, Timothy S.

    2013-01-01

    Prisoner reentry programs continue to be developed and implemented to ease the process of transition into the community and to curtail fiscal pressures. This study describes and provides relapse and recidivism outcome findings related to a randomized trial evaluating a multimodal, community-based reentry program that prioritized substance abuse…

  5. Social Support, Motivation, and the Process of Juvenile Reentry: An Exploratory Analysis of Desistance

    ERIC Educational Resources Information Center

    Panuccio, Elizabeth A.; Christian, Johnna; Martinez, Damian J.; Sullivan, Mercer L.

    2012-01-01

    Many scholarly works and studies have explored the experience of reentry and desistance for adult offenders, but fewer studies have focused on these processes among juvenile offenders. Using qualitative case studies of juveniles released from secure confinement, this study explores the desistance process during juvenile reentry by examining how…

  6. Balancing Act: The Adaptation of Traditional Judicial Roles in Reentry Court

    ERIC Educational Resources Information Center

    Taylor, Caitlin J.

    2012-01-01

    While research has confirmed their role adaptation and importance in reducing recidivism in drug courts, little research has documented the role of the judge in reentry courts. Based on interviews with participants and the workgroup, court observations, and a document analysis, this study revealed that judges in a federal reentry court program…

  7. Reflections on Reentry after Teaching in China. Occasional Papers in Intercultural Learning, Number 14.

    ERIC Educational Resources Information Center

    Miller, Marcia D.

    The shock of reentry for any sojourner upon returning to their native land may be as great, if not greater, than the initial adjustment period that occurs upon arrival in the foreign country. Intercultural travelers should prepare for the reentry process and the resultant cultural lag upon their return home with the same care that they practiced…

  8. Re-Entry, Recruitment, and Retention: A Community Relations Model for Sacramento City College.

    ERIC Educational Resources Information Center

    White, Maureen E.

    Enrollment statistics and projections confirm the importance of focusing community college student recruitment and retention efforts on re-entry students. Re-entry students are a distinct and growing population whose educational requirements often differ from those of younger, traditional students. The literature on adult learners indicates that:…

  9. Community-Based Juvenile Reentry Services: The Effects of Service Dosage on Juvenile and Adult Recidivism

    ERIC Educational Resources Information Center

    Abrams, Laura S.; Terry, Diane; Franke, Todd M.

    2011-01-01

    In this study the authors examined the influence of length of participation in a community-based reentry program on the odds of reconviction in the juvenile and adult criminal justice systems. A structured telephone survey of reentry program alumni was conducted with 75 transition-age (18-25 year-old) young men. Binary logistic regression analysis…

  10. Gender Differences in the Perceived Needs and Barriers of Youth Offenders Preparing for Community Reentry

    ERIC Educational Resources Information Center

    Fields, Diane; Abrams, Laura S.

    2010-01-01

    This study explored how gender differences may influence the community reentry experiences of incarcerated youth. Structured surveys assessing risk factors for re-offending, perceived reentry needs, and anticipated barriers to meeting these needs were administered to a convenience sample of males (n = 36) and females (n = 35) who were within 60…

  11. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  12. Drop deformation and breakup in flows with and without shear

    NASA Astrophysics Data System (ADS)

    Kékesi, Tímea; Amberg, Gustav; Prahl Wittberg, Lisa

    2015-11-01

    The deformation and breakup of liquid drops in gaseous flows are studied numerically using the Volume of Fluid method. Fragmentation of fuel drops has a key role in combustion, determining the rate of mixing and the efficiency of the process. It is common to refer to Weber number 12 as the onset of breakup, and to define breakup mode regimes as a function of Weber number. These definitions are established for simple flows and do not take density and viscosity ratios into account. The main objective of this work is the dynamics of the drop leading to breakup. Fully developed uniform flows and flows with various shear rates are considered. A Weber number of 20, Reynolds numbers 20-200, density ratios 20-80, and viscosity ratios 0.5-50 were used. Results for uniform flows are presented in Kékesi T. et al. (2014). The final aim of the project is to extend existing atomization models for fuel sprays by accounting for density and viscosity ratios in addition to the Reynolds and Weber numbers already present in current models. Estimations for the lifetime of the drop are provided; furthermore, the history of the drag coefficient is compared for several cases. Examples of the observed phenomena and ideas for possible model modifications will be presented. This work is supported by the Swedish Research Council and the Linné FLOW Centre.

  13. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  14. Structural Stability of the Coalescence/Breakup Equation.

    NASA Astrophysics Data System (ADS)

    Brown, Philip S., Jr.

    1995-11-01

    An analysis of the structural stability of the coalescence/breakup equation is performed to determine the degree to which changes in the equation's formulation can affect the solution. The work was motivated by speculation in various quarters that the currently used coalescence/breakup formulation should be adjusted to achieve better agreement between solutions and field observations. Both analytical procedures and numerical experiments, in which hypothetical changes in the rate coefficients are assumed, show the coalescence/breakup equation in its current formulation to be structurally stable. Not only do small changes in the rate coefficients produce negligible change in the solutions, but even large changes in the rate coefficients fail to destroy the fundamental behavior of the system in that all solutions continue to approach a unique equilibrium. Moderate-sized perturbations of the coefficients are found to have only minor influence on the solutions unless the coalescence and breakup efficiencies, constituents of the rate coefficients, are perturbed in an opposite sense to reinforce the individual effects. Only with such changes in the formulation is the equilibrium solution found to be altered to a significant degree.

  15. The cometary breakup hypothesis re-examined - A reply

    NASA Astrophysics Data System (ADS)

    Clube, S. V. M.; Napier, W. M.

    1987-04-01

    It is shown that the giant comet breakup hypothesis has a clear basis in astronomical fact and, contrary to LaViolette's claims, is consistent with the available geochemical evidence. The importance of further trace element studies in polar ice for testing this hypothesis is, however, emphasized.

  16. Breakup of New Orleans Households after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  17. Capillary breakup of suspensions near pinch-off

    NASA Astrophysics Data System (ADS)

    Mathues, Wouter; McIlroy, Claire; Harlen, Oliver G.; Clasen, Christian

    2015-09-01

    We present new findings on how the presence of particles alters the pinch-off dynamics of a liquid bridge. For moderate concentrations, suspensions initially behave as a viscous liquid with dynamics determined by the bulk viscosity of the suspension. Close to breakup, however, the filament loses its homogeneous shape and localised accelerated breakup is observed. This paper focuses on quantifying these final thinning dynamics for different sized particles with radii between 3 μm and 20 μm in a Newtonian matrix with volume fractions ranging from 0.02 to 0.40. The dynamics of these capillary breakup experiments are very well described by a one-dimensional model that correlates changes in thinning dynamics with the particle distribution in the filament. For all samples, the accelerated dynamics are initiated by increasing particle-density fluctuations that generate locally diluted zones. The onset of these concentration fluctuations is described by a transition radius, which scales with the particle radius and volume fraction. The thinning rate continues to increase and reaches a maximum when the interstitial fluid is thinning between two particle clusters. Contrary to previous experimental studies, we observe that the final thinning dynamics are dominated by a deceleration, where the interstitial fluid appears not to be disturbed by the presence of the particles. By rescaling the experimental filament profiles, it is shown that the pinching dynamics return to the self-similar scaling of a viscous Newtonian liquid bridge in the final moments preceding breakup.

  18. A Cure for Multipass Beam Breakup in Recirculating Linacs

    SciTech Connect

    Byung C. Yunn

    2004-07-02

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  19. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Family break-up. 982.315...

  20. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Family break-up. 982.315...

  1. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Family break-up. 982.315...

  2. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Family break-up. 982.315...

  3. Color Breakup In Sequentially-Scanned LC Displays

    NASA Technical Reports Server (NTRS)

    Arend, L.; Lubin, J.; Gille, J.; Larimer, J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    In sequentially-scanned liquid-crystal displays the chromatic components of color pixels are distributed in time. For such displays eye, head, display, and image-object movements can cause the individual color elements to be visible. We analyze conditions (scan designs, types of eye movement) likely to produce color breakup.

  4. A METHOD TO CONTROL MULTIPASS BEAM BREAKUP IN RECIRCULATING LINACS

    SciTech Connect

    Byung Yunn

    2003-05-01

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  5. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the PHA is bound by the court's determination of which family members continue to receive assistance... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Family break-up. 982.315 Section... SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Leasing a Unit § 982.315 Family...

  6. FLPP IXV Re-Entry Vehicle, Aerodynamic Characterisation

    NASA Astrophysics Data System (ADS)

    Belmont, J.-P.; Cantinaud, O.; Tribot, J.-P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and improving in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration, and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape and thick body. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD. The AEDB includes nominal aerodynamic data, a new set of free molecular aerodynamic coefficients as well as aerodynamic uncertainties. Through the phase B2/C1, complementary computations were performed (CFSE, EPFL, ASTRIUM, TAS, DAA) as well as wind tunnel tests such as ONERA S4ma, DLR H2K, DNW/NLR SST, FOI T1500. All data were analyzed and compared enabling the consolidation of the nominal aerodynamic and aerodynamic uncertainties as well. The paper presents the logic of work based on the system engineering plan with emphasis on the different prediction tools used aiming the final aerodynamic characterization of the IXV configuration.

  7. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  8. Effect of Counterflow Jet on a Supersonic Reentry Capsule

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary C.

    2006-01-01

    Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.

  9. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  10. Application of the Constrained Admissible Region Multiple Hypothesis Filter to Initial Orbit Determination of a Break-up

    NASA Astrophysics Data System (ADS)

    Kelecy, Tom; Shoemaker, Michael; Jah, Moriba

    2013-08-01

    A break-up in Low Earth Orbit (LEO) is simulated for 10 objects having area-to-mass ratios (AMR's) ranging from 0.1-10.0 m2/kg. The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) is applied to determining and characterizing the orbit and atmospheric drag parameters (CdA/m) simultaneously for each of the 10 objects with no a priori orbit or drag information. The results indicate that CAR-MHF shows promise for accurate, unambiguous and autonomous determination of the orbit and drag states.

