Science.gov

Sample records for earth ruthenates prepared

  1. Ferromagnetism in ruthenate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Mravlje, Jernej; Millis, Andrew J.

    2014-03-01

    In apparent contrast to the usual rule that stronger correlations favor magnetism and other forms of order, while weaker correlations lead to Fermi liquid metals, it has been experimentally established that CaRuO3, a more correlated material, is a paramagnetic metal with a Fermi liquid ground state while SrRuO3, which is less strongly correlated, is ferromagnetic below a Curie temperature of 160K. We present density functional plus dynamical mean field theory calculations which resolve this conundrum. We show that in these materials ferromagnetism occurs naturally for cubic perovskite systems at moderate correlations but is suppressed both by proximity to the Mott insulating phase and by increasing the amplitude of a GdFeO3 distortion. These factors are strongly related to the differences between Ca and Sr ruthenates and are used as the keys to solve the problem. Placement of the ruthenate materials on the metal-insulator phase diagram and comparison to previous works on the Ruddlesden-Popper materials are also discussed. Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program.

  2. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  3. Improved method for preparing rare earth sesquichalcogenides

    DOEpatents

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  4. Preparation and processing of rare earth chalcogenides

    SciTech Connect

    Gschneidner, K.A. Jr.

    1998-10-01

    Rare earth chalcogenides are initially prepared by a direct combination of the pure rare earth metal and the pure chalcogen element with or without a catalyst. The use of iodine (10 to 100 mg) as a fluxing agent (catalyst), especially to prepare heavy lanthanide chalcogenides, greatly speeds up the formation of the rare earth chalcogenide. The resultant powders are consolidated by melting, pressure assisted sintering (PAS), or pressure assisted reaction sintering (PARS) to obtain near theoretical density solids. Mechanical alloying is a useful technique for preparing ternary alloys. In addition, mechanical alloying and mechanical milling can be used to form metastable allotropic forms of the yttrium and heavy lanthanide sulfides. Chemical analysis techniques are also described because it is strongly recommended that samples prepared by melting should have their chemical compositions verified because of chalcogen losses in the melting step.

  5. Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate

    SciTech Connect

    Fukuda, Katsutoshi; Kato, Hisato; Sato, Jun; Sugimoto, Wataru; Takasu, Yoshio

    2009-11-15

    The intercalation chemistry of a layered protonic ruthenate, H{sub 0.2}RuO{sub 2.1}.nH{sub 2}O, derived from a layered potassium ruthenate was studied in detail. Three phases with different hydration states were isolated, H{sub 0.2}RuO{sub 2.1}.nH{sub 2}O (n={approx}0, 0.5, 0.9), and its reactivity with tetrabutylammonium ions (TBA{sup +}) was considered. The layered protonic ruthenate mono-hydrate readily reacted with TBA{sup +}, affording direct intercalation of bulky tetrabutylammonium ions into the interlayer gallery. Fine-tuning the reaction conditions allowed exfoliation of the layered ruthenate into elementary nanosheets and thereby a simplified one-step exfoliation was achieved. Microscopic observation by atomic force microscopy and transmission electron microscopy clearly showed the formation of unilamellar sheets with very high two-dimensional anisotropy, a thickness of only 1.3+-0.1 nm. The nanosheets were characterized by two-dimensional crystallites with the oblique cell of a=0.5610(8) nm, b=0.5121(6) nm and gamma=109.4(2){sup o} on the basis of in-plane diffraction analysis. - Graphical abstract: Layered protonic ruthenate derived from a potassium form was directly reacted with bulky tetrabutylammonium ions to trigger exfoliation into nanosheets as long as it is highly hydrated.

  6. Studies of Novel Quantum Phenomena in Ruthenates

    SciTech Connect

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  7. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  8. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    NASA Astrophysics Data System (ADS)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  9. Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores**

    PubMed Central

    Sardar, Kripasindhu; Petrucco, Enrico; Hiley, Craig I; Sharman, Jonathan D B; Wells, Peter P; Russell, Andrea E; Kashtiban, Reza J; Sloan, Jeremy; Walton, Richard I

    2014-01-01

    The pyrochlore solid solution (Na0.33Ce0.67)2(Ir1−xRux)2O7 (0≤x≤1), containing B-site RuIV and IrIV is prepared by hydrothermal synthesis and used as a catalyst layer for electrochemical oxygen evolution from water at pH<7. The materials have atomically mixed Ru and Ir and their nanocrystalline form allows effective fabrication of electrode coatings with improved charge densities over a typical (Ru,Ir)O2 catalyst. An in situ study of the catalyst layers using XANES spectroscopy at the Ir LIII and Ru K edges shows that both Ru and Ir participate in redox chemistry at oxygen evolution conditions and that Ru is more active than Ir, being oxidized by almost one oxidation state at maximum applied potential, with no evidence for ruthenate or iridate in +6 or higher oxidation states. PMID:25196322

  10. Preparing Teachers to Teach Earth Science: Resources for Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Anderson, J. L.; Bezanson, C.; Moosavi, S. C.; Reynolds, D.; Manduca, C. A.

    2005-12-01

    Currently in the United States, there is a major push toward improving science education throughout all levels of education. While physics, biology, and chemistry are the three common sciences taught in high school, how, when and if Earth science is taught in our nation's schools varies greatly from region to region. Earth science topics are commonly incorporated into physics, chemistry, and biology classrooms and taught by teachers who may have never taken more than an introductory geoscience course. These teachers are often highly motivated to increase their understanding of the Earth sciences and need appropriate professional development opportunities in order to do so. In addition, many future elementary and middle school Earth science teachers take introductory geoscience courses in college. For these reasons, geoscience faculty play an active role in helping to educate future Earth science teachers. As part of the Digital Library for Earth System Education, the Science Education Resource Center (SERC) at Carleton College has developed a "Preparing Teachers to Teach Earth Science" website (http://serc.carleton.edu/teacherprep/). At this site geoscience faculty can learn more about supporting Earth science teachers both during their pre-service training in college, and as their careers progress through professional development opportunities. The website contains background materials and information about the necessity for geoscience faculty to get involved in supporting Earth science teachers, as well as recent science education reform initiatives. In addition, the site contains examples of geoscience courses serving pre-service teachers and Earth science professional development programs throughout the country linked to descriptions of their design and implementation. The website content draws heavily on material presented at the 2003 AGU/NAGT workshop "Developing the Earth Science Teacher Workforce: The Role of Geoscience Departments and Introductory Courses

  11. Manipulating superconductivity in ruthenates through Fermi surface engineering

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting; Cho, Weejee; Rebola, Alejandro Federico; Burganov, Bulat; Adamo, Carolina; Shen, Kyle M.; Schlom, Darrell G.; Fennie, Craig J.; Kim, Eun-Ah

    2016-07-01

    The key challenge in superconductivity research is to go beyond the historical mode of discovery-driven research. We put forth a new strategy, which is to combine theoretical developments in the weak-coupling renormalization-group approach with the experimental developments in lattice-strain-driven Fermi surface engineering. For concreteness we theoretically investigate how superconducting tendencies will be affected by strain engineering of ruthenates' Fermi surface. We first demonstrate that our approach qualitatively reproduces recent experiments under uniaxial strain. We then note that the order of a few percent strain, readily accessible to epitaxial thin films, can bring the Fermi surface close to van Hove singularity. Using the experimental observation of the change in the Fermi surface under biaxial epitaxial strain and ab initio calculations, we predict Tc for triplet pairing to be maximized by getting close to the van Hove singularities without tuning on to the singularity.

  12. Transport Properties of Metallic Ruthenates: A DFT +DMFT Investigation

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

    2016-06-01

    We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr2RuO4 , Sr3 Ru2 O7 , SrRuO3 , and CaRuO3 , within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr2 RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.

  13. Transport Properties of Metallic Ruthenates: A DFT+DMFT Investigation.

    PubMed

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

    2016-06-24

    We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr_{2}RuO_{4}, Sr_{3}Ru_{2}O_{7}, SrRuO_{3}, and CaRuO_{3}, within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr_{2}RuO_{4} has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. PMID:27391734

  14. Negative differential transconductance in electrolyte-gated ruthenate

    SciTech Connect

    Hassan, Muhammad Umair; Dhoot, Anoop Singh; Wimbush, Stuart C.

    2015-01-19

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO{sub 3} using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO{sub 3} substrates. For V{sub g} = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V{sub g} = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways.

  15. Earth System Documentation (ES-DOC) Preparation for CMIP6

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Murphy, S.; Greenslade, M. A.; Lawrence, B.; Guilyardi, E.; Pascoe, C.; Treshanksy, A.; Elkington, M.; Hibling, E.; Hassell, D.

    2015-12-01

    During the course of 2015 the Earth System Documentation (ES-DOC) project began its preparations for CMIP6 (Coupled Model Inter-comparison Project 6) by further extending the ES-DOC tooling ecosystem in support of Earth System Model (ESM) documentation creation, search, viewing & comparison. The ES-DOC online questionnaire, the ES-DOC desktop notebook, and the ES-DOC python toolkit will serve as multiple complementary pathways to generating CMIP6 documentation. It is envisaged that institutes will leverage these tools at different points of the CMIP6 lifecycle. Institutes will be particularly interested to know that the documentation burden will be either streamlined or completely automated.As all the tools are tightly integrated with the ES-DOC web-service, institutes can be confident that the latency between documentation creation & publishing will be reduced to a minimum. Published documents will be viewable with the online ES-DOC Viewer (accessible via citable URL's). Model inter-comparison scenarios will be supported using the ES-DOC online Comparator tool. The Comparator is being extended to:• Support comparison of both Model descriptions & Simulation runs;• Greatly streamline the effort involved in compiling official tables.The entire ES-DOC ecosystem is open source and built upon open standards such as the Common Information Model (CIM) (versions 1 and 2).

  16. NASA ESTO: Preparing the Future of Earth Science Observation Technology

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D. G.; Hogue, H. H.

    2007-12-01

    NASA's Earth-Sun System Technology Office (ESTO) is investing in passive remote sensing technologies that will provide revolutionary advances in our knowledge of the Earth system. We will focus specifically on two Instrument Incubator Program (IIP) projects, the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument already developed and the In-situ Net Flux within the Atmosphere of the Earth (INFLAME) instruments presently in development. Both of these sensors provide measurements of the Earth's radiation balance presently not available in any other sensors. ESTO is also investing in detector technologies for future Earth science missions through the Far-Infrared Detector Technology Advancement Partnership (FIDTAP), a joint effort concurrently supported by NASA Langley and DRS Technologies, Inc. These sensors and technologies will position NASA to implement missions spelled out in the recent National Research Council's Decadal Survey for Earth Sciences.

