Sample records for earth return swer

  1. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  2. Stardust Returns to Earth Artist Concept

    NASA Image and Video Library

    2005-11-03

    Artist rendering of NASA’s Stardust returning to Earth. Stardust is the first U.S. space mission dedicated to the exploration of a comet, and the first robotic mission designed to return extraterrestrial material from outside the orbit of the Moon.

  3. Near-Earth Asteroid Returned Sample (NEARS)

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Cheng, Andrew F.

    1994-01-01

    The concept of the Near-Earth Asteroid Returned Sample (NEARS) mission is to return to Earth 10-100 g from each of four to six sites on a near-Earth asteroid and to perform global characterization of the asteroid and measure mass, volume, and density to ten percent. The target asteroid for the mission is 4660 Nereus, probably a primitive C-type asteroid, with the alternate target being 1989ML, an extremely accessible asteroid of unknown type. Launch dates will be 1998, 2000, 2002, and 2004 on the Delta II-7925 launch vehicle. The mission objectives are three-fold. (1) Provide first direct and detailed petrological, chemical, age, and isotopic characterization of a near-Earth asteroid and relate it to terrestrial, lunar, and meteoritic materials. (2) Sample the asteroid regolith and characterize any exotic fragments. (3) Identify heterogeneity in the asteroid's isotopic properties, age, and elemental chemistry.

  4. Mars Earth Return Vehicle (MERV) Propulsion Options

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  5. MSR ESA Earth Return Orbiter Mission Design Trades

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. M.; Varga, G. I.; Huesing, J.; Beyer, F.

    2018-04-01

    The paper describes the work performed at ESOC in support of the Mars Sample Return ESA Earth Return Orbiter definition studies by exploring the trajectory optimization and mission design trade spaces of Mars return missions using electric and chemical propulsion.

  6. Earth-return trajectory options for the 1985-86 Halley opportunity

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1982-01-01

    A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.

  7. Hayabusa: Navigation Challenges for Earth Return

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Bhaskaran, S.; Strauss, W.; Sklyanskiy, E.; Graat, E. J.; Smith, J. J.; Menom, P.; Ardalan, S.; Ballard, C.; Williams, P.; hide

    2011-01-01

    Hayabusa was a JAXA sample-return mission to Itokawa navigated, in part, by JPL personnel. Hayabusa survived several near mission-ending failures at Itokawa yet returned to Earth with an asteroid regolith sample on June 13, 2010. This paper describes NASA/JPL's participation in the Hayabusa mission during the last 100 days of its mission, wherein JPL provided tracking data and orbit determination, plus verification of maneuver design and entry, descent and landing.

  8. Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.

  9. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  10. Sample Return: What Happens to the Samples on Earth?

    NASA Technical Reports Server (NTRS)

    McNamara, Karen

    2010-01-01

    As space agencies throughout the world turn their attention toward human exploration of the Moon, Mars, and the solar system beyond, there has been an increase in the number of robotic sample return missions proposed as precursors to these human endeavors. In reality, however, we, as a global community, have very little experience with robotic sample return missions: 3 of the Russian Luna Missions successfully returned lunar material in the 1970s; 28 years later, in 2004, NASA s Genesis Mission returned material from the solar wind; and in 2006, NASA s Stardust Mission returned material from the Comet Wild2. [Note: The Japanese Hyabusa mission continues in space with the hope of returning material from the asteroid 25143 Itokawa.] We launch many spacecraft to LEO and return them to Earth. We also launch spacecraft beyond LEO to explore the planets, our solar system, and beyond. Some even land on these bodies. But these do not return. So as we begin to contemplate the sample return missions of the future, some common questions arise: "What really happens when the capsule returns?" "Where does it land?" "Who retrieves it and just how do they do that?" "Where does it go after that?" "How do the scientists get the samples?" "Do they keep them?" "Who is in charge?" The questions are nearly endless. The goal of this paper/presentation is to uncover many of the mysteries of the post-return phase of a mission - from the time the return body enters the atmosphere until the mission ends and the samples become part of a long term collection. The discussion will be based largely on the author s own experience with both the Genesis and Stardust missions. Of course, these two missions have a great deal in common, being funded by the same NASA Program (Discovery) and having similar team composition. The intent, however, is to use these missions as examples in order to highlight the general requirements and the challenges in defining and meeting those requirements for the final

  11. Radiation from lightning return strokes over a finitely conducting earth

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Gesell, L.; Kao, Michael

    1986-01-01

    The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.

  12. EarthCube's Assessment Framework: Ensuring Return on Investment

    NASA Astrophysics Data System (ADS)

    Lehnert, K.

    2016-12-01

    EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.

  13. Mid-Air Retrieval of Heavy, Earth-Returning Space Systems

    NASA Technical Reports Server (NTRS)

    Kelly, John W.; Brierly, Gregory T.; Cruz, Josue; Lowry, Allen; Fogleman, Lynn; Johnson, Brian; Peterson, Kristina; Gibson, Ian; Neave, Matthew D.; Streetman, Brett; hide

    2016-01-01

    This subject technology has the potential to reduce cost for many Earth returning missions, both Government and commercial, including reentry vehicles, launch assets, and scientific experiments using balloons.

  14. The Suess-Urey mission (return of solar matter to Earth).

    PubMed

    Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E

    1996-01-01

    The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.

  15. 21st century early mission concepts for Mars delivery and earth return

    NASA Technical Reports Server (NTRS)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  16. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  17. Near-Earth Asteroid Sample Return Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.

  18. Risk analysis of earth return options for the Mars rover/sample return mission

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.

  19. Investigation of Alternative Return Strategies for Orion Trans-earth Injection Design Options

    NASA Technical Reports Server (NTRS)

    Marchand, Belinda G.; Scarritt, Sara K.; Howell, Kathleen C.; Weeks, Michael W.

    2010-01-01

    The purpose of this study is to investigate alternative return strategies for the Orion trans-Earth injection (TEI) phase. A dynamical systems analysis approach considers the structure of the stable and unstable Sun perturbed Earth-Moon manifolds near the Earth-Moon interface region. A hybrid approach, then, combines the results from this analysis with classical two-body methods in a targeting process that seeks to expand the window of return opportunities in a precision entry scenario. The resulting startup arcs can be used, for instance, to enhance the block set of solutions available onboard during an autonomous targeting process.

  20. Magnetobraking: Use of tether electrodynamic drag for Earth return from Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1994-01-01

    It has often been proposed that a vehicle returning from Mars will use aerobraking in the Earth's atmosphere to dissipate hyperbolic excess velocity to capture into Earth orbit. Here a different system for dissipating excess velocity without expenditure of reaction mass, magnetobraking, is proposed. Magnetobraking uses the force on an electrodynamic tether in the Earth's magnetic field to produce thrust. An electrodynamic tether is deployed from the spacecraft as it approaches the Earth. The Earth's magnetic field produces a force on electrical current in the tether. If the tether is oriented perpendicularly to the Earth's magnetic field and to the direction of motion of the spacecraft, force produced by the Earth's magnetic field can be used to either brake or accelerate the spacecraft without expenditure of reaction mass. The peak acceleration on the Mars return is 0.007 m/sq sec, and the amount of braking possible is dependent on the density and current-carrying capacity of the tether, but is independent of length. A superconducting tether is required. The required critical current is shown to be within the range of superconducting technology now available in the laboratory.

  1. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  2. Earth Return Aerocapture for the TransHab/Ellipsled Vehicle

    NASA Technical Reports Server (NTRS)

    Muth, W. D.; Hoffmann, C.; Lyne, J. E.

    2000-01-01

    The current architecture being considered by NASA for a human Mars mission involves the use of an aerocapture procedure at Mars arrival and possibly upon Earth return. This technique would be used to decelerate the vehicles and insert them into their desired target orbits, thereby eliminating the need for propulsive orbital insertions. The crew may make the interplanetary journey in a large, inflatable habitat known as the TransHab. It has been proposed that upon Earth return, this habitat be captured into orbit for use on subsequent missions. In this case, the TransHab would be complimented with an aeroshell, which would protect it from heating during the atmospheric entry and provide the vehicle with aerodynamic lift. The aeroshell has been dubbed the "Ellipsled" because of its characteristic shape. This paper reports the results of a preliminary study of the aerocapture of the TransHab/Ellipsled vehicle upon Earth return. Undershoot and overshoot boundaries have been determined for a range of entry velocities, and the effects of variations in the atmospheric density profile, the vehicle deceleration limit, the maximum vehicle roll rate, the target orbit, and the vehicle ballistic coefficient have been examined. A simple, 180 degree roll maneuver was implemented in the undershoot trajectories to target the desired 407 km circular Earth orbit. A three-roll sequence was developed to target not only a specific orbital energy, but also a particular inclination, thereby decreasing propulsive inclination changes and post-aerocapture delta-V requirements. Results show that the TransHab/Ellipsled vehicle has a nominal corridor width of at least 0.7 degrees for entry speeds up to 14.0 km/s. Most trajectories were simulated using continuum flow aerodynamics, but the impact of high-altitude viscous effects was evaluated and found to be minimal. In addition, entry corridor comparisons have been made between the TransHab/Ellipsled and a modified Apollo capsule which is also

  3. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into

  4. Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid

    2015-01-01

    Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.

  5. Autonomous Mars ascent and orbit rendezvous for earth return missions

    NASA Technical Reports Server (NTRS)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  6. Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.

    2017-01-01

    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to

  7. The Moon as a 100% Isolation Barrier for Earth During Exobiological Examination of Solar System Sample Return Missions

    NASA Astrophysics Data System (ADS)

    DiGregorio, B. E.

    2018-04-01

    The only 100% guarantee of protecting Earth's biosphere from a hazardous back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.

  8. Ablative Heat Shield Studies for NASA Mars/Earth Return Entry Vehicles

    DTIC Science & Technology

    1990-09-01

    RETURN ENTRY VEHICLES by Michael K. Hamm September, 1990 NASA Thesis Advisor: William D. Henline Thesis Co-Advisor: Max F. Platzer Approved for public...STUDIES FOR NASA MARS/EARTH RETURN ENTRY VEHICLES (UNCLASSIFIED) 12. PERSONAL AUTHOR(S) Harm, Michael, K. 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...theoretical values. The tests were performed to ascertain if RSI type materials could be used for entry vehicles proposed in NASA Mars missions. 20

  9. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  10. Optimization of Return Trajectories for Orbital Transfer Vehicle between Earth and Moon

    NASA Technical Reports Server (NTRS)

    Funase, Ryu; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2007-01-01

    In this paper, optimum trajectories in Earth Transfer Orbit (ETO) for a lunar transportation system are proposed. This paper aims at improving the payload ratio of the reusable orbital transfer vehicle (OTV), which transports the payload from Low Earth Orbit (LEO) to Lunar Low Orbit (LLO) and returns to LEO. In ETO, we discuss ballistic flight using chemical propulsion, multi-impulse flight using electrical propulsion, and aero-assisted flight using aero-brake. The feasibility of the OTV is considered.

  11. CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return): A New Frontiers Mission Concept to Collect Samples from a Comet and Return Them to Earth for Study

    NASA Astrophysics Data System (ADS)

    Sandford, S. A.; Chabot, N. L.; Dello Russo, N.; Leary, J. C.; Reynolds, E. L.; Weaver, H. A.; Wooden, D. H.

    2017-07-01

    CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return) is a mission concept submitted in response to NASA's New Frontiers 4 call. CORSAIR's proposed mission is to return comet nucleus samples to Earth for detailed analysis.

  12. A Passive Earth-Entry Capsule for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Kellas, Sotiris

    1999-01-01

    A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.

  13. Restricted by Whom? A Historical Review of Strategies and Organization for Restricted Earth Return of Samples from NASA Planetary Missions

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2017-01-01

    This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).

  14. Design of fast earth-return trajectories from a lunar base

    NASA Astrophysics Data System (ADS)

    Anhorn, Walter

    1991-09-01

    The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.

  15. The Moon: A 100% Isolation Barrier for Earth During Exobiological Examination of Solar System Sample Return Missions

    NASA Astrophysics Data System (ADS)

    DiGregorio, B. E.

    2018-02-01

    The only 100% guarantee of protecting our planet's biosphere from a back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.

  16. Overview of the Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; Corliss, James

    2008-01-01

    NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.

  17. The 2014 Earth return of the ISEE-3/ICE spacecraft

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Farquhar, Robert W.; Loucks, Michel; Roberts, Craig E.; Wingo, Dennis; Cowing, Keith L.; Garcia, Leonard N.; Craychee, Tim; Nickel, Craig; Ford, Anthony; Colleluori, Marco; Folta, David C.; Giorgini, Jon D.; Nace, Edward; Spohr, John E.; Dove, William; Mogk, Nathan; Furfaro, Roberto; Martin, Warren L.

    2015-05-01

    In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit. In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment. After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second ΔV (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was

  18. View of earth during return from moon taken from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-24

    AS8-15-2561 (21-27 Dec. 1968) --- View of Earth as photographed by the Apollo 8 astronauts on their return trip from the moon. Note that the terminator is straighter than on the outbound pictures. The terminator crosses Australia. India is visible. The sun reflection is within the Indian Ocean.

  19. Aerobraking strategies for the sample of comet coma earth return mission

    NASA Astrophysics Data System (ADS)

    Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.

    The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.

  20. Aerobraking strategies for the sample of comet coma earth return mission

    NASA Technical Reports Server (NTRS)

    Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.

    1990-01-01

    The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.

  1. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  2. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small

  3. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.

  4. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  5. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  6. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.

  7. Mars rover sample return mission utilizing in situ production of the return propellants

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Nill, L.; Schubert, H.; Thill, B.; Warwick, R.

    1993-01-01

    This paper presents an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return trip. A key goal of the mission is to demonstrate the considerable benefits that can be realized through the use of indigenous resources and to test the viability of this approach as a precursor to manned missions to Mars. Two in situ propellant combinations, methane/oxygen and carbon monoxide/oxygen, are compared to imported terrestrial hydrogen/oxygen within a single mission architecture, using a single Earth launch vehicle. The mission is assumed to be launched from Earth in 2003. Upon reaching Mars, the landing vehicle aerobrakes, deploys a small satellite, and lands on the Martian surface. Once on the ground, the propellant production unit is activated, and the product gases are liquefied and stored in the empty tanks of the Earth Return Vehicle (ERV). Power for these activities is provided by a dynamic isotope power system. A semiautonomous rover, powered by the indigenous propellants, gathers between 25 and 30 kg of soil and rock samples which are loaded aboard the ERV for return to Earth. After a surface stay time of approximately 1.5 years, the ERV leaves Mars for the return voyage to Earth. When the vehicle reaches the vicinity of Earth, the sample return capsule detaches, and is captured and circularized in LEO via aerobraking maneuvers.

  8. Are Samples Obtained after Return to Earth Reflective of Spaceflight or Increased Gravity?

    NASA Technical Reports Server (NTRS)

    Wade, C. R.; Holton, E.; Baer, L.; Moran, M.

    2001-01-01

    Upon return to Earth, following space flight, living systems are immediately exposed to an increase in gravity of 1G. It has been difficult to differentiate between changes that are residuals of the acclimation to space flight from those resulting from acute exposure to an increase in =gravity upon re-entry. We compared previously reported changes observed in male Sprague-Dawley rats upon return to Earth to those induced by centrifugation, because both paradigms result in an increase of 1G. With both treatments there was a reduction in body mass, due to reduced food intake and increased urine output. The decrease in food intake was initially greater with centrifugation. The magnitudes of the changes in food intake and urine output were similar in both treatments. However, the slightly greater initial loss in body mass with centrifugation was due to a decrease in water intake not seen after space flight. The absence of pronounced differences between these treatments suggest the responses observed after landing are not residuals of adaptation to the space flight environment, but the result of adaptation to an increase in the level of gravity.

  9. Sample Returns Missions in the Coming Decade

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    2000-01-01

    In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly give clues to how life began on Earth. A description of five sample return missions is presented (Stardust, Genesis, Muses-C. Mars Sample Return, and Comet Nucleus Sample Return). An overview of each sample return mission is given, concentrating particularly on the technical challenges posed during the Earth entry, descent, and landing phase of the missions. Each mission faces unique challenges in the design of an Earth entry capsule. The design of the entry capsule must address the aerodynamic, heating, deceleration, landing, and recovery requirements for the safe return of samples to Earth.

  10. Interfacing with USSTRATCOM and UTTR during Stardust Earth Return

    NASA Technical Reports Server (NTRS)

    Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.

    2006-01-01

    The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.

  11. A Genesis breakup and burnup analysis in off-nominal Earth return and atmospheric entry

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed; Ling, Lisa; McRonald, Angus

    2005-01-01

    The Genesis project conducted a detailed breakup/burnup analysis before the Earth return to determine if any spacecraft component could survive and reach the ground intact in case of an off-nominal entry. In addition, an independent JPL team was chartered with the responsibility of analyzing several definitive breakup scenarios to verify the official project analysis. This paper presents the analysis and results of this independent team.

  12. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  13. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  14. OSIRIS-REx, Returning the Asteroid Sample

    NASA Technical Reports Server (NTRS)

    Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua

    2015-01-01

    This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful

  15. Aerothermodynamic environments for Mars entry, Mars return, and lunar return aerobraking missions

    NASA Astrophysics Data System (ADS)

    Rochelle, W. C.; Bouslog, S. A.; Ting, P. C.; Curry, D. M.

    1990-06-01

    The aeroheating environments to vehicles undergoing Mars aerocapture, earth aerocapture from Mars, and earth aerocapture from the moon are presented. An engineering approach for the analysis of various types of vehicles and trajectories was taken, rather than performing a benchmark computation for a specific point at a selected time point in a trajectory. The radiation into Mars using the Mars Rover Sample Return (MRSR) 2-ft nose radius bionic remains a small contributor of heating for 6 to 10 km/sec; however, at 12 km/sec it becomes comparable with the convection. For earth aerocapture, returning from Mars, peak radiation for the MRSR SRC is only 25 percent of the peak convection for the 12-km/sec trajectory. However, when large vehicles are considered with this trajectory, peak radiation can become 2 to 4 times higher than the peak convection. For both Mars entry and return, a partially ablative Thermal Protection System (TPS) would be required, but for Lunar Transfer Vehicle return an all-reusable TPS can be used.

  16. Mars double-aeroflyby free returns

    NASA Astrophysics Data System (ADS)

    Jesick, Mark

    2017-09-01

    Mars double-flyby free-return trajectories that pass twice through the Martian atmosphere are documented. This class of trajectories is advantageous for potential Mars atmospheric sample return missions because of its low geocentric energy at departure and arrival, because it would enable two sample collections at unique locations during different Martian seasons, and because of its lack of deterministic maneuvers. Free return opportunities are documented over Earth departure dates ranging from 2015 through 2100, with viable missions available every Earth-Mars synodic period. After constraining the maximum lift-to-drag ratio to be less than one, the minimum observed Earth departure hyperbolic excess speed is 3.23 km/s, the minimum Earth atmospheric entry speed is 11.42 km/s, and the minimum round-trip flight time is 805 days. An algorithm using simplified dynamics is developed along with a method to derive an initial estimate for trajectories in a more realistic dynamic model. Multiple examples are presented, including free returns that pass outside and inside of Mars's appreciable atmosphere.

  17. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  18. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-01-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return

  19. An efficient approach for Mars Sample Return using emerging commercial capabilities

    NASA Astrophysics Data System (ADS)

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as ;Red Dragon;, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the

  20. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.

    PubMed

    Gonzales, Andrew A; Stoker, Carol R

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return

  1. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities

    PubMed Central

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-01-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth

  2. A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.

    2002-01-01

    In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its

  3. Mars Sample Return Architecture Overview

    NASA Astrophysics Data System (ADS)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  4. Sustainable Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert

    2011-01-01

    The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.

  5. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  6. Mars Sample Return without Landing on the Surface

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.

    2000-01-01

    Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.

  7. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  8. Contemporary Impact Analysis Methodology for Planetary Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.

    2015-01-01

    Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.

  9. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  10. Cardiovascular adaptations in weightlessness: The influence of in-flight exercise programs on the cardiovascular adjustments during weightlessness and upon returning to Earth

    NASA Technical Reports Server (NTRS)

    Bennett, C. H.

    1981-01-01

    The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.

  11. The Mars Sample Return Project

    NASA Technical Reports Server (NTRS)

    O'Neil, W. J.; Cazaux, C.

    2000-01-01

    The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles. c 2000 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science Ltd.

  12. Space Station Astronauts Return Safely to Earth on This Week @NASA – December 11, 2015

    NASA Image and Video Library

    2015-12-11

    On Dec. 11 aboard the International Space Station, NASA’s Kjell Lindgren, Russian cosmonaut Oleg Kononenko and Kimiya Yui of the Japan Aerospace Exploration Agency, bid farewell to crew members remaining on the station -- including Commander Scott Kelly, NASA’s one-year mission astronaut. The returning members of Expedition 45 then climbed aboard their Soyuz spacecraft for the trip back to Earth. They safely touched down hours later in Kazakhstan – closing out a 141-day stay in space. Also, Next space station crew prepares for launch, Supply mission arrives at space station, Quantum computing lab and more!

  13. Mars to earth optical communication link for the proposed Mars Sample Return mission roving vehicle

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L., Jr.

    The Mars Sample Return (MSR) mission planed for 1989 will deploy a rover from its landing craft to survey the Martian surface. During traversals of the rover from one site to the next in search of samples, three-dimensional images from a pair of video cameras will be transmitted to earth; the terrestrial operators will then send back high level direction commands to the rover. Attention is presently given to the effects of wind and dust on communications, the architecture of the optical communications package, and the identification of technological areas requiring further development for MSR incorporation.

  14. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  15. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  16. Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  17. Project Hyreus: Mars sample return mission utilizing in situ propellant production

    NASA Technical Reports Server (NTRS)

    Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  18. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver

    NASA Astrophysics Data System (ADS)

    Mac Manus, Daniel H.; Rodger, Craig J.; Dalzell, Michael; Thomson, Alan W. P.; Clilverd, Mark A.; Petersen, Tanja; Wolf, Moritz M.; Thomson, Neil R.; Divett, Tim

    2017-08-01

    Transpower New Zealand Limited has measured DC currents in transformer neutrals in the New Zealand electrical network at multiple South Island locations. Near-continuous archived DC current data exist since 2001, starting with 12 different substations and expanding from 2009 to include 17 substations. From 2001 to 2015 up to 58 individual transformers were simultaneously monitored. Primarily, the measurements were intended to monitor the impact of the high-voltage DC system linking the North and South Islands when it is operating in "Earth return" mode. However, after correcting for Earth return operation, as described here, the New Zealand measurements provide an unusually long and spatially detailed set of geomagnetically induced current (GIC) measurements. We examine the peak GIC magnitudes observed from these observations during two large geomagnetic storms on 6 November 2001 and 2 October 2013. Currents of 30-50 A are observed, depending on the measurement location. There are large spatial variations in the GIC observations over comparatively small distances, which likely depend upon network layout and ground conductivity. We then go on to examine the GIC in transformers throughout the South Island during more than 151 h of geomagnetic storm conditions. We compare the GIC to the various magnitude and rate of change components of the magnetic field. Our results show that there is a strong correlation between the magnitude of the GIC and the rate of change of the horizontal magnetic field (H'). This correlation is particularly clear for transformers that show large GIC current during magnetic storms.