  11. 8 CFR 211.3 - Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Expiration of immigrant visas, reentry... Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551. An immigrant visa... holder embarked or enplaned before the expiration of his or her immigrant visa, reentry permit,...

  12. The role of deep subduction in supercontinent breakup

    NASA Astrophysics Data System (ADS)

    Capitanio, Fabio; Dal Zilio, Luca; Faccenda, Manuele

    2016-04-01

    The breakup of continents is a crucial stage of the episodic aggregation and dispersal of tectonic plates. In particular, the transition from a stable supercontinent to its rifting, breakup and subsequent drifting is one of the least understood aspects of plate tectonics. Over the last decades, several works have highlighted the potential role of pre-existing weaknesses or that of raising mantle plumes in assisting the localization of strain. However, to sustain large-scale divergent regime over geological time, extensional stresses are strictly required. Here we present results from 2-D thermo-mechanical numerical experiments and we show that rifting and drifting of continents result from lithospheric subduction at convergent margins, when this extends to lower mantle depths. We quantify the drag exerted by subduction-induced mantle flow along the basal surface of continental plates, comparing models where lithospheric slabs stagnate above the upper-lower mantle boundary with those where slabs penetrate into the lower mantle. When subduction is upper mantle-confined, divergent basal tractions localize at distances comparable to the effective upper mantle thickness (~500 km), causing the breakup of a microcontinent and opening of a marginal basin. Instead, when the descending lithosphere subducts deeper, extensional stresses localize at greater distances from the trench (≥ 2900 km), are higher and are sustained over a longer time. Although relatively low, basal shear stresses integrated over large plates generate tension forces that may exceed the strength of the continental lithosphere, eventually leading to breakup and opening of an intervening distal basin. The models illustrate that the mechanism leading to the formation of back-arc basins above upper mantle-confined subduction provides a viable explanation for the opening of larger basins above deeper subduction. Examples include the Atlantic Ocean formation and the South and North American plates drifting

  13. Caenorhabditis elegans Survives Atmospheric Breakup of STS-107, Space Shuttle Columbia

    NASA Astrophysics Data System (ADS)

    Szewczyk, Nathaniel J.; Mancinelli, Rocco L.; McLamb, William; Reed, David; Blumberg, Baruch S.; Conley, Catharine A.

    2005-12-01

    The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.

  14. Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle Columbia.

    PubMed

    Szewczyk, Nathaniel J; Mancinelli, Rocco L; McLamb, William; Reed, David; Blumberg, Baruch S; Conley, Catharine A

    2005-12-01

    The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.

  15. Mathematical Interpretation of Observational Data of the Stardust SRC Re-Entry

    NASA Astrophysics Data System (ADS)

    Gritsevich, M. I.

    2009-01-01

    STARDUST spacecraft was launched on February 7, 1999. STARDUST is the first U.S. Space mission dedicated solely to the exploration of a comet, and the first robotic mission designed to return extraterrestrial material from outside the orbit of the Moon. But studying of observational data of the STARDUST Sample Return Capsule's (SRC) entry into Earth's atmosphere on January 15, 2006, also represent a big interest. At a velocity of 12.8 km/s (assumed to be at an altitude of 125 km) SRC was the fastest ever attempted re-entry of a human made space vehicle. The return trajectory of the SRC is very similar to that of natural cosmic bodies. Entry begins when the spacecraft reorients for SRC release from the spacecraft bus and ends with parachute deployment. In the present report, an analytical model of the atmospheric entry is calculated using the data of actual observations, by selecting the parameters describing rate of deceleration of the body during its hypersonic flight. Model was applied to the observational data of STARDUST Sample Return Capsule (a hypersonic phase). The estimate of mass of SRC obtained using the data of actual observations is quite close to its real value of 45.8 kg.

  16. Breakup characteristics of a liquid jet in subsonic crossflow

    NASA Astrophysics Data System (ADS)

    Gopala, Yogish

    This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop a better understanding of the spray breakup processes and to provide better experimental inputs to improve the fidelity of numerical models. A review of the literature in this field identified the fundamental physical processes involved in the breakup of the spray and the dependence of spray properties on operating conditions. The time taken for the liquid column to break up into ligaments and droplets, the primary breakup time and the effect of injector geometry on the spray formation processes and spray properties as the key research areas in which research done so far has been inadequate. Determination of the location where the liquid column broke up was made difficult by the presence of a large number of droplets surrounding it. This study utilizes the liquid jet light guiding technique that enables accurate measurements of this location for a wide range of operating conditions. Prior to this study, the primary breakup time was thought to be a function the density ratio of the liquid and the gas, the diameter of the orifice and the air velocity. This study found that the time to breakup of the liquid column depends on the Reynolds number of the liquid jet. This suggests that the breakup of a turbulent liquid jet is influenced by both the aerodynamic breakup processes and the turbulent breakup processes. Observations of the phenomenon of the liquid jet splitting up into two or more jets were made at some operating conditions with the aid of the new visualization technique. Finally, this thesis investigates the effect of injector geometry on spray characteristics. One injector was a round edged orifice with a length to diameter ratio of 1 and a

  17. Reentry Preparedness among Soon-to-be-Released Inmates and the Role of Time Served

    PubMed Central

    Wolff, Nancy; Shi, Jing; Schumann, Brooke E.

    2014-01-01

    Purpose While reentry funding is flowing into states, its target efficiency and effectiveness depends on whether it goes to the right people in the right ways. The purpose of this study was to examine whether and how the amount of time incarcerated affects reentry readiness. Materials and Methods A population-based survey was conducted. Approximately 4000 soon-to-be-released male inmates were drawn from a state correctional system. Readiness is described in terms of feeling ready and material, social, and treatment resources available for reentry by time served on current conviction (episode effect) and since age 18 (cumulative effect). Generalized hierarchical linear models were used to estimate the effects of demographic, criminological, and time served variables on reentry readiness outcomes. Results Reentry vulnerability increased with time served since turning 18 (cumulative effect) but not with time served on the current conviction (episode effect). Inmates serving more than 10 years since turning 18 were at greatest reentry risk. Conclusions The findings indicate that inmates who have served more prison time over their lifetime have more pronounced needs and risks suggesting that reentry funding be targeted towards those who have served more time over the course of their lifetime. PMID:24431474

  18. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  19. Ascent and reentry guidance concept based on NLP-methods

    NASA Astrophysics Data System (ADS)

    Gräßlin, M. H.; Telaar, J.; Schöttle, U. M.

    2004-08-01

    This paper addresses the application of an autonomous guidance concept to the ascent flight of the reusable launch vehicle Hopper, and to the reentry mission of the space plane X-38. Presently, the guidance requirements with respect to autonomy, accuracy and mission flexibility have been increased steadily for RLV applications. Nonlinear Programming (NLP)-based guidance strategies have been proposed that offer the potential to meet these demands. The autonomous guidance is achieved by combining onboard flight path prediction and NLP methods for flight optimization. Such guidance strategies hold promise for reduced pre-mission analyses for trajectory planning, and for improved adaptability to non-nominal mission conditions. Its applicability, autonomy and performance will be discussed showing numerical results obtained with a flight-simulation environment.

  20. Trajectory control for a low-lift maneuverable reentry vehicle

    NASA Astrophysics Data System (ADS)

    Roenneke, Axel J.; Cornwell, Phillip J.

    1992-02-01

    To operate laboratories in space, unmanned vehicles are necessary to carry experimental products to the ground. An example for such a concept is the European developed Space Mail capsule with a lift-to-drag ratio of about 0.5. This report presents a system model to describe the reentry flight of a maneuverable space capsule over a rotating planet and the development of a guidance and control concept using a reference trajectory. A technique to design a time-varying path controller is effectively applied to the Space Mail capsule. The controller design is based on linear state feedback of three states that are crucial for the problem: the errors in distance, speed, and flight path angle. The proposed controller can compensate for initial entry speed offsets of +/- 5 percent from the nominal entry speed.

  1. Fixed-trim re-entry guidance analysis

    NASA Technical Reports Server (NTRS)

    Gracey, C.; Cliff, E. M.; Lutze, F. H.; Kelley, H. J.

    1981-01-01

    The terminal guidance problem for a fixed-trim re-entry body is formulated with the objective of synthesizing a closed-loop steering law. A transformation of variables and subsequent linearization of the motion, with the sight-line to the target as a reference, reduces the order of the state system for the guidance problem. The reduced order system, although nonlinear and time-varying, is simple enough to lend itself to synthesis of a class of guidance laws. A generalization of the feedforward device of classical control theory is successfully employed for compensation of roll autopilot lags. The proposed steering law exhibits superior miss-distance performance in a computational comparison with existing fixed-trim guidance laws.

  2. Laminar-to-turbulent transitions over an ablating reentry capsule

    NASA Astrophysics Data System (ADS)

    Komurasaki, Kimiya; Candler, Graham V.

    2000-11-01

    The aerodynamic mechanism of early transition phenomena over an ablating reentry capsule has been analytically examined. A two-equation turbulence model ( k- ɛ model) was coupled with Reynolds averaged Navier-Stokes equations. Low-Reynolds-number effects on the solid wall were taken into account by modifying the Chien's correction. As a result, transition occurred at the lower Reynolds number with higher ablation rate. The predicted transition-point Reynolds number was 3×10 4 at the surface-mass-injection rate of 100 g/sm 2. The principal mechanism of this early transition is thought as follows; the viscosity damping effects are reduced and re-laminarization is prevented in the downstream of the capsule surface, due to the turbulence on the surface and due to the pushing out of near-surface stream-lines from the surface by successive mass injection.

  3. Reentry-F Flowfield Solutions at 80,000 ft.

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    Three equilibrium-air numerical solutions are presented for the Reentry-F flight-test vehicle at Mach 20, 80,000 Ft. conditions, including turbulent flow predictions. The three solutions are from a thin-layer Navier-Stokes code, coupled thin-layer and parabolized Navier-Stokes codes, and an approximate viscous shock-layer code. Boundary-layer and shock-layer profiles are presented and compared between the three solutions, revealing close agreement between the three solution methods. Notable exceptions to the close agreement, with 7-10 percent discrepancies, occur in the density profiles at the boundary-layer edge, in the boundary-layer velocity profiles, and in the shock-layer profiles in regions influenced by the nose bluntness.