  17. Mission Preparation Program for Exobiological Experiments in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Reitz, Guenther; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra

    The ESA facilities EXPOSE-R and EXPOSE-E on board of the the International Space Station ISS provide the technology for exposing chemical and biological samples in a controlled manner to outer space parameters, such as high vacuum, intense radiation of galactic and solar origin and microgravity. EXPOSE-E has been attached to the outer balcony of the European Columbus module of the ISS in Febraury 2008 and will stay for about 1 year in space, EXPOSE-R will be attached to the Russian Svezda module of the ISS in fall 2008. The EXPOSE facilities are a further step in the study of the Responses of Organisms to Space Environment (ROSE concortium). The results from the EXPOSE missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. It resulted in several experiment verification tests EVTs and an experiment sequence test EST that were conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allow the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. The procedure and results of these EVT tests and EST will be presented. These results are an essential prerequisite for the success of the EXPOSE missions and have been done in parallel with the development and construction of the final hardware design of the facility. The results gained during the simulation experiments demonstrated mission

  18. Suppression of ferromagnetism and observation of quantum well states in epitaxial thin films of the cubic ruthenate BaRuO3

    NASA Astrophysics Data System (ADS)

    Burganov, Bulat; Paik, Hanjong; Shen, Kyle; Schlom, Darrell

    The pseudocubic perovskite ruthenates ARuO3, where A is alkaline earth metal, are correlated materials where Hund's coupling drives correlations and leads to a low coherence scale, large renormalization, and formation of local moments. The ferromagnetic BaRuO3 has an ideal cubic structure and a larger bandwidth, compared to its GdFeO3-distorted counterparts, CaRuO3 and SrRuO3. In stark contrast to SrRuO3, which is a Fermi liquid below TC, BaRuO3 exhibits critical fluctuations near TC that are enhanced under hydrostatic pressure, which suppresses the Fermi liquid coherence scale and TC and drives a crossover into non-FL regime. Here we use ARPES to characterize the momentum-resolved electronic structure of strained ultrathin BaRuO3 films grown in situ by molecular beam epitaxy. The films on STO (001) are metallic down to 2 u.c. thickness and manifest clearly defined subbands of well-defined quasiparticles which arise due to quantum confinement effects. We observe that the bands are moderately renormalized compared to bare GGA bands and discover that the ferromagnetism can be suppressed in the atomically thin limit. We discuss our results on BaRuO3 in the context of our recent ARPES studies of the other perovskite ruthenates, SrRuO3 and CaRuO3.

  19. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOEpatents

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  20. Earth Science Teacher Preparation Project (ESTPP) Consortium Directory 71 and 72.

    ERIC Educational Resources Information Center

    Todd, Verna

    Reported is a description of earth science departments in 21 colleges involved in the Earth Science Teacher Preparation Program (ESTPP). The program was funded by the National Science Foundation. ESTPP provides encouragement for innovation by providing planning conferences, providing consultants to visit the campuses and reinforce the positive…

  1. One-dimensional rare earth compounds and complexes: preparation and improved photoluminescence properties.

    PubMed

    Song, Hongwei; Pan, Guohui; Bai, Xue; Li, Suwen; Yu, Hongquan; Zhang, Hui

    2008-03-01

    One-dimensional nanosized phosphors demonstrate special structural and photoluminescence properties, which have application potential in some optical fields. In this article, we present our recent progress on preparation and luminescence properties of some one-dimensional rare earth compounds and complexes, the core-shell oxide nanowires prepared by a two-step hydrothermal route, the nanowires of some inorganic compounds doped with rare earths and rare earth complexes/PVP composites prepared by the electrospinning method, and the rare earth complexes in the SBA-15 mesoporous molecule sieves. In these systems, some novel or improved photoluminescence properties are observed such as improved luminescence quantum yield, thermal stability and/or photostability, and depressed thermal effect in upconversion luminescence. PMID:18468146

  2. Normal and inverse bulk spin valve effects in single-crystal ruthenates

    NASA Astrophysics Data System (ADS)

    Peng, Jin; Hu, J.; Gu, X. M.; Zhou, G. T.; Liu, J. Y.; Zhang, F. M.; Wu, X. S.; Mao, Z. Q.

    2016-04-01

    The current-perpendicular-to-plane magnetoresistivity (CPP-MR) /ρc(B ) is investigated in single crystal ruthenates Ca3(Ru1-xTix)2O7 (x = 0.02). This material is naturally composed of ferromagnetic metallic bilayers (Ru,Ti)O2 separated by nonmagnetic insulating layers of Ca2O2, resulting in tunneling magnetoresistivity. Non-monotonic ρc(B ) curves as well as the inverse spin valve effect are observed around the magnetic phase transition associating with the metal-to-insulator transition. A spin dependent tunneling model with alternate distribution of hard and soft magnetic layers [(Ru,Ti)O2] is proposed to explain the exotic CPP-MR behavior. This eccentric CPP-MR behavior highlights the strong spin-charge coupling in double-layered ruthenates and provides a potential material for spintronic devices.

  3. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P.; Fong, Dillon D.; Highland, Matthew J.; Baldo, Peter M.; Stamenkovic, Vojislav R.; Freeland, John W.; Eastman, Jeffrey A.; Markovic, Nenad M.

    2014-06-01

    In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru4+ to unstable Run>4+. This ordered(Ru4+)-to-disordered(Run>4+) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

  4. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  5. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  6. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  7. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  8. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  9. Floating zone growth of Ba-substituted ruthenate Sr2-xBaxRuO4

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Liu, C.-F.; Skoulatos, M.; Tjeng, L. H.; Komarek, A. C.

    2015-10-01

    We report on the exploration to synthesize Sr2-xBaxRuO4, the large volume variant of the unconventional superconductor Sr2RuO4. We have succeeded in growing single crystals for x-values up to 0.4 by making use of the traveling solvent floating zone method. The quality of the obtained crystals is confirmed by X-ray and neutron diffraction measurements and the properties of these Ba-substituted ruthenates were studied with magnetic and electrical transport measurements.

  10. Building a Community of Faculty for Teacher Preparation in Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shipp, S. S.; Schultz, G.; Pomeroy, R.; Bailey, J. M.; Asti, P.; Chambers, L. H.; Slater, T. F.; Slater, S. J.; Stork, D.; Smith, D. A.; Waller, W. H.

    2010-08-01

    Surveys and focus groups suggest that faculty who help prepare future teachers in science can benefit from professional development. A team of scientists and science educators has delivered three such 2-day faculty institutes, through our Faculty Institutes for NASA Earth and Space Science Education (FINESSE). Faculty have developed a mechanism for working inquiry into a deeper understanding of science by using existing online data to develop and research Earth and space science topics. Members of the FINESSE team share experiences regarding the institutes, describe their findings thus far, and demonstrate some of the interactive pieces of the institute.

  11. STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION

    DOEpatents

    McNees, R.A.; Potter, R.A.

    1964-01-14

    A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)

  12. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    PubMed

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached. PMID:19886669

  13. Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof

    DOEpatents

    Malekzadeh, Manoochehr; Pickus, Milton R.

    1979-01-01

    A sintered rare earth-iron Laves phase magnetostrictive alloy product characterized by a grain oriented morphology. The grain oriented morphology is obtained by magnetically aligning powder particles of the magnetostrictive alloy prior to sintering. Specifically disclosed are grain oriented sintered compacts of Tb.sub.x Dy.sub.1-x Fe.sub.2 and their method of preparation. The present sintered products have enhanced magnetostrictive properties.

  14. Doped perovskite-based ruthenates: Structure, electrical, magnetic and magnetoresistive properties

    NASA Astrophysics Data System (ADS)

    Mamchik, Alexander Ivanovich

    2003-10-01

    The electric and magnetic properties of ruthenium-containing ABO 3 oxides with perovskite structure are intimately connected with their structure and composition. Even a slight perturbation caused by doping can significantly modify the electrical conductivity and the magnetic ground state of these compounds. In this thesis the structural, electronic, and magnetic properties of several perovskite ruthenate solid solutions, based on SrRuO 3 and CaRuO3, and containing Fe or Co on the B-sites, are presented. In the Fe-containing compounds, Ru preserves its 4+ valence state, while in the Co-doped compounds there is an order-dependent charge transfer between Ru and Co, leading to some Ru in the 5+ state. Saturation magnetization of solid solutions initially increases with both Fe and Co concentration, indicating the formation of large local magnetic moments around these cations. At higher Fe and Co substitution level, a spin glass state develops and a gradual metal/insulator transition occurs. At the same time, a large negative magnetoresistance emerges. These solid solutions are analogous to Mn-doped diluted magnetic semiconductors that contain giant local moments around Mn impurities, which themselves interact antiferromagnetically. Similar magnetic and magnetoresistive behavior is expected in other conducting ruthenates, and possibly other 4d and 5d conducting oxides that are doped with 3d transition metals.

  15. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  16. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  17. Experimental productivity rate optimization of rare earth element separation through preparative solid phase extraction chromatography.

    PubMed

    Knutson, Hans-Kristian; Max-Hansen, Mark; Jönsson, Christian; Borg, Niklas; Nilsson, Bernt

    2014-06-27

    Separating individual rare earth elements from a complex mixture with several elements is difficult and this is emphasized for the middle elements: Samarium, Europium and Gadolinium. In this study we have accomplished an overloaded one-step separation of these rare earth elements through preparative ion-exchange high-performance liquid chromatography with an bis (2-ethylhexyl) phosphoric acid impregnated column and nitric acid as eluent. An inductively coupled plasma mass spectrometry unit was used for post column element detection. The main focus was to optimize the productivity rate, subject to a yield requirement of 80% and a purity requirement of 99% for each element, by varying the flow rate and batch load size. The optimal productivity rate in this study was 1.32kgSamarium/(hmcolumn(3)), 0.38kgEuropium/(hmcolumn(3)) and 0.81kgGadolinium/(hmcolumn(3)). PMID:24835593

  18. Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles.

    PubMed

    Tikhomirov, V K; Mortier, M; Gredin, P; Patriarche, G; Görller-Walrand, C; Moshchalkov, V V

    2008-09-15

    Free-standing, 8 nm diameter, rare-earth doped nanoparticles Re(10)Pb(25)F(65) have been prepared, where Re stands for either single rare-earth ion, such as Er(3+), Yb(3+), Eu(3+), Dy(3+), Ho(3+), Tm(3+) or combinations of those ions. The nanoparticles have been extracted by chemical etching from the oxyfluoride nano-glass-ceramics template and analyzed by transmission electron microscope with energy dispersion spectroscopy. The nanoparticles show durable up-conversion photoluminescence, which is neither concentration nor impurity quenched after 6 months ageing in ambient atmosphere. High doping levels in these nanoparticles ensure high, up to 15%, quantum yield of up-conversion luminescence. PMID:18794989

  19. Photoluminescence studies on rare earth titanates prepared by self-propagating high temperature synthesis method.

    PubMed

    Joseph, Lyjo K; Dayas, K R; Damodar, Soniya; Krishnan, Bindu; Krishnankutty, K; Nampoori, V P N; Radhakrishnan, P

    2008-12-15

    The laser-induced luminescence studies of the rare earth titanates (R2Ti2O7) (R=La, Nd and Gd) using 355 nm radiation from an Nd:YAG laser are presented. These samples with submicron or nanometer size are prepared by the self-propagating high temperature synthesis (SHS) method and there is no known fluorescence shown by these rare earths in the visible region. Hence, the luminescence transitions shown by the La2Ti2O7 near 610 nm and Gd2Ti2O7 near 767 nm are quite interesting. Though La3+ ions with no 4f electrons have no electronic energy levels that can induce excitation and luminescence processes in the visible region, the presence of the Ti3+ ions leads to luminescence in this region. PMID:18455955

  20. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  1. The Earth as a living planet: human-type diseases in the earthquake preparation process

    NASA Astrophysics Data System (ADS)

    Contoyiannis, Y. F.; Potirakis, S. M.; Eftaxias, K.

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The Earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the Earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture-induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second-order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injured heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study.

  2. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    global Earth System. These armchair explorers learn to unite datasets in a region to learn about places like and unlike where they live. In a world that's becoming smaller and smaller with the aid of technology, projects like MND prepare our students for their global future. A teacher located in an area of California strongly impacted by pollution and potential climate changes noted that this project makes available data that are very relevant to issues that will affect her students' lives. She points out that not all scientific information they currently see is in a form that is understandable to an educated citizen, and that the experience with MND will enable her students to have better than average skills not only for deciphering scientific maps and graphs; but also for creating maps and graphics that successfully convey information to others.