  19. The Earth & Moon

    NASA Image and Video Library

    1998-06-04

    During its flight, NASA’s Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. http://photojournal.jpl.nasa.gov/catalog/PIA00342

  20. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  1. Benefits of in situ propellant utilization for a Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1993-01-01

    Previous Mars rover sample return mission studies have shown a requirement for Titan 4 or STS Space Shuttle launch vehicles to complete a sample return from a single Mars site. These studies have either used terrestrial propellants or considered in situ production of methane and oxygen for the return portion of the mission. Using in situ propellants for the return vehicles reduces the Earth launch mass and allows for a smaller Earth launch vehicle, since the return propellant is not carried from Earth. Carbon monoxide and oxygen (CO/O2) and methane and oxygen (CH4/O2) were investigated as in situ propellants for a Mars sample return mission and the results were compared to a baseline study performed by the Jet Propulsion Laboratory using terrestrial propellants. Capability for increased sample return mass, use of an alternate launch vehicle, and an additional mini-rover as payload were included. CO/O2 and CH4/O2 were found to decrease the baseline Earth launch mass by 13.6 and 9.2 percent, respectively. This resulted in higher payload mass margins for the baseline Atlas 2AS launch vehicle. CO/O2 had the highest mass margin. And because of this, it was not only possible to increase the sample return mass and carry an additional mini-rover, but was also possible to use the smaller Atlas 2A launch vehicle.

  2. Rat gestation during space flight: outcomes for dams and their offspring born after return to Earth.

    PubMed

    Wong, A M; DeSantis, M

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  3. Rat Gestation During Space Flight: Outcomes for Dams and Their Offspring Born After Return to Earth

    NASA Technical Reports Server (NTRS)

    Wong, Andre M.; DeSantis, Mark

    1997-01-01

    Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.

  4. Sample Return from Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.

    With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies

  5. Mars Rover Sample Return mission

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1989-01-01

    To gain a detailed understanding of the character of the planet Mars, it is necessary to send vehicle to the surface and return selected samples for intensive study in earth laboratories. Toward that end, studies have been underway for several years to determine the technically feasible means for exploring the surface and returning selected samples. This paper describes several MRSR mission concepts that have emerged from the most recent studies.

  6. Mars Sample Return Using Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  7. STARDUST and HAYABUSA: Sample Return Missions to Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2005-01-01

    There are currently two active spacecraft missions designed to return samples to Earth from small bodies in our Solar System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.

  8. Synchronized Lunar Pole Impact Plume Sample Return Trajectory Design

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Foster, Cyrus; Colaprete, Tony

    2016-01-01

    The presented trajectory design enables two maneuverable spacecraft launched onto the same trans-lunar injection trajectory to coordinate a steep impact of a lunar pole and subsequent sample return of the ejecta plume to Earth. To demonstrate this concept, the impactor is assumed to use the LCROSS missions trajectory and spacecraft architecture, thus the permanently-shadowed Cabeus crater on the lunar south pole is assumed as the impact site. The sample-return spacecraft is assumed to be a CubeSat that requires a complimentary trajectory design that avoids lunar impact after passing through the ejecta plume to enable sample-return to Earth via atmospheric entry.

  9. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  10. Mars Sample Return Using Commercial Capabilities: ERV Trajectory and Capture Requirements

    NASA Technical Reports Server (NTRS)

    Faber, Nicolas F.; Foster, Cyrus James; Wilson, David; Gonzales, Andrew; Stoker, Carol R.

    2013-01-01

    Mars Sample Return was presented as the highest priority planetary science mission of the next decade [1]. Lemke et al. [2] present a Mars Sample Return mission concept in which the sample is returned directly from the surface of Mars to an Earth orbit. The sample is recovered in Earth Orbit instead of being transferred between spacecraft in Mars Orbit. This paper provides the details of this sample recovery in Earth orbit and presents as such a sub-element of the overall Mars sample return concept given in [2]. We start from the assumption that a Mars Ascent Vehicle (MAV), initially landed on Mars using a modified SpaceX Dragon capsule, has successfully delivered the sample, already contained within an Earth Return Vehicle (ERV), to a parking orbit around Mars. From the parking orbit, the ERV imparts sufficient Delta-V to inject itself into an earthbound trajectory and to be captured into an Earth orbit eventually. We take into account launch window and Delta-V considerations as well as the additional constraint of increased safety margins imposed by planetary protection regulations. We focus on how to overcome two distinct challenges of the sample return that are driven by the issues of planetary protection: (1) the design of an ERV trajectory meeting all the requirements including the need to avoid contamination of Earth's atmosphere; (2) the concept of operations for retrieving the Martian samples in Earth orbit in a safe way. We present an approach to retrieve the samples through a rendezvous between the ERV and a second SpaceX Dragon capsule. The ERV executes a trajectory that brings it from low Mars orbit (LMO) to a Moon-trailing Earth orbit at high inclination with respect to the Earth-Moon plane. After a first burn at Trans-Earth Injection (TEI), the trajectory uses a second burn at perigee during an Earth flyby maneuver to capture the ERV in Earth orbit. The ERV then uses a non-propulsive Moon flyby to come to a near-circular Moon-trailing orbit. To

  11. Sample Return Propulsion Technology Development Under NASA's ISPT Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.

    2011-01-01

    Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12

  12. Orion Optical Navigation for Loss of Communication Lunar Return Contingencies

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Hanak, Chad; Kubitschek, Daniel G.

    2010-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.

  13. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  14. Returned Solar Max hardware degradation study results

    NASA Technical Reports Server (NTRS)

    Triolo, Jack J.; Ousley, Gilbert W.

    1989-01-01

    The Solar Maximum Repair Mission returned with the replaced hardware that had been in low Earth orbit for over four years. The materials of this returned hardware gave the aerospace community an opportunity to study the realtime effects of atomic oxygen, solar radiation, impact particles, charged particle radiation, and molecular contamination. The results of these studies are summarized.

  15. OSIRIS-REx Asterod Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.

    2017-01-01

    OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space

  16. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  17. Lunar far side sample return missions using the Soviet Luna system

    NASA Technical Reports Server (NTRS)

    Roberts, P. H., Jr.

    1977-01-01

    The paper assesses the feasibility of using the Soviet Lunar Sample Return vehicle in cooperation with the United States to return a sample of lunar soil from the far side of the moon. Analysis of the orbital mechanics of the Luna system shows how landing sites are restricted on the moon. The trajectory model is used to duplicate the 3 Luna missions flown to date and the results compared to actual Soviet data. The existence of suitable trajectories for the earth return trip is assessed, including landing dispersions at earth. Several possible areas of technical difficulty are identified.

  18. UK technical activities associated with the return to Earth of the MIR space station

    NASA Astrophysics Data System (ADS)

    Crowther, Richard; Tremayne-Smith, Richard

    2002-11-01

    The British National Space Centre (BNSC) acts as the focus in the United Kingdom (UK) for space-related activities. With the anticipated return to Earth of the MIR space station, BNSC established a group of technical experts to consider the associated implications for the UK, and to address both national and international activities relating to the planned de-orbit. In particular, the risk to the UK of an uncontrolled re-entry was considered in contingency planning and the means for the provision of accurate information to the public and media were established to ensure balanced view of the potential hazards that MIR posed to persons and property on the ground. The MIR de-orbit was exemplary, both in terms of the technical activities of the Rosaviakosmos and the safe disposal of MIR in the Pacific, and in relation to the open and effective communication between agencies and the positive reporting by the media.

  19. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  20. Neural readaptation to Earth's gravity following return from space.

    PubMed

    Boyle, R; Mensinger, A F; Yoshida, K; Usui, S; Intravaia, A; Tricas, T; Highstein, S M

    2001-10-01

    The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.

  1. Neural readaptation to Earth's gravity following return from space

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Mensinger, A. F.; Yoshida, K.; Usui, S.; Intravaia, A.; Tricas, T.; Highstein, S. M.

    2001-01-01

    The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.

  2. Concept Study For A Near-term Mars Surface Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Thatcher, J.; Sallaberger, C.; Reedman, T.; Pillinger, C. T.; Sims, M. R.

    The return of samples from the surface of Mars is a challenging problem. Present mission planning is for complex missions to return large, focused samples sometime in the next decade. There is, however, much scientific merit in returning a small sample of Martian regolith before the end of this decade at a fraction of the cost of the more ambitious missions. This paper sets out the key elements of this concept that builds on the work of the Beagle 2 project and space robotics work in Canada. The paper will expand the science case for returning a regolith sample that is only in the range of 50-250g but would nevertheless include plenty of interesting mate- rial as the regolith comprises soil grains from a wide variety of locations i.e. nearby rocks, sedimentary formations and materials moved by fluids, winds and impacts. It is possible that a fine core sample could also be extracted and returned. The mission concept is to send a lander sized at around 130kg on the 2007 or 2009 opportunity, immediately collect the sample from the surface, launch it to Mars orbit, collect it by the lander parent craft and make an immediate Earth return. Return to Earth orbit is envisaged rather than direct Earth re-entry. The lander concept is essen- tially a twice-size Beagle 2 carrying the sample collection and return capsule loading equipment plus the ascent vehicle. The return capsule is envisaged as no more than 1kg. An overall description of the mission along with methods for sample acquisition, or- bital rendezvous and capsule return will be outlined and the overall systems budgets presented. To demonstrate the near term feasibility of the mission, the use of existing Canadian and European technologies will be highlighted.

  3. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  4. Phobos Sample Return: Next Approach

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Martynov, Maxim; Zakharov, Alexander; Korablev, Oleg; Ivanov, Alexey; Karabadzak, George

    The Martian moons still remain a mystery after numerous studies by Mars orbiting spacecraft. Their study cover three major topics related to (1) Solar system in general (formation and evolution, origin of planetary satellites, origin and evolution of life); (2) small bodies (captured asteroid, or remnants of Mars formation, or reaccreted Mars ejecta); (3) Mars (formation and evolution of Mars; Mars ejecta at the satellites). As reviewed by Galimov [2010] most of the above questions require the sample return from the Martian moon, while some (e.g. the characterization of the organic matter) could be also answered by in situ experiments. There is the possibility to obtain the sample of Mars material by sampling Phobos: following to Chappaz et al. [2012] a 200-g sample could contain 10-7 g of Mars surface material launched during the past 1 mln years, or 5*10-5 g of Mars material launched during the past 10 mln years, or 5*1010 individual particles from Mars, quantities suitable for accurate laboratory analyses. The studies of Phobos have been of high priority in the Russian program on planetary research for many years. Phobos-88 mission consisted of two spacecraft (Phobos-1, Phobos-2) and aimed the approach to Phobos at 50 m and remote studies, and also the release of small landers (long-living stations DAS). This mission implemented the program incompletely. It was returned information about the Martian environment and atmosphere. The next profect Phobos Sample Return (Phobos-Grunt) initially planned in early 2000 has been delayed several times owing to budget difficulties; the spacecraft failed to leave NEO in 2011. The recovery of the science goals of this mission and the delivery of the samples of Phobos to Earth remain of highest priority for Russian scientific community. The next Phobos SR mission named Boomerang was postponed following the ExoMars cooperation, but is considered the next in the line of planetary exploration, suitable for launch around 2022. A

  5. Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return

    NASA Astrophysics Data System (ADS)

    Johnson, Joshua E.

    A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range. Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ˜20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an

  6. Geology of Potential Landing Sites for Martian Sample Returns

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2003-01-01

    This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.

  7. NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy

    2017-01-01

    The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.

  8. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  9. Groundbreaking Mars Sample Return for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  10. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  11. MOI to TEI : a Mars Sample Return strategy

    NASA Technical Reports Server (NTRS)

    Smith, Chad W.; Maddock, Robert W.

    2006-01-01

    This paper describes the issues and challenges related to the design of the rendezvous between the Earth Return Vehicle (ERV) and the Orbiting Sample (OS) for the Mars Sample Return (MSR) mission. In particular, attention will be focused on the strategy for 'optimizing' the intermediate segment of the rendezvous process, during which there are a great number of variables that must be considered and well understood.

  12. System for Packaging Planetary Samples for Return to Earth

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.

    2010-01-01

    A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.

  13. Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.

    2002-01-01

    Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.

  14. Horizontal fields generated by return strokes

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.

  15. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  16. Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.

    2016-10-01

    The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past

  17. Earth recovery mode analysis for a Martian sample return mission

    NASA Technical Reports Server (NTRS)

    Green, J. P.

    1978-01-01

    The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.

  18. OSIRIS-REx Asteroid Sample-Return Mission

    NASA Astrophysics Data System (ADS)

    DellaGiustina, D. N.; Lauretta, D. S.

    2016-12-01

    Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.

  19. QU at TREC-2015: Building Real-Time Systems for Tweet Filtering and Question Answering

    DTIC Science & Technology

    2015-11-20

    from Yahoo ! An- swers. We adopted a very simple approach that searched an archived Yahoo ! Answers QA dataset for similar questions to the asked ones and...users to post and answer questions. Yahoo ! An- swers1 is by far one of the largest sQA platforms. Questions and answers on such platforms share some...multiple domains [5]. However, the existence of large social question answering websites, such as Yahoo ! Answers specifically, makes the development of

  20. Asteroid Return Mission Feasibility Study

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Gershman, Robert; Landau, Damon; Polk, James; Porter, Chris; Yeomans, Don; Allen, Carlton; Williams, Willie; Asphaug, Erik

    2011-01-01

    This paper describes an investigation into the technological feasibility of finding, characterizing, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the International Space Station (ISS) for scientific investigation, evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities, and to serve as a testbed for human operations in the vicinity of an asteroid. Reasonable projections suggest that several dozen candidates NEAs in the size range of interest (approximately 2-m diameter) will be known before the end of the decade from which a suitable target could be selected. The conceptual mission objective is to return an approximately 10,000-kg asteroid to the ISS in a total flight time of approximately 5 years using a single Evolved Expendable Launch Vehicle. Preliminary calculations indicate that this could be accomplished using a solar electric propulsion (SEP) system with high-power Hall thrusters and a maximum power into the propulsion system of approximately 40 kW. The SEP system would be used to provide all of the post-launch delta V. The asteroid would have an unrestricted Earth return Planetary Protection categorization, and would be curated at the ISS where numerous scientific and resource utilization experiments would be conducted. Asteroid material brought to the ground would be curated at the NASA Johnson Space Center. This preliminary study identified several areas where additional work is required, but no show stoppers were identified for the approach that would return an entire 10,000-kg asteroid to the ISS in a mission that could be launched by the end of this decade.

  1. Sample Return Science by Hayabusa Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Abe, M.; Kato, M.; Kushiro, I.; Mukai, T.; Okada, T.; Saito, J.; Sasaki, S.; Yano, H.; Yeomans, D.

    2004-01-01

    Assigning the material species to each asteroid spectral type and finding out the corresponding meteorite category is crucial to make the global material map in the whole asteroid belt and to understand the evolution of the asteroid belt. Recent direct observations by spacecrafts are revealing new intriguing aspects of asteroids which cannot be obtained solely from ground-based observations or meteorite studies. However identification of the real material species constituting asteroids and their corresponding meteorite analogs are still ambiguous. Space weathering makes difficult to identify the true material, and there is still a great gap between the remote sensing data on the global surface and the local microscopic data from meteorites. Sample return from asteroids are inevitable to solve these problems. For this purpose sample return missions to asteroids belonging to various spectral classes are required. The HAYABUSA spacecraft (prelaunch name is MUSESC) launched last year is the first attempt on this concept. This report presents outline of the mission with special stress on its science.

  2. Technology for return of planetary samples, 1977

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent progress on the development of a basic warning system (BWS) proposed to assess the biohazard of a Mars sample returned to earth, an earth orbiting spacecraft, or to a moon base was presented. The BWS package consists of terrestrial microorganisms representing major metabolic pathways. A vital processes component of the BWS will examine the effects of a Mars sample at terrestrial atmospheric conditions while a hardy organism component will examine the effects of a Mars sample under conditions approaching those of the Martian environment. Any deleterious insult on terrestrial metabolism effected by the Mars sample could be indicated long before the sample reached earth proximity.

  3. SpaceX Dragon returns on This Week @NASA- October 31, 2014

    NASA Image and Video Library

    2014-10-31

    The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!

  4. Mars Sample Return Landed with Red Dragon

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  5. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  6. Reassessment of Planetary Protection Requirements for Mars Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Smith, David; Race, Margaret; Farmer, Jack

    In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.

  7. A survey of rapid sample return needs from Space Station Freedom and potential return systems

    NASA Technical Reports Server (NTRS)

    Mccandless, Ronald S.; Siegel, Bette; Charlton, Kevin

    1991-01-01

    Results are presented of a survey conducted among potential users of the life sciences and material sciences facilities at the Space Station Freedom (SSF) to determine the need for a special rapid sample return (RSR) mission to bring the experimental samples from the Space Station Freedom (SSF) to earth between the Space Shuttle visits. The results of the survey show that, while some experimental objectives would benefit from the RSR capability, other available cost- and mission-effective means could be used instead of the RSR proposed. Potential vehicles for transporting samples from the SSF to earth are examined in the context of the survey results.

  8. Comet flyby sample return

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Albee, A.

    1985-01-01

    The results of a joint JPL/CSFC feasability study of a low-cost comet sample return flyby mission are presented. It is shown that the mission could be undertaken using current earth orbiter spacecraft technology in conjunction with pathfinder or beacon spacrcraft. Detailed scenarios of missions to the comets Honda-Mrkos-Pajdusakova (HMP), comet Kopff, and comet Giacobini-Zinner (GZ) are given, and some crossectional diagrams of the spacecraft designs are provided.

  9. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  10. Relativistic effects in earth-orbiting Doppler lidar return signals.

    PubMed

    Ashby, Neil

    2007-11-01

    Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.

  11. Astrobiology Objectives for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Meyer, M. A.

    2002-05-01

    Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.

  12. Study of sample drilling techniques for Mars sample return missions

    NASA Technical Reports Server (NTRS)

    Mitchell, D. C.; Harris, P. T.

    1980-01-01

    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.

  13. A Mars Sample Return Sample Handling System

    NASA Technical Reports Server (NTRS)

    Wilson, David; Stroker, Carol

    2013-01-01

    We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory

  14. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  15. Non-terrestrial resources of economic importance to earth

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1991-01-01

    The status of research on the importation of energy and nonterrestrial materials is reviewed, and certain specific directions for new research are proposed. New technologies which are to be developed include aerobraking, in situ propellant production, mining and beneficiation of extraterresrrial minerals, nuclear power systems, electromagnetic launch, and solar thermal propulsion. Topics discussed include the system architecture for solar power satellite constellations, the return of nonterrestrial He-3 to earth for use as a clean fusion fuel, and the return to earth of platinum-group metal byproducts from processing of nonterrestrial native ferrous metals.

  16. Phobos/Deimos Sample Return via Solar Sail

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley; Moton, Tryshanda

    2004-01-01

    Abstract A sample-return mission to the martian satellites using a contemporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/sq m areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and pay!oad increase spacecraft areal mass thickness to 0.028 kg/sq m. During Mars-encounter, the sail functions parachute-like in Mars s outer atmosphere to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth-encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into Earth s atmosphere. Mission mass budget is about 218 grams and; mission duration is <5 years.

  17. Clementine Images of Earth and Moon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    During its flight and lunar orbit, the Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth.

    The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission

  18. High-Grading Lunar Samples for Return to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Winterhalter, Daniel; Farmer, Jack

    2009-01-01

    Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to defile the "necessary and sufficient" measurements and techniques for highgrading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory.

  19. Planetary Protection for LIFE-Sample Return from Enceladus

    NASA Astrophysics Data System (ADS)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  20. Earth Observation

    NASA Image and Video Library

    2010-08-23

    ISS024-E-016042 (23 Aug. 2010) --- This night time view captured by one of the Expedition 24 crew members aboard the International Space Station some 220 miles above Earth is looking southward from central Romania over the Aegean Sea toward Greece and it includes Thessaloniki (near center), the larger bright mass of Athens (left center), and the Macedonian capital of Skopje (lower right). Center point coordinates of the area pictured are 46.4 degrees north latitude and 25.5 degrees east longitude. The picture was taken in August and was physically brought back to Earth on a disk with the return of the Expedition 25 crew in November 2010.

  1. Aeroassist Key to Returning From Space and the Case for AFE

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Putnam, Terrill W.; Morris, Robert

    1997-01-01

    The Aeroassist Flight Experiment (AFE) is important in the development of a substantial and cost-competitive space industry. It is a research program to develop the technology base needed to design a new class of advanced entry vehicles that will play a key role in establishing a mature U.S. space presence in the next century. A dynamic and economical space program in the 21st century will include many operations involving the return of satellites, materials, and products from high Earth orbits (HEO), lunar bases, and planetary missions. The common and dominant characteristics of vehicles returning from such missions will be their very high speed as they approach the Earth. This high speed must be reduced substantially before the returning vehicle can be landed safely on Earth or placed in low Earth orbit (LEO), where the Space Shuttle operates now and the Space Station Freedom will operate in the future. LEO is a strategic that will always play a critical role in any space program. Its location just beyond earth's appreciable atmosphere can be reached from earth with the lowest cost in energy, and it is the natural and convenient spaceport location. In the next century LEO will contain a broad complex of assembly, research, repair, and production facilities. Their effective and cost-competitive use will require a class of routine workhorse transportation vehicles whose importance might be over-looked at a time when dramatic space exploration is occurring. Yet it is these vehicles, the Aeroassisted Space Transfer Vehicles (ASTV's) that will provide that solid transportation base on which a productive space industry will grow. The ASTV's will be assembled in orbit and will never return to earth's surface. They will be used to transfer people and material from high locations to LEO. They will reduce their high velocities in the outer reaches of the earth's atmosphere where aerodynamic drag will slow them to the appropriate speed for LEO. They will then maneuver out

  2. Convective and radiative heating for vehicle return from the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Greendyke, Robert B.; Gnoffo, Peter A.

    1995-01-01

    The aerothermal environment is examined for two vehicle forebodies near the peak heating points of lunar and martian return-to-earth trajectories at several nominal entry velocities. The first vehicle forebody is that of a 70 deg aerobrake for entry into earth orbit; the second, a capsule of Apollo configuration for direct entry into the earth's atmosphere. The configurations and trajectories are considered likely candidates for such missions. Two-temperature, thermochemical nonequilibrium models are used in the flow field analyses. In addition to Park's empirical model for dissociation under conditions of thermal nonequilibrium, the Gordiets kinetic model for the homonuclear dissociation of N2 and O2 is also considered. Temperature and emission profiles indicate nonequilibrium effects in a 2 to 5 cm post shock region. Substantial portions of the shock layer flow appear to be in equilibrium. The shock layer over an aerobrake for return from the moon exhibits the largest extent of nonequilibrium effects of all considered missions. Differences between the Gordiets and Parks kinetic model were generally very small for the lunar return aerobrake case, the greatest difference of 6.1 percent occurring in the radiative heating levels.