  4. Non-intrusive flow measurements on a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Satavicca, D. A.; Zimmermann, G. M.

    1983-01-01

    This study evaluates the utility of various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle or a similar re-entry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser Induced Fluorescence) light scattering, electron beam fluorescence, thermal emission and mass spectroscopy. Flow field properties are taken from a nonequilibrium flow model by Shinn, Moss and Simmonds at NASA Langley. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques.

  5. Thermal Analysis of Small Re-Entry Probe

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh K.; Chen, Y. K.

    2012-01-01

    The Small Probe Reentry Investigation for TPS Engineering (SPRITE) concept was developed at NASA Ames Research Center to facilitate arc-jet testing of a fully instrumented prototype probe at flight scale. Besides demonstrating the feasibility of testing a flight-scale model and the capability of an on-board data acquisition system, another objective for this project was to investigate the capability of simulation tools to predict thermal environments of the probe/test article and its interior. This paper focuses on finite-element thermal analyses of the SPRITE probe during the arcjet tests. Several iterations were performed during the early design phase to provide critical design parameters and guidelines for testing. The thermal effects of ablation and pyrolysis were incorporated into the final higher-fidelity modeling approach by coupling the finite-element analyses with a two-dimensional thermal protection materials response code. Model predictions show good agreement with thermocouple data obtained during the arcjet test.

  6. An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  7. Landing Characteristics of a Lenticular-Shaped Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Blanchard, Ulysse J.

    1961-01-01

    An experimental investigation was made of the landing characteristics of a 1/9-scale dynamic model of a lenticular-shaped reentry vehicle having extendible tail panels for control after reentry and for landing control (flare-out). The landing tests were made by catapulting a free model onto a hard-surface runway and onto water. A "belly-landing" technique in which the vehicle was caused to skid and rock on its curved undersurface (heat shield), converting sinking speed into angular energy, was investigated on a hard-surface runway. Landings were made in calm water and in waves both with and without auxiliary landing devices. Landing motions and acceleration data were obtained over a range of landing attitudes and initial sinking speeds during hard-surface landings and for several wave conditions during water landings. A few vertical landings (parachute letdown) were made in calm water. The hard-surface landing characteristics were good. Maximum landing accelerations on a hard surface were 5g and 18 radians per sq second over a range of landing conditions. Horizontal landings on water resulted in large violent rebounds and some diving in waves. Extreme attitude changes during rebound at initial impact made the attitude of subsequent impact random. Maximum accelerations for water landings were approximately 21g and 145 radians per sq second in waves 7 feet high. Various auxiliary water-landing devices produced no practical improvement in behavior. Reduction of horizontal speed and positive control of impact attitude did improve performance in calm water. During vertical landings in calm water maximum accelerations of 15g and 110 radians per sq second were measured for a contact attitude of -45 deg and a vertical velocity of 70 feet per second.

  8. CARINA - A space vehicle with re-entry capabilities for microgravity experiments

    NASA Astrophysics Data System (ADS)

    Borriello, G.; Sansone, A.; Ricciardi, A.

    1992-08-01

    An Italian autonomous space vehicle with recovery capabilities, named CARINA (Capsula di Rientro Non Abitata), is described with special attention given to the technological developments in areas pertaining to the reentry system, including reentry aerothermodynamics and the design of the thermal protection system. Consideration is also given to the configuration of the CARINA vehicle (comprised of the expendable Service Module and the Apollo-like Reentry Module), the subsystems and their performances, the mission life cycle, the microgravity utilization aspects, and the programmatic aspects.

  9. Ablative performance of carbon-carbon nosetips in simulated re-entry environments

    NASA Technical Reports Server (NTRS)

    Nestler, D. E.

    1977-01-01

    A summary is presented of ablation performance data for carbon-carbon nosetip models obtained over a range of pressures from 10 to 168 atm. Two classes of tests are reviewed: (1) steady state, in which a constant environment is imposed on the model, and (2) ramp, in which the pressure is increased from 10 to 80 atmospheres to simulate re-entry pressure history. Comparison of arc test parameters with typical reentry vehicle parameters is included, to assess the adequacy of the test simulation. Based on this comparison, recommendations are made for facility developments which would yield improved simulation capability for reentry vehicle nosetip ablative performance.

  10. Model for oxygen recombination on silicon-dioxide surfaces. II - Implications toward reentry heating

    NASA Technical Reports Server (NTRS)

    Jumper, E. J.; Seward, W. A.

    1992-01-01

    This paper briefly reviews the model for recombination of oxygen on a silicon-dioxide surface presented in detail in a previous paper. New data supporting the model is also presented. The ramifications of the model toward the production of excited molecular oxygen is examined as it pertains to surface heating. A reentry simulation is given and compared to STS-2 reentry data, and conclusions are drawn as to the implications of the recombination model toward reentry heating. A possible buffering of the heating above a critical temperature associated with the physics of the model is also discussed.

  11. The Development of High Order Numerical Techniques for Reentry Simulation of Hypersonic Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanders, Richard

    1991-01-01

    The primary difficulty encountered when simulating hypersonic flow is that the flow normally includes strong nonlinear discontinuities. These discontinuities fall into three broad classes: shocks, slip-lines, and rarefaction waves. Moreover, in the hypersonic flow regime, the chemistry of hot gases plays a vital role and can not be neglected. These facts combine to make the numerical treatment of spacecraft reentry a most challenging problem. In this work, we develop a class of finite difference schemes that accurately resolve discontinuous solutions to spacecraft reentry flow and are simple to incorporate into existing spacecraft reentry codes.

  12. Recent results of invariant torus breakup in nontwist maps

    NASA Astrophysics Data System (ADS)

    Wurm, Alexander; Fuchss, Kathrin; Morrison, P. J.

    2006-10-01

    As simple models for degenerate Hamiltonian systems, nontwist maps have been used to describe, e.g., magnetic field lines in toroidal plasma devices with reversed magnetic shear profiles. Of particular interest in these maps are the so-called shearless invariant tori which correspond to transport barries in the physical system. We investigate the breakup of shearless tori in several maps and with several different winding numbers, in order to understand the dependence of the details of the breakup on the winding number and on the symmetries of the map model. Here we report on recent results of this investigation.[1][1] K. Fuchss, A. Wurm, A. Apte, and P.J. Morrison, to appear in Chaos (2006); K. Fuchss, A. Wurm, and P.J. Morrison, preprint/submitted to PRL (2006).

  13. Gondwana breakup and plate kinematics: Business as usual

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Vaughan, Alan P. M.

    2009-05-01

    A tectonic model of the Weddell Sea is built by composing a simple circuit with optimized rotations describing the growth of the South Atlantic and SW Indian oceans. The model independently and accurately reproduces the consensus elements of the Weddell Sea's spreading record and continental margins, and offers solutions to remaining controversies there. At their present resolutions, plate kinematic data from the South Atlantic and SW Indian oceans and Weddell Sea rule against the proposed, but controversial, independent movements of small plates during Gondwana breakup that have been attributed to the presence or impact of a mantle plume. Hence, although supercontinent breakup here was accompanied by extraordinary excess volcanism, there is no indication from plate kinematics that the causes of that volcanism provided a unique driving mechanism for it.

  14. Study of transfer and breakup reactions with the plastic box

    SciTech Connect

    Stokstad, R.G.; Albiston, C.R.; Bantel, M.; Chan, Y.; Countryman, P.J.; Gazes, S.; Harvey, B.G.; Homeyer, H.; Murphy, M.J.; Tserruya, I.

    1984-12-01

    The study of transfer reactions with heavy-ion projectiles is complicated by the frequent presence of three or more nuclei in the final state. One prolific source of three-body reactions is the production of a primary ejectile in an excited state above a particle threshold. A subset of transfer reactions, viz., those producing ejectiles in bound states, can be identified experimentally. This has been accomplished with a 4..pi.. detector constructed of one-millimeter-thick scintillator paddles of dimension 20 cm x 20 cm. The paddles are arranged in the form of a cube centered around the target with small entrance and exit apertures for the beam and the projectile-like fragments, (PLF). The detection of a light particle (e.g., a proton or an alpha particle) in coincidence with a PLF indicates a breakup reaction. The absence of any such coincidence indicates a reaction in which all the charge lost by the projectile was transferred to the target. With this technique we have studied the transfer and breakup reactions induced by 220 and 341 MeV /sup 20/Ne ions on a gold target. Ejectiles from Li to Ne have been measured at several scattering angles. The absolute cross sections, angular distributions and energy spectra for the transfer and breakup reactions are presented. Relatively large cross sections are observed for the complete transfer of up to seven units of charge (i.e., a nitrogen nucleus). The relatively large probabilities for ejectiles to be produced in particle-bound states suggest that on the average, most of the excitation energy in a collision resides in the heavy fragment when mass is transferred from the lighter to the heavier fragment. The gross features and trends in the energy spectra for transfer and breakup reactions are similar. 20 references.

  15. Semiclassical calculations of observable cross sections in breakup reactions

    SciTech Connect

    Marta, H. D.; Canto, L. F.; Donangelo, R.

    2008-09-15

    We develop a semiclassical procedure to calculate breakup reaction products' angular and energy distributions in the laboratory frame of reference. The effects of the Coulomb and nuclear interaction potentials on the classical trajectories, as well as bound-bound, bound-continuum, and continuum-continuum couplings, are included. As an example we consider the {sup 8}B+{sup 58}Ni system at E{sub lab}=26 MeV and find very good agreement with the available experimental data.

  16. The Effect of Crustal Strength on Volcanism During Continental Breakup

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Petersen, K. D.; Perez-Gussinye, M.; Collier, J.; Pik, R.