  3. The anomalous Hall effect and related transport phenomena in ferromagnetic spinel copper chromium selenium bromide, manganese-doped chalcopyrite copper gallium ditelluride, and ruthenate bismuth ruthenate

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li

    One of the interesting and unsettled transport phenomena is the, so called, "anomalous Hall Effect". It generally refers to the phenomenon of a non-linear field dependence of the Hall resistivity rhoxy. An emerging idea relates to the "gauge field O" experienced by electrons. It gives rise to Berry phase accumulation. In ferromagnets, a non-vanishing O( k⃗ ) is related to the spin-orbit coupling and the time-reversal asymmetry. We show that, in the ferromagnetic spinel CuCr2Se 4-xBrx, the anomalous Hall conductivity sigma xy (normalized to per carrier, at 5K) remains unchanged with a 1000-fold increase in resistivity. From the anomalous Nernst effect, we uncover a simple relation for the off-diagonal Peltier conductivity tensor alphaxy, which is a measure of a transverse electrical current density generated per unit of applied temperature gradient. They both strongly support the anomalous-velocity theory based on the intrinsic spin-orbit coupling of the electrons. An alternative way to procure O is from the spin-chirality effect. In the Mn-doped chalcopyrite semiconductor CuGaTe2, with a few percent doping, the orbitals of the Mn ions overlap to form an impurity band. Therefore, the electrons will accumulate Berry phase while hopping around the Mn ions that have a non-collinear magnetic ground state. We observed the enhanced and non-monotonic field dependence of rhoxy, which may be understood from the spin-chirality effect. Finally, we studied the Hall effect and thermopower in the ruthenate Bi3Ru3O 11. From the Hall effect, we observed field-tuning of electron and hole populations. We also found a large field dependence of the thermopower at low temperature. The origin of the colossal field-dependence in the thermopower is still an open question, but it is linked to the unusual electronic properties in the Bi3Ru3O11.

  4. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    SciTech Connect

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  5. Preparation and luminescence properties of phosphors of rare earth complexes based on polyoxotungstates

    SciTech Connect

    Wen, He-Rui; Lu, Xiao-Neng; Liao, Jin-Sheng; Zhang, Cai-Wei; You, Hang-Ying; Liu, Cai-Ming

    2015-08-15

    Highlights: • Three new phosphors of rare earth complexes based on polyoxotungstates were synthesized. • [Eu(PW{sub 11}O{sub 39}){sub 2}]{sup 11−} (1) emits red light which used as potential red light materials. • [Sm(PW{sub 11}O{sub 39}){sub 2}] {sup 11−} (2) emits strong orange-red light at 598.7 nm. • [Dy(PW{sub 11}O{sub 39}){sub 2}] {sup 11−} (3) emits white light which used as potential white light materials. - Abstract: Three new phosphors of rare earth complexes based on polyoxotungstates, K{sub 3}Cs{sub 8}[Eu(PW{sub 11}O{sub 39}){sub 2}]·11H{sub 2}O (1), K{sub 3}Cs{sub 8}[Sm(PW{sub 11}O{sub 39}){sub 2}]·10H{sub 2}O (2), and K{sub 5}Cs{sub 6}[Dy(PW{sub 11}O{sub 39}){sub 2}]·15H{sub 2}O (3) have been prepared and characterized. The crystallographic analyses reveal that these compounds consist of two monovacant keggin anions [PW{sub 11}O{sub 39}]{sup 7−} connected by a rare earth ion in a sandwich structure. The investigations of photoluminescence properties show that phosphor 1 emits strong red light at 614 and 702 nm, 2 emits strong orange-red light at 598.7 nm, and 3 exists two strong emissions at 479 nm (blue) and 574 nm (orange). The luminescence properties suggest that the 1 can be applied as the potential red-emitting crystal phosphor, and the 3 may be regarded as a potential white light material for LEDs.

  6. Adsorption characterization of gaseous volatile organic compound on mesoporous silica particles prepared from spent diatomaceous earth.

    PubMed

    Bei, Lei-Lei; Tao, Hong; Ma, Chih-Ming; Shiue, Angus; Chang, Chang-Tang

    2014-04-01

    This study used spent diatomaceous earth (SDE) from drink processing as source of Si and cationic surfactant (CTAB) as a template for the synthesis of mesoporous silica Materials (MSM) through hydrothermal method. The MSM was characterized by Small-angle X-ray Diffraction (SXRD), Scanning Electron Microscopy (SEM), Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy and N2 adsorption-desorption analyzer. The results showed that the surface area, pore volume and pore size was roughly ranged from 880 to 1060 m2 g(-1), 1.05 cm3 g(-1) and 4.0 nm, respectively. The properties of the synthesized MSM were also compared with those prepared from pure silica sources (MCM-41) and got almost the same characteristics. The synthesized MSM was used as adsorbent at 25 degrees C with carrier gas of air. The adsorption equilibrium revealed that adsorption capacity of MSM was 59.6, 65.7, 69.6, 84.9 mg g(-1) while the acetone concentration was 600, 800, 1000 ppm, 1600 ppm respectively. Results showed that breakthrough curves correlate to the challenge vapor concentration, adsorbent loading, and the flow rate. The results obtained in the present work demonstrated that it was feasibility of using the SDE as a potential source of silica to prepare MSM. PMID:24734749

  7. To the Geoportal and Beyond! Preparing the Earth Observing Laboratory's Datasets for Inter-Repository Discovery

    NASA Astrophysics Data System (ADS)

    Gordon, S.; Dattore, E.; Williams, S.

    2014-12-01

    Even when a data center makes it's datasets accessible, they can still be hard to discover if the user is unaware of the laboratory or organization the data center supports. NCAR's Earth Observing Laboratory (EOL) is no exception. In response to this problem and as an inquiry into the feasibility of inter-connecting all of NCAR's repositories at a discovery layer, ESRI's Geoportal was researched. It was determined that an implementation of Geoportal would be a good choice to build a proof of concept model of inter-repository discovery around. This collaborative project between the University of Illinois and NCAR is coordinated through the Data Curation Education in Research Centers program. This program is funded by the Institute of Museum and Library Services.Geoportal is open source software. It serves as an aggregation point for metadata catalogs of earth science datasets, with a focus on geospatial information. EOL's metadata is in static THREDDS catalogs. Geoportal can only create records from a THREDDS Data Server. The first step was to make EOL metadata more accessible by utilizing the ISO 19115-2 standard. It was also decided to create DIF records so EOL datasets could be ingested in NASA's Global Change Master Directory (GCMD). To offer records for harvest, it was decided to develop an OAI-PMH server. To make a compliant server, the OAI_DC standard was also implemented. A server was written in Perl to serve a set of static records. We created a sample set of records in ISO 19115-2, FGDC, DIF, and OAI_DC. We utilized GCMD shared vocabularies to enhance discoverability and precision. The proof of concept was tested and verified by having another NCAR laboratory's Geoportal harvest our sample set. To prepare for production, templates for each standard were developed and mapped to the database. These templates will help the automated creation of records. Once the OAI-PMH server is re-written in a Grails framework a dynamic representation of EOL

  8. Preparing a New Generation of Citizens and Scientists to Face Earth's Future

    ERIC Educational Resources Information Center

    Bralower, Timothy J.; Feiss, P. Geoffrey; Manduca, Cathryn A.

    2008-01-01

    As the research interests and the focus of traditional earth scientists are transformed, so too must education in earth system science at colleges and universities across the country change. The required change involves not only the methods used to teach this new science, but also the essential place of the earth sciences in the panoply of…

  9. Understanding of earth and space science concepts: Strategies for concept building in elementary teacher preparation

    NASA Astrophysics Data System (ADS)

    Bulunuz, Nermin

    Research on conceptual change provides strong evidence that not only children but also many adults have incorrect or incomplete understanding of science concepts. This mixed methods study was concerned with preservice and inservice teachers' understanding of six earth and space science concepts commonly taught in elementary school: reasons for seasons, phases of the moon, reasons for the wind, the rock cycle, soil formation, and earthquakes. The first part of the study determined and compared the level of conceptual understanding held by both groups on topics they will need to teach in the Georgia Performance Standards [GPS]. The second part focused on whether readings or hands-on learning stations, in some cases combined with concept mapping, improves preservice teachers' understanding of these concepts. The third part described the application of conceptual change strategies of one group of preservice teachers during their field placements. The overall sample was two cohorts of preservice teachers, one cohort of preservice teachers from an alternative initial certification program, and two masters' cohorts consisting of inservice teachers. Four data sources were: a six item open-ended survey, concept maps, the field assignments, and the researcher's field notes. Rubrics were used to score answers to each survey question. Concept map scores were calculated based on the criteria developed by Novak and Gowin (1984). The first part of the study shows that both preservice and inservice teachers have low conceptual understanding of the earth science concepts taught in elementary school. Independent samples t-tests results indicate that both groups have similar understanding about these concepts. A two way ANOVA with repeated measures analysis demonstrated that readings and learning stations are both successful in building preservice teacher's understanding and that benefits from the hands-on learning stations approached statistical significance. A paired samples t

  10. Charge-transfer model for the electronic structure of layered ruthenates

    NASA Astrophysics Data System (ADS)

    Rościszewski, Krzysztof; Oleś, Andrzej M.

    2015-04-01

    Motivated by the earlier experimental results and ab initio studies on the electronic structure of layered ruthenates (Sr2RuO4 and Ca2RuO4 ) we introduce and investigate the multiband d -p charge transfer model describing a single RuO4 layer, similar to the charge transfer model for a single CuO2 plane including apical oxygen orbitals in high Tc cuprates. The present model takes into account nearest-neighbor anisotropic ruthenium-oxygen d -p and oxygen-oxygen p -p hopping elements, crystal-field splittings, and spin-orbit coupling. The intraorbital Coulomb repulsion and Hund's exchange are defined not only at ruthenium but also at oxygen ions. Our results demonstrate that the RuO4 layer cannot be regarded to be a pure ruthenium t2 g system. We examine a different scenario in which ruthenium eg orbitals are partly occupied and highlight the significance of oxygen orbitals. We point out that the predictions of an idealized model based on ionic configuration (with n0=4 +4 ×6 =28 electrons per RuO4 unit) do not agree with the experimental facts for Sr2RuO4 which support our finding that the electron number in the d -p states is significantly smaller. In fact, we find the electron occupation of d and p orbitals for a single RuO4 unit n =28 -x , being smaller by at least 1-1.5 electrons from that in the ionic model and corresponding to self-doping with x ≃1.5 .

  11. Preparing the Next Generation of Earth Scientists: An Examination of Federal Education and Training Programs

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    Earth science, which in this context does not include oceanic, atmospheric, and space sciences, is vital to the wellbeing of the United States and many of its issues, such as water resources, are expected to grow in importance. An earth science workforce will be needed to deal with this issues and it's important that this workforce draw on the…

  12. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  13. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  14. Preparing Teachers to Design Instruction in Middle School Earth Science: Comparing the Impacts of Three Professional Development Programs on Teaching and Learning

    ERIC Educational Resources Information Center

    Penuel, William R.; Gallagher, Lawrence P.

    2009-01-01

    The purpose of this study is to compare the efficacy of three different approaches to professional development in Earth science education: preparing teachers to "adopt" expert-"design" curricula; preparing teachers to use a principled approach to design curricula; and preparing teachers to use a principled approach to "adapt" curricula. The claims…

  15. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOEpatents

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  16. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    ERIC Educational Resources Information Center

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  17. Preparing Teachers to Design Instruction for Deep Understanding in Middle School Earth Science

    ERIC Educational Resources Information Center

    Penuel, William R.; Gallagher, Lawrence P.