  3. The Return of Astromaterials to Earth Over the Next Decade

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    1999-01-01

    We are entering a new and golden age of sample return missions. In the coming decade we will harvest samples from Comet P/Wild II and interstellar dust courtesy of the STARDUST Mission (Brownlee et al., 1997), an asteroid (probably 4660 Nereus or 1989ML) by the ISAS MUSES-C Mission (ISAS, 1997), and solar wind by the Genesis Mission. A sample return from Mars is also envisioned as early as 2008, and possibly one from the two moons of Mars. It is, however, sobering to realize that MUSES-C aims to return 3-10 g of sample, STARDUST will provide micrograms of comet and interstellar dust, and Genesis will harvest only few micrograms of atoms. The diminutive size of the returning samples may be a source of concern for petrologists used only to looking at hefty lunar rocks and meteorites. How much sample is really needed to achieve prime science objectives, while maintaining a cost effective mission? The range of geological processes that we will want to address with these samples is staggering, encompassing not merely the entire history of the Solar system, but the history of the elements themselves. The interstellar processes include element formation, production and interactions with radiation, formation of organics, grain condensation and evolution, and interactions with magnetic fields. In the pre-accretionary (nebular) environment we wish to understand grain condensation, evaporation and recondensation, shock, radiation processing, solar energetic particle implantation, gas composition, the magnetic environment, and the evolution of organics. Finally, for solid bodies we wish to examine accretion history, shock, brecciation, impact gardening, metamorphism, aqueous alteration, weathering, exposure history, volcanism, fumarolic activity, differentiation, the magnetic environment, atmosphere evolution, and the evolution of organics. Since 1981, NASA has supported asteroid and comet science by collecting dust grains from these bodies in the stratosphere, and making them

  4. Clementine Images of Earth and Moon

    NASA Image and Video Library

    1999-06-12

    During its flight and lunar orbit, NASA’s Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth. The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission. http://photojournal.jpl.nasa.gov/catalog/PIA00432

  5. STARDUST: An Incredulous Dream to Incredible Return

    NASA Technical Reports Server (NTRS)

    Tsou, Peter

    2006-01-01

    This viewgraph presentation reviews the Stardust mission. The goal of the mission was to return to Earth a very small part of a comet for study. The success of the mission gave us a small part of a comet to use for research into questions such as the cometary origin of water and life on earth and the formation of the solar system. The slides review the challenges, the strategy, the laboratory experiments, the instrument development, the characteristics of Aerogel, the Stardust trajectory, pictures of the samples and a listing of the firsts that were accomplished during the Stardust project.

  6. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  7. 2005 Earth-Mars Round Trip

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  8. The NASA Space Shuttle Earth Observations Office

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Wood, Charles A.

    1989-01-01

    The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.

  9. Return and profitability of space programs. Information - the main product of flights in space

    NASA Astrophysics Data System (ADS)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  10. The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.

    1983-01-01

    A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.

  11. Phobos/Deimos sample return via solar sail.

    PubMed

    Matloff, Gregory L; Taylor, Travis; Powell, Conley; Moton, Tryshanda

    2005-12-01

    A sample-return mission to the Martian satellites using a con-temporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/m(2) areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and payload increase spacecraft areal mass thickness to 0.028 kg/m(2). During the Mars encounter, the sail functions as a parachute in the outer atmosphere of Mars to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into the Earth's atmosphere. Mission mass budget is about 218 grams and mission duration is less than five years.

  12. Coccidioidomycosis in travelers returning from Mexico--Pennsylvania, 2000.

    PubMed

    2000-11-10

    Coccidioidomycosis (CM), a fungal disease caused by Coccidioides immitis, is endemic in the southwestern United States and parts of Central and South America. The disease is acquired by inhaling the arthroconidia of C. immitis present in the soil. Outbreaks of CM occur when susceptible persons are exposed to airborne arthroconidia from dust storms, natural disasters, and earth excavation (1,2). Persons who travel to areas where the disease is endemic may become infected and develop symptoms after returning home (3,4). This report describes an outbreak of CM among travelers returning to Pennsylvania from a trip to Mexico.

  13. Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Leatherman, P. R.; Cleis, R.; Spinhirne, J.; Fugate, R. Q.

    1997-01-01

    Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes. Phase I of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) experiment demonstrated the first propagation of an atmosphere-compensated laser beam to the lunar retroreflectors. A 1.06-micron Nd:YAG laser beam was propagated through the full aperture of the 1.5-m telescope at the Starfire Optical Range (SOR), Kirtland Air Force Base, New Mexico, to the Apollo 15 retroreflector array at Hadley Rille. Laser guide-star adaptive optics were used to compensate turbulence-induced aberrations across the transmitter's 1.5-m aperture. A 3.5-m telescope, also located at the SOR, was used as a receiver for detecting the return signals. JPL-supplied Chebyshev polynomials of the retroreflector locations were used to develop tracking algorithms for the telescopes. At times we observed in excess of 100 photons returned from a single pulse when the outgoing beam from the 1.5-m telescope was corrected by the adaptive optics system. No returns were detected when the outgoing beam was uncompensated. The experiment was conducted from March through September 1994, during the first or last quarter of the Moon.

  14. Crew emergency return vehicle - Electrical power system design study

    NASA Technical Reports Server (NTRS)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  15. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  16. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  17. A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions

    NASA Technical Reports Server (NTRS)

    Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.

    2000-01-01

    A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.

  18. A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions

    NASA Astrophysics Data System (ADS)

    Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.

    2000-07-01

    A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.

  19. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  20. Summer Workshop on Near-Earth Resources

    NASA Technical Reports Server (NTRS)

    Arnold, J. R. (Editor); Duke, M. B. (Editor)

    1978-01-01

    The possible large scale use of extraterrestrial resources was addressed, either to construct structures in space or to return to Earth as supplements for terrestrial resources. To that end, various specific recommendations were made by the participants in the summer study on near-Earth resources, held at La Jolla, California, 6 to 13 August, 1977. The Moon and Earth-approaching asteroids were considered. Summaries are included of what is known about their compositions and what needs to be learned, along with recommendations for missions designed to provide the needed data. Tentative schedules for these projects are also offered.

  1. Abort Options for Human Lunar Missions between Earth Orbit and Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Senent, Juan S.; Llama, Eduardo Garcia

    2005-01-01

    Apollo mission design emphasized operational flexibility that supported premature return to Earth. However, that design was tailored to use expendable hardware for short expeditions to low-latitude sites and cannot be applied directly to an evolutionary program requiring long stay times at arbitrary sites. This work establishes abort performanc e requirements for representative onorbit phases of missions involvin g rendezvous in lunar-orbit, lunar-surface and at the Earth-Moon libr ation point. This study submits reference abort delta-V requirements and other Earth return data (e.g., entry speed, flight path angle) and also examines the effect of abort performance requirements on propul sive capability for selected vehicle configurations.

  2. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  3. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; hide

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  4. Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity.

    PubMed

    Owens, Gwen E; New, Danielle M; Olvera, Alejandra I; Manzella, Julia Ashlyn; Macon, Brittney L; Dunn, Joshua C; Cooper, David A; Rouleau, Robyn L; Connor, Daniel S; Bjorkman, Pamela J

    2016-10-01

    Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.

  5. Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity

    PubMed Central

    Owens, Gwen E.; New, Danielle M.; Olvera, Alejandra I.; Manzella, Julia Ashlyn; Macon, Brittney L.; Dunn, Joshua C.; Cooper, David A.; Rouleau, Robyn L.; Connor, Daniel S.; Bjorkman, Pamela J.

    2016-01-01

    Huntington’s disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity. PMID:27710941

  6. The OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Beshore, Edward; Lauretta, Dante; Boynton, William; Shinohara, Chriss; Sutter, Brian; Everett, David; Gal-Edd, Jonathan S.; Mink, Ronald G.; Moreau, Michael; Dworkin, Jason

    2015-01-01

    Interpretation, Resource Identification, Security, Regolith EXplorer) spacecraft will depart for asteroid (101955) Bennu, and when it does, humanity will turn an important corner in the exploration of the Solar System. After arriving at the asteroid in the Fall of 2018, it will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023..

  7. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  8. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  9. Logistics resupply and emergency crew return system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.

    1989-01-01

    Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.

  10. Lunar Return Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Wall Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Bowles, Jeff

    2007-01-01

    Thermostructural analysis was performed on generic crew exploration vehicle (GCEV) heat shielded wall structures subjected to reentry heating rates based on five potential lunar return reentry trajectories. The GCEV windward outer wall is fabricated with a graphite/epoxy composite honeycomb sandwich panel and the inner wall with an aluminum honeycomb sandwich panel. The outer wall is protected with an ablative Avcoat-5026-39H/CG thermal protection system (TPS). A virtual ablation method (a graphical approximation) developed earlier was further extended, and was used to estimate the ablation periods, ablation heat loads, and the TPS recession layer depths. It was found that up to 83 95 percent of the total reentry heat load was dissipated in the TPS ablation process, leaving a small amount (3-15 percent) of the remaining total reentry heat load to heat the virgin TPS and maintain the TPS surface at the ablation temperature, 1,200 F. The GCEV stagnation point TPS recession layer depths were estimated to be in the range of 0.280-0.910 in, and the allowable minimum stagnation point TPS thicknesses that could maintain the substructural composite sandwich wall at the limit temperature of 300 F were found to be in the range of 0.767-1.538 in. Based on results from the present analyses, the lunar return abort ballistic reentry was found to be quite attractive because it required less TPS weight than the lunar return direct, the lunar return skipping, or the low Earth orbit guided reentry, and only 11.6 percent more TPS weight than the low Earth orbit ballistic reentry that will encounter a considerable weight penalty to obtain the Earth orbit. The analysis also showed that the TPS weight required for the lunar return skipping reentry was much more than the TPS weight necessary for any of the other reentry trajectories considered.

  11. Near-Earth Asteroid Scout

    NASA Technical Reports Server (NTRS)

    Walden, Amy; Clardy, Dennon; Johnson, Les

    2015-01-01

    Near-Earth asteroids (NEAs) are easily accessible objects in Earth's vicinity. As NASA continues to refine its plans to possibly explore NEAs with humans, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit an NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The NASA Marshall Space Flight Center (MSFC) and NASA Jet Propulsion Laboratory are jointly developing the Near-Earth Asteroid Scout (NEAS) utilizing a low-cost CubeSat platform in response to the current needs for affordable missions with exploration science value. The mission is enabled by the use of an 85-sq m solar sail being developed by MSFC (figs. 1 and 2).

  12. Predictions of asteroid hazard to the Earth for the 21st century

    NASA Astrophysics Data System (ADS)

    Petrov, Nikita; Sokolov, Leonid; Polyakhova, Elena; Oskina, Kristina

    2018-05-01

    Early detection and investigation of possible collisions and close approaches of asteroids with the Earth are necessary to exept the asteroid-comet hazard. The difficulty of prediction of close approaches and collisions associated with resonant returns after encounters with the Earth due to loss of precision in these encounters. The main research object is asteroid Apophis (99942), for which we found many possible orbits of impacts associated with resonant returns. It is shown that the early orbit change of Apophis allows to avoid main impacts, associated with resonant returns. Such a change of the orbit, in principle, is feasible. We also study the possible impacts with the Ground asteroid 2015 RN35. We present 21 possible collisions in this century, including 7 collisions with large gaps presented in NASA website. The results of observations by the telescope ZA-320M at Pulkovo Obser-vatory of the three near-Earth asteroids, namely, 7822, 20826, 68216, two of which 7822 and 68216 are potentially hazardous, are presented.

  13. Probabilistic Design of a Mars Sample Return Earth Entry Vehicle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Mitcheltree, Robert A.

    2002-01-01

    The driving requirement for design of a Mars Sample Return mission is to assure containment of the returned samples. Designing to, and demonstrating compliance with, such a requirement requires physics based tools that establish the relationship between engineer's sizing margins and probabilities of failure. The traditional method of determining margins on ablative thermal protection systems, while conservative, provides little insight into the actual probability of an over-temperature during flight. The objective of this paper is to describe a new methodology for establishing margins on sizing the thermal protection system (TPS). Results of this Monte Carlo approach are compared with traditional methods.

  14. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth

    PubMed Central

    Aseyev, Nikolay; Vinarskaya, Alia Kh.; Roshchin, Matvey; Korshunova, Tatiana A.; Malyshev, Aleksey Yu.; Zuzina, Alena B.; Ierusalimsky, Victor N.; Lemak, Maria S.; Zakharov, Igor S.; Novikov, Ivan A.; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D.; Balaban, Pavel M.

    2017-01-01

    The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored. PMID:29163058

  15. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth.

    PubMed

    Aseyev, Nikolay; Vinarskaya, Alia Kh; Roshchin, Matvey; Korshunova, Tatiana A; Malyshev, Aleksey Yu; Zuzina, Alena B; Ierusalimsky, Victor N; Lemak, Maria S; Zakharov, Igor S; Novikov, Ivan A; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D; Balaban, Pavel M

    2017-01-01

    The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  16. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  17. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  18. Entry Dispersion Analysis for the Stardust Comet Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    1997-01-01

    Stardust will be the first mission to return samples from beyond the Earth-Moon system. The sample return capsule, which is passively controlled during the fastest Earth entry ever, will land by parachute in Utah. The present study analyzes the entry, descent, and landing of the returning sample capsule. The effects of two aerodynamic instabilities are revealed (one in the high altitude free molecular regime and the other in the transonic/subsonic flow regime). These instabilities could lead to unacceptably large excursions in the angle-of-attack near peak heating and main parachute deployment, respectively. To reduce the excursions resulting from the high altitude instability, the entry spin rate of the capsule is increased. To stabilize the excursions from the transonic/subsonic instability, a drogue chute with deployment triggered by an accelerometer and timer is added prior to main parachute deployment. A Monte Carlo dispersion analysis of the modified entry (from which the impact of off-nominal conditions during the entry is ascertained) shows that the capsule attitude excursions near peak heating and drogue chute deployment are within Stardust program limits. Additionally, the size of the resulting 3-sigma landing ellipse is 83.5 km in downrange by 29.2 km in crossrange, which is within the Utah Test and Training Range boundaries.

  19. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2003-01-01

    The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.

  20. Venus Surface Sample Return: A Weighty High-Pressure Challenge

    NASA Technical Reports Server (NTRS)

    Sweetser, Ted; Cameron, Jonathon; Chen, Gun-Shing; Cutts, Jim; Gershman, Bob; Gilmore, Martha S.; Hall, Jeffrey L.; Kerzhanovich, Viktor; McRonald, Angus; Nilsen, Erik

    1999-01-01

    A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.

  1. Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.

    2011-01-01

    This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the

  2. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Stoker, Carol R.; Faber, Nicolas T.; Race, Margaret S.

    2014-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release

  3. Mars rover sample return: An exobiology science scenario

    NASA Technical Reports Server (NTRS)

    Rosenthal, D. A.; Sims, M. H.; Schwartz, Deborah E.; Nedell, S. S.; Mckay, Christopher P.; Mancinelli, Rocco L.

    1988-01-01

    A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging.

  4. Quantitative Planetary Protection for Sample Return from Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Takano, Yoshinori; Porco, Carolyn; McKay, Christopher P.; Glavin, Daniel; Anbar, Ariel; Sherwood, Brent; Yano, Hajime

    2016-07-01

    Volcanism on ocean worlds [1,2] facilitates ocean sample return missions, enabling uniquely flexible, sensitive, and specific laboratory analyses on Earth to study how far chemistry has evolved in presumably habitable oceans [3,4]. Such mission concepts have yet to quantitatively address planetary protection (PP) for ocean worlds [3,4]. These harbor liquid water [5,6], metabolically useful energy [7], and organic matter to support life [8]. Ocean temperatures may not exceed the limit for life as we know it [9,10], they are shielded from exogenic radiation by kilometers of ice, and their material has likely not been naturally exchanged with Earth [11]. The above factors would place sample return missions in Cat. V - Restricted Earth Return [12,13]. Forward PP requirements for Europa [13] and other ocean worlds [14] require that the probability of "introduction of a single viable terrestrial microorganism into a liquid-water environment" be lower than 10 ^{-4}. This probability should be estimated from (F1) "bioburden at launch," (F2) "cruise survival for contaminating organisms," (F3) "organism survival in the radiation environment adjacent to the target," (F4) "the probability of encountering […] the target," (F5) "the probability of surviving landing/impact on the target," (F6) "mechanisms and timescales of transport to the subsurface," and (F7) "survival […] after subsurface transfer" [13,14]. The compliance of specific designs of known cost could be evaluated from measurements of molecular contaminants as robust and universal proxies for microbial particulates [15] (F1); known microbial radiation tolerance [16] and planetary radiation budgets [17] (F2-F3); trajectory design (F4); projected impact velocities [18] (F5); ice transport timescales [19] (F6), and biomass growth rates in ice [20] (F7). In contrast, current backward PP requirements are only qualitative. Current policy [13,15] prohibits "destructive impact upon return," and requires that (B1) "unless

  5. Technology for return of planetary samples

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The problem of returning a Mars sample to Earth was considered. The model ecosystem concept was advanced as the most reliable, sensitive method for assessing the biohazard from the Mars sample before it is permitted on Earth. Two approaches to ecosystem development were studied. In the first approach, the Mars sample would be introduced into the ecosystem and exposed to conditions which are as similar to the Martian environment as the constitutent terrestrial organisms can tolerate. In the second approach, the Mars sample would be tested to determine its effects on important terrestrial cellular functions. In addition, efforts were directed toward establishing design considerations for a Mars Planetary Receiving Laboratory. The problems encountered with the Lunar Receiving Laboratory were evaluated in this context. A questionnaire was developed to obtain information regarding important experiments to be conducted in the Planetary Receiving Laboratory.

  6. Why we need asteroid sample return mission?

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material

  7. Mars Sample Return - Launch and Detection Strategies for Orbital Rendezvous

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/cache rover in 2018, an orbiter with an Earth return vehicle in 2022, and a fetch rover and ascent vehicle in 2024. Strategies are presented to launch the sample into a coplanar orbit with the Orbiter which facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits exist at 457 and 572 km which provide multiple launch opportunities with similar geometries for detection and rendezvous.

  8. Mars Sample Return: Launch and Detection Strategies for Orbital Rendezvous

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/ caching rover in 2018, an Earth return orbiter in 2022, and a fetch rover with ascent vehicle in 2024. Strategies are presented to launch the sample into a nearly coplanar orbit with the Orbiter which would facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits existat 457 and 572 km which would provide multiple launch opportunities with similar geometries for detection and rendezvous.

  9. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  10. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.

    2017-10-01

    In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  11. Apollo 11 Earth Training Exercises

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-01-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  13. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  14. Robotic Mars Sample Return: Risk Assessment and Analysis Report

    NASA Technical Reports Server (NTRS)

    Lalk, Thomas R.; Spence, Cliff A.

    2003-01-01

    A comparison of the risk associated with two alternative scenarios for a robotic Mars sample return mission was conducted. Two alternative mission scenarios were identified, the Jet Propulsion Lab (JPL) reference Mission and a mission proposed by Johnson Space Center (JSC). The JPL mission was characterized by two landers and an orbiter, and a Mars orbit rendezvous to retrieve the samples. The JSC mission (Direct/SEP) involves a solar electric propulsion (SEP) return to earth followed by a rendezvous with the space shuttle in earth orbit. A qualitative risk assessment to identify and characterize the risks, and a risk analysis to quantify the risks were conducted on these missions. Technical descriptions of the competing scenarios were developed in conjunction with NASA engineers and the sequence of events for each candidate mission was developed. Risk distributions associated with individual and combinations of events were consolidated using event tree analysis in conjunction with Monte Carlo techniques to develop probabilities of mission success for each of the various alternatives. The results were the probability of success of various end states for each candidate scenario. These end states ranged from complete success through various levels of partial success to complete failure. Overall probability of success for the Direct/SEP mission was determined to be 66% for the return of at least one sample and 58% for the JPL mission for the return of at least one sample cache. Values were also determined for intermediate events and end states as well as for the probability of violation of planetary protection. Overall mission planetary protection event probabilities of occurrence were determined to be 0.002% and 1.3% for the Direct/SEP and JPL Reference missions respectively.

  15. Recommended Maximum Temperature For Mars Returned Samples

    NASA Technical Reports Server (NTRS)

    Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Hays, L. E.

    2016-01-01

    The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies.

  16. The influence of ground conductivity on the structure of RF radiation from return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Gesell, L.

    1984-01-01

    The combination of the finite conductivity of the Earth plus the propagation of the return stroke current up the channel which results in an apparent time delay between the fast field changes and RF radiation for distant observers is shown. The time delay predicted from model return strokes is on the order of 20 micro and the received signal has the characteristics of the data observed in Virginia and Florida. A piecewise linear model for the return stroke channel and a transmission line model for current propagation on each segment was used. Radiation from each segment is calculated over a flat Earth with finite conductivity using asymptotics approximations for the Sommerfeld integrals. The radiation at the observer is processed by a model AM radio receiver. The output voltage was calculated for several frequencies between HF-UHF assuming a system bandwidth (300 kHz) characteristic of the system used to collect data in Florida and Virginia. Comparison with the theoretical fast field changes indicates a time delay of 20 microns.

  17. Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities and Mars-to-Earth Return Opportunities 2009-2024

    NASA Technical Reports Server (NTRS)

    George, L. E.; Kos, L. D.

    1998-01-01

    This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009-2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

  18. Launch vehicles of the future - Earth to near-earth space

    NASA Astrophysics Data System (ADS)

    Keyworth, G. A., II

    Attention is given to criteria for launch vehicles of the future, namely, cost, flexibility of payload size, and routine access to space. The National Aerospace Plane (NASP), an airplane designed to achieve hypersonic speeds using a sophisticated air-breathing engine, is argued to meet these criteria. Little additional oxygen is needed to enter low-earth orbit, and it will return to an airport runway under powered flight. Cost estimates for a NASP-derived vehicle are two to five million dollars for a payload of 20,000 to 30,000 pounds to orbit. For the Shuttle, a comparable payload is nominally about 150 million dollars. NASP estimates for the new single-stage-to-orbit designs are substantially lower than existing launch costs. The NASP also offers fast turnaround and minimal logistics. Access to virtually all near-earth orbits will be provided as well.

  19. A Sample Return Container with Hermetic Seal

    NASA Technical Reports Server (NTRS)

    Kong, Kin Yuen; Rafeek, Shaheed; Sadick, Shazad; Porter, Christopher C.

    2000-01-01

    A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.

  20. Mars sample return mission architectures utilizing low thrust propulsion

    NASA Astrophysics Data System (ADS)

    Derz, Uwe; Seboldt, Wolfgang

    2012-08-01

    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that

  1. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.

    2013-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the

  4. TPS design for aerobraking at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Williams, S. D.; Gietzel, M. M.; Rochelle, W. C.; Curry, D. M.

    1991-08-01

    An investigation was made to determine the feasibility of using an aerobrake system for manned and unmanned missions to Mars, and to Earth from Mars and lunar orbits. A preliminary thermal protection system (TPS) was examined for five unmanned small nose radius, straight bi-conic vehicles and a scaled up Aeroassist Flight Experiment (AFE) vehicle aerocapturing at Mars. Analyses were also conducted for the scaled up AFE and an unmanned Sample Return Cannister (SRC) returning from Mars and aerocapturing into Earth orbit. Also analyzed were three different classes of lunar transfer vehicles (LTV's): an expendable scaled up modified Apollo Command Module (CM), a raked cone (modified AFT), and three large nose radius domed cylinders. The LTV's would be used to transport personnel and supplies between Earth and the moon in order to establish a manned base on the lunar surface. The TPS for all vehicles analyzed is shown to have an advantage over an all-propulsive velocity reduction for orbit insertion. Results indicate that TPS weight penalties of less than 28 percent can be achieved using current material technology, and slightly less than the most favorable LTV using advanced material technology.