    2015-12-01

    Segmentation is a fundamental property of rifted margins which is thought to be inherited from pre-breakup lithospheric structure. The volume of melt emplaced during rifting typically varies across these segments. Notable examples are the Gulf of California, break-up in the South Atlantic, and the Afar depression. For example in Afar there is a clear north south transition from break-up in the Erta Ale segment, where there is localised young (<1 Ma) volcanism, to the Dabbahu segment where there is the 4-1 Ma Stratoid volcanic series and distributed faulting. Along the Namibian and conjugate Argentinian margin there is evidence that surface area of seaward dipping reflectors change across segments. Such lateral changes in volcanism over a relatively short spatial scale are hard to explain by change in mantle temperature. We will demonstrate that crustal strength places a crucial control on the volume and composition of melt generated during break-up. We have compared models of extension with a weaker and strong lower crust based on observed rock rheologies. Melt composition and volume is found to be a function of the lower crustal rheology as it effects the shape of the melt zone during extension. By comparing a suite models we find that Afar volcanism can be matched by models with both a weak or strong lower crust. If however the crust is weaker then the equivalent volume and composition is created with less crustal thinning but over a greater period of time. The difference in time required to generate significant volcanic rock may explain the change in surface area of sub-areal volcanism in both Afar, where there is a transition of strong to weak crust from Erta Ale to Dabbahu, and off-shore Namibia. Lateral variation in volcanism between segments may therefore be fundamentally controlled by the crust.

  17. Radial electron-beam-breakup transit-time oscillator

    SciTech Connect

    Mostrom, M.A.; Kwan, T.J.T.

    1995-01-01

    A new radially-driven electron-beam-breakup transit-time oscillator has been investigated analytically and through computer simulation as a compact low-impedance high-power microwave generator. In a 1MV, 50kA device 35cm in radius and 15cm long, with no external magnetic field, 5GW of extracted power and a growth rate of 0.26/ns have been observed. Theoretical maximum efficiencies are several times higher.

  18. Beam break-up in the two beam accelerator

    SciTech Connect

    Whittum, D.H.; Travish, G.A.; Sessler, A.M.; Craig, G.D.; DeFord, J.F.

    1989-03-01

    We have studied numerically beam break-up (BBU) in the drive beam of a Two-Beam Accelerator (TBA), using transverse wakes calculated numerically using the AMOS Code. We examine only cumulative BBU due to the wake of the linear induction accelerator cavities. We do not consider regenerative BBU due to the relativistic klystron (RK) cavities. We find growth lengths of order /approximately/100 m for typical parameters. 14 refs., 2 figs., 1 tab.

  19. Breakup modes of fluid drops in confined shear flows

    NASA Astrophysics Data System (ADS)

    Barai, Nilkamal; Mandal, Nibir

    2016-07-01

    Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.

  20. The Soviet Breakup and U.S. Foreign Policy.

    ERIC Educational Resources Information Center

    Lynch, Allen

    1991-01-01

    This issue of a quarterly publication on world affairs explores the historical significance of the disintegration of the Soviet Union and the implication for U.S. foreign policy. With the breakup of the USSR in 1990-91, Russia for the first time this century does not have control over the non-Russian nations of its former empire in Central Asia,…

  1. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    SciTech Connect

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  2. The Breakup of Water Cylinders Behind Normal Shocks

    NASA Astrophysics Data System (ADS)

    Meng, J. C.; Colonius, T.

    2012-11-01

    We simulate the drift and breakup of a water cylinder in the flow behind a normal shock. The unsteady Euler equations, closed using the stiffened-gas equation of state, are solved with a compressible, multicomponent, shock- and interface-capturing algorithm. The effects of surface tension and viscosity are negligible at early times compared to the larger shear forces. Computed drift velocities are in good agreement with experiments. For the high- speed flow regimes considered, the breakup mode is stripping. Pressure gradients arise on the cylinder's surface causing it to deform laterally. As the cylinder is flattened, sheets of liquid are drawn off the periphery and break up further downstream. Unsteady vortex shedding is observed in the wake of the disintegrating cylinder. As the shock Mach number is increased, higher airflow velocities result in faster breakup and greater cylinder accelerations. These accelerations are subject to fluctuations that grow with shock strength. Qualitative features of the flow are compared to images from experiments on cylinders and drops.

  3. NAVSPASUR orbital processing for satellite break-up events

    NASA Technical Reports Server (NTRS)

    Schumacher, Paul W., Jr.

    1991-01-01

    Satellite breakups via explosion or collision can instantly increase the trackable orbiting population by up to several hundred objects, temporarily perturbing the routine space surveillance operations at U.S. Space Command (USSPACWCOM) and the Naval Space Surveillance Center (NAVSPASUR). This paper is a survey of some of the procedures and techniques used by NAVSPASUR to respond to such events. First, the overall data flow at NAVSPASUR is described highlighting the places at which human analysts may intervene with special processing. So-called manual intervention is required in a variety of non-nominal situations, including breakups. Second, a description is given of some of the orbital analysis and other software tools available to NAVSPASUR analysts. These tools were developed in-house over the past thirty years and can be employed in a highly flexible manner. The basic design philosophy for these tools was to implement simple concepts as efficiently as possible and to allow the analyst maximum use of his personal expertise. Finally, several historical breakup scenarios are discussed briefly. These scenarios provide examples of the types of questions that are fairly easy to answer in the present operational environment, as well as examples of questions that are very difficult to answer.

  4. Nonlinear dynamics and breakup of free-surface flows

    SciTech Connect

    Eggers, J.

    1997-07-01

    Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems. {copyright} {ital 1997} {ital The American Physical Society}

  5. FEM calculations of drop breakup beyond the first singularity

    NASA Astrophysics Data System (ADS)

    Suryo, Ronald; Basaran, Osman

    2007-11-01

    Computational analysis of drop breakup, which is of common occurrence in nature and technology, is important for advancing understanding of pinch-off singularities and developing new technologies. During drop formation from a tube, as more liquid flows from the tube into the drop, the drop elongates and thins. At the incipience of breakup, a spherical mass -- the precursor of the primary drop -- is connected to the liquid in the tube by a thin thread -- the precursor of one or more satellites. Numerical algorithms for analyzing this phenomenon at finite Reynolds number have been of two types: ones based on finite element methods (FEMs) and others based on various diffuse interface (DI) techniques. Numerical solutions must agree with scaling solutions of interface pinch-off, which are exact solutions of the nonlinear Navier-Stokes equations, and experiments. To date, the DI approach, despite its coarseness, has been more popular because it is simple and can predict the formation of several drops in sequence. Predictions made with FEM algorithms have been shown to be in excellent agreement with scaling theories and measurements but only until the instant of first breakup. Here we describe new FEM computations of unparalleled accuracy to predict the dynamics of continuous drop formation and support them with high-speed visualization experiments.

  6. The breakup of thin air films caught under impacting drops

    NASA Astrophysics Data System (ADS)

    Thoroddsen, Sigurdur; Thoraval, Marie-Jean; Takehara, Kohsei; Etoh, T. Goji

    2012-11-01

    When a drop impacts a pool at very low velocities V, an air layer cushions the impact and prevents immediate contact. This air layer is stretched into a hemispheric shape and thins to a submicron thickness. We use silicone oils, where these films are more stable than for water [Saylor & Bounds (2012), AIChE J., online: doi 10.1002/aic.13764 ]. We observe three main breakup mechanisms which are imprinted onto the micro-bubble morphology. First, for lowest V the film ruptures at isolated holes which grow rapidly, leaving bubble necklaces where their edges meet. Based on micro-bubble volumes, we show the film breaks by van der Waals, when its thickness ~ 100 nm. Secondly, for slightly larger V a ring of holes appearing a fixed depth, where the film is thinnest, producing bubble chandeliers. Finally, for larger V an air jet within the drop, ruptures it at the bottom tip, in an axisymmetric breakup. We measure the rupture speed and find that for very viscous liquids, the breakup moves faster than the capillary-viscous velocity, through the repeated ruptures. [Thoroddsen, Thoraval, Takehara & Etoh (2012), J. Fluid Mech. online: doi:10.1017/jfm.2012.319].

  7. Droplet Breakup and Other Problems Involving Surface Tension Driven Flows.

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.

    We explore several problems involving fluid flows driven by surface tension. The first part of the thesis concerns droplet breakup. The major focus is on the formation of singularities occurring when a mass of fluid breaks into two pieces. We explore this phenomena in many different physical situations, including droplet breakup in a Hele Shaw cell, rupturing of thin films on a solid surface, the breaking of Plateau borders in soap froths, and fluid dripping from a cylindrical nozzle. In most of the above examples the singularities are characterized by self similar solutions of nonlinear partial differential equations. For the dripping faucet, the similarity solution is unstable to finite (but small) amplitude perturbations; the consequence of this is that in practice the breakup of a three dimensional droplet is a nonsteady process, with new structures continually generated as the interface breaks. Through asymptotic analysis, we show that the amount of noise necessary to destabilize the similarity solution decreases rapidly as the singularity is approached. For fluids of moderate viscosity fluctuations in the interfacial shape of atomic size are sufficient to destabilize the interface when the thickness is less than one micron. The second part of the thesis addresses problems in wetting. We present an analysis of a droplet spreading on a solid surface, which results in an understanding of the experimentally observed spreading laws. Finally, we present an explanation of the mechanism for the instability that occurs when a contact line is driven by a constant force. The explanation is consistent with recent experimental data.

  8. Cryogenic liquid-jet breakup in two-fluid atomizers

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1991-01-01

    A two-fluid atomizer was used to study the breakup of liquid-nitrogen jets in nitrogen, argon, and helium atomizing gas flows. A scattered-light scanner particle sizing instrument previously developed at NASA Lewis Research Center was further developed and used to determine characteristic drop diameters for the cryogenic sprays. In the breakup regime of aerodynamic-stripping, i.e., sonic-velocity conditions, the following correlation of the reciprocal Sauter mean diameter, D(sub 32)exp -1, with the atomizing-gas flowrate, W(g), was obtained: D(sub 32)exp -1 = k(sub c)(W(g)exp 1.33), where k(sub c) is a proportionality constant evaluated for each atomizing gas. Values of k(sub c) = 120, 220, and 1100 were obtained for argon, nitrogen, and helium gasflows, respectively. The reciprocal Sauter mean diameter and gas flowrate have the units of 1/cm and g/sec, respectively. In the regime of capillary-wave breakup, or subsonic conditions, it was found that D(sub 32)exp -1 = k(g)(W(g)exp 0.75), where k = 270, 390, and 880 for argon, nitrogen, and helium gasflows, respectively.