    2009-01-01

    This study compared the efficacy of 3 approaches to professional development in middle school Earth science organized around the principles of Understanding by Design (Wiggins & McTighe, 1998) in a sample of 53 teachers from a large urban district. Teachers were randomly assigned to a control group or to 1 of 3 conditions that varied with respect…

  18. Specific heat and magnetization measurements on the ferromagnetic phase transition of manganites and ruthenates

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun

    Ferromagnetic manganites and ruthenate samples were studied by specific heat and magnetization measurements. For specific heat measurements, a novel thin film micro-calorimeter was modified for bulk samples and an attachment-method using indium was developed. From the specific heat, using a chi2 minimization method, we obtained the critical exponent a. From magnetization measurements, we obtained critical exponents, beta, gamma, and delta, by the modified Arrot plot scheme. We found that our single crystal sample of La0.75Sr0.25 MnO3 has a typical second order ferromagnetic phase transition with critical exponents alpha = 0.05, beta = 0.4, gamma = 1.27 and delta = 4.1, in good agreement with the report on a single crystal of La0.7 Sr0.3MnO3. In contrast, measurement on a polycrystalline sample of La0.8Sr 0.2MnO3 was reported to have mean-field-like phase transition. For La1-xCaxMnO3 samples, we have studied x = 0.33 and x = 0.4 samples to verify different order of phase transitions. The critical exponents of the La0.6Ca0.4MnO3 sample were found to be alpha = 0.5, beta = 0.25, gamma = 1.03, and delta = 5.0. These values are in excellent agreement with the theoretical predictions of the tricritical point. The existence of the tricritical point is a strong evidence of the changing order of phase transitions. The evidence of the first order phase transition of La0.67Ca 0.33MnO3 include a meta-magnetic phase transition just above TC, a dependence of TC on applied field, and an extremely sharp specific heat peak at TC. The entropy change associated with the first order transition (2.3 J/molK) is estimated from volume expansion (1.8 J/molK) and the loss of magnetization (0.5 J/molK) via Clausius-Clapeyron equation. The discontinuous drop of DeltaM ˜ 1.3 muB, obtained from the Clausius-Clapeyron equation, is consistent with the magnetization measurements. We studied the critical behavior of a single crystal SrRuO3 sample and compared with resistivity data, drho

  19. Preparation of alkaline earth phosphates with sol containing sodium alginate and sodium diphosphate.

    PubMed

    Sugiyama, Shigeru; Fujii, Minako; Fukuta, Kazuya; Seyama, Kazunori; Sotowa, Ken-Ichiro; Shigemoto, Naoya

    2006-03-01

    Magnesium hydrogen phosphate, calcium hydroxyapatite, and strontium hydroxyapatite were successfully prepared from sol consisting of sodium alginate and Na4P2O7 with Mg2+, Ca2+, and Sr2+ in the corresponding nitrates, respectively. It is revealed that the order of the addition of those substrates and the role of sodium alginate are important factors for the preparation of desired phosphate compounds. According to the previous paper on the preparation of calcium hydroxyapatite, sodium alginate was mixed with aqueous Na4P2O7, followed by the addition of the aqueous divalent cations, resulting in the poor formation of the target phosphates. However, as a revised sol-gel technique, sodium alginate was added to the mixture of Na4P2O7 and aqueous Mg2+ and Sr2+, resulting in a rather favorable formation of MgHPO4 and strontium hydroxyapatite, respectively, while the sol thus obtained was stable within a few days. However for aqueous Ca2+, calcium hydroxyapatite could not be obtained through the revised sol-gel technique. In the preparation of magnesium hydrogen phosphate, sodium alginate contributes mainly to the sol formation of the precursor. The ion exchange between Na+ in sodium alginate and aqueous Ca2+ was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na4P2O7 and aqueous Sr2+ afforded strontium hydroxyapatite at the specific ratio of those three substrates. The structure of calcium and strontium phosphates prepared from the revised sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na4P2O7 and the corresponding divalent cations. PMID:16154579

  20. Volatile Single-Source Precursors for the Low-Temperature Preparation of Sodium-Rare Earth Metal Fluorides.

    PubMed

    Barry, Matthew C; Wei, Zheng; He, Tianyu; Filatov, Alexander S; Dikarev, Evgeny V

    2016-07-20

    Heterometallic single-source precursors for the preparation of sodium-rare earth metal fluorides are reported. Fluorinated β-diketonates NaRE(hfac)4 (RE = Y (1), Er (2), and Eu (3); hfac = hexafluoroacetylacetonate) have been obtained on a large scale, in high yield, via one-pot reaction that utilizes commercially available starting reagents. The solid-state structures of the title complexes consist of 1D polymeric chains with alternating [Na] and [RE(hfac)4] units. Compounds 1-3 are highly volatile and exhibit a fair stability in open air. Mass spectrometric investigation indicates the presence of heterometallic fragments in the gas phase. The presence of heterometallic species in solutions of coordinating solvents has also been confirmed. Decomposition of heterometallic precursors in argon atmosphere was shown to yield phase-pure sodium-rare earth metal fluorides. Low decomposition temperature effectively allows for a high degree of control over the formation of both kinetic α-phases and thermodynamic β-phases of target NaREF4 (RE = Y, Er, and Eu) materials. PMID:27232230

  1. Sol-gel preparation of alumina stabilized rare earth areo- and xerogels and their use as oxidation catalysts.

    PubMed

    Neumann, Björn; Gesing, Thorsten M; Rednyk, Andrii; Matolin, Vladimir; Gash, Alexander E; Bäumer, Marcus

    2014-05-15

    A new sol-gel synthesis route for rare earth (Ce and Pr) alumina hybrid aero- and xerogels is presented which is based on the so-called epoxide addition method. The resulting materials are characterized by TEM, XRD and nitrogen adsorption. The results reveal a different crystallization behavior for the praseodymia/alumina and the ceria/alumina gel. Whereas the first remains amorphous until 875°C, small ceria domains form already after preparation in the second case which grow with increasing calcination temperature. The use of the calcined gels as CO oxidation catalysts was studied in a quartz tube (lab) reactor and in a (slit) microreactor and compared to reference catalysts consisting of the pure rare earth oxides. The Ce/Al hybrid gels exhibit a good catalytic activity and a thermal stability against sintering which was superior to the investigated reference catalyst. In contrast, the Pr/Al hybrid gels show lower CO oxidation activity which, due to the formation of PrAlO3, decreased with increasing calcination temperature. PMID:24655831

  2. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  3. The common principles established to expert's preparation by a remote methods in the Earth sciences field, and their decision

    NASA Astrophysics Data System (ADS)

    Kudzh, S.; Trofimov, S.

    Modern socially economic situation in the country and in an education system is those, that traditional forms of getting education and training model cannot satisfy all needs for the educational services usually concentrated in the big cities, and so - the increased interest to new, progressive specialities has received the development in electronic - training systems. The attitude to education on the part of the states, the governments, societies has changed also. Education began to be considered as the major factor of economic growth and social development of the countries, the decision of some global problems connected to survival of mankind. In this connection, recently development and practical introduction of technologies of remote and open education are conducted in the different countries, the especial attention is given to the systems, capable to comprise, transfer and analyze huge streams of information. The experience which has been saved up by foreign colleagues, shows, that the sanction of this technological conflict lays, generally, in sphere of creation of a wide network of remote training, and, in narrow, both quality and quantity of a substantial part, also it is necessary not to forget about a choice of electronic-training systems with their reference to various areas. And an occurrence of the computer equipment in the user's end, development of existing ways and means of data transmission, functional expansion of already existing and creation of absolutely new hardware-software complexes, and many other things has begun occurrence of new scientific directions in such basic area of sciences as the Earth - science. (These are geoinformation systems, research of natural resources by space methods, organization and technology of data protection in geoinformation systems etc.) Clearly, that new specialities impose the certain conditions for preparation of experts, and, carrying out the analysis of already existing electronic training systems in the

  4. Complex electronic states in double-layered ruthenates (Sr1-xCax)3Ru2O7

    NASA Astrophysics Data System (ADS)

    Qu, Zhe; Peng, Jin; Liu, Tijiang; Fobes, David; Spinu, Leonard; Mao, Zhiqiang

    2009-09-01

    The magnetic ground state of (Sr1-xCax)3Ru2O7 (0≤x≤1) is complex, ranging from an itinerant metamagnetic state (0≤x<0.08) to an unusual heavy-mass nearly ferromagnetic (FM) state (0.082) for 0.08ruthenates.

  5. High-Temperature Jet Spray Reactor for the Preparation of Rare Earth Oxides by Pyrolysis: Computer Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiu-yue; Lv, Chao; Zhang, Zi-mu; Dou, Zhi-he; Zhang, Ting-an; Liu, Yan; Lv, Guo-zhi

    2014-09-01

    A new type of high-temperature jet spray pyrolysis (SP) reactor is investigated in this article as part of studies on the preparation of rare earth oxides at Northeastern University (NEU), Shenyang, China. The jet spray reactor examined here is a horizontal, tubular reactor conveying the hot products of the combustion of methane and oxygen with a converging-diverging jet section in an arrangement that provides for inspiration of LaCl3 solution to pyrolyze to La2O3 with the hot gas. The present article is concerned with a computer simulation using a computational fluid dynamic model to develop the velocity, temperature, and pressure profiles in the jet reactor since direct measurement is difficult. The article includes brief comments on a room-temperature model designed to examine the flow characteristics of the jet SP reactor. It was found that the velocity decreased at first, and then it increased near the jet throat. The highest velocity occurred at the throat of jet SP reactor where the LaCl3 enters the unit. Along the reactor axis, the temperature decreases with distance from the gas inlet. The lowest temperature zone was near the wall before the throat of the reactor due to wall heat losses. The temperature was estimated to be close to 1700 K at the throat of the reactor, and it was about 1300 K toward the exit of the reactor. It was shown that a reaction would take place mainly in the throat and in the vicinity of first contact between gas and induced spray. A negative pressure was produced as gas passes through the converging-diverging throat of the jet SP reactor that causes the LaCl3 solution to enter the throat of the reactor. While the investigations of this type of reactor are at an early stage, the results look promising. NEU continues to investigate this approach for the preparation of La2O3 based on high-temperature testwork and physical modeling techniques.

  6. High-Temperature Jet Spray Reactor for the Preparation of Rare Earth Oxides by Pyrolysis: Computer Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiu-yue; Lv, Chao; Zhang, Zi-mu; Dou, Zhi-he; Zhang, Ting-an; Liu, Yan; Lv, Guo-zhi

    2014-08-01

    A new type of high-temperature jet spray pyrolysis (SP) reactor is investigated in this article as part of studies on the preparation of rare earth oxides at Northeastern University (NEU), Shenyang, China. The jet spray reactor examined here is a horizontal, tubular reactor conveying the hot products of the combustion of methane and oxygen with a converging-diverging jet section in an arrangement that provides for inspiration of LaCl3 solution to pyrolyze to La2O3 with the hot gas. The present article is concerned with a computer simulation using a computational fluid dynamic model to develop the velocity, temperature, and pressure profiles in the jet reactor since direct measurement is difficult. The article includes brief comments on a room-temperature model designed to examine the flow characteristics of the jet SP reactor. It was found that the velocity decreased at first, and then it increased near the jet throat. The highest velocity occurred at the throat of jet SP reactor where the LaCl3 enters the unit. Along the reactor axis, the temperature decreases with distance from the gas inlet. The lowest temperature zone was near the wall before the throat of the reactor due to wall heat losses. The temperature was estimated to be close to 1700 K at the throat of the reactor, and it was about 1300 K toward the exit of the reactor. It was shown that a reaction would take place mainly in the throat and in the vicinity of first contact between gas and induced spray. A negative pressure was produced as gas passes through the converging-diverging throat of the jet SP reactor that causes the LaCl3 solution to enter the throat of the reactor. While the investigations of this type of reactor are at an early stage, the results look promising. NEU continues to investigate this approach for the preparation of La2O3 based on high-temperature testwork and physical modeling techniques.