  5. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  6. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.

    2014-01-01

    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  7. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew; Naasz, Bo; Merill, Raymond G.; Qu, Min

    2014-01-01

    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and/or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  8. Space-to-Ground: Back to Earth: 12/15/2017

    NASA Image and Video Library

    2017-12-15

    Expedition 53 crewmembers return to Earth, while the SpaceX Dragon heads to orbit...and how does a body first react to space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  9. Advanced Navigation Strategies for an Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.

    2011-01-01

    The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.

  10. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick; hide

    2015-01-01

    Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.

  11. Fast Calculation of Abort Return Trajectories for Manned Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Senent, Juan S.

    2010-01-01

    In order to support the anytime abort requirements of a manned mission to the Moon, the vehicle abort capabilities for the translunar and circumlunar phases of the mission must be studied. Depending on the location of the abort maneuver, the maximum return time to Earth and the available propellant, two different kinds of return trajectories can be calculated: direct and fly-by. This paper presents a new method to compute these return trajectories in a deterministic and fast way without using numerical optimizers. Since no simplifications of the gravity model are required, the resulting trajectories are very accurate and can be used for both mission design and operations. This technique has been extensively used to evaluate the abort capabilities of the Orion/Altair vehicles in the Constellation program for the translunar phase of the mission.

  12. Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Gaza, Ramona; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nodarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher T.; Froio, Danielle; Valenza, Logan; Poirier, Catherine; Sinkler, Charles; Corl, Dylan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2017-04-01

    SpaceX CRS-6 payload, and after 1+ year space exposure, returned to Earth on May 11, 2016 on SpaceX CRS-8. The results were very good, with the survival of all flown samples, which compared very well with the ground control samples. The most significant change observed was color change (yellowing) in some of the flown EAP samples, which in polymers can be indicative of accelerated aging. While the Synthetic Muscle Experiment was in orbit on the ISS-NL, photo events occur every 4 to 6 weeks to observe any changes, such as color, in the samples. Both the 32 flown EAP samples and 32 ground control samples were tested for pH, material integrity, durometer, and electroactivity, with very good results. The samples were also analyzed using stereo microscopy, scanning electron microscopy (SEM)), and energy dispersive X-ray spectroscopy (EDS). Smart electroactive polymer based materials and actuators promise to transform prostheses and robots, allowing for the treatment, reduction, and prevention of debilitating injury and fatalities, and to further our exploration by land, sea, air, and space.

  13. STS-105 Expedition 2 Return

    NASA Image and Video Library

    2001-08-23

    JSC2001-E-25809 (23 August 2001) --- The STS-105 and Expedition Two crews meet their families and friends during the crew return ceremonies at Ellington Field. Among the crowd are Johnson Space Center's (JSC) Acting Director Roy Estess (back left), astronaut Marsha S. Ivins (third from the left), cosmonaut Yury V. Usachev (fourth from the left), Expedition Two mission commander, Susan J. Helms (fifth from the left), Expedition Two flight engineer, James S. Voss (third from the right), Expedition Two flight engineer, and cosmonaut Vasili V. Tsibliyev. The STS-105 crew delivered the Expedition Three crew and supplies to the International Space Station (ISS) and brought the Expedition Two crew back to Earth.

  14. Feasibility Analysis for a Manned Mars Free-Return Mission in 2018

    NASA Technical Reports Server (NTRS)

    Tito, Dennis A.; Anderson, Grant; Carrico, John P., Jr.; Clark, Jonathan; Finger, Barry; Lantz, Gary A.; Loucks, Michel E.; MacCallum, Taber; Poynter, Jane; Squire, Thomas H.; hide

    2013-01-01

    In 1998 Patel et al searched for Earth-Mars free-return trajectories that leave Earth, fly by Mars, and return to Earth without any deterministic maneuvers after Trans-Mars Injection. They found fast trajectory opportunities occurring two times every 15 years with a 1.4-year duration, significantly less than most Mars free return trajectories, which take up to 3.5 years. This paper investigates these fast trajectories. It also determines the launch and life support feasibility of flying such a mission using hardware expected to be available in time for an optimized fast trajectory opportunity in January, 2018. The authors optimized the original trajectory using patched-conic approximations, and then modeled the trajectory using numerical integration with high fidelity force models and the JPL planetary ephemerides. We calculated an optimum trajectory launching in early January, 2018. At the Mars encounter, the spacecraft will pass within a few hundred kilometers of the surface. We investigated the Earth reentry conditions and developed some aerocapture options to mitigate G-loads on the returning crew. We also describe tradeoffs and studies necessary to develop the Thermal Protection System (TPS). To size the Environmental Control and Life Support System (ECLSS) we set the initial mission assumption to two crew members for 500 days in a modified SpaceX Dragon class of vehicle. The journey is treated as a high-risk mission, which drives towards reliable - but minimalist - accommodations and provisions. As such, we investigated State Of the Art (SOA) technologies that would meet only basic human needs to support metabolic requirements and limited crew comfort allowances. We compare a baseline SOA architecture with an advanced architecture. The advanced architecture uses recently developed equipment that has higher efficiencies for water recovery and lighter base mass. They are not currently in operation and therefore present a schedule risk for development and

  15. Implementing planetary protection requirements for sample return missions.

    PubMed

    Rummel, J D

    2000-01-01

    NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  16. Strategic Map for Enceladus Plume Biosignature Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Yano, Hajime

    The discovery of jets emitting salty water from the interior of Saturn’s small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apochrone, and the modeled lifetime of E-ring particles, all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, and source of energy, longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample for and even return them to Earth for detailed analysis. It is straightforward to imagine a Stardust-like, fly-through, plume particle and gas collection and return mission for Enceladus. An international team (LIFE, Life Investigation For Enceladus) has dedicated itself to pursuing such a flight project. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission’s Category-V, Restricted Earth Return, classification. The paper presents a strategic framework that systematically integrates the cultivation of science advocacy, resolution of diverse stakeholder issues, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. Resolving and using this map is essential if we are to know the astrobiological state of Enceladus in our lifetime.

  17. Observation of incomplete drainage of a branched negative stepped leader system during the initial return stroke, and its implications

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Beasley, W. H.

    2012-12-01

    We present high-speed video, taken at 75,000 frames per second, of an anomalous lightning flash that involved two distinct return strokes from different branches of the same branched negative stepped leader system. During the initial return stroke the leader system was incompletely drained, resulting in the continued development of a large side branch. The upper portions of this side branch exhibited a pulse of luminosity during the initial return stroke, but the luminosity did not extend down the branch. The lower portion of the branch continued to develop downward as a negative stepped leader, but at a much slower velocity. Continued stepping activity was observed in this branch as it continued downward at a significantly reduced velocity, finally attaching to the earth 1.8 milliseconds after the main return stroke. The ensuing return stroke was characterized by a slower vertical velocity and weaker luminous pulse. Based on this observation, we coin the term "orphaned branch" to describe a branch of a leader system that is not drained during a return stroke. While our case involves a branch that eventually connected to the ground and produced a return stroke, we also consider the possibility that such branches may also simply cease to progress and effectively deposit large amounts of space charge near their extremities. Such space charge would have a strong influence on subsequent breakdown activity in their vicinity, such as shielding subsequent descending negative stepped leaders or triggering upward positive leaders from earth's surface.

  18. The elephant graveyard - A planet-wide Mars sample return

    NASA Astrophysics Data System (ADS)

    Heinsheimer, T. F.; Corn, Barbara

    1991-10-01

    A method is presented for collecting documented Martian samples from the surface of the entire planet based partly on research done for a 1994 Mars balloon mission. Smart balloons are employed to collect samples from difficult terrains, fly 100-200 km with the sample to more manageable terrains, and are retrieved by a rover mission for return to earth. Elements of the sample-return method are described in detail with attention given to the projected rates of success for each portion of the technology. The SNAKE, Canniballoon, and 'Brilliant Ants' concepts are described in terms of level of development, function within the mission, and technological requirements. Substantial research presently exists in the areas of deployment, on-site sample assessment, pick-up, and designs for the ballons and ground-traversing guideropes.

  19. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1992-02-06

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability.more » This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth.« less

  1. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  2. Almahata Sitta and Brecciated Ureilites: Insights into the Heterogeneity of Asteroids and Implications for Sample Return

    NASA Technical Reports Server (NTRS)

    Ross, A. J.; Herrin, J. S.; Alexander, L.; Downes, H.; Smith, C. L.; Jenniskens, P.

    2011-01-01

    Analysis of samples returned to terrestrial laboratories enables more precise measurements and a wider range of techniques to be utilized than can be achieved with either remote sensing or rover instruments. Furthermore, returning samples to Earth allows them to be stored and re-examined with future technology. Following the success of the Hayabusa mission, returning samples from asteroids should be a high priority for understanding of early solar system evolution, planetary formation and differentiation. Meteorite falls provide us with materials and insight into asteroidal compositions. Almahata Sitta (AS) was the first meteorite fall from a tracked asteroid (2008 TC3) [1] providing a rare opportunity to compare direct geochemical observations with remote sensing data. Although AS is predominantly ureilitic, multiple chondritic fragments have been associated with this fall [2,3]. This is not unique, with chondritic fragments being found in many howardite samples (as described in a companion abstract [4]) and in brecciated ureilites, some of which are known to represent ureilitic regolith [5-7]. The heterogeneity of ureilite samples, which are thought to all originate from a single asteroidal ureilite parent body (UPB) [5], gives us information about both internal and external asteroidal variations. This has implications both for the planning of potential sample return missions and the interpretation of material returned to Earth. This abstract focuses on multiple fragments of two meteorites: Almahata Sitta (AS); and Dar al Gani (DaG) 1047 (a highly brecciated ureilite, likely representative of ureilite asteroidal regolith).

  3. NASA needs a long-term sample return strategy

    NASA Astrophysics Data System (ADS)

    Agee, C.

    Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element

  4. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-01

    ISS043E080914 (04/01/2015) --- This Earth view from the International Space Station Apr. 1, 2015 (bottom left corner) is Soyuz TMA-15M which carried NASA astronaut Terry Virts, ESA (European Space Agency) astronaut Samantha Cristoforetti and Russian cosmonaut Anton Shkaplerov to the ISS back in No. 2014 and will remain until May 2015. The further one (top left corner) is Progress 57 a Russian supply spaceship which launched and docked in October last year and will undock at the end of April to return to Earth.

  5. EURO-CARES: European Roadmap for a Sample Return Curation Facility and Planetary Protection Implications.

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert

    2016-07-01

    A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop

  6. NEA Multi-Chamber Sample Return Container with Hermetic Sealing

    NASA Technical Reports Server (NTRS)

    Rafeek, Shaheed; Kong, Kin Yuen; Sadick, Shazad; Porter, Christopher C.

    2000-01-01

    A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers such as the 'Touch and Go' Surface Sampler (TGSS), and then hermetically seal the samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the rotation axis of the TGSS sampler for interfacing, transferring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses multiple isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The TGSS based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. This sample return container is being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program. A breadboard system of the sample return container has been recently completed and tested. Additional information is contained in the original extended abstract.

  7. Reentry Capsule for Sample Return from Asteroids in the Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi

    2018-04-01

    For carrying sample from the bodies of interplanetary space, a wide range of knowledge of reentry technology is needed. HAYABUSA(MUSES-C) was an asteroid explorer returned to the earth after the 7 years of voyage, and its capsule reenters into the Earth’s atmosphere, which was a good example of reentry technology implemented to the flight vehicle. It performed a safe reentry flight and recovery. For the design of the capsule, many considerations were made due to its higher entry velocity and higher aerodynamic heating than those of normal reentry from the low earth orbit. Taking into account the required functions throughout the orbital flight, reentry flight, and descent/recovery phase, the capsule was deigned, tested, manufactured and flight demonstrated finally. The paper presents the concept of the design and qualification approach of the small space capsule of the asteroid sample and return mission. And presented are how the reentry flight was performed and a brief overview of the post flight analysis primarily for these design validation purposes and for the better understanding of the flight results.

  8. Spin State of Returning Fly-by Near Earth Asteroid 2012 TC4

    NASA Astrophysics Data System (ADS)

    Ryan, William; Ryan, Eileen V.

    2017-10-01

    The ten-meter class near-Earth asteroid 2012 TC4 will make a close approach to the Earth on October 12, 2017. As of July 2017, the close approach distance ranges from 0.003 to 0.64 lunar distances (LD) with a nominal value of 0.23 LD. However this is the second observable close approach that this object has made since its discovery. In particular, broadband photometry was obtained for 2012 TC4 on 10 and 11 October 2012 using the Magdalena Ridge Observatory (MRO) 2.4-meter telescope. A periodicity of ~12.2 minutes was immediately evident in the time-series data, which was in agreement with the reported values of Polishook (2013), Odden et al. (2012), Warner (2013), and Carbognani (2014). The lightcurve displays an amplitude of ~0.9 magnitude, which implies that it is highly elongated with an axial ratio of a/b>2.3. However, a second period is also clearly evident in the MRO data, indicating that the asteroid is in a state of non-principle axis rotation.The nature of its orbit has made 2012 TC4 an attractive Earth-impacting asteroid surrogate for an exercise testing the capabilities of the scientific and emergency response communities (Reddy, 2017). For this reason, it is anticipated that considerable resources, including MRO, will be utilized to take advantage of the 2017 flyby to study this asteroid. Here, we present the details of the tumbling nature of this fast-spinning object observed during the October 2012 discovery apparition. These data were acquired before closest approach in 2012 where the asteroid came within 0.25 lunar distances of Earth. Therefore, this analysis will be discussed in the context of the spin state observations planned for early October 2017 at MRO, for which preliminary results will also be reported. In particular, comparison of the observed rotation state from the two apparitions can be indicative of any effects of Earth’s gravity during the 2012 flyby.References:Odden, C.E., Verhaegh, J.C., McCullough, D.G., and Briggs, J.W. (2013

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. The bottom of the universe: Flat earth science in the Age of Encounter.

    PubMed

    Allegro, James J

    2017-03-01

    This essay challenges the dominance of the spherical earth model in fifteenth- and early-sixteenth-century Western European thought. It examines parallel strains of Latin and vernacular writing that cast doubt on the existence of the southern hemisphere. Three factors shaped the alternate accounts of the earth as a plane and disk put forward by these sources: (1) the unsettling effects of maritime expansion on scientific thought; (2) the revival of interest in early Christian criticism of the spherical earth; and (3) a rigid empirical stance toward entities too large to observe in their entirety, including the earth. Criticism of the spherical earth model faded in the decades after Magellan's crew returned from circuiting the earth in 1522.

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. International cooperation for Mars exploration and sample return

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  14. Return Beam Vidicon (RBV) panchromatic two-camera subsystem for LANDSAT-C

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A two-inch Return Beam Vidicon (RBV) panchromatic two camera Subsystem, together with spare components was designed and fabricated for the LANDSAT-C Satellite; the basis for the design was the Landsat 1&2 RBV Camera System. The purpose of the RBV Subsystem is to acquire high resolution pictures of the Earth for a mapping application. Where possible, residual LANDSAT 1 and 2 equipment was utilized.

  15. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    ). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international

  16. Low encounter speed comet COMA sample return missions

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Yen, C. W.; Albee, A. L.

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return

  17. A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows

    DTIC Science & Technology

    2015-09-17

    model was a short half-cylinder made of isomolded graphite and was tested in 8.6 km/ s Earth entry ow. The model surface was heated within a temperature...capsule [98, 49, 112]. For the Star- dust return capsule that had an Earth entry velocity of 12 km/ s , equilibrium surface recession was over predicted...was tested at 8.6 km/ s Earth entry ow monitored by ultraviolet (UV) spec- trometry. The experiments pre-heated the model to high temperatures to

  18. Adventures in near-Earth object exploration.

    PubMed

    Asphaug, Erik

    2006-06-02

    Asteroids, because of the hazard they pose to Earth, are compelling targets for robotic and human space exploration. Yet because of their exotic low-gravity environment, simply landing on an asteroid appears to be much more challenging than we had appreciated 5 or 10 years ago. Thanks to a bold new mission from Japan that has made the first asteroid sample return attempt, this goal is now within our reach.

  19. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  20. Aerodynamics of Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A.

    1997-01-01

    Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.

  1. EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.

  2. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  3. Thruster residues on returned Mir solar panel

    NASA Astrophysics Data System (ADS)

    Harvey, Gale A.

    2000-09-01

    A solar panel with more than ten years space exposure was returned to Earth in January 1998. Several types of residues were deposited or transported onto the solar cell coverglasses during the space exposure. Self-contamination of SiOx films from the silicone potting compound was a major contamination of the coverglasses. A second type of contamination was thick, detergent-like residues of the order of a millimeter diameter on many, but not most of the coverglasses. A third, prevalent type of contamination was very thin irregular shaped films or patterns of a millimeter size which are readily visible in brilliant colors when the coverglasses are viewed with a 50x brightfield microscope. These prolific, overlapping, and almost ubiquitous patterns strongly suggest wetting on the surface. The probably cause of most of the wetted patterns on the returned Mir solar cell coverglasses is trace hydrazine nitrate in condensed water droplets produced as reaction products from Mir's and the Orbiters' hypergolic thrusters. This paper presents some of the wetted patterns, information regarding hypergolic reaction products, and type of thrusters associated with Mir operations.

  4. NASA's Planned Return to the Moon: Global Access and Anytime Return Requirement Implications on the Lunar Orbit Insertion Burns

    NASA Technical Reports Server (NTRS)

    Garn, Michelle; Qu, Min; Chrone, Jonathan; Su, Philip; Karlgaard, Chris

    2008-01-01

    Lunar orbit insertion LOI is a critical maneuver for any mission going to the Moon. Optimizing the geometry of this maneuver is crucial to the success of the architecture designed to return humans to the Moon. LOI burns necessary to meet current NASA Exploration Constellation architecture requirements for the lunar sortie missions are driven mainly by the requirement for global access and "anytime" return from the lunar surface. This paper begins by describing the Earth-Moon geometry which creates the worst case (delta)V for both the LOI and the translunar injection (TLI) maneuvers over the full metonic cycle. The trajectory which optimizes the overall (delta)V performance of the mission is identified, trade studies results covering the entire lunar globe are mapped onto the contour plots, and the effects of loitering in low lunar orbit as a means of reducing the insertion (delta)V are described. Finally, the lighting conditions on the lunar surface are combined with the LOI and TLI analyses to identify geometries with ideal lighting conditions at sites of interest which minimize the mission (delta)V.

  5. The OSIRIS-REx Sample Return Mission from Asteroid Bennu

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante; Clark, Benton

    2016-07-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security‒Regolith Explorer (OSIRIS-REx) mission is to return and analyze a sample of pristine regolith from asteroid 101955 Bennu, a primitive carbonaceous asteroid and also a potentially hazardous near-Earth object. Returned samples are expected to contain primitive ancient Solar System materials formed in planetary, nebular, interstellar, and circumstellar environments. In addition, the OSIRIS-REx mission will obtain valuable information on sample context by imaging the sample site; characterize its global geology; map global chemistry and mineralogy; investigate dynamic history by measuring the Yarkovsky effect; and advance asteroid astronomy by characterizing surface properties for direct comparison with ground-based telescopic observations of the entire asteroid population. Following launch in September 2016, the spacecraft will encounter Bennu in August 2018, then embark on a systematic study of geophysical and morphological characteristics of this ~500-meter-diameter object, including a systematic search for satellites and plumes. For determination of context, composition, and sampleability of various candidate sites, advanced instruments for remote global observations include OVIRS (visible to mid-IR spectrometric mapper), OTES (mid- to far-IR mineral and thermal emission mapper), OLA (mapping laser altimeter), and a suite of scientific cameras (OCAMS) with sub-cm pixel size from low-altitude Reconnaissance passes. A unique sample acquisition mechanism (SAM) capable of collecting up to one liter of regolith under ideal conditions (abundant small particulates < 2 cm) is expected to obtain at least 60 g of bulk regolith as well as surface grains on contact pads for analysis upon return to Earth. Using touch-and-go (TAG), a few seconds of contact is adequate for the gas-driven collection technique to acquire sample. This TAGSAM system has been developed and

  6. Earth and Moon as viewed by Mariner 10

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Mariner 10 was launched on November 3, 1973, 12:45 am PST, from Cape Canaveral on an Atlas/Centaur rocket (a reconditioned Intercontinental Ballistic Missile - ICBM). Within 12 hours of launch the twin cameras were turned on and several hundred pictures of both the Earth and the Moon were acquired over the following days.

    The Earth and Moon were imaged by Mariner 10 from 2.6 million km while completing the first ever Earth-Moon encounter by a spacecraft capable of returning high resolution digital color image data. These images have been combined at right to illustrate the relative sizes of the two bodies. From this particular viewpoint the Earth appears to be a water planet!

    The Mariner 10 mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  7. OSIRIS-REx A NASA Mission to a Near Earth Asteroid!...and Other Recent Happenings in the Solar System

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.

    2015-01-01

    The OSIRIS-REx Mission launches in 2016 Arrives at Asteroid Bennu-2018 Returns a sample to Earth -2023 The mission, OSIRIS-REx, will visit an asteroid and return a sample from the early Solar System to help us understand how our Solar System formed.

  8. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    NASA Astrophysics Data System (ADS)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  9. A preliminary study of Mars rover/sample return missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not

  10. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  11. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  12. DECADE Web Portal: Integrating MaGa, EarthChem and GVP Will Further Our Knowledge on Earth Degassing

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Frigeri, A.; Lehnert, K. A.; Ash, J.; McCormick, B.; Chiodini, G.; Fischer, T. P.; Cottrell, E.

    2014-12-01

    The release of gases from the Earth's interior to the exosphere takes place in both volcanic and non-volcanic areas of the planet. Fully understanding this complex process requires the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. We are developing interoperability between three of those, which will support more powerful synoptic studies of degassing. The three data systems that will make their data accessible via the DECADE portal are: (1) the Smithsonian Institution's Global Volcanism Program database (GVP) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. These databases are developed and maintained by institutions or groups of experts in a specific field, and data are archived in formats specific to these databases. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing a web portal that will create a powerful search engine of these databases from a single entry point. The portal will return comprehensive multi-component datasets, based on the search criteria selected by the user. For example, a single geographic or temporal search will return data relating to compositions of emitted gases and erupted products, the age of the erupted products, and coincident activity at the volcano. The development of this level of capability for the DECADE Portal requires complete synergy between these databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at

  13. Volumetric visualization of multiple-return LIDAR data: Using voxels

    USGS Publications Warehouse

    Stoker, Jason M.