  9. Breakup length of harmonically stimulated capillary jets - theory and experiments

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, Francisco Javier; Gonzalez Garcia, Heliodoro; Castrejon-Pita, Jose Rafael; Castrejon-Pita, Alfonso Arturo

    2014-11-01

    A stream of liquid breaks up into several drops by the action of surface tension. Capillary breakup forms the basis of some modern digital technologies, especially inkjet printing (including 3D manufacturing). Therefore, the control and prediction of the breakup length of harmonically modulated capillary jets is of great importance, in particular in Continuous InkJet systems (CIJ). However, a theoretical model that rigorously takes into account the physical characteristics of the system, and that properly describes this phenomenon did not exist until now. In this work we present a simple transfer function, derived from first principles, that accurately predicts the experimentally obtained breakup lengths of pressure-modulated capillary jets. No fitting parameters are necessary. A detailed description of the theoretical model and experimental setup will be presented. Spanish government (FIS2011-25161), Junta de Andalucia (P09-FQM-4584 and P11-FQM-7919), EPSRC-UK (EP/H018913/1), Royal Society and John Fell Fund (OUP).

  10. Coalescence and breakup of large droplets in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Scarbolo, Luca; Bianco, Federico; Soldati, Alfredo

    2015-07-01

    Coalescence and breakup of large deformable droplets dispersed in a wall-bounded turbulent flow are investigated. Droplets much larger than the Kolmogorov length scale and characterized by a broad range of surface tension values are considered. The turbulent field is a channel flow computed with pseudo-spectral direct numerical simulations, while phase interactions are described with a phase field model. Within this physically consistent framework, the motion of the interfaces, the capillary effects, and the complex topological changes experienced by the droplets are simulated in detail. An oil-water emulsion is mimicked: the fluids are considered of same density and viscosity for a range of plausible values of surface tension, resulting in a simplified system that sets a benchmark for further analysis. In the present conditions, the Weber number (We), that is, the ratio between inertia and surface tension, is a primary factor for determining the droplets coalescence rate and the occurrence of breakups. Depending on the value of We, two different regimes are observed: when We is smaller than a threshold value (We < 1 in our simulations), coalescence dominates until droplet-droplet interactions are prevented by geometric separation; when We is larger than the threshold value (We > 1), a permanent dynamic equilibrium between coalescence and breakup events is established.

  11. Inverted Break-up Behaviour in Continuous Inkjet (CIJ) Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Harlen, Oliver; Morrison, Neil

    2014-11-01

    Although droplet creation during continuous jetting of Newtonian fluids has been widely studied, unsolved problems surrounding the break-up dynamics remain. Jetting through a nozzle creates a stream of liquid that is rendered unstable by surface tension. This instability creates a succession of main drops connected by thin filaments, with drop separation determined by the fastest growing wavelength. In order to control break-up and increase printing speeds, continuous inkjet (CIJ) printing exploits the effects of finite amplitude modulations in the jet velocity profile giving conditions where jet stability deviates from the usual Rayleigh behaviour. To explore these non-linear effects, we have developed a one-dimensional jetting model. In particular, we identify a modulation range for which pinching occurs upstream of the connecting filament, rather than downstream - a phenomenon we call ``inverted'' break-up. Furthermore, this behaviour can be controlled by the addition of harmonics to the initial driving signal. Our results are compared to full axisymmetric simulations in order to incorporate the effects of nozzle geometry. EPSRC Innovation in Industrial Technology.

  12. A search for H-chondritic chromite grains in sediments that formed immediately after the breakup of the L-chondrite parent body 470 Ma ago

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Schmitz, Birger; Rout, Surya S.; Tenner, Travis; Villalon, Krysten; Cronholm, Anders; Terfelt, Fredrik; Kita, Noriko T.

    2016-03-01

    A large abundance of L-chondritic material, mainly in the form of fossil meteorites and chromite grains from micrometeorites, has been found in mid-Ordovician 470 Ma old sediments globally. The material has been determined to be ejecta from the L chondrite parent body breakup event, a major collision in the asteroid belt 470 Ma ago. In this study we search the same sediments for H-chondritic chromite grains in order to improve our understanding of the extraterrestrial flux to Earth after the asteroid breakup event. We have used SIMS in conjunction with quantitative SEM/EDS to determine the three oxygen isotopic and elemental compositions, respectively, of a total of 120 randomly selected, sediment-dispersed extraterrestrial chromite grains mainly representing micrometeorites from 470 Ma old post-breakup limestone from the Thorsberg quarry in Sweden and the Lynna River site in Russia. We show that 99% or more of the grains are L-chondritic, whereas the H-chondritic fraction is 1% or less. The L-/H-chondrite ratio after the breakup thus was >99 compared to 1.1 in today's meteoritic flux. This represents independent evidence, in agreement with previous estimates based on sediment-dispersed extraterrestrial chromite grain abundances and sedimentation rates, of a two orders of magnitude higher post-breakup flux of L-chondritic material in the micrometeorite fraction. Finally, we confirm the usefulness of three oxygen isotopic SIMS analyses of individual extraterrestrial chromite grains for classification of equilibrated ordinary chondrites. The H- and L-chondritic chromites differ both in their three oxygen isotopic and elemental compositions, but there is some overlap between the groups. In chromite, TiO2 is the oxide most resistant to diagenesis, and the combined application of TiO2 and oxygen three-isotope analysis can resolve uncertainties arising from the compositional overlaps.

  13. Mechanisms of Familial Influence on Reentry among Formerly Incarcerated Latino Men.

    PubMed

    Lee, Jane Jean-Hee; Guilamo-Ramos, Vincent; Muñoz-Laboy, Miguel; Lotz, Kevin; Bornheimer, Lindsay

    2016-07-01

    In the United States more than 10,000 people are released from state and federal prisons every week and often reenter the communities in which they were arrested. Formerly incarcerated individuals face considerable challenges to securing employment and housing. Subsequently, approximately two-thirds of former prisoners are rearrested within three years of their release. Latino men represent the fastest growing ethnic group of prisoners in the United States with unique cultural and social needs during the reentry process. The present study examined the role of the family in the reentry process through in-depth interviews (N = 16) with formerly incarcerated Latino men (FILM). The authors sought to identify familial processes specific to Latino men with potential to affect engagement and participation in reentry programs. Findings suggest that family mechanisms of social control and social support influence FILM's reentry. Social work practitioners who work with this growing population can engage familial processes to prevent recidivism and promote desistance. PMID:27501637

  14. The Reentry Adult College Student: An Exploration of the Black Male Experience

    ERIC Educational Resources Information Center

    Rosser-Mims, Dionne; Palmer, Glenn A.; Harroff, Pamela

    2014-01-01

    This chapter shares findings from a qualitative study on reentry adult Black males' postsecondary education experiences and identifies strategies to help this population matriculate through college and graduate.

  15. Segment Specification for the Payload Segment of the Reusable Reentry Satellite: Rodent Module Version

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) System is composed of the payload segment (PS), vehicle segment (VS), and mission support (MS) segments. This specification establishes the performance, design, development, and test requirements for the RRS Rodent Module (RM).

  16. Pedagogy of Individual Choice and Female Inmate Reentry in the U.S. Southwest

    PubMed Central

    Kellett, Nicole Coffey; Willging, Cathleen Elizabeth

    2011-01-01

    Much of the mental health, substance use, and educational programming within a particular women’s prison in the southwestern United States promotes individual choice and agency. Incarcerated women from rural areas are told that their ability to succeed outside prison is primarily dependent upon their personal choices. Comparably little attention is given to preparing women for their upcoming release or to overcoming structural barriers that could undermine successful reentry within rural communities. As a result, these returning citizens, many of whom grapple with mental illness and alcohol or drug dependence, blame themselves for their inability to surmount these barriers. In this qualitative research, we draw upon the perspectives of 99 incarcerated women to clarify how ideologies of individual choice promulgated in reentry pedagogy clash with contextual factors within rural communities to derail the reentry process. We also consider community reentry from Amartya Sen’s capabilities framework and discuss how this model could inform needed interventions. PMID:21864909

  17. Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea

    NASA Astrophysics Data System (ADS)

    Whalen, Lisa; Gazel, Esteban; Vidito, Christopher; Puffer, John; Bizimis, Michael; Henika, William; Caddick, Mark J.

    2015-10-01

    The Central Atlantic Magmatic Province (CAMP) is the large igneous province (LIP) that coincides with the breakup of the supercontinent Pangea. Major and trace element data, Sr-Nd-Pb radiogenic isotopes, and high-precision olivine chemistry were collected on primitive CAMP dikes from Virginia (VA). These new samples were used in conjunction with a global CAMP data set to elucidate different mechanisms for supercontinent breakup and LIP formation. On the Eastern North American Margin, CAMP flows are found primarily in rift basins that can be divided into northern or southern groups based on differences in tectonic evolution, rifting history, and supercontinental inheritance. Geochemical signatures of CAMP suggest an upper mantle source modified by subduction processes. We propose that the greater number of accretionary events, or metasomatism by sediment melts as opposed to fluids on the northern versus the southern Laurentian margin during the formation of Pangea led to different subduction-related signatures in the mantle source of the northern versus southern CAMP lavas. CAMP samples have elevated Ni and low Ca in olivine phenocrysts indicating a significant pyroxenite component in the source, interpreted here as a result of subduction metasomatism. Different collisional styles during the Alleghanian orogeny in the North and South may have led to the diachroneity of the rifting of Pangea. Furthermore, due to a low angle of subduction, the Rheic Plate may have underplated the lithosphere then delaminated, triggering both the breakup of Pangea and the formation of CAMP.