  7. Low temperature solution synthesis of zinc antimonide, manganese antimonide, and strontium ruthenate compounds

    NASA Astrophysics Data System (ADS)

    Noblitt, Jennifer Lenkner

    2011-12-01

    Mn2Sb may be electrochemically deposited on a conducting substrate. Increasing use of natural resources for energy generation has driven research in the area of energy storage using superconducting materials. To meet energy storage needs the materials must have the following features: (i) safety, (ii) superconductivity at or above liquid nitrogen temperature (77 K), (iii) low cost manufacturing processes, and (iv) robustness. The search for materials that meet all of these criteria is on-going, specifically in the area of high temperature superconductivity. The precise mechanism of superconductivity is not known. A few theories explain some of the phenomenological aspects, but not all. In order to logically select and synthesize high temperature superconductors for industrial applications, the precise mechanism must first be elucidated. Additionally, a synthetic method that yields pure, high quality crystals is required because transition temperatures have been shown to vary depending on the preparation method due to impurities. Before measuring properties of superconductors, the development of a synthesis method that yields pure, high quality crystals is required. Most superconductors are synthesized using traditional solid state methods. This synthesis route precludes formation of kinetically stable phases. Low temperature synthesis is useful for probing thermodynamic verses kinetic stability of compounds as well as producing high quality single crystals. A novel low temperature hydrothermal synthesis of Sr-Ru-O compounds has been developed. These materials are important because of their interesting properties including superconductivity and ferromagnetism. Sr2RuO4 is particularly interesting as it is superconducting and isostructural to La2CuO 4, which is only superconducting when doped. Therefore, Sr2RuO 4 is a good choice for study of the mechanism of superconductivity. Additionally, new kinetically stable phases of the Sr-Ru-O family may be formed which may

  8. Development of a Memory Game to Improve Knowledge Retention in Preparation for Broad Scope Exams in an Introductory Earth Science Course

    NASA Astrophysics Data System (ADS)

    Cook, H. M.; Bilsley, N. A.

    2015-12-01

    As the demand for introductory earth science classes rises at educational institutions, large class sizes place strain on the educator's time and ability to offer extensive project-based assignments. As a result, exams covering a broad spectrum of material are more heavily weighted in students' grades. Students often struggle on the first exam, as they attempt to retain a large amount of information from several different topics, while having no exposure to the type of questions that will be asked. This frequently leads to a large dropout rate early in the academic term, or at least a sense of discouragement and stress among struggling students. To better prepare students for a broad scope exam, a review activity modelled after the traditional Milton Bradley "Memory" game was developed to remind students of what would be covered on the exam, prepare them for the style of questions that may be asked, as well as provide a fun, interactive, and educational activity. The Earth Science Memory Game was developed to have interchangeable sets to cover a broad range of topics and thus also be reusable for the duration of the course. Example games sets presented include, but are not limited to, the scientific method, minerals, rocks, topographic maps, tectonics, geologic structures, volcanoes, and weather. The Earth Science Memory Game not only provides an effective review tool to improve success rates on broad scope exams, but is also customizable by the instructor, reusable, and easily constructed by common office supplies.

  9. Pressure-induced electronic and magnetic phase transitions in a Mott insulator: Ti-doped C a3R u2O7 bilayer ruthenate

    NASA Astrophysics Data System (ADS)

    Zou, T.; Cao, H. B.; Liu, G. Q.; Peng, J.; Gottschalk, M.; Zhu, M.; Zhao, Y.; Leão, J. B.; Tian, W.; Mao, Z. Q.; Ke, X.

    2016-07-01

    We report the hydrostatic pressure-induced electronic and magnetic phase transitions in a Mott insulator, a bilayer ruthenate C a3(Ru0.97Ti0.03 ) 2O7 , via electronic transport and single crystal neutron diffraction measurements. The system undergoes an insulator-metal transition at a very small hydrostatic pressure ≈0.04 GPa, followed by a magnetic phase transition around 0.3 GPa, suggesting that the low energy charge fluctuation and magnetic ordering couple to the pressure separately in this compound. The a b initio calculations show that the suppressed Ru O6 flattening induced by the pressure reduces the orbital polarization and gives rise to an insulator-metal transition preceding the magnetic phase transition.

  10. Low temperature solution synthesis of zinc antimonide, manganese antimonide, and strontium ruthenate compounds

    NASA Astrophysics Data System (ADS)

    Noblitt, Jennifer Lenkner

    2011-12-01

    Mn2Sb may be electrochemically deposited on a conducting substrate. Increasing use of natural resources for energy generation has driven research in the area of energy storage using superconducting materials. To meet energy storage needs the materials must have the following features: (i) safety, (ii) superconductivity at or above liquid nitrogen temperature (77 K), (iii) low cost manufacturing processes, and (iv) robustness. The search for materials that meet all of these criteria is on-going, specifically in the area of high temperature superconductivity. The precise mechanism of superconductivity is not known. A few theories explain some of the phenomenological aspects, but not all. In order to logically select and synthesize high temperature superconductors for industrial applications, the precise mechanism must first be elucidated. Additionally, a synthetic method that yields pure, high quality crystals is required because transition temperatures have been shown to vary depending on the preparation method due to impurities. Before measuring properties of superconductors, the development of a synthesis method that yields pure, high quality crystals is required. Most superconductors are synthesized using traditional solid state methods. This synthesis route precludes formation of kinetically stable phases. Low temperature synthesis is useful for probing thermodynamic verses kinetic stability of compounds as well as producing high quality single crystals. A novel low temperature hydrothermal synthesis of Sr-Ru-O compounds has been developed. These materials are important because of their interesting properties including superconductivity and ferromagnetism. Sr2RuO4 is particularly interesting as it is superconducting and isostructural to La2CuO 4, which is only superconducting when doped. Therefore, Sr2RuO 4 is a good choice for study of the mechanism of superconductivity. Additionally, new kinetically stable phases of the Sr-Ru-O family may be formed which may

  11. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited)

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.

    2010-12-01

    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education

  12. Preparation and properties of electrically conducting ceramics based on indium oxide-rare earth oxides-hafnium oxides

    SciTech Connect

    Marchant, D.D.; Bates, J.L.

    1983-09-01

    Electrically conducting refractory oxides based on adding indium oxide to rare earth-stabilized hafnium oxide are being studied for use in magnetohydrodynamic (MHD) generators, fuel cells, and thermoelectric generators. The use of indium oxide generally increases the electrical conductivity. The results of measurements of the electrical conductivity and data on corrosion resistance in molten salts are presented.

  13. Microstructure and properties of in-flight rare-earth doped thermal barrier coatings prepared by suspension plasma spray

    NASA Astrophysics Data System (ADS)

    Gong, Stephanie

    Thermal barrier coatings with lower thermal conductivity improve the efficiency of gas turbine engines by allowing higher operating temperatures. Recent studies were shown that coatings containing a pair of rare-earth oxides with equal molar ratio have lower thermal conductivity and improved sintering resistance compared to the undoped 4-4.5 mol.% yttria-stabilized zirconia (YSZ). In the present work, rare-earth doped coatings were fabricated via suspension plasma spray by spraying YSZ powder-ethanol suspensions that contained dissolved rare-earth nitrates. The compositions of the coatings determined by inductively coupled plasma mass spectroscopy verified that 68 +/- 8% of the rare-earth nitrates added into the suspension was incorporated into the coatings. Two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd 2O3/Yb2O3, Nd2O3/Gd 2O3, and Gd2O3/Yb2O 3) were produced and compared. The effect of dopant concentration and dopant pair type on the microstructure and properties of the coatings in the as-sprayed and heat treated conditions were investigated using XRD, SEM, TEM, STEM-EDX, and the laser flash method. The cross-sectional morphology of all coatings displayed columnar structure. The porosity content of the coating was found to increase with increasing dopant concentration, but did not significantly change with dopant pairs. Similarly, increasing the Nd2O3/Yb2O 3 concentration lowered the thermal conductivity of the as-sprayed coatings. Although the effect of changing dopant pair type is not as significant as increasing the dopant concentration, the coating that contained Gd2O 3/Yb2O3 exhibited the lowest conductivity compared to coatings that had other dopant pairs. Thermal conductivity measurement performed on the heat treated coatings indicated a larger conductivity increase for the rare-earth doped coatings. A detailed study on the

  14. Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Beucler, Éric; Drilleau, Mélanie; Mocquet, Antoine; Lognonné, Philippe; Banerdt, W. Bruce

    2015-03-01

    The planned InSight mission will deliver a single seismic station containing 3-component broadband and short-period sensors to the surface of Mars in 2016. While much of the progress in understanding the Earth and Moon's interior has relied on the use of seismic networks for accurate location of sources, single station approaches can be applied to data returned from Mars in order to locate events and determine interior structure. In preparation for the data return from InSight, we use a terrestrial dataset recorded at the Global Seismic Network station BFO, located at the Black Forest Observatory in Germany, to verify an approach for event location and structure determination based on recordings of multiple orbit surface waves, which will be more favorable to record on Mars than Earth due to smaller planetary radius and potentially lower background noise. With this approach applied to events near the threshold of observability on Earth, we are able to determine epicentral distance within approximately 1° (corresponding to ∼60 km on Mars), and origin time within ∼30 s. With back azimuth determined from Rayleigh wave polarization, absolute locations are determined generally within an aperture of 10°, allowing for localization within large tectonic regions on Mars. With these locations, we are able to recover Earth mantle structure within ±5% (the InSight mission requirements for martian mantle structure) using 1D travel time inversions of P and S travel times for datasets of only 7 events. The location algorithm also allows for the measurement of great-circle averaged group velocity dispersion, which we measure between 40 and 200 s to scale the expected reliable frequency range of the InSight data from Earth to Mars data. Using the terrestrial data, we are able to resolve structure down to ∼200 km, but synthetic tests demonstrate we should be able to resolve martian structure to ∼400 km with the same frequency content given the smaller planetary size.

  15. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  16. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1996-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  17. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  18. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  19. All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal

    NASA Astrophysics Data System (ADS)

    Xia, Kangwei; Kolesov, Roman; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D.; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-08-01

    All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce3 + ion in YAG by coherent population trapping.

  20. Effect of Rare Earth Oxide Content on Nanograined Base Metal Electrode Multilayer Ceramic Capacitor Powder Prepared by Aqueous Chemical Coating Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Xiaohui; Kim, Jinyong; Li, Longtu

    2013-02-01

    The aqueous chemical coating route is highly effective in preparing BaTiO3 nanoparticles uniformly coated with additives. Such nanoparticles can be used to produce nano-grained temperature stable BaTiO3 ceramics with core-shell structure, fulfilling the need of next-generation ultrathin layer base metal electrode (BME) multilayer ceramic capacitors (MLCCs). Rare earth oxides are an important class of additives owing to their ability to fulfill both donor and acceptor roles. In this paper, the effects of Y2O3 and Ho2O3 co-dopant content on dielectric and microstructural properties were investigated. By applying chemical coating, BaTiO3-based high performance temperature stabilized ceramics with the average grain size of about 130 nm, which met the requirement of next generation BME MLCCs, were obtained.

  1. Preparation, characterization, and second-harmonic generation of a Langmuir-Blodgett film based on a rare-earth coordination compound

    SciTech Connect

    Wang, K.Z.; Huang, C.H.; Xu, G.X.; Zhao, X.S.; Xie, X.M.; Wu, N.Z.; Xu, Y.; Liu, Y.Q.; Zhu, D.B.