    2009-01-01

    Elevation data are an important component in the visualization and analysis of geographic information. The creation and display of 3D models representing bare earth, vegetation, and surface structures have become a major focus of light detection and ranging (lidar) remote sensing research in the past few years. Lidar is an active sensor that records the distance, or range, of a laser usually fi red from an airplane, helicopter, or satellite. By converting the millions of 3D lidar returns from a system into bare ground, vegetation, or structural elevation information, extremely accurate, high-resolution elevation models can be derived and produced to visualize and quantify scenes in three dimensions. These data can be used to produce high-resolution bare-earth digital elevation models; quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass; and models of urban areas such as building footprints and 3D city models.

  14. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    NASA Technical Reports Server (NTRS)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  15. Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex

    2004-01-01

    Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.

  16. Building on the Cornerstone: Destinations for Nearside Sample Return

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.

    2016-01-01

    Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.

  17. The search for an identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1988-01-01

    The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides.

  18. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  19. Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Brunner, Christopher W.

    2005-01-01

    In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.

  20. In Situ Pre-Selection of Return Samples with Bio-Signatures by Combined Laser Mass Spectrometry and Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, R.; Wurz, P.; Tulej, M.; Wacey, D.; Neubeck, A.; Grimaudo, V.; Riedo, A.; Moreno, P.; Cedeño-López, A.; Ivarsson, M.

    2018-04-01

    The University of Bern developed instrument prototypes that allow analysis of samples on Mars prior to bringing them back to Earth, allowing to maximize the scientific outcome of the returned samples. We will present the systems and first results.

  1. Martian Chemical and Isotopic Reference Standards in Earth-based Laboratories — An Invitation for Geochemical, Astrobiological, and Engineering Dialog on Considering a Weathered Chondrite for Mars Sample Return.

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; Tait, A. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Schröder, C.; Bland, P.

    2017-12-01

    Exogenic rocks (meteorites) found on Mars 1) have unweathered counterparts on Earth; 2) weather differently than indigenous rocks; and 3) may be ideal habitats for putative microorganisms and subsequent biosignature preservation. These attributes show the potential of meteorites for addressing hypothesis-driven science. They raise the question of whether chondritic meteorites, of sufficient weathering intensity, might be considered as candidates for sample return in a potential future mission. Pursuant to this discussion are the following questions. A) Is there anything to be learned from the laboratory study of a martian chondrite that cannot be learned from indigenous materials; and if so, B) is the science value high enough to justify recovery? If both A and B answer affirmatively, then C) what are the engineering constraints for sample collection for Mars 2020 and potential follow-on missions; and finally D) what is the likelihood of finding a favorable sample? Observations relevant to these questions include: i) Since 2005, 24 candidate and confirmed meteorites have been identified on Mars at three rover landing sites, demonstrating their ubiquity and setting expectations for future finds. All have been heavily altered by a variety of physical and chemical processes. While the majority of these are irons (not suitable for recovery), several are weathered stony meteorites. ii) Exogenic reference materials provide the only chemical/isotope standards on Mars, permitting quantification of alteration rates if residence ages can be attained; and possibly enabling the removal of Late Amazonian weathering overprints from other returned samples. iii) Recent studies have established the habitability of chondritic meteorites with terrestrial microorganisms, recommending their consideration when exploring astrobiological questions. High reactivity, organic content, and permeability show stony meteorites to be more attractive for colonization and subsequent biosignature

  2. Mineral remains of early life on Earth? On Mars?

    USGS Publications Warehouse

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  3. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  4. Options for human ``return to the moon'' using tomorrow's SSTO, ISRU, and LOX-augmented NTR technologies

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.

    1996-03-01

    The feasibility of conducting human missions to the Moon is examined assuming the use of three ``high leverage'' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) ``in-situ'' resource utilization (ISRU)—specifically ``lunar-derived'' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the ``compact'' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of ˜60 t (3 SSTO launches). Using ˜8 t of LUNOX to ``reoxidize'' the LERV for a ``direct return'' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/hydrogen mixture ratio from 0 to 7 with high specific impulse (˜940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's ``propulsion'' and ``propellant modules''. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes.

  5. Biological Sterilization of Returned Mars Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.

    1999-01-01

    Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.

  6. Strategic Map for Enceladus Plume Biosignature Sample Return

    NASA Astrophysics Data System (ADS)

    Sherwood, B.

    2014-12-01

    The discovery of jets emitting salty water from the interior of Saturn's small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apocrone, the modeled lifetime of E-ring particles, and gravitational inference of a long-lived, deep, large water reservoir all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, source of energy, and longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample, analyze, and even return them to Earth for detailed analysis. For example, it is straightforward to define a Stardust-like, fly-through, plume ice-particle, dust, and gas collection mission. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission's Category-V, Restricted Earth Return, classification. The poster presents a strategic framework for systematic integration of the enabling issues: cultivation of science advocacy, resolution of diverse stakeholder concerns, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. A strategic approach is essential if we are to know the astrobiological state of Enceladus in our lifetime, and two international teams are already dedicated to implementing key steps on this roadmap.

  7. Computing return times or return periods with rare event algorithms

    NASA Astrophysics Data System (ADS)

    Lestang, Thibault; Ragone, Francesco; Bréhier, Charles-Edouard; Herbert, Corentin; Bouchet, Freddy

    2018-04-01

    The average time between two occurrences of the same event, referred to as its return time (or return period), is a useful statistical concept for practical applications. For instance insurances or public agencies may be interested by the return time of a 10 m flood of the Seine river in Paris. However, due to their scarcity, reliably estimating return times for rare events is very difficult using either observational data or direct numerical simulations. For rare events, an estimator for return times can be built from the extrema of the observable on trajectory blocks. Here, we show that this estimator can be improved to remain accurate for return times of the order of the block size. More importantly, we show that this approach can be generalised to estimate return times from numerical algorithms specifically designed to sample rare events. So far those algorithms often compute probabilities, rather than return times. The approach we propose provides a computationally extremely efficient way to estimate numerically the return times of rare events for a dynamical system, gaining several orders of magnitude of computational costs. We illustrate the method on two kinds of observables, instantaneous and time-averaged, using two different rare event algorithms, for a simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.

  8. Mars Orbiter Sample Return Power Design

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Dawson, S.

    2005-01-01

    Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite

  9. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  10. Terrestrial quarantine considerations for unmanned sample return missions

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Stavro, W.; Miller, L. W.; Taylor, D. M.

    1973-01-01

    For the purpose of understanding some of the possible implications of a terrestrial quarantine constraint on a mission and for developing a basic approach which can be used to demonstrate compliance beyond that developed for Apollo, a terrestrial quarantine study was performed. It is shown that some of the basic tools developed and used by the planetary quarantine community have applicability to terrestrial quarantine analysis. By using these tools, it is concluded that: (1) the method of biasing the earth aiming point when returning from the planet is necessary but, by itself, may not satisfy terrestrial quarantine constraints; and (2) spacecraft and container design significantly influence contamination transfer.

  11. Sample Return Mission to the South Pole Aitken Basin

    NASA Astrophysics Data System (ADS)

    Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.

    1999-01-01

    affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of

  12. Factors influencing donor return.

    PubMed

    Schlumpf, Karen S; Glynn, Simone A; Schreiber, George B; Wright, David J; Randolph Steele, Whitney; Tu, Yongling; Hermansen, Sigurd; Higgins, Martha J; Garratty, George; Murphy, Edward L

    2008-02-01

    To predict future blood donation behavior and improve donor retention, it is important to understand the determinants of donor return. A self-administered questionnaire was completed in 2003 by 7905 current donors. With data mining methods, all factors measured by the survey were ranked as possible predictors of actual return within 12 months. Significant factors were analyzed with logistic regression to determine predictors of intention and of actual return. Younger and minority donors were less likely to return in 12 months. Predictors of donor return were higher prior donation frequency, higher intention to return, a convenient place to donate, and having a good donation experience. Most factors associated with actual donor return were also associated with a high intention to return. Although not significant for actual return, feeling a responsibility to help others, higher empathetic concern, and a feeling that being a blood donor means more than just donating blood were related to high intention to return. Prior donation frequency, intention to return, donation experience, and having a convenient location appear to significantly predict donor return. Clearly, donor behavior is dependent on more than one factor alone. Altruistic behavior, empathy, and social responsibility items did not enter our model to predict actual return. A donor's stated intention to give again is positively related to actual return and, while not a perfect measure, might be a useful proxy when donor return cannot be determined.

  13. The Exploration of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    1998-01-01

    small fraction of NEOs are particularly accessible for exploration by spacecraft. To identify the exploration targets of highest scientific interest, the orbits and classification of a large number of NEOs should be determined by telescopic observations. Desired characterization would also include measurements of size, mass, shape, surface composition and heterogeneity, gas and dust emission, and rotation. Laboratory studies of meteorites can focus NEO exploration objectives and quantify the information obtained from telescopes. Once high-priority targets have been identified, various kinds of spacecraft missions (flyby, rendezvous, and sample return) can be designed. Some currently operational (Near-Earth Asteroid Rendezvous [NEAR]) or planned (Deep Space 1) U.S. missions are of the first two types, and other planned U.S. and Japanese spacecraft missions will return samples. Rendezvous missions with sample return are particularly desirable from a scientific perspective because of the very great differences in the analytical capabilities that can be brought to bear in orbit and in the laboratory setting. Although it would be difficult to justify human exploration of NEOs on the basis of cost-benefit analysis of scientific results alone, a strong case can be made for starting with NEOs if the decision to carry out human exploration beyond low Earth orbit is made for other reasons. Some NEOs are especially attractive targets for astronaut missions because of their orbital accessibility and short flight duration. Because they represent deep space exploration at an intermediate level of technical challenge, these missions would also serve as stepping stones for human missions to Mars. Human exploration of NEOs would provide significant advances in observational and sampling capabilities. With respect to ground based telescopic studies, the recommended baseline is that NASA and other appropriate agencies suupport research programs for interpreting the spectra of near-Earth

  14. Operational and Medical Procedures for a Declared Contingency Shuttle (CSCS) Shuttle Mission Due to a Failure that Precludes a Safe Return

    NASA Technical Reports Server (NTRS)

    Adams, Adrien; Patlach, Bob; Duchense, Ted; Chandler, Mike; Stepaniak, Philip C.

    2011-01-01

    This poster paper outlines the operational and medical procedures for a shuttle mission that has a failure that precludes a safe return to Earth. Information about the assumptions, procedures and limiting consumables is included.

  15. Mir Environmental Effects Payload and Returned Mir Solar Panel Cleanliness

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Kinard, William H.

    2000-01-01

    The MIR Environmental Effects Payload (MEEP) was attached to the Docking Module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space exposure was removed from the MIR core module in November 1997, and returned to Earth in January, 1998, STS 89. MEEP and the returned solar array are part of the International Space Station (ISS) Risk Mitigation Program. This space flight hardware has been inspected and studied by teams of space environmental effects (SEE) investigators for micrometeoroid and space debris effects, space exposure effects on materials, and electrical performance. This paper reports changes in cleanliness of parts of MEEP and the solar array due to the space exposures. Special attention is given to the extensive water soluble residues deposited on some of the flight hardware surfaces. Directionality of deposition and chemistry of these residues are discussed.

  16. Battery/Ultracapacitor Evaluation for X-38 Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Strangways, Bradley

    1999-01-01

    This presentation reported on the evaluation of the battery/ultracapacitor for the crew return vehicle (CRV). The CRV, as part of the international space station (ISS) planning, will be available to return to earth an ill or injured crew person, or if the ISS becomes unsafe, and the shuttle is not available. The requirements of the X-38 CRV are reviewed, and in light of the power requirements, the battery's required performance is reviewed. The ultracapacitor bank, and its test method is described. The test results are reviewed. A picture of the test set up is displayed showing the ultracapacitor bank and the NiMH battery. The presentation continues by reviewing tests of 5 available trade high power cell designs: (1) Hawker lead acid, (2) Bolder lead acid, (3) Energizer NiMH, (4) Sanyo NiCd, and (5) Energizer NiCd. The test methods and results are reviewed. There is also a review of the issues concerning lead acid batteries and conclusions.

  17. Near-Earth Asteroid Scout

    NASA Technical Reports Server (NTRS)

    McNutt, Leslie; Johnson, Les; Clardy, Dennon; Castillo-Rogez, Julie; Frick, Andreas; Jones, Laura

    2014-01-01

    Near-Earth Asteroids (NEAs) are an easily accessible object in Earth's vicinity. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a mission concept, tentatively called 'NEA Scout,' utilizing a low-cost CubeSats platform in response to the current needs for affordable missions with exploration science value. The NEA Scout mission concept would be a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).

  18. Sample Collection for Investigation of Mars (SCIM): An Early Mars Sample Return Mission Through the Mars Scout Program

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.

    2002-01-01

    The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.

  19. The Heart of an Officer: Joint, Interagency, and International Operations and Navy Career Development

    DTIC Science & Technology

    2009-01-01

    each specialty? Determining the an- swers to these questions would obviously require much more thought and anal - ysis, as part of an evaluation of...education with assignments in the region, were even fewer, numbering in the low teens . 9. That is, commanding organizations charged with the readiness

  20. Equilibrium radiative heating tables for Earth entry

    NASA Astrophysics Data System (ADS)

    Sutton, Kenneth; Hartung, Lin C.

    1990-05-01

    The recent resurgence of interest in blunt-body atmospheric entry for applications such as aeroassisted orbital transfer and planetary return has engendered a corresponding revival of interest in radiative heating. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. Sutton developed an inviscid, stagnation point, radiation coupled flow field code for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data, and reasonable agreement has been found. To provide information for entry body studies in support of lunar and Mars return scenarios of interest in the 1970's, the code was exercised over a matrix of Earth entry conditions. Recently, this matrix was extended slightly to reflect entry vehicle designs of current interest. Complete results are presented.

  1. NASA Captures 'EPIC' Earth Image

    NASA Image and Video Library

    2017-12-08

    A NASA camera on the Deep Space Climate Observatory satellite has returned its first view of the entire sunlit side of Earth from one million miles away. This color image of Earth was taken by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope. The image was generated by combining three separate images to create a photographic-quality image. The camera takes a series of 10 images using different narrowband filters -- from ultraviolet to near infrared -- to produce a variety of science products. The red, green and blue channel images are used in these color images. The image was taken July 6, 2015, showing North and Central America. The central turquoise areas are shallow seas around the Caribbean islands. This Earth image shows the effects of sunlight scattered by air molecules, giving the image a characteristic bluish tint. The EPIC team is working to remove this atmospheric effect from subsequent images. Once the instrument begins regular data acquisition, EPIC will provide a daily series of Earth images allowing for the first time study of daily variations over the entire globe. These images, available 12 to 36 hours after they are acquired, will be posted to a dedicated web page by September 2015. The primary objective of DSCOVR, a partnership between NASA, the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Air Force, is to maintain the nation’s real-time solar wind monitoring capabilities, which are critical to the accuracy and lead time of space weather alerts and forecasts from NOAA. For more information about DSCOVR, visit: www.nesdis.noaa.gov/DSCOVR/

  2. A Sample Handling System for Mars Sample Return - Design and Status

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.

    2009-04-01

    A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  6. Low Earth Orbit Rendezvous Strategy for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Cirillo, William M.; Stromgren, Chel

    2006-01-01

    On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.

  7. View of Skylab space station cluster in Earth orbit from CSM

    NASA Image and Video Library

    1974-02-08

    SL4-143-4707 (8 Feb. 1974) --- An overhead view of the Skylab space station cluster in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against a cloud-covered Earth. Note the solar shield which was deployed by the second crew of Skylab and from which a micrometeoroid shield has been missing since the cluster was launched on May 14, 1973. The OWS solar panel on the left side was also lost on workshop launch day. Photo credit: NASA

  8. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.

  9. Aladdin: Exploration and Sample Return from the Moons of Mars

    NASA Technical Reports Server (NTRS)

    Pieters, C.; Cheng, A.; Clark, B.; Murchie, S.; Mustard, J.; Zolensky, M.; Papike, J.

    2000-01-01

    Aladdin is a remote sensing and sample return mission focused on the two small moons of Mars, Phobos and Deimos. Understanding the moons of Mars will help us to understand the early history of Mars itself. Aladdin's primary objective is to acquire well documented, representative samples from both moons and return them to Earth for detailed analyses. Samples arrive at Earth within three years of launch. Aladdin addresses several of NASA's highest priority science objectives: the origin and evolution of the Martian system (one of two silicate planets with satellites) and the composition and nature of small bodies (the building blocks of the solar system). The Aladdin mission has been selected as a finalist in both the 1997 and 1999 Discovery competitions based on the high quality of science it would accomplish. The equivalent of Aladdin's Phase A development has been successfully completed, yielding a high degree of technical maturity. Aladdin uses an innovative flyby sample acquisition method, which has been validated experimentally and does not require soft landing or anchoring. An initial phasing orbit at Mars reduces mission propulsion requirements, enabling Aladdin to use proven, low-risk chemical propulsion with good mass margin. This phasing orbit is followed by a five month elliptical mission during which there are redundant opportunities for acquisition of samples and characterization of their geologic context using remote sensing. The Aladdin mission is a partnership between Brown University, the Johns Hopkins University Applied Physics Laboratory, Lockheed Martin Astronautics, and NASA Johnson Space Center.

  10. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  11. Return-to-Work Program for Injured Workers: Factors of Successful Return to Employment.

    PubMed

    Awang, Halimah; Shahabudin, Sharifah Muhairah; Mansor, Norma

    2016-11-01

    This study examined the factors of successful return to employment among participants in the return to work program (RTW) following work-related injury. Data were obtained from the Social Security Organization database containing 9850 injured workers who underwent RTW in 2010 to 2013. About 65% had successfully returned to employment. Significant factors of successful return include gender, employer interest, motivation, age, intervention duration, and type of injury. Male and motivated employees were more likely to return to employment compared with female and unmotivated employees, respectively. Participants from interested employers were 23.22 times more likely to return to work than those from uninterested employers, whereas participants whose intervention period exceeded 5 months were 41% less likely to return to work compared with those whose intervention period was within 3 months. Appropriate strategy and enhanced collaboration between the stakeholders would improve the proportion of successful return to employment. © 2016 APJPH.

  12. Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.

    1983-01-01

    Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.

  13. The Student Returns: Challenges of the Returning Student.

    ERIC Educational Resources Information Center

    Marino, Carrie A.

    According to a 1994 analysis of returning students, as many as 43% of all college students are currently over the age of 24. This influx of returning students demands a new look at existing pedagogical practices. The changing demographics of the classroom turn age and life experience into a consideration for pedagogy alongside race, class, and…

  14. A Comprehensive Structural Dynamic Analysis Approach for Multi Mission Earth Entry Vehicle (MMEEV) Development

    NASA Technical Reports Server (NTRS)

    Perino, Scott; Bayandor, Javid; Siddens, Aaron

    2012-01-01

    The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.

  15. Entry Trajectory Issues for the Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    1999-01-01

    The Stardust mission was successfully launched on February 7, 1999. It will be the first mission to return samples from a comet. The sample return capsule, which is passively controlled during the fastest Earth entry ever, will land by parachute in Utah. The present study describes the analysis of the entry, descent, and landing of the returning sample capsule utilizing the final, launch configuration capsule mass properties. The effects of two aerodynamic instabilities are revealed (one in the high altitude free molecular regime and the other in the transonic/subsonic flow regime). These instabilities could lead to unacceptably large excursions in the angle-of-attack near peak heating and main parachute deployment, respectively. To reduce the excursions resulting from the high altitude instability, the entry spin rate of the capsule is increased. To stabilize the excursions from the transonic/subsonic instability, a drogue chute with deployment triggered by a gravity-switch and timer is added prior to main parachute deployment. A Monte Carlo dispersion analysis of the modified entry (from which the impact of off-nominal conditions during the entry is ascertained) predicts that the capsule attitude excursions near peak heating and drogue chute deployment are within Stardust mission limits. Additionally, the size of the resulting 3-sigma landing ellipse is 60.8 km in downrange by 19.9 km in crossrange, which is within the Utah Test and Training Range boundaries.

  16. 26 CFR 1.6013-2 - Joint return after filing separate return.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the case of a joint return made under section 6013(b), the period of limitations provided in sections... (c)(1) of this section, relating to the application of sections 6501 and 6651 with respect to a joint... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Joint return after filing separate return. 1...

  17. Might astronauts one day be treated like return samples?

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques; Debus, André

    2008-09-01

    The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars for example, the technology constraints and physiological and psychological challenges are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966]. The first hurdle is the size of crew modules. It is hard to envisage being able to decontaminate a crew module as thoroughly as we can interplanetary probes at launch. And once a crew arrives on Mars, it will not be easy either to break the chain of contact between their habitat and the Martian environment. How will astronauts avoid coming into direct contact with Mars dust when they remove their spacesuits in the airlock? How will they avoid bringing it into the crew module, and then back to Earth? At this stage, it would seem vital to do preliminary research on unmanned exobiology missions to identify zones that do not, a priori, pose a contamination hazard for astronauts. However, this precaution will not dispense with the need to perfect methods to chemically sterilize Mars dust inside airlocks, and quarantine procedures for the return to Earth. While the technology challenges of protecting astronauts and their habitat are considerable, the ethical issues are not to be underestimated either. They must be addressed alongside all the other issues bound up with human spaceflight, chief among them astronauts’ acceptance of the risk of a launch failure and other accidents, exposure to cosmic radiation and so on. For missions to

  18. Navigation: bat orientation using Earth's magnetic field.

    PubMed

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  19. A core handling device for the Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1989-01-01

    A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.

  20. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment

  1. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-21

    ISS043E128768 (04/21/2015) --- NASA astronaut Scott Kelly on the International Space Station May 6, 2015 tweeted this image out of an Earth observation as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo! A serpent is known for deceptive traits, but don’t let this snake pull the wool over your eyes. Name it!” Congratulations to @splinesmith for correctly identifying this image first, : #BighornRiver Montana/Wyoming named in 1805 for Bighorn sheep along its banks. He will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: http://www.nasa.gov/feature/where-over-the-world-is-astronaut-scott-kelly

  2. Gravity Field of Venus and Comparison with Earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1985-01-01

    The acceleration (gravity) anomaly estimates by spacecraft tracking, determined from Doppler residuals, are components of the gravity field directed along the spacecraft Earth line of sight (LOS). These data constitute a set of vector components of a planet's gravity field, the specific component depending upon where the Earth happened to be at the time of each measurement, and they are at varying altitudes above the planet surface. From this data set the gravity field vector components were derived using the method of harmonic splines which imposes a smoothness criterion to select a gravity model compatible with the LOS data. Given the piecewise model it is now possible to upward and downward continue the field quantities desired with a few parameters unlike some other methods which must return to the full dataset for each desired calculation.

  3. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  4. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    NASA Image and Video Library

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  5. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. Spaceship Earth: A partnership in curriculum writing

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.

    1993-01-01

    As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed.

  10. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  11. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  12. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  13. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields

  14. Presidential Space Policy Directs NASA to Return Humans to Moon

    NASA Image and Video Library

    2017-12-11

    President Donald Trump signed a new Space Policy Directive-1 at the White House on Monday, Dec. 11, directing NASA’s human spaceflight program back to the Moon, as recommended by the National Space Council.    The directive calls for NASA to lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system, and to bring back to Earth new knowledge and opportunities for human advancement. This effort will more effectively organize government, private industry, and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.