  18. A re-entry tachycardia triggered by the spontaneous interruption of an atrial tachycardia.

    PubMed

    Buttà, Carmelo; Tuttolomondo, Antonino; Di Raimondo, Domenico; Giarrusso, Lucia; Miceli, Giuseppe; Cuttitta, Francesco; La Rosa, Donata; Licata, Giuseppe; Pinto, Antonio

    2015-01-01

    The common atrioventricular nodal re-entry tachycardia is the most common form of paroxysmal supraventricular tachycardia. It starts frequently with a supraventricular ectopic beat that, on finding the fast pathway in refractory period, travels in the slow pathway as to appear as a prolongation of the PR interval on the ECG. In this study, we show a singular case of a common atrioventricular nodal re-entry tachycardia triggered by the spontaneous interruption of an atrial tachycardia.

  19. An uncommon case of spontaneous conversion from AV re-entry tachycardia to AV nodal re-entry tachycardia in a patient with dual tachycardia.

    PubMed

    Zeljković, Ivan; Benko, Ivica; Manola, Šime; Radeljić, Vjekoslav; Pavlović, Nikola

    2015-01-01

    We report the case of a 46-year old patient in whom an electrophysiology study (EP) was performed due to paroxysmal supraventricular tachycardia documented in 12-lead ECG. During the EP study, supraventricular tachycardia was induced easily and it corresponded to orthodromic AV reentry tachycardia (AVRT) using a concealed left free wall accessory pathway. However, during the study AVRT spontaneously and repeatedly converted to the typical slow-fast AV node reentry tachycardia (AVNRT). Both accessory and AV nodal slow pathways were ablated, due to the finding that both AVRT and AVNRT were independently inducible during the EP study. PMID:27134441

  20. An uncommon case of spontaneous conversion from AV re-entry tachycardia to AV nodal re-entry tachycardia in a patient with dual tachycardia

    PubMed Central

    Zeljković, Ivan; Benko, Ivica; Manola, Šime; Radeljić, Vjekoslav; Pavlović, Nikola

    2016-01-01

    We report the case of a 46-year old patient in whom an electrophysiology study (EP) was performed due to paroxysmal supraventricular tachycardia documented in 12-lead ECG. During the EP study, supraventricular tachycardia was induced easily and it corresponded to orthodromic AV reentry tachycardia (AVRT) using a concealed left free wall accessory pathway. However, during the study AVRT spontaneously and repeatedly converted to the typical slow-fast AV node reentry tachycardia (AVNRT). Both accessory and AV nodal slow pathways were ablated, due to the finding that both AVRT and AVNRT were independently inducible during the EP study. PMID:27134441

  1. The technology for wireline re-entry of deep ocean boreholes employed for the Dianaut Program

    NASA Astrophysics Data System (ADS)

    Floury, Luc; Gable, Robert

    1992-03-01

    More than 850 holes have been drilled in the world's oceans over the past 24 years, in connection with the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP). At least 45 of these holes were fitted with a re-entry cone and many were cased through the sedimentary and unconsolidated layers, allowing hole re-entry with a drill string from a drilling vessel and wireline logging to the drill stem. Re-entry of seafloor drill holes with a wireline logger positioned on the seabed was first successfully accomplished during the FARE program. The DIANAUT program was a scientific application of seafloor wireline re-entry utilizing the logging shuttle ‘Nadia’ in combination with the manned submersible ‘Nautile’. The Nadia re-entry logging system was successfully seated in drill re-entry cones of three boreholes in the Atlantic Ocean (water depths of 1666, 4485, and, 4976 m) and logging operations with different probes (temperature, heat-pulse flowmeter, BHTV, fluid sampler, magnetometer) were performed from the seafloor with full logging control and data acquisition from the Nautile. In the near future the logging shuttle ‘Nadia’ could be developed into a support facility for long-term downhole measurements and later into an unmanned seafloor logging system.

  2. Vulnerability to reentry in a regionally ischemic tissue: a simulation study.

    PubMed

    Trénor, Beatriz; Romero, Lucía; Ferrero, José María; Sáiz, Javier; Moltó, Germán; Alonso, José Miguel

    2007-10-01

    Sudden cardiac death is mainly provoked by arrhythmogenic processes. During myocardial ischemia many malignant arrhythmias, such as reentry, take place and can degenerate into ventricular fibrillation. It is thus of great interest to unravel the intricate mechanisms underlying the initiation and maintenance of a reentry. In this computational study, we analyze the probability of reentry during different stages of the acute phase of ischemia. We also aimed at the understanding of the role of its main components: hypoxia, hyperkalemia, and acidosis analyzing the intricate ionic mechanisms responsible for reentry generation. We simulated the electrical activity of a ventricular tissue affected by regional ischemia based on a modified version of the Luo-Rudy model (LRd00). The ischemic conditions were varied to simulate different stages of this pathology. After premature stimulation, we evaluated the vulnerability to reentry. We obtained an unimodal behavior for the vulnerable window as ischemia progressed, peaking at the eighth minute after the onset of ischemia where the vulnerable window yielded 58 ms. Under more severe conditions the vulnerable window decreased and became zero for minute 8.75. The present work provides insight into the mechanisms of reentry generation during ischemia, highlighting the role of acidosis and hypoxia when hyperkalemia is present.

  3. Longitudinal stability analysis of a suborbital re-entry demonstrator for a deployable capsule

    NASA Astrophysics Data System (ADS)

    Iacovazzo, Michele; Carandente, Valerio; Savino, Raffaele; Zuppardi, Gennaro

    2015-01-01

    In the field of atmospheric re-entry technology several research and industrial projects are based on the design of deployable, umbrella-like Thermal Protection Systems (TPSs) and aero-brakes. These systems are made of flexible, high temperature resistant fabrics, folded at launch and deployed in space for de-orbit and re-entry operations. This technology is very promising for low cost research and industrial applications, but requires to be validated by experimental flight tests. The University of Naples "Federico II" is currently working on the development of different down-scaled technological demonstrators for this kind of capsule to be launched by different classes of sounding rockets. In the present work an aerodynamic longitudinal stability analysis for a possible, suborbital re-entry demonstrator, has been performed in continuum and rarefied regimes. The longitudinal stability behavior of the capsule, along the entire re-entry path, has been investigated in the whole range of angle of attack and, in particular, around the nominal and the reverse equilibrium re-entry attitudes (i.e. around 0° and 180°, respectively) to implement a proper re-entry strategy able not to compromise the effectiveness of the flying system.

  4. Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles.

    PubMed

    Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro

    2016-09-01

    It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias. PMID:27422985

  5. Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles.

    PubMed

    Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro

    2016-09-01

    It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias.

  6. The Development of a CO2 Test Capability in the NASA JSC ARCJet for Mars Reentry Simulation

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.; Suess, Leonard; Shafer, Brian

    2011-01-01

    The Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) located at NASA Johnson Space Center is used for simulating the extreme environment experienced upon reentry for the development and certification of thermal protection systems (TPS). The facility supports a large variety of programs and was heavily leveraged for the certification and operational support of the TPS for the Orbiter and, more recently, the development of the heat shield for CEV. This paper will provide more detail into the heritage of the facility. Unique attributes of the facility include a modular aerodynamically stabilized arc heater and independently controlled O2 and N2 for the test gases. When combining the O2 and N2 in a 23:77 mass ratio respectively the Earth s atmosphere is accurately simulated and via modification of this ratio the investigation of the effects of atomic oxygen on a material s response is possible. In the summer of 2010 a development effort was started to add CO2 as a third independently controlled test gas such that, when combined with N2, opens up the possibility of accurately simulating a Martian reentry environment. This paper will discuss the test facility, especially the arc heater, in more detail. Initial testing involved relatively low concentrations of CO2 combined with N2 for the primary purpose of gathering data to answer two pressing safety concerns. The first being the rate of production of carbon monoxide (CO) within the ejector vacuum system. The main concern was that CO can be flammable and possibly explosive at high enough concentrations and pressures. The hazard control during the development phase involved the use of injecting N2 inside the test chamber diffuser to dilute and reduce the concentration of any and all CO present. A residual gas analyzer (RGA) was used to determine the relative amount of CO in the exhaust gas and provide a conversion rate of CO2 to CO. This paper will discuss in more detail the results of the RGA

  7. GPK-2 re-entry and deepening -- a technical report

    SciTech Connect

    Baumgartner, J.; Gerard, A.; Barla, R.; Socomine, S.A.

    1999-01-01

    Between mid February to end of May 1999 (in 104 days) the well GPK2 at the Soultz HDR site was successfully re-entered and deepened from 3876 m to a final depth of 5084 m and fully completed. Re-entry included the pulling of the existing 321 1 m long internal 9 5/8-inch by 7-inch casing string, fishing of a submersible pump and some 150 m of 2 3/8-inch tubing, sealing of a major loss zone and opening of a 6 1/4-inch well section in granite (3211-3876 m) to 8 1/2-inch hole size. The well was extended to 5048 m in 8 1/2'' hole size and again completed with a floating 9 5/8-inch by 7-inch casing string. The casing shoe is at 4431 m. A bottom hole core was taken in the depth range 5048-5051 m. The core recovery was app. 40%. A pilot hole in 6 1/4-inch was drilled from 5051-5084 m for in situ stress measurements using the hydraulic fracturing technique. The re-entry and deepening of the well GPK2 was accompanied by several technical developments. New casing packer elements based on inflatable metal shells were developed in a close cooperation between SOCOMINE and MeSy GmbH (patent pending). These packer elements were successfully integrated into the completion of the well. The full weight of the casing string is supported by these elements which are filled with and imbedded in cement. High temperature cementing strategies (up to 170-190 C) for the complex saline fluids encountered in Soultz (High Magnesium Resistant Cements) were developed in a cooperation between Schlumberger Dowell (Vechta), SOCOMINE, SII of Houston, Ruhr-University Bochum, BGR Hannover and IFP Paris. The development of several high temperature logging tools (200 C range, 6-arm caliper, PTF probe) was initiated with CSMA (Cornwall) during the preparation of the deepening of GPK2. Initial scientific investigations included borehole logging (NGS, CLIPER, ARI, UBI, TEMPERATURE), geological investigations (cuttings, core) and seismic monitoring while drilling. During the first temperature log performed

  8. Re-Entry Simulation and Landing Area for YES2

    NASA Technical Reports Server (NTRS)

    Calzada, Silvia

    2005-01-01

    The REST simulator includes many parameters: a) Inertial <-> Fix to Earth reference system; b) Geodetic <-> Geocentric coordinates; c) Rotational velocity of the Atmosphere; d) Effect of the rotation of the Earth; e) Bulge effect of the Earth; f) Spherical harmonic expansion for the Earth s gravitational potential, J2 (zonal); g) Heat flux, temperature in the wall; h) Drag coefficient for different regimes; i) Flow regime status; j) Density model NRLMSISE-00; k) Wind model HWM-93; l) G2S atmospheric model with the latest meteorological conditions and m) Landing area (Monte Carlo Simulations)

  9. Characterization of the 2012-044C Briz-M Upper Stage Breakup

    NASA Technical Reports Server (NTRS)

    Hamilton, Joseph A.; Matney, Mark

    2013-01-01

    The NASA breakup model prediction was close to the observed population for catalog objects. The NASA breakup model predicted a larger population than was observed for objects under 10 cm. The stare technique produces low observation counts, but is readily comparable to model predictions. Customized stare parameters (Az, El, Range) were effective to increase the opportunities for HAX to observe the debris cloud. Other techniques to increase observation count will be considered for future breakup events.