    1994-11-01

    The rare-earth coordination compound (E)-N-hexadecyl-4-(2-(4-(dimethylamino)phenyl)-ethenyl)pyridinium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato)dysprosium(III) was synthesized. The LB films were prepared and characterized by UV-vis, IR, X-ray photoelectron spectroscopy, and low-angle X-ray diffraction. High-quality LB films up to 50 layers on the hydrophilic substrates of quartz, calcium fluoride, and glass were obtained. From the second-harmonic generation measurement, second-order molecular hyperpolarizability {beta} of the dysprosium complex was estimated to be about (6.6-9.3) x 10{sup {minus}28} esu. 14 refs., 6 figs., 1 tab.

  2. PL and EL characteristics in Bi- and rare earth-co-doped (La1-XGaX)2O3 phosphor thin films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Nishi, Yuki; Minami, Tadatsugu

    2011-12-01

    Multicolor photoluminescence (PL) and electroluminescence (EL) were observed from newly developed Bi- and rare earth (RE)-co-doped (La1-XGaX)2O3 ((La1-XGaX)2O3:Bi,RE) phosphor thin films. (La1-XGaX)2O3:Bi,RE phosphor thin films were prepared by varying the Ga content (Ga/(La+Ga) atomic ratio) or the co-doped RE content (RE/(RE+La+Ga) atomic ratio) under co-doping Bi at a constant content (Bi/(Bi+La+Ga) atomic ratio) of 3 at.% using a combinatorial r.f. magnetron sputtering deposition method. High PL intensity was obtained in postannealed (La0.9Ga0.1)2O3:Bi,RE phosphor thin films prepared with a Ga content around 10 at.%; TFEL devices fabricated using the phosphor thin films exhibited high luminance. The obtained luminance intensities in EL and PL in the phosphor thin films prepared with various contents of co-doped RE, such as Dy, Er, Eu, Tb and Tm changed considerably as the kind and content of RE were varied. Color changes from blue and blue-green to various colors in PL and EL emissions, respectively, were obtained in postannealed (La0.9Ga0.1)2O3:Bi,RE phosphor thin films, i.e., films prepared by co-doping Bi at a constant content with various REs at varying levels of content. All the observed emission peaks in PL and EL from (La0.9Ga0.1)2O3:Bi,RE phosphor thin films were assigned to either the broad emission originating from the transition in Bi3+ or the visible emission peaks originating from the transition in the co-doped trivalent RE ion.

  3. Synthesis and magnetic properties of rare earth ruthenates, Ln{sub 5}Ru{sub 2}O{sub 12} (Ln=Pr, Nd, Sm-Tb)

    SciTech Connect

    Bharathy, M.; Gemmill, W.R.; Fox, A.H.; Darriet, J.; Smith, M.D.; Hadermann, J.; Remy, M.S.; Loye, H.-C. zur

    2009-05-15

    Single crystals of Ln{sub 5}Ru{sub 2}O{sub 12} (Ln=Pr, Nd, Sm-Tb) were grown out of either NaOH or KOH fluxes in sealed silver tubes. The crystals of all the phases were observed to be twinned as confirmed by TEM studies. The series crystallize in the C2/m monoclinic system with lattice parameters, a=12.4049(4)-12.7621(6) A, b=5.8414(2)-5.9488(3) A, c=7.3489(2)-7.6424(4) A, beta=107.425(3)-107.432(2){sup o} and Z=2. The crystal structure is isotypic with the defect/disorder model of Ln{sub 5}Re{sub 2}O{sub 12} (Ln = Y, Gd) and consists of one dimensional edge shared RuO{sub 6} octahedral chains separated by a two dimensional LnO{sub x} polyhedral framework. Magnetic measurements indicate paramagnetic and antiferromagnetic behavior for Ln=Nd, Sm-Gd and Ln=Tb, respectively. - Graphical abstract: Single crystals of Ln{sub 5}Ru{sub 2}O{sub 12} (Ln=Pr, Nd, Sm-Tb) were grown out of NaOH/KOH fluxes in sealed silver tubes. The crystal structure consists of one-dimensional chains of edge-sharing RuO{sub 6} octahedral pairs along the b axis, separated by a two dimensional LnO{sub x} polyhedral framework. Each RuO{sub 6} octahedral pair is separated alternately by Ln atoms and its disordered component, observed as stacking faults in the HRTEM images.

  4. Lessons Learned on Operating and Preparing Operations for a Technology Mission from the Perspective of the Earth Observing-1 Mission

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Howard, Joseph

    2000-01-01

    The New Millennium Program's first Earth-observing mission (EO-1) is a technology validation mission. It is managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland and is scheduled for launch in the summer of 2000. The purpose of this mission is to flight-validate revolutionary technologies that will contribute to the reduction of cost and increase of capabilities for future land imaging missions. In the EO-1 mission, there are five instrument, five spacecraft, and three supporting technologies to flight-validate during a year of operations. EO-1 operations and the accompanying ground system were intended to be simple in order to maintain low operational costs. For purposes of formulating operations, it was initially modeled as a small science mission. However, it quickly evolved into a more complex mission due to the difficulties in effectively integrating all of the validation plans of the individual technologies. As a consequence, more operational support was required to confidently complete the on-orbit validation of the new technologies. This paper will outline the issues and lessons learned applicable to future technology validation missions. Examples of some of these include the following: (1) operational complexity encountered in integrating all of the validation plans into a coherent operational plan, (2) initial desire to run single shift operations subsequently growing to 6 "around-the-clock" operations, (3) managing changes in the technologies that ultimately affected operations, (4) necessity for better team communications within the project to offset the effects of change on the Ground System Developers, Operations Engineers, Integration and Test Engineers, S/C Subsystem Engineers, and Scientists, and (5) the need for a more experienced Flight Operations Team to achieve the necessary operational flexibility. The discussion will conclude by providing several cost comparisons for developing operations from previous missions to EO-1 and

  5. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  6. ISS Update: Earth Observations From Space Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

  7. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher

  8. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    NASA Astrophysics Data System (ADS)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  9. Optical study and ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod-arrays synthesized by combine two-step process

    NASA Astrophysics Data System (ADS)

    Parra, Mohammad Ramzan; Haque, Fozia Z.

    2015-10-01

    Highly dense ZnO nanorod-arrays were successfully synthesized with uniform c-axis growth by using combine two-step process: sol-gel spin coating followed by the aqueous solution growth method. Structural and optical properties of ZnO nanorod-arrays were investigated. The X-ray diffraction results revealed that ZnO nanorod arrays exhibit wurtzite hexagonal crystal structure with a dominant (002) peak with high crystallinity. Nanorods of 3-4 μm length and 500 nm diameter, with surface roughness ˜20 nm were observed. Furthermore, Raman spectroscopic results revealed the presence of E 2 peak ˜438 cm-1 which again corroborated the existence of wurtzite crystal structures assigned to ZnO. The optical transmittance spectrum indicated that the transmittance of more than 80% was observed in the visible and infrared (IR) regions with the optical band-gap energy ˜3.35 eV. Photoluminescence spectrum showed peaks in ultra-violet (382.0 nm) and green region (524.9 nm), which specified good-quality crystallite formation containing high density of surface defects, zinc interstitials and oxygen-vacancies. Ruthenizer (II) N3-dye loaded sensitized solar cell test illustrated that the uniform ZnO nanorod-arrays as working electrode with a short circuit current density of 3.99 mA/cm2, fill factor ˜50% and overall power conversion efficiency (η) ˜1.36% might be a promising electrode material of dye sensitized solar cell application.

  10. Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates

    NASA Astrophysics Data System (ADS)

    Liu, L. X.; Ma, Z. W.; Xie, Y. Z.; Su, Y. R.; Zhao, H. T.; Zhou, M.; Zhou, J. Y.; Li, J.; Xie, E. Q.

    2010-01-01

    Rare earth (RE) ions (Eu3+,Tb3+) doped uniaxially aligned HfO2 nanotubes were prepared by radio frequency sputtering with electrospun polyvinylpyrolidone (PVP) nanofiber templates. The as-sputtered samples were annealed at different temperatures (500-1000 °C) in O2 ambient in order to remove their PVP cores and make the HfO2 shells well crystallized. Morphologies and crystal configuration of the samples were investigated by optical microscope, scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. The nanotubes have uniform intact structure with an average diameter of 200 nm and a wall thickness of about 25 nm. Photoluminescence (PL) properties of the RE doped nanotubes have been studied in detail. The emission peaks of the aligned HfO2:Eu and HfO2:Tb nanotubes could correspond to the D50→F7J (J =0-2) transitions of Eu3+ and the D54→F7J (J =3-6) transitions of Tb3+, respectively. The PL intensities of the HfO2:RE3+ nanotubes were higher by several orders of magnitude than that of the films. This enhancement in the PL could be ascribed to the high density of surface states of HfO2:RE3+ nanotubes.

  11. X-ray Structure Analysis of Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) Bound to Human Serum Albumin Reveals Two Ruthenium Binding Sites and Provides Insights into the Drug Binding Mechanism.

    PubMed

    Bijelic, Aleksandar; Theiner, Sarah; Keppler, Bernhard K; Rompel, Annette

    2016-06-23

    Ruthenium(III) complexes are promising candidates for anticancer drugs, especially the clinically studied indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (NKP-1339). Several studies have emphasized the likely role of human serum proteins in the transportation and accumulation of ruthenium(III) complexes in tumors. Therefore, the interaction between KP1019 and human serum albumin was investigated by means of X-ray crystallography and inductively coupled plasma mass spectrometry (ICP-MS). The structural data unambiguously reveal the binding of two ruthenium atoms to histidine residues 146 and 242, which are both located within well-known hydrophobic binding pockets of albumin. The ruthenium centers are octahedrally coordinated by solvent molecules revealing the dissociation of both indazole ligands from the ruthenium-based drug. However, a binding mechanism is proposed indicating the importance of the indazole ligands for binding site recognition and thus their indispensable role for the binding of KP1019. PMID:27196130

  12. X-ray Structure Analysis of Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) Bound to Human Serum Albumin Reveals Two Ruthenium Binding Sites and Provides Insights into the Drug Binding Mechanism

    PubMed Central

    2016-01-01

    Ruthenium(III) complexes are promising candidates for anticancer drugs, especially the clinically studied indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (NKP-1339). Several studies have emphasized the likely role of human serum proteins in the transportation and accumulation of ruthenium(III) complexes in tumors. Therefore, the interaction between KP1019 and human serum albumin was investigated by means of X-ray crystallography and inductively coupled plasma mass spectrometry (ICP-MS). The structural data unambiguously reveal the binding of two ruthenium atoms to histidine residues 146 and 242, which are both located within well-known hydrophobic binding pockets of albumin. The ruthenium centers are octahedrally coordinated by solvent molecules revealing the dissociation of both indazole ligands from the ruthenium-based drug. However, a binding mechanism is proposed indicating the importance of the indazole ligands for binding site recognition and thus their indispensable role for the binding of KP1019. PMID:27196130

  13. Preparation, characterization and application of Saussurea tridactyla Sch-Bip as green adsorbents for preconcentration of rare earth elements in environmental water samples

    NASA Astrophysics Data System (ADS)

    Zhang, Qiangying; He, Man; Chen, Beibei; Hu, Bin

    2016-07-01

    This paper deals with preparation, characterization and application of the Saussurea tridactyla Sch-Bip (STSB) as a new green adsorbent for separation of matrix elements and preconcentration of rare earth elements (REEs) in environmental water samples. The pretreated STSB adsorbent with 2 mol L- 1 NaOH is characterized with higher surface area and adsorption capacities in comparison with a raw STSB material. The new adsorbent was used for the development of on-line solid phase extraction (SPE) for the determination of REEs by radial viewing 27 MHz inductively coupled plasma optical emission spectrometry (ICP-OES). Various parameters affecting the adsorption/desorption procedure were optimized. The adsorption capacities for the STSB were found to be 62.2 (Y)-153 mg g- 1 (Tm). Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.06 (Yb)-8.77 (Sm) ng mL- 1. The relative standard deviations (RSDs) for 7 replicate determinations of target REEs at low concentration level ranged from 2.4 (Yb) to 8.9 (Sm)%. The adsorption isotherm fitted Langmuir model and the adsorption kinetics fitted well with both Pseudo-first order and Pseudo-second order models. The predominant adsorption mechanism is ion exchange. The STSB pretreated with 2 mol L- 1 NaOH has been demonstrated to be low cost, green and environment friendly adsorbent, featuring with high adsorption capacity, wide pH range, and fast adsorption/desorption kinetics for target REEs with long lifetime. The proposed method was applied to the determination of REEs in East Lake, Yangtze River and rain water samples.