  15. Phootprint - A Phobos sample return mission study

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis

    Introduction ESA is currently studying a mission to return a sample from Phobos, called Phootprint. This study is performed as part of ESA’s Mars Robotic Exploration Programme. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; the mission should also have a strong scientific justification, which is described here. 1. Science goal The main science goal of this mission will be to Understand the formation of the Martian moons Phobos and put constraints on the evolution of the solar system. Currently, there are several possibilities for explaining the formation of the Martian moons: (a) co-formation with Mars (b) capture of objects coming close to Mars (c) Impact of a large body onto Mars and formation from the impact ejecta The main science goal of this mission is to find out which of the three scenarios is the most probable one. To do this, samples from Phobos would be returned to Earth and analyzed with extremely high precision in ground-based laboratories. An on-board payload is foreseen to provide information to put the sample into the necessary geological context. 2. Mission Spacecraft and payload will be based on experience gained from previous studies to Martian moons and asteroids. In particular the Marco Polo and MarcoPolo-R asteroid sample return mission studies performed at ESA were used as a starting point. Currently, industrial studies are ongoing. The initial starting assumption was to use a Soyuz launcher. Uunlike the initial Marco Polo and MarcoPolo-R studies to an asteroid, a transfer stage will be needed. Another main difference to an asteroid mission is the fact that the spacecraft actually orbits Mars, not Phobos or Deimos. It is possible to select a spacecraft orbit, which in a Phobos- or Deimos-centred reference system would give an ellipse around the moon. The following model payload is currently foreseen: - Wide Angle Camera, - Narrow Angle Camera, - Close-Up Camera, - Context camera for

  16. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  17. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  18. Initial Sample Analyses inside a Capsule: A Strategy of Life Detection and Planetary Protection for Ocean World Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Takano, Yoshinori; Sekine, Yasuhito; Takai, Ken; Funase, Ryu; Fujishima, Kosuke; Shibuya, Takazo

    2016-07-01

    Planetary protection is considered to be one of the most crucial challenges to enable sample return missions from "Ocean Worlds", internal oceans of icy satellites as potential deep habitat such as Enceladus and Europa, due to the risk of backward contamination of bringing back potential biology-related matters or at most, possible extraterrestrial living signatures to the Earth. Here we propose an innovative technological solution for both life detection and planetary protection of such returned samples, namely by conducting all major life signature searches, which are also a critical path of quarantine processes of planetary protection, inside the Earth return capsule, prior to open the canister and expose to the terrestrial environment. We plan to test the latest sample capture and recovery methods of preparing multiple aliquot chambers in the sample return capsule. Each aliquot chamber will trap, for instance, plume particles and ambient volatiles during the spacecraft flying through Enceladus plumes so that respective analyses can be performed focusing on volatiles and minerals (i.e., habitability for life), organics (i.e., ingredients for life), biosignatures (i.e., activity of life) and for archiving the samples for future investigations at the same time. In-situ analysis will be conducted under complete containment through an optical interface port that allows pre-installed fiber optic cables to perform non-contact measurements and capillary tubing for extraction/injection of gas and liquids through metal barriers to be punctuated inside a controlled environment. Once primary investigations are completed, the interior of the capsule will be sterilized by gamma rays and UV irradiation. Post-sterilized aliquot chambers will be further analyzed under enclosed and ultraclean environment at BAL 2-3 facilities, rather than BSL4. We consider that this is an unique solution that can cope with severe requirements set for the Category-V sample returns for

  19. Feasibility of mining lunar resources for earth use: Circa 2000 AD. Volume 2: Technical discussion

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Arno, R. D.; Alexander, A. D.; Slye, R. E.

    1973-01-01

    The technologies and systems required to establish the mining base, mine, refine, and return lunar resources to earth are discussed. Gross equipment requirements, their weights and costs are estimated and documented. The operational requirements are analyzed and tabulated. Diagrams of equipment and processing facilities are provided.

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  12. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  13. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  14. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  15. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  16. Searching for life in the universe: lessons from the earth

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    2001-01-01

    Space programs will soon allow us to search for life in situ on Mars and to return samples for analysis. A major focal point is to search for evidence of present or past life in these samples, evidence that, if found, would have far-reaching consequences for both science and religion. A search strategy will consider the entire gamut of life on our own planet, using that information to frame a search that would recognize life even if it were fundamentally different from that we know on Earth. We discuss here how the lessons learned from the study of life on Earth can be used to allow us to develop a general strategy for the search for life in the Universe.

  17. Searching for life in the universe: lessons from the earth.

    PubMed

    Nealson, K H

    2001-12-01

    Space programs will soon allow us to search for life in situ on Mars and to return samples for analysis. A major focal point is to search for evidence of present or past life in these samples, evidence that, if found, would have far-reaching consequences for both science and religion. A search strategy will consider the entire gamut of life on our own planet, using that information to frame a search that would recognize life even if it were fundamentally different from that we know on Earth. We discuss here how the lessons learned from the study of life on Earth can be used to allow us to develop a general strategy for the search for life in the Universe.

  18. Earth and Moon as viewed from Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-368, 22 May 2003

    [figure removed for brevity, see original site] Globe diagram illustrates the Earth's orientation as viewed from Mars (North and South America were in view).

    Earth/Moon: This is the first image of Earth ever taken from another planet that actually shows our home as a planetary disk. Because Earth and the Moon are closer to the Sun than Mars, they exhibit phases, just as the Moon, Venus, and Mercury do when viewed from Earth. As seen from Mars by MGS on 8 May 2003 at 13:00 GMT (6:00 AM PDT), Earth and the Moon appeared in the evening sky. The MOC Earth/Moon image has been specially processed to allow both Earth (with an apparent magnitude of -2.5) and the much darker Moon (with an apparent magnitude of +0.9) to be visible together. The bright area at the top of the image of Earth is cloud cover over central and eastern North America. Below that, a darker area includes Central America and the Gulf of Mexico. The bright feature near the center-right of the crescent Earth consists of clouds over northern South America. The image also shows the Earth-facing hemisphere of the Moon, since the Moon was on the far side of Earth as viewed from Mars. The slightly lighter tone of the lower portion of the image of the Moon results from the large and conspicuous ray system associated with the crater Tycho.

    A note about the coloring process: The MGS MOC high resolution camera only takes grayscale (black-and-white) images. To 'colorize' the image, a Mariner 10 Earth/Moon image taken in 1973 was used to color the MOC Earth and Moon picture. The procedure used was as follows: the Mariner 10 image was converted from 24-bit color to 8-bit color using a JPEG to GIF conversion program. The 8-bit color image was converted to 8-bit grayscale and an associated lookup table mapping each gray value of the image to a red-green-blue color triplet (RGB). Each color triplet was root-sum-squared (RSS), and sorted in increasing RSS

  19. Why Do Staff Return?

    ERIC Educational Resources Information Center

    Magnuson, Connie

    1992-01-01

    Surveyed 211 returning staff from 25 camps and interviewed 19 returning staff to study factors that influence a counselor's decision to return to camp. Examined the following dimensions of motivation and hygiene factors: (1) stimulation or inspiration; (2) personal; (3) job-related experience; (4) living conditions and camp life; (5) camp…

  20. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-11-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  1. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  2. 75 FR 75439 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... 1545-BJ52 Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic... for ``specified tax return preparers,'' generally tax return preparers who reasonably expect to file more than 10 individual income tax returns in a calendar year, to file individual income tax returns...

  3. Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES): A Proposed Program for an Interstellar Rendezvous and Return Architecture

    NASA Astrophysics Data System (ADS)

    Obousy, R.

    While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.

  4. The Gulliver mission: Sample return from Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D.

    The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.

  5. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  6. Electrical and computer architecture of an autonomous Mars sample return rover prototype

    NASA Astrophysics Data System (ADS)

    Leslie, Caleb Thomas

    Space truly is the final frontier. As man looks to explore beyond the confines of our planet, we use the lessons learned from traveling to the Moon and orbiting in the International Space Station, and we set our sights upon Mars. For decades, Martian probes consisting of orbiters, landers, and even robotic rovers have been sent to study Mars. Their discoveries have yielded a wealth of new scientific knowledge regarding the Martian environment and the secrets it holds. Armed with this knowledge, NASA and others have begun preparations to send humans to Mars with the ultimate goal of colonization and permanent human habitation. The ultimate success of any long term manned mission to Mars will require in situ resource utilization techniques and technologies to both support their stay and make a return trip to Earth viable. A sample return mission to Mars will play a pivotal role in developing these necessary technologies to ensure such an endeavor to be a successful one. This thesis describes an electrical and computer architecture for autonomous robotic applications. The architecture is one that is modular, scalable, and adaptable. These traits are achieved by maximizing commonality and reusability within modules that can be added, removed, or reconfigured within the system. This architecture, called the Modular Architecture for Autonomous Robotic Systems (MAARS), was implemented on the University of Alabama's Collection and Extraction Rover for Extraterrestrial Samples (CERES). The CERES rover competed in the 2016 NASA Sample Return Robot Challenge where robots were tasked with autonomously finding, collecting, and returning samples to the landing site.

  7. Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J; Bajt, S; Brennan, S

    NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.

  8. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthesis Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focussed on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond earth orbit, the last of which was in 1972. A transitional program, corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement, and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a

  9. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthes Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focused on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond Earth orbit, the last of which was in 1972. A transitional prograrr@ corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a

  10. Return to the Moon: A New Strategic Evaluation

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1999-01-01

    This paper reviews the value of a new lunar program, initially robotic and eventually manned, in the light of developments since the 1991 Synthes Group study of the Space Exploration Initiative. The objective is to evaluate a return to the Moon in comparison to proposed Mars programs as a focus for American space exploration with humans in the next century. The Moon is demonstrably accessible, hospitable, useful, and interesting. Lunar programs are inherently faster and less risky from a programmatic viewpoint than comparable Mars programs such as Mars Direct. The dominant reason for a resumption of manned lunar missions, focused on a single site such as Grimaldi, is to rebuild the infrastructure for missions beyond Earth orbit, the last of which was in 1972. A transitional program, corresponding to the 10 Gemini missions that bridged the gap between Mercury and Apollo, was considered absolutely essential by the Synthesis Group. Further justification for a return to the Moon is the demonstrated feasibility of a robotic lunar observatory, concentrating on optical and infrared interferometry. Many unsolved scientific questions about the Moon itself remain, and could be investigated using telerobotic lunar rovers even before the return of humans. Mars is unquestionably more interesting scientifically and far more hospitable for long-term colonization. A new lunar program would be the most effective possible preparation for the human exploration, settlement and eventually the terraforming of Mars. Lunar and Mars programs are complementary, not competitive. Both can be justified in the most fundamental terms as beginning the dispersal of the human species against uncontrollable natural disasters, cometary or asteroidal impacts in particular, to which mankind is vulnerable while confined to a single planet. Three specific programs are recommended for the 2001-2010 period: Ice Prospectors, to evaluate polar ice or hydrogen deposits; a robotic lunar observatory; and a

  11. Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2015-01-01

    The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.

  12. X-Ray Computed Tomography: The First Step in Mars Sample Return Processing

    NASA Technical Reports Server (NTRS)

    Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.

    2017-01-01

    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and

  13. Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken

    2014-04-01

    Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.

  14. The OSIRIS-REx Asteroid Sample Return Mission Operations Design

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan S.; Cheuvront, Allan

    2015-01-01

    OSIRIS-REx is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will thoroughly characterize near-Earth asteroid Bennu (Previously known as 1019551999 RQ36). The OSIRIS-REx Asteroid Sample Return Mission delivers its science using five instruments and radio science along with the Touch-And-Go Sample Acquisition Mechanism (TAGSAM). All of the instruments and data analysis techniques have direct heritage from flown planetary missions. The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the mission's science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the Sample Return Capsule (SRC) lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis. Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together spacecraft, instrument and operations scenarios. Asteroid Touch and Go (TAG) has various options varying from ground only to fully automated (natural feature tracking). Spacecraft constraints such as thermo and high gain antenna pointing impact the timeline. The mission is sensitive to navigation errors, so a late command update has been implemented. The project implemented lessons learned from other "small body" missions. The key lesson learned was 'expect the unexpected' and implement planning tools early in the lifecycle

  15. The Point of No Return

    PubMed Central

    Logan, Gordon D.

    2015-01-01

    Bartlett (1958) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough “lead time” for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action. PMID:25633089

  16. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  17. 76 FR 17521 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media AGENCY... regulations on the requirement for ``specified tax return preparers'' to file individual income tax returns.... These regulations provide guidance to specified tax return preparers who prepare and file individual...

  18. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the

  16. 11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS WERE NUCLEAR WEAPONS SHIPPED TO THE ROCKY FLATS PLANT FROM THE NUCLEAR WEAPON STOCKPILE FOR RETIREMENT, TESTING, OR UPGRADING. FISSILE MATERIALS (PLUTONIUM, URANIUM, ETC.) AND RARE MATERIALS (BERYLLIUM) WERE RECOVERED FOR REUSE, AND THE REMAINDER WAS DISPOSED. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  17. Returning Samples from Enceladus

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Kanik, I.; Brownlee, D.; McKay, C.; Anbar, A.; Glavin, D.; Yano, H.

    2012-12-01

    search for chemical biosignatures to understand the habitability potential of the subsurface ocean of Enceladus [Glavin et al. 2011]. By assessing the chiral excess among different amino acids, identifying chains of amino acids, isolate distinct sequences of these chains and the same for nucleic acids, we can formulate a new set of hypotheses to address some of the key science questions required for investigating the stage of extraterrestrial life at Enceladus beyond the four factors of habitability. Criticality of Analyses - For extraterrestrial organic matter analyses such as chirality and compound-specific isotopes, the repeatable robustness of laboratory measurements is a necessity. These analyses require a series of chemical extraction and derivatization steps prior to analysis that is adapted to the sample and procedures results-driven. The Stardust mission is an excellent example of the challenges in the analysis of organics. Confirmation of the cometary origin of the amino acid glycine from comet Wild 2 was obtained 3 years after the samples were returned to Earth. This long period of laboratory development allowed several modifications to the extraction protocol, multiple analytical techniques and instrumentations. Reference: Tsou et al., Astrobiology, in press 2012. McKay et al. Astrobiology 2008. Waite et al. Nature V 460 I 7254, 2009. Postberg et al. EPSC 642P 2011. Glavin et al., LPSC, #5002, 2011.

  18. Planning for the Paleomagnetic Investigations of Returned Samples from Mars

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.

    2016-12-01

    determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.

  19. Strategies for In situ and Sample Return Analyses

    NASA Astrophysics Data System (ADS)

    Papanastassiou, D. A.

    2006-12-01

    to laboratory instruments. Age determinations and use of isotopes for deciphering planetary evolution are viewed as off-limits for in-situ determinations, as they require: a) typically high precision mass spectrometry (at 0.01% and below); b) the determination of parent-daughter element ratios at least at the percent level; c) the measurement of coexisting minerals (for internal isochron determinations); d) low contamination (e. g., for U-Pb and Pb-Pb); and e) removal of adhering phases and contaminants, not related to the samples to be analyzed. Total K-Ar age determinations are subject to fewer requirements and may be feasible, in situ, but in the absence of neutron activation, as required for 39Ar-40Ar, the expected precision is at the level of ~20%, with trapped Ar in the samples introducing further uncertainty. Precision of 20% for K-Ar may suffice to address some key cratering rate uncertainties on Mars, especially as applicable to the Middle Amazonian(1). For in situ, the key issues, which must be addressed for all measurements are: what precision is required and are there instruments available, at the required precision levels. These issues must be addressed many years before a mission gets defined. Low precision instruments on several in situ missions that do not address key scientific questions may in fact be more expensive, in their sum, than a sample return mission. In summary, all missions should undergo similar intense scrutiny with regard to desired science and feasibility, based on available instrumentation (with demonstrated and known capabilities) and cost. 1. P. T. Doran et al. (2004) Earth Sci. Rev. 67, 313-337.

  20. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  1. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  2. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  3. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  4. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  5. Mars is the Earth's Only Nearby Early Life Analog, but the Moon is on the Path to Get There

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2017-02-01

    Mars provides a geological integration of the early solar system impacts recorded by the Moon and the contemporaneous water-rich pre-biotic period on Earth. Consideration of human missions to Mars needs to include a return to the Moon to stay.

  6. The Science of Asteroid Sample Return Mission Hayabusa2

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Yoshikawa, M.; Watanabe, S.

    2015-12-01

    Hayabusa2, which is the follow-on mission of Hayabusa, was launched on Dec. 3, 2014. The target asteroid is (162173) 1999 JU3, a C-type, small Near Earth Asteroid. The principal purpose of Hayabusa2 is to study the origin and evolution of the solar system, especially the origin of organic matters and waters on the earth. Hayabusa2 will arrive at 1999 JU3 in June or July 2018, stay there for about one and half years, leave there at the end of 2019, and come back to the earth at the end of 2020. The main mission is the sample return, taking the surface materials of 1999 JU3 and bringing them back to the earth. We will try to get the samples not only from the surface but also from the subsurface by creating a small crater on the surface of the asteroid (see the figure). Hayabusa2 has remote sensing instruments as follows: Optical Navigation Cameras (ONC-T/W1/W2), Near Infrared Spectrometer (NIRS3), Thermal Infrared Imager (TIR), and Laser Altimeter (LIDAR). It has also three small rovers (MINERVA-II-1A/1B/2), and one small lander (MASCOT), which was provided by DLR and CNES. Small Carry-on Impactor (SCI) is used to create a small crater and the impact event is observed by a deployable camera (DCAM3). Thus we can use a wide variety of data to study this C-type asteroid. And of course, we will analyze the samples in detail after the capsule of Hayabusa2 comes back to the earth. For the science researches, we have Hayabusa2 science team in Japan. As for the international science discussions we organized Hayabusa2 Joint Science Team (HJST). HJST is presently consists of Japanese science members and European members who are mostly related MASCOT. We had four general meetings up to now. In this year (2015), NASA announced Hayabusa2 Participating Scientist Program. If US scientists are selected, they will be the members of HJST. In addition to this, we have started discussions with OSIRIS-REx team for the science collaboration. We hope that Hayabusa2 will produce much more

  7. An integrated and accessible sample data library for Mars sample return science

    NASA Astrophysics Data System (ADS)

    Tuite, M. L., Jr.; Williford, K. H.

    2015-12-01

    Over the course of the next decade or more, many thousands of geological samples will be collected and analyzed in a variety of ways by researchers at the Jet Propulsion Laboratory (California Institute of Technology) in order to facilitate discovery and contextualize observations made of Mars rocks both in situ and here on Earth if samples are eventually returned. Integration of data from multiple analyses of samples including petrography, thin section and SEM imaging, isotope and organic geochemistry, XRF, XRD, and Raman spectrometry is a challenge and a potential obstacle to discoveries that require supporting lines of evidence. We report the development of a web-accessible repository, the Sample Data Library (SDL) for the sample-based data that are generated by the laboratories and instruments that comprise JPL's Center for Analysis of Returned Samples (CARS) in order to facilitate collaborative interpretation of potential biosignatures in Mars-analog geological samples. The SDL is constructed using low-cost, open-standards-based Amazon Web Services (AWS), including web-accessible storage, relational data base services, and a virtual web server. The data structure is sample-centered with a shared registry for assigning unique identifiers to all samples including International Geo-Sample Numbers. Both raw and derived data produced by instruments and post-processing workflows are automatically uploaded to online storage and linked via the unique identifiers. Through the web interface, users are able to find all the analyses associated with a single sample or search across features shared by multiple samples, sample localities, and analysis types. Planned features include more sophisticated search and analytical interfaces as well as data discoverability through NSF's EarthCube program.

  8. Potential benefits of maximal exercise just prior to return from weightlessness

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  9. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  10. 26 CFR 20.6018-2 - Returns; person required to file return.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... executor or administrator shall file the return. If there is more than one executor or administrator, the return must be made jointly by all. If there is no executor or administrator appointed, qualified and... decedent situated in the United States is constituted an executor for purposes of the tax (see § 20.2203-1...

  11. 12 CFR 229.31 - Returning bank's responsibility for return of checks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Returning bank's responsibility for return of checks. 229.31 Section 229.31 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF... following the banking day on which the check was presented to the paying bank if the paying bank is located...

  12. Dynamical evolution of near-Earth asteroid 1991 VG

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2018-01-01

    The discovery of 1991 VG on 1991 November 6 attracted an unprecedented amount of attention as it was the first near-Earth object (NEO) ever found on an Earth-like orbit. At that time, it was considered by some as the first representative of a new dynamical class of asteroids, while others argued that an artificial (terrestrial or extraterrestrial) origin was more likely. Over a quarter of a century later, this peculiar NEO has been recently recovered and the new data may help in confirming or ruling out early theories about its origin. Here, we use the latest data to perform an independent assessment of its current dynamical status and short-term orbital evolution. Extensive N-body simulations show that its orbit is chaotic on time-scales longer than a few decades. We confirm that 1991 VG was briefly captured by Earth's gravity as a minimoon during its previous fly-by in 1991-1992; although it has been a recurrent transient co-orbital of the horseshoe type in the past and it will return as such in the future, it is not a present-day co-orbital companion of the Earth. A realistic NEO orbital model predicts that objects like 1991 VG must exist and, consistently, we have found three other NEOs - 2001 GP2, 2008 UA202 and 2014 WA366 - which are dynamically similar to 1991 VG. All this evidence confirms that there is no compelling reason to believe that 1991 VG is not natural.

  13. It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).

    PubMed

    Rummel, John D; Kminek, Gerhard

    2018-04-01

    The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.

  14. The whole earth telescope - A new astronomical instrument

    NASA Technical Reports Server (NTRS)

    Nather, R. E.; Winget, D. E.; Clemens, J. C.; Hansen, C. J.; Hine, B. P.

    1990-01-01

    A new multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described. A sequence of existing telescopes distributed in longitude, coordinated from a single control center, is used to measure designated target stars so long as they are in darkness. Data are returned by electronic mail to the control center, where they are analyzed in real time. This instrument is the first to provide data of continuity and quality that permit true high-resolution power spectroscopy of pulsating white dwarf stars.

  15. Macular Bioaccelerometers on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Cutler, L.; Meyer, G.; Vazin, P.; Lam, T.

    1991-01-01

    Space flight offers the opportunity to study linear bioaccelerometers (vestibular maculas) in the virtual absence of a primary stimulus, gravitational acceleration. Macular research in space is particularly important to NASA because the bioaccelerometers are proving to be weighted neural networks in which information is distributed for parallel processing. Neural networks are plastic and highly adaptive to new environments. Combined morphological-physiological studies of maculas fixed in space and following flight should reveal macular adaptive responses to microgravity, and their time-course. Ground-based research, already begun, using computer-assisted, 3-dimensional reconstruction of macular terminal fields will lead to development of computer models of functioning maculas. This research should continue in conjunction with physiological studies, including work with multichannel electrodes. The results of such a combined effort could usher in a new era in understanding vestibular function on Earth and in space. They can also provide a rational basis for counter-measures to space motion sickness, which may prove troublesome as space voyager encounter new gravitational fields on planets, or must re-adapt to 1 g upon return to earth.