  10. Plate break-up geometry in SE-Afar

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed

    2014-05-01

    New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding

  11. Bag-breakup control of surface drag in hurricanes

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and

  12. The visibility of color breakup and a means to reduce it.

    PubMed

    Johnson, Paul V; Kim, Joohwan; Banks, Martin S

    2014-12-19

    Color breakup is an artifact seen on displays that present colors sequentially. When the eye tracks a moving object on such a display, different colors land on different places on the retina, and this gives rise to visible color fringes at the object's leading and trailing edges. Interestingly, color breakup is also observed when the eye is stationary and an object moves by. Using a novel psychophysical procedure, we measured breakup both when viewers tracked and did not track a moving object. Breakup was somewhat more visible in the tracking than in the non-tracking condition. The video frames contained three subframes, one each for red, green, and blue. We spatially offset the green and blue stimuli in the second and third subframes, respectively, to find the values that minimized breakup. In the tracking and non-tracking conditions, spatial offsets of Δx/3 in the second subframe (where Δx is the displacement of the object in one frame) and 2Δx/3 in the third eliminated breakup. Thus, this method offers a way to minimize or even eliminate breakup whether the viewer is tracking or not. We suggest ways to implement the method with real video content. We also developed a color-breakup model based on spatiotemporal filtering in color-opponent pathways in early vision. We found close agreement between the model's predictions and the experimental results. The model can be used to predict breakup for a wide variety of conditions.

  13. Dynamic Polarization in the Coulomb Breakup of Loosely Bound 17F

    SciTech Connect

    Liang, J Felix; Beene, James R; Caraley, Anne L; Esbesnen, Henning; Galindo-Uribarri, Alfredo {nmn}; Gross, Carl J; Mueller, Paul Edward; Schmitt, Kyle; Shapira, Dan; Stracener, Daniel W; Varner Jr, Robert L

    2009-01-01

    Angular distributions of the Coulomb breakup of radioactive 17F were measured by impinging a 10 MeV/nucleon beam on 208Pb and on 58Ni. The breakup products, oxygen and a proton, were detected in coincidence. First-order perturbation theory significantly overpredicts the breakup cross section for the 208Pb target. Dynamical calculations with a dynamic polarization as the leading order correction were performed. The calculations reproduce the data for 17F on 58Ni but overpredict the breakup of 17F on 208Pb by a factor of two at forward angles.

  14. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  15. The SRB heat shield: Aeroelastic stability during reentry

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Dowell, E. H.

    1977-01-01

    Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.

  16. ARV Re-Entry Module Aerodynmics And Aerothermodynamics

    NASA Astrophysics Data System (ADS)

    Scheer, Heloise; Tran, Philippe; Berthe, Philippe

    2011-05-01

    Astrium-ST is the prime contractor of ARV phase A and is especially in charge of designing the Reentry Module (RM). The RM aeroshape has been defined following a trade-off. High level system requirements were derived with particular attention paid on minimum lift-over-drag ratio, trim incidence, centre-of-gravity lateral off-set and box size, volumetric efficiency, attitude at parachute deployment, flight heritage and aeroheating. Since moderate cross-range and thus L/D ratio were required, the aeroshape trade-off has been performed among blunt capsule candidates. Two front- shield families were considered: spherical (Apollo/ARD/Soyuz type) and sphero-conical (CTV type) segment front-shield. The rear-cone angle was set to 20° for internal pressurized volume and accommodation purposes. Figures of merit were assessed and a spherical front- shield of ARD type with a 20° rear-cone section was selected and proposed for further investigations. Maximum benefits will be taken from ARD flight heritage. CFD and WTT campaigns plans will be presented including preliminary results.

  17. Maneuverable reentry vehicle trajectory footprints: Calculation and properties

    SciTech Connect

    Handler, F.A.

    1987-11-20

    We have obtained an analytical solution of MAneuverable Reentry Vehicle (MARV) trajectory equations that provides useful estimates of a MARV's potential impact footprint on the ground. We concentrate on quick footprint estimation, as required for battle management of a terminal strategic defense system, but we also present other applications such as evaluating tradeoffs between MARV trajectories, design capabilities, and resulting footprints. We estimate the footprint by analytically solving three types of maximal maneuvering trajectories in which the MARV combines maximal turns, lifts or dives through specified angles, finally attempting to extend level flight as long as possible. We display several quantitative results, for a range of MARV capabilities, including variation of footprint area with trajectory incidence angle, altitude, and lift capability. We find that footprint area decreases rapidly as altitude decreases due to the exponentially increasing atmospheric drag. Further, the eccentricity of the footprints depends sensitively on the altitude, incidence angle and velocity, ranging from 0.1 to 0.8. Footprint area increases as lift capability of the MARV increases, roughly as the 3/2 power of lift for a trajectory with incidence angle of 20 degrees. 2 refs., 14 figs.

  18. Reentry heat transfer analysis of the space shuttle orbiter

    NASA Astrophysics Data System (ADS)

    Ko, W. L.; Quinn, R. D.; Gong, L.

    A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions.

  19. Hard breakup of the deuteron into two {Delta} isobars

    SciTech Connect

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-15

    We study high-energy photodisintegration of the deuteron into two {Delta} isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn{yields}{Delta}{Delta} scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn{yields}{Delta}{Delta} scattering. We predict that the cross section of the deuteron breakup to {Delta}{sup ++}{Delta}{sup -} is 4-5 times larger than that of the breakup to the {Delta}{sup +}{Delta}{sup 0} channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard {Delta} isobars are the result of the disintegration of the preexisting {Delta}{Delta} components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both {Delta}{sup ++}{Delta}{sup -} and {Delta}{sup +}{Delta}{sup 0} channels to be similar.

  20. Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Tillier, Clemens Emmanuel

    1998-01-01

    This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.

  1. An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  2. The Breakup of Temperature Inversions In Steep Valleys

    NASA Astrophysics Data System (ADS)

    Colette, A.; Street, R.

    The purpose of this research is to model and provide a better understanding of tem- perature inversions breakup in steep valleys. The Advanced Regional Prediction Sys- tem (ARPS), a three-dimensional, compressible, and non-hydrostatic modeling tool developed by the Center for Analysis and Prediction of Storms at the University of Oklahoma was used. Many field studies indicate that the evolution of the convective and inversion layers are strongly dependant on the surrounding topography. In relatively open valleys, the convective boundary layer usually grows from the bottom of the valley while in steeper cases, the upslope morning winds affects the dynamic of the mixing layer resulting in the destruction of the inversion from its bottom and its top (see Whiteman 1980). ARPS allows one to perform accurate simulation of such situations. First, written in terrain following coordinates, it handles steep topographies; then its extensive radi- ation and surface flux packages provide a good treatment of land related processes. Moreover, ARPS accounts for the incidence angle of sunrays, differencing the ex- posed and non-exposed mountain slopes. However, it neglects the topographic shade which can delay the sunrise of a hour or more in steep valleys. A new subroutine described by Colette etal. 2002 is thus used to compute the projected shade on the surrounding topography. Simulations of temperature inversion breakup for various two-dimensional valleys are presented. The time scale of evolution of the mixing layer is in good agreement with field studies and, as expected, the convective boundary layer shows an asymmetry between east and west facing slopes. The different patterns of inversion breakup doc- umented by Whiteman are also reproduced. These simulations of idealized cases give a better understanding of inversion breakup in steep valleys. Our code is now being applied to a real case: the study of a peculiar wind, la Ora del Garda, caused by the interaction between a

  3. Void deformation and breakup in shearing silica glass.

    PubMed

    Chen, Yi-Chun; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2009-07-17

    We study shear deformation and breakup of voids in silica glass using molecular dynamics simulations. With an increase in the shear strain, two kinds of defects--threefold-coordinated silicon and nonbridging oxygen atoms--appear as spherical voids deform elastically into ellipsoidal shapes. For shear strains epsilon>15%, nanocracks appear on void surfaces and voids deform plastically into a threadlike structure. Nanocracks are nucleated by the migration of threefold-coordinated Si and nonbridging O on -Si-O-Si-O- rings. For epsilon>40%, the threadlike structures break up into several fragments. PMID:19659293

  4. North Atlantic Margins: Case studies of Magmatic Continental Breakup

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A. F.