  14. Alignment of Learning Goals, Assessments and Curricula in an Earth Sciences Program to Prepare the Geoscience Workforce for the 21st Century

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Schmitt, J.

    2013-12-01

    The Dept. of Earth Sciences, Montana State University, recently completed a comprehensive revision of its undergraduate curriculum to meet challenges and opportunities in training the next generation geoscience workforce. The department has 280 undergraduate majors in degree options that include: geology, geography (physical and human), snow science, paleontology and GIS/planning. We used a 'backward design' approach by first considering the profile of a student leaving our program: what should they know and be able to do, in anticipation of professional development for traditional (exploration, environmental, regulatory agencies) and non-traditional (planning, policy, law, business, teaching) jobs or for further training in graduate school. We adopted an Earth system approach to be better aligned with contemporary approaches to Earth science and to demonstrate the connections between sub-disciplines across the curriculum. Learning sequences were designed according to Bloom's Taxonomy to develop higher level thinking skills (starting from observations and progressing to descriptions, interpretations, applications, integration of multiple lines of evidence, synthetic and analytical thinking and evaluation). Central themes are reinforced in multiple classes: history and evolution of the Earth system, composition and architecture of Earth, surface of Earth and the 'critical zone' and human dimensions. The cornerstones of the curriculum are strong background in cognate sciences, geologic 'habits of mind', an emphasis on geologic processes and field instruction. Ancillary learning goals include development of quantitative, communication, and interpersonal skills; use of Earth data and modeling; systems thinking; research and research-like experiences; and applications to societal issues. The first year course of study includes a slate of courses to explore the Earth system, primarily to engage and recruit students to the major. Second year studies are foundational for

  15. Preparation with a facile template-free method of uniform-sized mesoporous microspheres of rare earth (La, Ce, Pr, Nd) oxides

    SciTech Connect

    Ji, Pengfei; Xing, Mingyang; Bagwasi, Segomotso; Tian, Baozhu; Chen, Feng; Zhang, Jinlong

    2011-11-15

    Highlights: {yields} Mesoporous microspheres of light rare earth hydroxycarbonates and oxides were fabricated. {yields} The supersaturated urea has important effect on formation of mesoporous microspheres. {yields} The influences of [cation]/[urea] ratio and amount of water on the formation of spherical crystallites were discussed. -- Abstract: Mesoporous microspheres of light rare earth (La, Ce, Pr, Nd) hydroxycarbonates and oxides were successfully fabricated by a facile surfactant free hydrothermal method in supersaturated aqueous urea solution. The techniques of XRD, TEM, SEM, TG/DTA and N{sub 2} adsorption-desorption were employed to investigate the structure and formation process of mesoporous microspheres. It was revealed that supersaturated urea not only serve as a reactant and pH modifier in the reaction system but also guide the oriented assembly of hydroxycarbonate crystallites into microspheres by acting as a structure-directing agent. The microspheres of rare earth oxides could easily be obtained by simple calcination of corresponding hydroxycarbonates precursors without undergoing morphology changes. In addition, the influences of rare earth precursor and urea concentrations on the formation of microspheres were also investigated.

  16. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  17. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  18. Earth Resources

    ERIC Educational Resources Information Center

    Brewer, Tom

    1970-01-01

    Reviews some of the more concerted, large-scale efforts in the earth resources areas" in order to help the computer community obtain insights into the activities it can jointly particpate in withthe earth resources community." (Author)

  19. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    PubMed

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al. PMID:19441543

  20. Teaching Rocks and Minerals in the Context of Dynamic Earth Systems and Interactions: Using the Three Dimensions of the Next Generation Science Standards as an Organizing Framework to Engage Learners in Teacher Preparation Courses

    NASA Astrophysics Data System (ADS)

    Brady, M. E.; Nelson, F.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for a shift from science learning as a fixed body of decontextualized facts toward a deliberate integration of three dimensions that transcend instructional level: 1) Disciplinary Core Ideas, 2) Crosscutting concepts, and 3) Science & Engineering Practices. This new approach to K-12 science education requires a dedicated effort to address teacher preparation in ESS. Here, we present an instructional model that explicitly integrates the three dimensions of the NGSS as an organizing framework in large-enrollment, undergraduate introductory geoscience courses targeted toward future teachers. This curriculum development is part of a campus-wide collaboration among science, engineering, and education faculty to enhance science teacher preparation. This approach reflects NGSS conceptual shifts and promotes a learner-centered environment where students regularly engage with each other and course material as part of the course: 1) In terms of content, Earth systems and interactions, are emphasized; rocks and minerals are discussed in the context of their use to understand and predict changes over Earth's past, present, and future; and engineering and technology are incorporated into discussions of mediating human impacts on Earth systems. 2) Cross-cutting concepts, such as cycles and flows, are explicitly referenced throughout the course to promote connections between and application of prior knowledge and new information or situations. 3) Guided by explicit prompts for partner discussions in class, students regularly engage in scientific practices, such as arguing by evidence and constructing an explanation. We will provide examples of student learning assessment, including in-class responses pre- and post- partner discussions, short written reflections, and cumulative projects. Ongoing evaluation of this instructional approach will include pre- and post- Geoscience Concept Inventory responses.

  1. Photon management properties of rare-earth (Nd,Yb,Sm)-doped CeO2 films prepared by pulsed laser deposition.

    PubMed

    Balestrieri, Matteo; Colis, Silviu; Gallart, Mathieu; Schmerber, Guy; Bazylewski, Paul; Chang, Gap Soo; Ziegler, Marc; Gilliot, Pierre; Slaoui, Abdelilah; Dinia, Aziz

    2016-01-28

    CeO2 is a promising material for applications in optoelectronics and photovoltaics due to its large band gap and values of the refractive index and lattice parameters, which are suitable for silicon-based devices. In this study, we show that trivalent Sm, Nd and Yb ions can be successfully inserted and optically activated in CeO2 films grown at a relatively low deposition temperature (400 °C), which is compatible with inorganic photovoltaics. CeO2 thin films can therefore be efficiently functionalized with photon-management properties by doping with trivalent rare earth (RE) ions. Structural and optical analyses provide details of the electronic level structure of the films and of their energy transfer mechanisms. In particular, we give evidence of the existence of an absorption band centered at 350 nm from which energy transfer to rare earth ions occurs. The transfer mechanisms can be completely explained only by considering the spontaneous migration of Ce(3+) ions in CeO2 at a short distance from the RE(3+) ions. The strong absorption cross section of the f-d transitions in Ce(3+) ions efficiently intercepts the UV photons of the solar spectrum and therefore strongly increases the potential of these layers as downshifters and downconverters. PMID:26699802

  2. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  3. Preparation and Dielectric Measurements of the Rare Earth Green Phases R2BaCuO(5-x) (R = Y, Sm, Gd, Dy, Ho, Er, Yb)

    NASA Technical Reports Server (NTRS)

    Gonzalez-Titman, Carlos

    1994-01-01

    It has been demonstrated that R2BaCuO(5-x) (R = Y, Sm, Gd, Dy, Ho, Er, Yb) does not undergo significant densification unless the sintering temperatures are near the incongruent melting point or the sintering times are long. Good quality powders of Y2BaCuO(5-x) have been synthesized by using oxide raw materials or precursors such as acetates and nitrates. The acetates- and the nitrates-derived yttrium green phase resulted in finer particle sizes, acceptable dielectric properties and lower melting temperatures than those processed via oxide raw materials. The hot pressing technique has been employed to produce a dense R2BaCuO(5-x) (R=Y,Gd) substrate with satisfactory dielectric properties. Reactivity to reducing conditions, i.e. graphite die, limited the optimization of the properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO,.,,. Oxygen treatment at 950 OC has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO(5-x). Oxygen treatment at 950 C has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. The dielectric constants of the rare earth green phases R2BaCuO(5-x) were found to be low. Relaxation peaks were detected at low temperatures (T less than 150 K) and at high temperatures (150 less than T greater than 420 K). The dielectric losses and conductivities at 77 K were measured to be in the range of 10(exp -4) and 10(exp -12) (Omega-cm)(exp -1), respectively. Many parameters were found to exhibit dependencies on the rare earth cation sizes.

  4. Spectral diversity and photometric behavior of main-belt and near-Earth vestoids and (4) Vesta: A study in preparation for the Dawn encounter

    NASA Astrophysics Data System (ADS)

    Hicks, Michael D.; Buratti, Bonnie J.; Lawrence, Kenneth J.; Hillier, John; Li, Jian-Yang; Reddy, Vishnu; Schröder, Stefan; Nathues, Andreas; Hoffmann, Martin; Corre, Lucille Le; Duffard, Rene; Zhao, Hai-Bin; Raymond, Carol; Russell, Christopher; Roatsch, Thomas; Jaumann, Ralf; Rhoades, Heath; Mayes, Deronda; Barajas, Tzitlaly; Truong, Thien-Tin; Foster, James; McAuley, Amanda

    2014-06-01

    In anticipation of the Dawn Mission to 4 Vesta, we conducted a ground-based campaign of Bessel BVRI filter photometry of five V-type near-Earth asteroids over a wide range of solar phase angles. We also obtained medium-resolution optical spectroscopy (0.38 μm < λ < 0.92 μm; R ˜ 500) of sixteen near-Earth and main-belt V-type asteroids in order to investigate their spectral diversity and to draw connections between spacecraft data of Vesta and V-type asteroids. Our disk-integrated photometry extended the excursion in solar phase angle beyond the maximum of 24° available from Earth for Vesta to 87°, which is more typical of the geometry during the Dawn approach and mapping phases. The majority of our broad-band observations were obtained at the JPL 0.6-m Table Mountain Observatory but multiple nights were also contributed by the Calar Alto 1.2-m and 2.2-m telescopes, as well as by the Purple Mountain 1-m Schmidt. Our results include a determination of rotation periods for 4 asteroids, identification of a binary candidate and four new V-type asteroids, including a confirmation of two main-belt V-type asteroids beyond the Jupiter 1:3 resonance (Cruikshank, D.P., Tholen, D.J., Bell, J.F., Hartmann, W.K., Brown, R.H. [1991]. Icarus 89, 1-13; Lazzaro, D. et al. [2000]. Science 288, 2033-2035; Roig, F., Gil-Hutton, R. [2006]. Icarus 183(2), 411-419; Moskovitz, N.A., Jedicke, R., Gaidos, E., Willman, M., Nesvorný, D., Fevig, R., Ivezić, Ž. [2008]. Icarus 198, 77-90). This latter finding supports the hypothesis that some vestoids may be crustal fragments of a disrupted basaltic parent body compositionally similar to 4 Vesta. We also obtained rotationally resolved medium resolution spectra of Vesta during the Dawn orbit insertion phase, which will be valuable for calibration and comparison of spacecraft data. Modeling of a composite V-type asteroid phase curve yielded a generic photometric model for V asteroids. We also find that a significant amount of the spectral

  5. Blue, yellow and orange color emitting rare earth doped BaCa2Al8O15 phosphors prepared by combustion method

    NASA Astrophysics Data System (ADS)

    Yerpude, A. N.; Dhoble, S. J.; Reddy, B. Sudhakar

    2014-12-01

    Eu2+, Dy3+, Sm3+ activated BaCa2Al8O15 phosphors were prepared by the combustion method. The phosphor powders were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectrophotometer. Photoluminescence spectra of BaCa2Al8O15:Eu2+ phosphors show emission wavelength at 435 nm that corresponds to 4f65d1→4f7 transition of Eu2+ ion by keeping excitation wavelength extending broad-band from 270 to 400 nm centered at 334 nm. The Dy3+ doped BaCa2Al8O15 phosphors shows blue emission (485 nm) and yellow emission (566 nm) under the excitation of 347 nm, corresponding to the 4F9/2→6H15/2 transition and 4F9/2→6H13/2 transition of Dy3+ ions, respectively. The Sm3+ doped BaCa2Al8O15 phosphors have shown strong orange emission at 604 nm corresponding to the 4G5/2→6H7/2 transition of Sm3+ with intense excitation wavelength at 406 nm. Scanning electron microscopy has been used for exploring the size and morphological properties of the prepared phosphors. The obtained results show that the phosphors have potential application in the field of solid state lighting.