  16. Heaven and Earth in Ancient Greek Cosmology

    NASA Astrophysics Data System (ADS)

    Couprie, Dirk L.

    The archaic world picture, the picture of a flat earth with the dome of the heaven vaulted above it, on which the celestial bodies are attached, is the basic world picture of many ancient cultures. Here "world picture" means the conception of the visible universe, not including all kinds of mythical or religious representations of what was imagined to be "under the earth." This archaic world picture (and also its penetration by a curious head) is beautifully rendered in a picture that is often thought to belong to the Renaissance period but was actually drawn in 1888 A.D. on the instructions of the famous French astronomer and popularizer Camille Flammarion (Fig. 1.1). The drawing refers to a story about Archytas (428-347 B.C.), who is supposed to have asked whether it would be possible to put a hand or a stick out of the heavens (DK 47A24). We will return to the implications of this question in the last chapter of this book.

  17. A Search for Viable Venus and Jupiter Sample Return Mission Trajectories for the Next Decade

    NASA Technical Reports Server (NTRS)

    Leong, Jason N.; Papadopoulos, Periklis

    2005-01-01

    Planetary exploration using unmanned spacecraft capable of returning geologic or atmospheric samples have been discussed as a means of gathering scientific data for several years. Both NASA and ESA performed initial studies for Sample Return Missions (SRMs) in the late 1990 s, but most suggested a launch before the year 2010. The GENESIS and STARDUST spacecraft are the only current examples of the SRM concept with the Mars SRM expected around 2015. A feasibility study looking at SRM trajectories to Venus and Jupiter, for a spacecraft departing the Earth between the years 2011 through 2020 was conducted for a university project. The objective of the study was to evaluate SRMs to planets other than Mars, which has already gained significant attention in the scientific community. This paper is a synopsis of the study s mission trajectory concept and the conclusions to the viability of such a mission with today s technology.

  18. The case for planetary sample return missions. 2. History of Mars.

    PubMed

    Gooding, J L; Carr, M H; McKay, C P

    1989-08-01

    Principal science goals for exploration of Mars are to establish the chemical, isotopic, and physical state of Martian material, the nature of major surface-forming processes and their time scales, and the past and present biological potential of the planet. Many of those goals can only be met by detailed analyses of atmospheric gases and carefully selected samples of fresh rocks, weathered rocks, soils, sediments, and ices. The high-fidelity mineral separations, complex chemical treatments, and ultrasensitive instrument systems required for key measurements, as well as the need to adapt analytical strategies to unanticipated results, point to Earth-based laboratory analyses on returned Martian samples as the best means for meeting the stated objectives.

  19. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  20. Autonomous Science Decision Making for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Gulick, V.; Morris, R.; Gazis, P.; Benedix, G.; Glymour, C.; Ramsey, J.; Pedersen, L.; Ruzon, M.; Buntine, W.; hide

    1999-01-01

    In the near future NASA intends to explore Mars in preparation for a sample return mission using robotic devices such as landers, rovers, orbiters, airplanes, and/or balloons. Such platforms will likely carry imaging devices to characterize the surface morphology, and a variety of analytical instruments intended to evaluate the chemical and mineralogical nature of the environment(s) that they encounter. Historically, mission operations have involved the following sequence of activities: (1) return of scientific data from the vehicle; (2) evaluation of the data by space scientists; (3) recommendations of the scientists regarding future mission activity; (4) transmission of commands to the vehicle to achieve this activity; and (5) new activity by the vehicle in response to those commands. This is repeated for the duration of the mission, with command opportunities once or perhaps twice per day. In a rapidly changing environment, such as might be encountered by a rover traversing hundreds of meters a day or an airplane soaring over several hundred of kilometers, this traditional cycle of data evaluation and commands is not amenable to rapid long range traverses, discovery of novelty, or rapid response to any unanticipated situations. In addition, to issues of response time, the nature of imaging and/or spectroscopic devices are such that tremendous data volumes can be acquired, for example during a traverse. These data volumes can rapidly exceed on-board memory capabilities prior to an opportunity to transmit it to Earth.

  1. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES)

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Mabee, B.; Wulf Tregar, S.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. There is a need to substantiate the benefits of Earth science applications in socially and economically meaningful terms in order to demonstrate return on investment and to prioritize investments across data products, modeling capabilities, and information systems. However, methods and techniques for quantifying the value proposition of Earth observations are currently not fully established. Furthermore, it has been challenging to communicate the value of these investments to audiences beyond the Earth science community. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. The VALUABLES Consortium will focus on three pillars: (a) a research pillar that will apply existing and innovative methods to quantify the socioeconomic benefits of information from Earth observations; (b) a capacity building pillar to catalyze interdisciplinary linkages between Earth scientists and social scientists; and (c) a communications pillar that will convey the value of Earth observations to stakeholders in government, universities, the NGO community, and the interested public. In this presentation, we will describe ongoing and future activities of the VALUABLES Consortium, provide a brief overview of frameworks to quantify the socioeconomic value of Earth observations, and describe how Earth scientists and social scientist can get involved in the Consortium's activities.

  2. Returns to Education in Bangladesh

    ERIC Educational Resources Information Center

    Asadullah, Mohammad Niaz

    2006-01-01

    This paper reports labour market returns to education in Bangladesh using data from recent nationwide household survey. Returns are estimated separately for rural and urban samples, males, females and private-sector employees. Substantial heterogeneity in returns is observed; for example, estimates are higher for urban (than rural sample) and…

  3. Autonomous oxygen production for a Mars return vehicle

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Richter, R.; Dowler, W. L.; Hanson, J. A.; Uphoff, C. W.

    1982-01-01

    The way in which a chemical processor that uses the Martian atmosphere as its only feedstock, thereby reducing the mass that must be launched from earth, can help to return a surface sample from Mars from a single Space Shuttle launch is described. Richter's (1981) study on both the theoretical and experimental aspects of oxygen separation using yttria-stabilized zirconia membranes is cited. Here, separation is accomplished by applying a voltage across the membrane which results in the selective conduction of oxygen ions from one side to the other. It is noted that by using thermal dissociation of the carbon dioxide in the Martian atmosphere to produce oxygen (and carbon monoxide), these zirconia electrolytic cells can be employed to separate oxygen from the atmospheric stream. Descriptions are also given of atmospheric filtration, atmospheric compression, and waste heat recovery, and of the oxygen precooler and oxygen compressor.

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    PubMed

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Neural readaptation to earth s gravity following exposure to microgravity

    NASA Astrophysics Data System (ADS)

    Boyle, R.; Highstein, S.; Mensinger, A.

    Vertebrates possess hair cell otolith organs of the inner ear, the utricule and saccule, that transduce inertial force due to head translation and head tilt relative to gravitational vertical, and transform the vector sum of the imposing accelerations into a neural code carried by the afferent nerve fibers. This code is combined in the central vestibular pathways with motion signals obtained from the semicircular canals and other sensory modalities to compute a cent ral representation of the body in space called the gravitoinertial vector. Thus the central nervous system resolves the ambiguity of gravity and self-motion and thereby maintains balance and equilibrium under varying conditions. Exposure to microgravity imposes an extreme condition to which the organism must adapt. Space travelers often experience disorientation during the first few days in microgravity, called Space Adaptation Syndrome. From the earliest manned missions it was evident that adjustments to the microgravity environment in-flight and upon return to Earth's 1g occur. We studied the neural readaptation to Earth's 1g using electrophysiological techniques to measure the response characteristics of utricular nerve afferents in fish upon return from an exposure to microgravity. Following a 9 (STS-95) and 15 (STS-90) day exposure to microgravity aboard two NASA shuttle orbital flights, single afferent recording experiments were conducted in four toadfish, Opsanus tau, to characterize the afferent response properties to gravito inertial accelerations and compare them to- afferent responses of control animals similarly tested. Six recording sessions were made sequentially 10-117 hrs postflight. Afferent responses to translational accelerations and head tilts were detected in the earliest sessions. The most striking result is the occurrence of hypersensitive afferents, having extremely high response sensitivity to minor displacements such as < 0.5 mm displacement at 0.006g, within the first day

  8. 21 CFR 203.23 - Returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Returns. 203.23 Section 203.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL PRESCRIPTION DRUG MARKETING Sales Restrictions § 203.23 Returns. The return of a prescription drug purchased by...

  9. Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth

    NASA Astrophysics Data System (ADS)

    Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben

    2017-04-01

    There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.

  10. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…

  11. Puerto Rican Return Migrant Youth.

    ERIC Educational Resources Information Center

    Carrasquillo, Angela; Carrasquillo, Ceferino

    Among Puerto Ricans who have migrated to the United States, a significant number have returned to Puerto Rico, while others shuttle between Puerto Rico and the United States. These groups of people are identified as return migrants. Studies suggest that return migrant youth in Puerto Rico have had to make environmental and cultural adjustments…

  12. Medical returns as class transformation: situating migrants' medical returns within a framework of transnationalism.

    PubMed

    Horton, Sarah B

    2013-01-01

    Because studies of migrants' 'medical returns' have been largely confined to the field of public health, such forms of return migration are rarely contextualized within the rich social scientific literature on transnational migration. Drawing on ethnographic interviews with Mexican migrants in an immigrant enclave in central California, I show that migrants' reasons for returning to their hometowns for care must be understood within the class disjunctures facilitated by migration. While migrants' Medicaid insurance confined them to public clinics and hospitals in the United States, their migrant dollars enabled them to visit private doctors and clinics in Mexico. Yet medical returns were not mere medical arbitrage, but also allowed migrants to access care that had previously been foreclosed to them as poor peasants in Mexico. Thus crossing the border enabled a dual class transformation, as Mexican migrants transitioned from Medicaid recipients to cash-paying patients, and from poor rural peasants to 'returning royalty.'

  13. 26 CFR 301.6103(p)(2)(B)-1 - Disclosure of returns and return information by other agencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... other agencies. 301.6103(p)(2)(B)-1 Section 301.6103(p)(2)(B)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(2)(B)-1 Disclosure of returns and return information... regulations thereunder, including, if applicable, safeguards imposed by section 6103(p)(4). (d) Records and...

  14. 26 CFR 301.6103(p)(2)(B)-1 - Disclosure of returns and return information by other agencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... other agencies. 301.6103(p)(2)(B)-1 Section 301.6103(p)(2)(B)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(2)(B)-1 Disclosure of returns and return information... regulations thereunder, including, if applicable, safeguards imposed by section 6103(p)(4). (d) Records and...

  15. 26 CFR 301.6103(p)(2)(B)-1 - Disclosure of returns and return information by other agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other agencies. 301.6103(p)(2)(B)-1 Section 301.6103(p)(2)(B)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(2)(B)-1 Disclosure of returns and return information... regulations thereunder, including, if applicable, safeguards imposed by section 6103(p)(4). (d) Records and...

  16. 26 CFR 301.6103(p)(2)(B)-1 - Disclosure of returns and return information by other agencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... other agencies. 301.6103(p)(2)(B)-1 Section 301.6103(p)(2)(B)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(2)(B)-1 Disclosure of returns and return information... regulations thereunder, including, if applicable, safeguards imposed by section 6103(p)(4). (d) Records and...

  17. 26 CFR 301.6103(p)(2)(B)-1 - Disclosure of returns and return information by other agencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other agencies. 301.6103(p)(2)(B)-1 Section 301.6103(p)(2)(B)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(2)(B)-1 Disclosure of returns and return information... regulations thereunder, including, if applicable, safeguards imposed by section 6103(p)(4). (d) Records and...

  18. Advanced Curation: Solving Current and Future Sample Return Problems

    NASA Technical Reports Server (NTRS)

    Fries, M.; Calaway, M.; Evans, C.; McCubbin, F.

    2015-01-01

    Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon

  19. 49 CFR 1152.34 - Return on investment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Return on investment. 1152.34 Section 1152.34... Return on investment. Return on investment for road property shall be computed according to the procedures set forth in this section. (a)-(b) [Reserved] (c) Return on investment—road properties. Return on...

  20. 49 CFR 1152.34 - Return on investment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Return on investment. 1152.34 Section 1152.34... Return on investment. Return on investment for road property shall be computed according to the procedures set forth in this section. (a)-(b) [Reserved] (c) Return on investment—road properties. Return on...

  1. Earth Entry Requirements for Mars, Europa and Enceladus Sample Return Missions: A Thermal Protection System Perspective

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion

    2016-01-01

    This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.

  2. Detectability of Boulders on Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Taylor, Patrick A.; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.

    2014-11-01

    Boulders are seen on spacecraft images of near-Earth asteroids Eros and Itokawa. Radar images often show bright pixels or groups of pixels that travel consistently across the surface as the object rotates, which may be indicative of similar boulders on other near-Earth asteroids. Examples of these bright pixels were found on radar observations of 2005 YU55 and 2006 VV2 (Benner et al. 2014). Nolan et al. (2013) also identify one large possible boulder on the surface of Bennu, target of the OSIRIS-REx sample return mission. We explore the detectability of boulders by adding synthetic features on asteroid models, and then simulating radar images. These synthetic features were added using BLENDER ver. 2.70, a free open-source 3-D animation suite. Starting with the shape model for Bennu (diameter ~500 m), spherical 'boulders' of 10 m, 20 m, and 40 m diameter were placed at latitudes between 0 and 90 deg. Simulated radar observations of these models indicated that spherical boulders smaller than 10 m may not be visible in observations but that larger ones should be readily seen. Boulders near the sub-Earth point can be hidden in the bright region near the leading edge, but as the asteroid's rotation moves them towards the terminator, they become visible again, with no significant dependence on the latitude of the boulder. These simulations suggest that we should detect large boulders under most circumstances in high-quality radar images, and we have a good estimate of the occurrence of such features on near-Earth objects. Results of these simulations will be presented.

  3. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  4. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    NASA Astrophysics Data System (ADS)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  5. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.

  6. Titan's Greenhouse Effect And Climate: Lessons From The Earth's Cooler Cousin

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Titan Climate White Paper Proposal Team

    2009-12-01

    We argue that continuing scientific study of Earth's `distant cousin’ Titan can provide a greater understanding and insight into the energy balance of our own planet's atmosphere. Titan's Earth-like properties have been recognized for some time, from the discovery of its atmosphere in 1907, through the Voyager 1 encounter in 1980 that showed Titan's atmosphere is mostly nitrogen gas with a surface pressure within a factor of two of terrestrial. Calculation shows that Titan's atmosphere causes `greenhouse’ warming of the surface, an effect similar to that seen on the Earth, Mars, and Venus. In the 1990s, direct imaging from the Earth by adaptive optics revealed that Titan's ubiquitous haze layer is slowly changing in apparent response to the seasons that occur due to the Saturn system's obliquity. The NASA Cassini mission that arrived in Saturnian orbit in 2004, and the ESA Huygens Titan probe of 2005, have returned a flood of new data regarding this intriguing world. For the first time, we are building a detailed picture of weather in the lower atmosphere, where condensable methane takes on the role played by water in the Earth's atmosphere, leading to methane rainfall, rivers and lakes. We examine parallels between the atmospheres of Earth and of Titan, including the possibilities for dramatic climate change. Extending the duration of the Cassini spacecraft mission during the next decade will provide part of the needed picture, but in addition we urge planning for a future new mission focused on Titan's climate, and other measures.

  7. Power and energy dissipation in subsequent return strokes as predicted by a new return stroke model

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Recently, Cooray introduced a new return stroke model which is capable of predicting the temporal behavior of the return stroke current and the return stroke velocity as a function of the height along the return stroke channel. The authors employed this model to calculate the power and energy dissipation in subsequent return strokes. The results of these calculations are presented here. It was concluded that a large fraction of the total energy available for the dart leader-subsequent stroke process is dissipated in the dart leader stage. The peak power per unit length dissipated in a subsequent stroke channel element decreases with increasing height of that channel element from ground level. For a given channel element, the peak power dissipation increases with increasing current in that channel element. The peak electrical power dissipation in a typical subsequent return stroke is about 1.5 times 10(exp 11) W. The energy dissipation in a subsequent stroke increases with increasing current in the return stroke channel, and for a typical subsequent stroke, the energy dissipation per unit length is about 5.0 times 10(exp 3) J/m.

  8. Explosive Joining for the Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Sanok, Joseph T.

    2000-01-01

    A unique, small-scale, ribbon explosive joining process is being developed as an option for closing and sealing a metal canister to allow the return of a pristine sample of the Martian surface and atmosphere to Earth. This joining process is accomplished by an explosively driven, high-velocity, angular collision of the metal, which melts and effaces the oxide films from the surfaces to allow valence electron sharing to bond the interface. Significant progress has been made through more than 100 experimental tests to meet the goals of this ongoing developmental effort. The metal of choice, aluminum alloy 6061, has been joined in multiple interface configurations and in complete cylinders. This process can accommodate dust and debris on the surfaces to be joined. It can both create and sever a joint at its midpoint with one explosive input. Finally, an approach has been demonstrated that can capture the back blast from the explosive.

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. A Perspective On The Earth From The Moon

    NASA Astrophysics Data System (ADS)

    Scott, David R.

    Earth itself, we care not for the life of its inhabitants. With this new perspective of the Earth and its place in human life, we must think of bold and visionary ideas to preserve our so limited and fragile environment. Temporary solutions to the problems of our times must be replaced by permanent solutions for future generations. For our generation did not inherit this marvelous environment in which we live, we borrowed it from our children, and children's children. We owe them the best we can achieve; we owe them a conscious and substantial return on their investment in us.

  11. Return Migration as Failure or Success?: The Determinants of Return Migration Intentions Among Moroccan Migrants in Europe.

    PubMed

    de Haas, Hein; Fokkema, Tineke; Fihri, Mohamed Fassi

    Different migration theories generate competing hypotheses with regard to determinants of return migration. While neoclassical migration theory associates migration to the failure to integrate at the destination, the new economics of labour migration sees return migration as the logical stage after migrants have earned sufficient assets and knowledge and to invest in their origin countries. The projected return is then likely to be postponed for sustained or indefinite periods if integration is unsuccessful. So, from an indication or result of integration failure return is rather seen as a measure of success. Drawing on recent survey data ( N  = 2,832), this article tests these hypotheses by examining the main determinants of return intention among Moroccan migrants across Europe. The results indicate that structural integration through labour market participation, education and the maintenance of economic and social ties with receiving countries do not significantly affect return intentions. At the same time, investments and social ties to Morocco are positively related, and socio-cultural integration in receiving countries is negatively related to return migration intentions. The mixed results corroborate the idea that there is no uniform process of (return) migration and that competing theories might therefore be partly complementary.

  12. 26 CFR 301.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 18 2011-04-01 2011-04-01 false Required use of magnetic media for returns by... ADMINISTRATION Information and Returns Returns and Records § 301.6033-4 Required use of magnetic media for... required to file returns under section 6033 on magnetic media. An organization required to file a return...

  13. 26 CFR 301.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Required use of magnetic media for returns by... ADMINISTRATION Information and Returns Returns and Records § 301.6033-4 Required use of magnetic media for... required to file returns under section 6033 on magnetic media. An organization required to file a return...

  14. 26 CFR 301.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Required use of magnetic media for returns by... ADMINISTRATION Information and Returns Returns and Records § 301.6033-4 Required use of magnetic media for... required to file returns under section 6033 on magnetic media. An organization required to file a return...

  15. 26 CFR 301.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 18 2012-04-01 2012-04-01 false Required use of magnetic media for returns by... ADMINISTRATION Information and Returns Returns and Records § 301.6033-4 Required use of magnetic media for... required to file returns under section 6033 on magnetic media. An organization required to file a return...

  16. Acting Administrator Lightfoot Comments on New Presidential Space Policy, Return to Moon

    NASA Image and Video Library

    2017-12-11

    Acting NASA Administrator Robert Lightfoot comments on Space Policy Directive-1, signed by President Trump at the White House on Monday, Dec. 11.  It directs NASA’s human spaceflight program back to the Moon, as recommended by the National Space Council.    The directive calls for NASA to lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system, and to bring back to Earth new knowledge and opportunities for human advancement. This effort will more effectively organize government, private industry, and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.

  17. 26 CFR 1.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Required use of magnetic media for returns by... Returns § 1.6033-4 Required use of magnetic media for returns by organizations required to file returns under section 6033. The return of an organization that is required to be filed on magnetic media under...

  18. 26 CFR 1.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Required use of magnetic media for returns by...) Information Returns § 1.6033-4 Required use of magnetic media for returns by organizations required to file returns under section 6033. The return of an organization that is required to be filed on magnetic media...

  19. 26 CFR 1.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Required use of magnetic media for returns by...) Information Returns § 1.6033-4 Required use of magnetic media for returns by organizations required to file returns under section 6033. The return of an organization that is required to be filed on magnetic media...

  20. 26 CFR 1.6033-4 - Required use of magnetic media for returns by organizations required to file returns under...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Required use of magnetic media for returns by...) Information Returns § 1.6033-4 Required use of magnetic media for returns by organizations required to file returns under section 6033. The return of an organization that is required to be filed on magnetic media...

  1. 76 FR 22611 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 301 [TD 9518] RIN 1545-BJ52 Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media... who prepare and file individual income tax returns using magnetic media pursuant to section 6011(e)(3...

  2. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  3. A Perishable Inventory Model with Return

    NASA Astrophysics Data System (ADS)

    Setiawan, S. W.; Lesmono, D.; Limansyah, T.

    2018-04-01

    In this paper, we develop a mathematical model for a perishable inventory with return by assuming deterministic demand and inventory dependent demand. By inventory dependent demand, it means that demand at certain time depends on the available inventory at that time with certain rate. In dealing with perishable items, we should consider deteriorating rate factor that corresponds to the decreasing quality of goods. There are also costs involved in this model such as purchasing, ordering, holding, shortage (backordering) and returning costs. These costs compose the total costs in the model that we want to minimize. In the model we seek for the optimal return time and order quantity. We assume that after some period of time, called return time, perishable items can be returned to the supplier at some returning costs. The supplier will then replace them in the next delivery. Some numerical experiments are given to illustrate our model and sensitivity analysis is performed as well. We found that as the deteriorating rate increases, returning time becomes shorter, the optimal order quantity and total cost increases. When considering the inventory-dependent demand factor, we found that as this factor increases, assuming a certain deteriorating rate, returning time becomes shorter, optimal order quantity becomes larger and the total cost increases.

  4. Earth observations taken during the STS-71 mission

    NASA Image and Video Library

    1995-07-06

    STS071-705-055 (27 June-7 July 1995) --- This vertical view over the central Andes Mountains was photographed from the Earth-orbiting space shuttle Atlantis during the ten-day STS-71 mission. It is one of many still visuals shown by the returning crew during its post-flight press briefing on July 18, 1995. Views of Earth from orbit often make landscapes seem flat, but this view taken with the Sun near the horizon and with a 250mm lens able to pick up detail reveals the conical peaks of numerous volcanoes. The dusting of snow makes the view more vivid as the peaks cast black shadows. The snow is a few days old in this view since several roads can be seen crossing dry lake beds (smooth white areas between mountains, top right), indicating that vehicles have crushed and melted the thin snow. According to NASA scientists observing the STS-71 photography, some volcanoes are not yet mapped. They believe that most of the snow-covered peaks reach more than 16,000 feet in altitude.