    2012-04-01

    Continental breakup between Europe and Greenland was accompanied by the rapid eruption of the > 1 million cubic kilometres of extruded basalts forming North Atlantic Igneous Province. With episodes of extension in the region dating back to the Devonian, rifting finally proceeded to full breakup and oceanic spreading in the Paleocene. Flood basalt units flowed up to 150 km over pre-existing sedimentary basins, discrete volcanic centres formed and intrusion into the thinned continental crust occurred. Marine seismic investigations utilising industry-leading seismic reflection imaging technologies and large deployments of ocean bottom seismometers across the Faroes and Hatton Bank margins have been used to better resolve margin structure and composition, improving our understanding of breakup processes. Seismic reflection imaging reveals sub-aerial and submarine seaward-dipping reflector sequences tracking the interplay of uplift (transient and permanent), crustal loading through extrusion and ongoing extension. Lower crustal reflectors, cross-cutting the continental fabric and interpreted as intrusions, are observed within the narrow continent-ocean transition. P-wave tomography of wide-angle reflections and refractions, recorded to offsets of up to ~200 km, reveals unusually thick oceanic crust with lower crustal velocities in excess of those expected for MORB compositions. High P-wave velocities are attributed to magnesium-rich compositions which, combined with the large oceanic crustal thickness, would be consistent with an elevated mantle temperature (~150°C higher than 'normal') at the time of breakup. Vp/Vs ratios derived from tomography of converted shear wave phases also support high magnesium melt composition. P-wave velocities and Vp/Vs ratios across the continent-ocean transition show a mixing trend between magnesium-rich gabbroic compositions (100% for oceanic crust) and compositions consistent with the Lewisian gneiss basement or Early Proterozoic

  5. Beam Breakup Studies for New Cryo-Unit

    SciTech Connect

    S. Ahmed, I. Shin, R. Kazimi, F. Marhauser ,F. Hannon ,G. Krafft ,B. Yunn ,A. Hofler

    2011-03-01

    In this paper, we report the numerical simulations of cumulative beam breakup studies for a new cryo-unit for booster design at Jefferson lab. The system consists of two 1-cell and one 7-cell superconducting RF cavities. Combining two 1-cell into a 2-cell together with a 7-cell is also an option. Simulations have been performed using the 2-dimensional time-domain code. The 1-cell+1-cell+7-cell combination confirms beam stability, however, the arrangement 2-cell+7-cell shows instability.

  6. Radial electron-beam-breakup transit-time oscillator

    DOEpatents

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  7. Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve

    PubMed Central

    Dutta, Sara; Mincholé, Ana; Zacur, Ernesto; Quinn, T. Alexander; Taggart, Peter; Rodriguez, Blanca

    2016-01-01

    Aims Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. Methods and results A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. Conclusions Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve. PMID:26850675

  8. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  9. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    NASA Technical Reports Server (NTRS)

    Meng, J. C. S.

    1973-01-01

    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  10. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals

    NASA Astrophysics Data System (ADS)

    Porter, Daniel; Savage, John R.; Cohen, Itai; Spicer, Patrick; Caggioni, Marco

    2012-04-01

    Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage , Soft Matter1744-683X10.1039/b923069f 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.2breakup dynamics. Finally, in the isotropic phase, the exponents are consistent with theoretical predictions and experiments for Newtonian fluid breakup in the inertial viscous regime.

  11. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  12. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  13. Plethora of transitions during breakup of liquid filaments.

    PubMed

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; Sambath, Krishnaraj; Hutchings, Ian M; Hinch, John; Lister, John R; Basaran, Osman A

    2015-04-14

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial-viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial-viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.

  14. Break-up of New Orleans Households after Hurricane Katrina

    PubMed Central

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household break-up due to Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads and non–household heads (N = 242), traced just over a year later, with a matched sample from a nationally representative survey over an equivalent period. One in three among all adult non–household heads, and one in two among adult children of household heads, had separated from the household head 1 year post-Katrina. These rates were, respectively, 2.2 and 2.7 times higher than national rates. A 50% higher prevalence of adult children living with parents in pre-Katrina New Orleans than nationally increased the hurricane’s impact on household break-up. Attention to living arrangements as a dimension of social vulnerability in disaster recovery is suggested. PMID:21709733

  15. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  16. Rebound sex: Sexual motives and behaviors following a relationship breakup.

    PubMed

    Barber, Lindsay L; Cooper, M Lynne

    2014-02-01

    The present study used a longitudinal, online diary method to examine trajectories of psychological recovery and sexual experience following a romantic relationship breakup among 170 undergraduate students. Consistent with popular beliefs about rebound and revenge sex, having sex to cope with distress and to get over or get back at the ex-partner were elevated immediately following the breakup and then declined over time, as did the probability of having sex with a new partner. Also consistent with popular lore, those who were "dumped" by their partners were more distressed and angry and more likely to have sex to cope and to get back at or get over their ex-partner. Finally, individuals who reported having sex to cope with negative feelings or to get over their ex-partner at the beginning of the study were more likely to have sex with a stranger and to continue having sex with new partners over time. Results were discussed in terms of widely held but largely untested beliefs about rebound and revenge sex. PMID:24356947

  17. Distribution of living Cupressaceae reflects the breakup of Pangea.

    PubMed

    Mao, Kangshan; Milne, Richard I; Zhang, Libing; Peng, Yanling; Liu, Jianquan; Thomas, Philip; Mill, Robert R; Renner, Susanne S

    2012-05-15

    Most extant genus-level radiations in gymnosperms are of Oligocene age or younger, reflecting widespread extinction during climate cooling at the Oligocene/Miocene boundary [∼23 million years ago (Ma)]. Recent biogeographic studies have revealed many instances of long-distance dispersal in gymnosperms as well as in angiosperms. Acting together, extinction and long-distance dispersal are likely to erase historical biogeographic signals. Notwithstanding this problem, we show that phylogenetic relationships in the gymnosperm family Cupressaceae (162 species, 32 genera) exhibit patterns expected from the Jurassic/Cretaceous breakup of Pangea. A phylogeny was generated for 122 representatives covering all genera, using up to 10,000 nucleotides of plastid, mitochondrial, and nuclear sequence per species. Relying on 16 fossil calibration points and three molecular dating methods, we show that Cupressaceae originated during the Triassic, when Pangea was intact. Vicariance between the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae, occurred around 153 Ma (124-183 Ma), when Gondwana and Laurasia were separating. Three further intercontinental disjunctions involving the Northern and Southern Hemisphere are coincidental with or immediately followed the breakup of Pangea.

  18. Break-up dynamics of fluctuating liquid threads

    PubMed Central

    Petit, Julien; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2012-01-01

    The thinning dynamics of a liquid neck before break-up, as may happen when a drop detaches from a faucet or a capillary, follows different rules and dynamic scaling laws depending on the importance of inertia, viscous stresses, or capillary forces. If now the thinning neck reaches dimensions comparable to the thermally excited interfacial fluctuations, as for nanojet break-up or the fragmentation of thermally annealed nanowires, these fluctuations should play a dominant role according to recent theory and observations. Using near-critical interfaces, we here fully characterize the universal dynamics of this thermal fluctuation-dominated regime and demonstrate that the cross-over from the classical two-fluid pinch-off scenario of a liquid thread to the fluctuation-dominated regime occurs at a well-defined neck radius proportional to the thermal length scale. Investigating satellite drop formation, we also show that at the level of the cross-over between these two regimes it is more probable to produce monodisperse droplets because fluctuation-dominated pinch-off may allow the unique situation where satellite drop formation can be inhibited. Nonetheless, the interplay between the evolution of the neck profiles from the classical to the fluctuation-dominated regime and the satellites’ production remains to be clarified. PMID:23090994

  19. Distribution of living Cupressaceae reflects the breakup of Pangea

    PubMed Central

    Mao, Kangshan; Milne, Richard I.; Zhang, Libing; Peng, Yanling; Liu, Jianquan; Thomas, Philip; Mill, Robert R.; S. Renner, Susanne

    2012-01-01

    Most extant genus-level radiations in gymnosperms are of Oligocene age or younger, reflecting widespread extinction during climate cooling at the Oligocene/Miocene boundary [∼23 million years ago (Ma)]. Recent biogeographic studies have revealed many instances of long-distance dispersal in gymnosperms as well as in angiosperms. Acting together, extinction and long-distance dispersal are likely to erase historical biogeographic signals. Notwithstanding this problem, we show that phylogenetic relationships in the gymnosperm family Cupressaceae (162 species, 32 genera) exhibit patterns expected from the Jurassic/Cretaceous breakup of Pangea. A phylogeny was generated for 122 representatives covering all genera, using up to 10,000 nucleotides of plastid, mitochondrial, and nuclear sequence per species. Relying on 16 fossil calibration points and three molecular dating methods, we show that Cupressaceae originated during the Triassic, when Pangea was intact. Vicariance between the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae, occurred around 153 Ma (124–183 Ma), when Gondwana and Laurasia were separating. Three further intercontinental disjunctions involving the Northern and Southern Hemisphere are coincidental with or immediately followed the breakup of Pangea. PMID:22550176

  20. Distribution of living Cupressaceae reflects the breakup of Pangea.

    PubMed

    Mao, Kangshan; Milne, Richard I; Zhang, Libing; Peng, Yanling; Liu, Jianquan; Thomas, Philip; Mill, Robert R; Renner, Susanne S

    2012-05-15

    Most extant genus-level radiations in gymnosperms are of Oligocene age or younger, reflecting widespread extinction during climate cooling at the Oligocene/Miocene boundary [∼23 million years ago (Ma)]. Recent biogeographic studies have revealed many instances of long-distance dispersal in gymnosperms as well as in angiosperms. Acting together, extinction and long-distance dispersal are likely to erase historical biogeographic signals. Notwithstanding this problem, we show that phylogenetic relationships in the gymnosperm family Cupressaceae (162 species, 32 genera) exhibit patterns expected from the Jurassic/Cretaceous breakup of Pangea. A phylogeny was generated for 122 representatives covering all genera, using up to 10,000 nucleotides of plastid, mitochondrial, and nuclear sequence per species. Relying on 16 fossil calibration points and three molecular dating methods, we show that Cupressaceae originated during the Triassic, when Pangea was intact. Vicariance between the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae, occurred around 153 Ma (124-183 Ma), when Gondwana and Laurasia were separating. Three further intercontinental disjunctions involving the Northern and Southern Hemisphere are coincidental with or immediately followed the breakup of Pangea. PMID:22550176