  5. 26 CFR 301.6103(l)-1 - Disclosure of returns and return information for purposes other than tax administration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for purposes other than tax administration. 301.6103(l)-1 Section 301.6103(l)-1 Internal Revenue... ADMINISTRATION Information and Returns Returns and Records § 301.6103(l)-1 Disclosure of returns and return... provisions of section 6103(l) of the Internal Revenue Code, the term agent includes a contractor. (b...

  6. Planetary Protection Progress of Hayabusa2 and Its Piggyback PROCYON: Launch, Earth Swingby and Outbound Cruising Phases

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Yoshikawa, Makoto; Sarli, Bruno; Ozaki, Naoya; Funase, Ryu; Tsuda, Yuichi; Chujo, Toshihiro; Ariu, Kaito

    2016-07-01

    Hayabusa-2 is Japan's second asteroid sample return mission which was successfully launched into the planned Earth departure trajectory with the H-IIA rocket on December 3rd, 2014, together with a group of its interplanetary piggyback micro- spacecraft, including the PROCYON(Proximate Object Close flYby with Optical Navigation)spacecraft, the world's first 50 kg-class deep space micro-spacecraft developed by the University of Tokyo and the Japan Aerospace Exploration Agency. The Hayabusa-2 spacecraft will go to Rug, a C-type NEO, and attempt surface investigations with daughter rovers (MINERVA-II series and MASCOT), artificial impact cratering experiment (SCI) and both surface and sub-surface sampling (Sampler) in 2018-2019 and plans to return to the Earth in December 2020. The PROCYON mission objective was to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. Both of the above missions were fully evaluated by the COSPAR Planetary Protection Panel at the dedicated COSPAR colloquium and scientific assembly in 2014 and the COSPAR PPP has endorsed the Category-2 for their outbound trajectories and the non-restricted Earth return for the inbound trajectory of Hayabusa-2. As a part of the fulfillments of the Category-2 classification, both spacecraft must be compliant with the COSPAR PPP requirements of non-impact probability to Mars since they would have enough energy to reach and beyond the orbit of Mars, due to the Earth swing-by and ion engine operations for their outbound cruising. As for the Hayabusa-2 spacecraft, it successfully performed its Earth gravity assist in December 2015, resulting on accurate orbit determination for the post-swing-by orbit to be ready to restart the ion engine operation. Thus the non-impact probability to Mars did not change from the estimate given by Chujo, et al. (2015). As for the PROCYON spacecraft after the completion of the bus system

  7. Heat-physical properties of lunar surface material returned to earth by the Luna 16 automatic station

    NASA Technical Reports Server (NTRS)

    Avduyevskiy, V. S.; Anfimov, N. A.; Marov, M. Y.; Treskin, Y. A.; Shalayev, S. P.; Ekonomov, A. P.

    1974-01-01

    Density, specific heat capacity, and coefficient of thermal conductivity were studied on a sample of lunar surface material returned by the Luna 16 automatic station. The study was carried out in a helium-filled chamber. The density of the surface material when freely heaped was 1.2 g/cu cm, and when shaken down -- 1.7 g/cu cm. The specific heat capacity was 0.177 + or - 0.010 cal x g/1 x deg/1. The coefficient of thermal conductivity in the material was 4.8 x 10/6 + or - 1.2 x 10/6 cal x cm/1 x sec/1 x deg/1.

  8. Goals for Near-Earth-Object Exploration Examined

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    With Japan's Hayabusa space probe having returned a sample of the Itokawa asteroid this past June, and with NASA's Deep Impact spacecraft impactor having successfully struck comet Tempel 1 in 2006, among other recent missions, the study of near-Earth objects (NEOs) recently has taken some major steps forward. The recent discovery of two asteroids that passed within the Moon's distance of Earth on 8 September is a reminder of the need to further understand NEOs. During NASA's Exploration of Near-Earth Objects (NEO) Objectives Workshop, held in August in Washington, D. C., scientists examined rationales and goals for studying NEOs. Several recent documents have recognized NEO research as important as a scientific precursor for a potential mission to Mars, to learn more about the origins of the solar system, for planetary defense, and for resource exploitation. The October 2009 Review of Human Space Flight Plans Committee report (known as the Augustine report), for example, recommended a “flexible path ” for human exploration, with people visiting sites in the solar system, including NEOs. The White House's National Space Policy, released in June, indicates that by 2025, there should be “crewed missions beyond the moon, including sending humans to an asteroid.” In addition, NASA's proposed budget for fiscal year 2011 calls for the agency to send robotic precursor missions to nearby asteroids and elsewhere and to increase funding for identifying and cataloging NEOs.

  9. A Method for Choosing the Best Samples for Mars Sample Return

    PubMed Central

    Gordon, Peter R.

    2018-01-01

    Abstract Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission

  10. A Method for Choosing the Best Samples for Mars Sample Return.

    PubMed

    Gordon, Peter R; Sephton, Mark A

    2018-05-01

    Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words

  11. Distributed Disdrometer and Rain Gauge Measurement Infrastructure Developed for GPM Ground Validation

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Bringi, V. N.; Gatlin, Patrick; Phillips, Dustin; Schwaller, Mathew; Tokay, Ali; Wingo, Mathew; Wolff, David

    2010-01-01

    Global Precipitation Mission (GPM)retrieval algorithm validation requires datasets characterizing the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (FOV;<10 km). Collection of this data provides a means to assess retrieval errors related to beam filling and algorithm PSD assumptions. Hence, GPM Ground Validation is developing a deployable network of precipitation gauges and disdrometers to provide fine-scale measurements of PSD and precipitation accumulation variability. These observations will be combined with dual-frequency, polarimetric, and profiling radar data in a bootstrapping fashion to extend validated PSD measurements to a large coverage domain. Accordingly, a total of 24 Parsivel disdrometers(PD), 5 3rd-generation 2D Video Disdrometers (2DVD), 70 tipping bucket rain gauges (TBRG),9 weighing gauges, 7 Hot-Plate precipitation sensors (HP), and 3 Micro Rain Radars (MRR) have been procured. In liquid precipitation the suite of TBRG, PD and 2DVD instruments will quantify a broad spectrum of rain rate and PSD variability at sub-kilometer scales. In the envisioned network configuration 5 2DVDs will act as reference points for 16 collocated PD and TBRG measurements. We find that PD measurements provide similar measures of the rain PSD as observed with collocated 2DVDs (e.g., D0, Nw) for rain rates less than 15 mm/hr. For heavier rain rates we will rely on 2DVDs for PSD information. For snowfall we will combine point-redundant observations of SWER distributed over three or more locations within a FOV. Each location will contain at least one fenced weighing gauge, one HP, two PDs, and a 2DVD. MRRs will also be located at each site to extend the measurement to the column. By collecting SWER measurements using different instrument types that employ different measurement techniques our objective is to separate measurement uncertainty from natural variability in

  12. Non-Returning Student Survey.

    ERIC Educational Resources Information Center

    Charles County Community Coll., La Plata, MD. Dept. of Institutional Research and Assessment.

    In spring 1992, Charles County Community College (CCCC) conducted a telephone survey of non-returning fall 1991 students to determine their reasons for not returning to CCCC. In order to obtain comparison data, a questionnaire designed and administered by Prince George's Community College (PGCC) (Largo, Maryland) in 1988 was used with one minor…

  13. Category V Compliant Container for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sanok, Joseph; Sevilla, Donald; Bement, Laurence J.

    2000-01-01

    A novel containerization technique that satisfies Planetary Protection (PP) Category V requirements has been developed and demonstrated on the mock-up of the Mars Sample Return Container. The proposed approach uses explosive welding with a sacrificial layer and cut-through-the-seam techniques. The technology produces a container that is free from Martian contaminants on an atomic level. The containerization technique can be used on any celestial body that may support life. A major advantage of the proposed technology is the possibility of very fast (less than an hour) verification of both containment and cleanliness with typical metallurgical laboratory equipment. No separate biological verification is required. In addition to Category V requirements, the proposed container presents a surface that is clean from any, even nonviable organisms, and any molecular fragments of biological origin that are unique to Mars or any other celestial body other than Earth.

  14. Planetary protection, legal ambiguity and the decision making process for Mars sample return

    NASA Technical Reports Server (NTRS)

    Race, M. S.

    1996-01-01

    As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.

  15. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  16. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  17. A Trade Study and Metric for Penetration and Sampling Devices for Possible Use on the NASA 2003 and 2005 Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    McConnell, Joshua B.

    2000-01-01

    The scientific exploration of Mars will require the collection and return of subterranean samples to Earth for examination. This necessitates the use of some type of device or devices that possesses the ability to effectively penetrate the Martian surface, collect suitable samples and return them to the surface in a manner consistent with imposed scientific constraints. The first opportunity for such a device will occur on the 2003 and 2005 Mars Sample Return missions, being performed by NASA. This paper reviews the work completed on the compilation of a database containing viable penetrating and sampling devices, the performance of a system level trade study comparing selected devices to a set of prescribed parameters and the employment of a metric for the evaluation and ranking of the traded penetration and sampling devices, with respect to possible usage on the 03 and 05 sample return missions. The trade study performed is based on a select set of scientific, engineering, programmatic and socio-political criterion. The use of a metric for the various penetration and sampling devices will act to expedite current and future device selection.

  18. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  19. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution.

    PubMed

    Li, Ning; Liu, Xueqin; Xie, Wei; Wu, Jidong; Zhang, Peng

    2013-01-01

    New features of natural disasters have been observed over the last several years. The factors that influence the disasters' formation mechanisms, regularity of occurrence and main characteristics have been revealed to be more complicated and diverse in nature than previously thought. As the uncertainty involved increases, the variables need to be examined further. This article discusses the importance and the shortage of multivariate analysis of natural disasters and presents a method to estimate the joint probability of the return periods and perform a risk analysis. Severe dust storms from 1990 to 2008 in Inner Mongolia were used as a case study to test this new methodology, as they are normal and recurring climatic phenomena on Earth. Based on the 79 investigated events and according to the dust storm definition with bivariate, the joint probability distribution of severe dust storms was established using the observed data of maximum wind speed and duration. The joint return periods of severe dust storms were calculated, and the relevant risk was analyzed according to the joint probability. The copula function is able to simulate severe dust storm disasters accurately. The joint return periods generated are closer to those observed in reality than the univariate return periods and thus have more value in severe dust storm disaster mitigation, strategy making, program design, and improvement of risk management. This research may prove useful in risk-based decision making. The exploration of multivariate analysis methods can also lay the foundation for further applications in natural disaster risk analysis. © 2012 Society for Risk Analysis.

  20. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  1. A leader-return-stroke consistent macroscopic model for calculations of return stroke current and its optical and electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Chen, Mingli; Du, Yaping; Qin, Zilong

    2017-08-01

    A downward lightning flash usually starts with a downward leader and an upward connecting leader followed by an upward return stroke. It is the preceding leader that governs the following return stroke property. Besides, the return stroke property evolves with height and time. These two aspects, however, are not well addressed in most existing return stroke models. In this paper, we present a leader-return stroke consistent model based on the time domain electric field integral equation, which is a growth and modification of Kumar's macroscopic model. The model is further extended to simulate the optical and electromagnetic emissions of a return stroke by introducing a set of equations relating the return stroke current and conductance to the optical and electromagnetic emissions. With a presumed leader initiation potential, the model can then simulate the temporal and spatial evolution of the current, charge transfer, channel size, and conductance of the return stroke, furthermore the optical and electromagnetic emissions. The model is tested with different leader initiation potentials ranging from -10 to -140 MV, resulting in different return stroke current peaks ranging from 2.6 to 209 kA with different return stroke speed peaks ranging from 0.2 to 0.8 speed of light and different optical power peaks ranging from 4.76 to 248 MW/m. The larger of the leader initiation potential, the larger of the return stroke current and speed. Both the return stroke current and speed attenuate exponentially as it propagates upward. All these results are qualitatively consistent with those reported in the literature.

  2. 26 CFR 1.1502-79A - Separate return years generally applicable for consolidated return years beginning before January...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... December 31, 1967. (ii) P, S, and T join in the filing of a consolidated return for 1968, which return... attributable to P and S. Even though S was not in existence in 1966, the portion attributable to S can be... return year and to the extent that it was absorbed in P's 1966 separate return year. The portion of the...

  3. 7 CFR 3560.305 - Return on investment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Return on investment. 3560.305 Section 3560.305... AGRICULTURE DIRECT MULTI-FAMILY HOUSING LOANS AND GRANTS Financial Management § 3560.305 Return on investment. (a) Borrower's return on investment. Borrowers may receive a return on their investment (ROI) in...

  4. Characteristics of donors who do or do not return to give blood and barriers to their return

    PubMed Central

    Wevers, Anne; Wigboldus, Daniël H.J.; de Kort, Wim L.A.M.; van Baaren, Rick; Veldhuizen, Ingrid J.T.

    2014-01-01

    Background In the Netherlands about 50% of whole blood donors return to give blood after an invitation to donate. This study aimed to investigate the characteristics of donor return behaviour and to gain insight into the barriers to blood donation reported by the donors themselves. Materials and methods A total of 4,901 whole blood donors were invited to donate in week 39 of 2009. Barriers mentioned by donors who informed the blood bank for not donating were registered for 1 month. Logistic regression analyses assessed relevant characteristics of return behaviour, such as age and blood type, in men and women separately. Results Of the invited donors, 55% returned to give a donation, whereas 45% did not return. Male donors were more likely to return when they were older, had a higher previous return rate and had no past deferrals. The same pattern was found among women, but was less strong. The main barriers were: time constraints (35%), preference to postpone donation due to general physical problems although being eligible to donate (29%), and being ineligible to donate due to medical deferral criteria (9%). Discussion Specific donor characteristics are associated with return behaviour. Not donating due to time constraints could mean that donors do not feel the urgency of donating blood. Interventions targeted to increase commitment among specific donor groups should be tested further. PMID:23522891

  5. Characteristics of donors who do or do not return to give blood and barriers to their return.

    PubMed

    Wevers, Anne; Wigboldus, Daniël H J; de Kort, Wim L A M; van Baaren, Rick; Veldhuizen, Ingrid J T

    2014-01-01

    In the Netherlands about 50% of whole blood donors return to give blood after an invitation to donate. This study aimed to investigate the characteristics of donor return behaviour and to gain insight into the barriers to blood donation reported by the donors themselves. A total of 4,901 whole blood donors were invited to donate in week 39 of 2009. Barriers mentioned by donors who informed the blood bank for not donating were registered for 1 month. Logistic regression analyses assessed relevant characteristics of return behaviour, such as age and blood type, in men and women separately. Of the invited donors, 55% returned to give a donation, whereas 45% did not return. Male donors were more likely to return when they were older, had a higher previous return rate and had no past deferrals. The same pattern was found among women, but was less strong. The main barriers were: time constraints (35%), preference to postpone donation due to general physical problems although being eligible to donate (29%), and being ineligible to donate due to medical deferral criteria (9%). Specific donor characteristics are associated with return behaviour. Not donating due to time constraints could mean that donors do not feel the urgency of donating blood. Interventions targeted to increase commitment among specific donor groups should be tested further.

  6. DECADE web portal: toward the integration of MaGa, EarthChem and VOTW data systems to further the knowledge on Earth degassing

    NASA Astrophysics Data System (ADS)

    Cardellini, Carlo; Frigeri, Alessandro; Lehnert, Kerstin; Ash, Jason; McCormick, Brendan; Chiodini, Giovanni; Fischer, Tobias; Cottrell, Elizabeth

    2015-04-01

    The release of volatiles from the Earth's interior takes place in both volcanic and non-volcanic areas of the planet. The comprehension of such complex process and the improvement of the current estimates of global carbon emissions, will greatly benefit from the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing interoperability between three data systems that will make their data accessible via the DECADE portal: (1) the Smithsonian Institutionian's Global Volcanism Program database (VOTW) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. The DECADE web portal will create a powerful search engine of these databases from a single entry point and will return comprehensive multi-component datasets. A user will be able, for example, to obtain data relating to compositions of emitted gases, compositions and age of the erupted products and coincident activity, of a specific volcano. This level of capability requires a complete synergy between the databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at the DECADE web portal. The DECADE portal will enable new synoptic perspectives on the Earth degassing process allowing to explore Earth degassing related datasets over previously unexplored spatial or temporal ranges.

  7. Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEAs) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEAs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEAs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future

  8. Europa Sample Return Mission Utilizing High Specific Impulse Propulsion Refueled with Indigenous Resources

    NASA Astrophysics Data System (ADS)

    Paniagua, J.; Powell, J. R.; Maise, G.

    2002-01-01

    We have conducted studies of a revolutionary new concept for conducting a Europa Sample Return Mission. Robotic spacecraft exploration of the Solar System has been severely constrained by the large energy requirements of interplanetary trajectories and the inherent delta V limitations of chemical rockets. Current missions use gravitational assists from intermediate planets to achieve these high-energy trajectories restricting payload size and increasing flight times. We propose a 6-year Europa Sample Return mission with very modest launch requirements enabled by MITEE. A new nuclear thermal propulsion engine design, termed MITEE (MIniature reacTor EnginE), has over twice the delta V capability of H2/O2 rockets (and much greater when refueled with H2 propellant from indigenous extraterrestrial resources) enabling unique missions that are not feasible with chemical propulsion. The MITEE engine is a compact, ultra-lightweight, thermal nuclear rocket that uses hydrogen as the propellant. MITEE, with its small size (50 cm O.D.), low mass (200 kg), and high specific impulse (~1000 sec), can provide a quantum leap in the capability for space science and exploration missions. The Robotic Europa Explorer (REE) spacecraft has a two-year outbound direct trajectory and lands on the satellite surface for an approximate 9 month stay. During this time, the vehicle is refueled with H2 propellant derived from Europa ice by the Autonomous Propellant Producer (APP), while collecting samples and searching for life. A small nuclear-heated submarine probe, the Autonomous Submarine Vehicle (ASV), based on MITEE technology, would melt through the ice and explore the undersea realm. The spacecraft has approximately a three year return to Earth after departure from Europa with samples onboard. Spacecraft payload is 430 kg at the start of the mission and can be launched with a single, conventional medium-sized Delta III booster. The spacecraft can bring back 25 kg of samples from Europa

  9. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less

  10. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  11. 5 CFR 1650.5 - Returned funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Returned funds. 1650.5 Section 1650.5 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD METHODS OF WITHDRAWING FUNDS FROM THE THRIFT SAVINGS PLAN General § 1650.5 Returned funds. If a withdrawal is returned as undeliverable, the TSP record...

  12. 5 CFR 1650.5 - Returned funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Returned funds. 1650.5 Section 1650.5 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD METHODS OF WITHDRAWING FUNDS FROM THE THRIFT SAVINGS PLAN General § 1650.5 Returned funds. If a withdrawal is returned as undeliverable, the TSP record...

  13. Return-to-work coordination programmes for improving return to work in workers on sick leave.

    PubMed

    Vogel, Nicole; Schandelmaier, Stefan; Zumbrunn, Thomas; Ebrahim, Shanil; de Boer, Wout El; Busse, Jason W; Kunz, Regina

    2017-03-30

    To limit long-term sick leave and associated consequences, insurers, healthcare providers and employers provide programmes to facilitate disabled people's return to work. These programmes include a variety of coordinated and individualised interventions. Despite the increasing popularity of such programmes, their benefits remain uncertain. We conducted a systematic review to determine the long-term effectiveness of return-to-work coordination programmes compared to usual practice in workers at risk for long-term disability. To assess the effects of return-to-work coordination programmes versus usual practice for workers on sick leave or disability. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 11), MEDLINE, Embase, CINAHL and PsycINFO up to 1 November 2016. We included randomised controlled trials (RCTs) that enrolled workers absent from work for at least four weeks and randomly assigned them to return-to-work coordination programmes or usual practice. Two review authors independently screened titles, abstracts and full-text articles for study eligibility; extracted data; and assessed risk of bias from eligible trials. We contacted authors for additional data where required. We conducted random-effects meta-analyses and used the GRADE approach to rate the quality of the evidence. We identified 14 studies from nine countries that enrolled 12,568 workers. Eleven studies focused on musculoskeletal problems, two on mental health and one on both. Most studies (11 of 14) followed workers 12 months or longer. Risk of bias was low in 10 and high in 4 studies, but findings were not sensitive to their exclusion.We found no benefits for return-to-work coordination programmes on return-to-work outcomes.For short-term follow-up of six months, we found no effect on time to return to work (hazard ratio (HR) 1.32, 95% confidence interval (CI) 0.93 to 1.88, low-quality evidence), cumulative sickness absence (mean difference (MD) -16.18 work

  14. Uncertain Educational Returns in a Developing Economy

    ERIC Educational Resources Information Center

    Mohapatra, Sandeep; Luckert, Martin K.

    2012-01-01

    This paper estimates the distribution of educational returns by gender for India. While previous studies focus on mean returns, the variance of educational returns has important implications for policy-making and micro-level decision making with respect to education. If the variance of educational returns is large, it can leave large sections of…

  15. Accretion of Interplanetary Dust Particles by the Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Dermott, Stanley F.

    1998-10-01

    Koronis and that probably fewer than 25% of accreted IDPs come from comets. We also find a seasonal variation in the distribution of ascending nodes of the Themis and Koronis dust particle orbits near Earth. Earth-orbiting instruments utilizing aero-gels could exploit these seasonal variations to collect and return intact samples of these two asteroid families. Finally, we demonstrate how the long-term accretion rate of asteroidal dust from all sources should be anti-correlated with Earth's changing orbital eccentricity.

  16. Return Migration: A Study of College Graduates Returning to Rural U.S. Homes

    ERIC Educational Resources Information Center

    Mahoney, Elizabeth D.

    2009-01-01

    The purpose of this study is to explore perceptions of return migration experiences and gain knowledge from rural residents who have left to obtain a college education and start careers in non-rural areas, and who then returned to their rural hometowns with the social and economic benefits of a college education, and other valuable resources. This…

  17. Low Velocity Earth-Penetration Test and Analysis

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris

    2001-01-01

    Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.

  18. View of Skylab space station cluster in Earth orbit from CSM

    NASA Image and Video Library

    2008-08-18

    SL4-143-4706 (8 Feb. 1974) --- An overhead view of the Skylab space station cluster in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against a cloud-covered Earth. Note the solar shield which was deployed by the second crew of Skylab and from which a micro meteoroid shield has been missing since the cluster was launched on May 14, 1973. The Orbital Workshop (OWS) solar panel on the left side was also lost on workshop launch day. Inside the Command Module (CM) when this picture was made were astronaut Gerald P. Carr, commander; scientist-astronaut Edward G. Gibson, science pilot; and astronaut William R. Pogue, pilot. The crew used a 70mm hand-held Hasselblad camera to take this photograph. Photo credit: NASA

  19. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  20. 26 CFR 301.6103(n)-1 - Disclosure of returns and return information in connection with written contracts or agreements...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... administration purposes. 301.6103(n)-1 Section 301.6103(n)-1 Internal Revenue INTERNAL REVENUE SERVICE... and Returns Returns and Records § 301.6103(n)-1 Disclosure of returns and return information in... administration purposes. (a) General rule. (1) Pursuant to the provisions of section 6103(n) of the Internal...