  6. Structural and luminescent properties of Eu2+ and Nd3+-doped mixed alkaline earth aluminates prepared by the sol-gel method.

    PubMed

    Čelan Korošin, Nataša; Bukovec, Nataša; Bukovec, Peter

    2015-01-01

    Alkaline earth aluminates with the overall nominal compositions Mg0.5Sr0.5Al2O4 (MSA), Ca0.5Mg0.5Al2O4 (CMA) and Ca0.5Sr0.5Al2O4 (CSA) doped with 0.5 mol% of Eu2+ and 0.25 mol% of Nd3+ ions were obtained by a modified aqueous sol-gel method and annealed in a reducing atmosphere at 900, 1000, 1100 and 1300 °C. The sample structures were investigated by XRD. Solid solubility was only confirmed for the CSA samples. UV-excited luminescence was observed in the blue region (λ = 440 nm) in the samples of CMA containing the monoclinic CaAl2O4 phase and in the green region (λ = 512 nm) in the samples of MSA containing hexagonal or monoclinic phases of SrAl2O4. The CSA samples, besides the blue region, exhibited an extended shoulder in the green region, which proved the existence of some pure strontium phases. Co-doped Nd3+ ions did not affect the wavelength of the emitted light, but the persistent luminescence at room temperature was greatly extended with respect to the aluminates doped with Eu2+ ions only. PMID:26085411

  7. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration

    NASA Astrophysics Data System (ADS)

    Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena

    2012-12-01

    Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.

  8. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation; getting…

  9. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  10. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  11. Preparing for Catastrophic Disasters: Application of Earth Science and Engineering Data, and Loss Scenarios for Emergency Management and Disaster Recovery Planning

    NASA Astrophysics Data System (ADS)

    Eisner, R.

    2006-12-01

    Catastrophic disasters, either man or nature caused, pose unique challenges to federal, state and local governments. The complex interactions of lifeline disruption, structural damage, and population displacement are difficult to comprehend or predict. As the preparation for and response to the landfall of Hurricane Katrina in 2005 illustrated, forecasting the occurrence of the event does not adequately define the complexity of the consequences. Preparing for the occurrence of a rapid onset disaster that occurs without warning creates additional challenges to the emergency management community. If the event is catastrophic, it will quickly overwhelm local, regional and state resources. The ability to comprehend the magnitude and complexity of such a disruption will also be overwhelmed. The State of California, in order to gain insights into the complexity and demands of a catastrophic earthquake event (historic events include Central California [1906, 1868], Southern California [1857], and possible future events), has partnered with the United States Geological Survey, Charles Kircher and Associates, PBS&J and FEMA to exercise and test the State's response to a catastrophic recurrence of the 1906 San Francisco earthquake. As Kircher notes in his paper, USGS ground motions, enhanced structure inventories, and FEMA' loss estimation tool, HAZUS, are used to define the impact on the San Francisco Bay Region infrastructure, resources and economy. In November of 2006, this scenario will serve as the structure of a 10-county response exercise that will be played out over 36 continuous hours, replicating lifeline, communications and transportation disruption. The exercise, funded by the California Office of Homeland Security, is the first statewide catastrophic disaster response to be carried out in the State and should serve as both a model for integration of natural hazard information into homeland security planning and for developing training that addresses the complex

  12. Superhydrophobic diatomaceous earth

    DOEpatents

    Simpson, John T.; D'Urso, Brian R.

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  13. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  14. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  15. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  16. Biodistribution of the novel anticancer drug sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] KP-1339/IT139 in nude BALB/c mice and implications on its mode of action.

    PubMed

    Bytzek, Anna K; Koellensperger, Gunda; Keppler, Bernhard K; G Hartinger, Christian

    2016-07-01

    The ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP-1339/IT139) has entered clinical trials as the more soluble alternative to the indazolium compound KP1019. In order to get insight into its distribution and accumulation throughout a living organism, KP-1339/IT139 was administered intravenously in non-tumor bearing nude BALB/c mice and the Ru content in blood cells and plasma, bone, brain, colon, kidneys, liver, lung, muscle, spleen, stomach and thymus was determined at several time points. The Ru concentration in blood cells and plasma was found to increase slightly within the first hours of analysis, with the Ru concentration being 3-times higher in plasma compared to blood cells. The plasma samples were subjected to analysis by capillary zone electrophoresis (CZE) and size exclusion/anion exchange chromatography (SEC-IC) both coupled to inductively coupled plasma-mass spectrometry (ICP-MS) and a large majority of the total Ru content was found attached to mouse serum albumin (MSA), confirming similar behavior to KP1019 in an in vivo setting. Within 1h, the peak ratio of approximately 1.2-1.5 Ru per albumin molecule was reached which declined to about 1 Ru per albumin molecule within 24h. Beside the MSA adduct a higher molecular weight species was observed probably stemming from MSA conjugates. In addition, the tissue samples were mineralized by microwave digestion and analyzed for their Ru content. The highest Ru levels were found in colon, lung, liver, kidney and notably in the thymus. The peak Ru concentrations in these tissues were reached 1-6h after administration and declined slowly over time. PMID:26993078

  17. Sun-Earth Day, 2001

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  18. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    SciTech Connect

    Coffey, D.; DeMarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Moessbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, B{sub hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of B{sub hyperfine} at {sup 99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu{sub 2} and HoRu{sub 2}. Specific heat, magnetization, magnetic susceptibility, Moessbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large B{sub hyperfine} in the Moessbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, B{sub hyperfine} is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  19. Absence of the hyperfine magnetic field at the Ru site in ferromagnetic rare-earth intermetallics

    NASA Astrophysics Data System (ADS)

    Coffey, D.; Demarco, M.; Ho, P. C.; Maple, M. B.; Sayles, T.; Lynn, J. W.; Huang, Q.; Toorongian, S.; Haka, M.

    2010-05-01

    The Mössbauer effect (ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, Bhyperfine , at the ME active site. This is the case in the ruthenates, where the temperature dependence of Bhyperfine at R99u sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu2 and HoRu2 . Specific heat, magnetization, magnetic susceptibility, Mössbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 83.1 and 15.3 K, respectively. Despite the ferromagnetic order of the rare-earth moments in both systems, there is no evidence of a correspondingly large Bhyperfine in the Mössbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out ab initio calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, Bhyperfine is very small at those sites. This occurs because the 4d Ru electrons form broad conduction bands rather than localized moments. These 4d conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare-earth moments.

  20. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  1. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  2. Earth Flats

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Mack, J.; Hartig, G.; Sirianni, M.

    2005-10-01

    Since the last ISR 2003-02 on the use of Earth observations for a source of flat field illumination, several hundred more observations have been obtained with the full set of HRC standard filters and four narrow band WFC filters. While most of these observation show streaks or other nonuniform illumination, a significant subset are defect free and can be used to construct complete LP-flats. Many of the existing pipeline flats are confirmed to a precision of ~1%, which validates the stellar L-flat technique. Exceptions are the WFC, where a shutter light leak causes a systematic central contamination of a few percent and limits the verification accuracy to ~2%. Other exceptions are the four longest wavelength HRC filters, which show systematic differences with the pipeline flats. This discrepancy is apparently caused by stray light originating from the detector surface, where most of the longest wavelength photons are reflected and then scattered back from nearby focal plane structures. Because this complete set of HRC Earth flats is more appropriate than the pipeline flats for large diffuse objects such as the Moon, Jupiter, or the Orion Nebula, the set is now available on the STScI/ACS website. Earth flats also measure the small and intermediate scale P-flat structure. Due to slight deviations from OTA like illumination in the lab, the flat field corrections in the dust mote regions are 1-2% better with Earth flats. The trend found in ACS ISR 2005-09 for an increase toward the UV for more pixels with non-Poisson statistical distributions is confirmed for the F330W Earth flats, where up to 3% of the pixels are in error by >1%. Most of this newly discovered population of deviant pixels are dark with low responses; however, the effect of these erroneous P-flat values on stellar photometry is less than 0.1%.

  3. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  4. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  6. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  7. Preparing Protein Samples

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.

  8. Characterization of a rare earth oxide obtained from xenotime mineral

    SciTech Connect

    Vernilli, Fernando . E-mail: fernando.vernilli@demar.faenquil.br; Camargo Vernilli, Daniela; Ferreira, Bento; Silva, Gilbert

    2007-01-15

    This paper reports on the characterization of a rare earth oxide obtained by hydrometallurgy of the mineral xenotime, an yttrium phosphate containing other rare earths, and comparison with mixtures of rare earth oxides prepared in different ways. The results indicated that hydrometallurgy from xenotime yielded a solid solution of the rare earth oxides. However, when the pure rare earth oxides were simply mixed physically then heat-treated at 1000 deg. C, a similar solid solution was not obtained. On the other hand, when the mixtures were prepared using a co-precipitation process, subsequent heat treatment did produce oxide solid solutions similar to that produced by hydrometallurgy of xenotime.

  9. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  10. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  11. The Lifeworld Earth and a Modelled Earth

    NASA Astrophysics Data System (ADS)

    Juuti, Kalle

    2014-08-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the Earth, science's view of the Earth as an object—a celestial body—has been applied. I reanalysed data published in Vosniadou and Brewer's (Cognit psychol 24:535-585, 1992) seminal paper. According to my reanalysis of their interview material, it is plausible to conclude that the Earth as an infinite surface is the way to experience the Earth. Further, the `dual Earth model' is the first model of the Earth as an object. I conclude that experiences in the lifeworld need to be taken into consideration more seriously in science education research.

  12. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  14. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  15. Camcorders in Space Shuttle earth observations

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A project to evaluate the use of commercially available camcorder systems during Shuttle flights is discussed, focusing on the use of an 8-mm camcorder for earth observations during the STS-30 mission in May, 1989. The camcorder with a 2/3-inch CCD is described, noting the modifications to prepare the camcorder for use on the Shuttle. The results of the camcorder project are summarized, listing the types of earth-viewing video images that were aquired with the camcorder.

  16. Creating Next Generation Teacher Preparation Programs to Support Implementation of the Next Generation Science Standards and Common Core State Standards in K-12 Schools: An Opportunity for the Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.

    2015-12-01

    A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.

  17. Earth Observing System, Introduction

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Much is known about the Earth, but the unifying concepts are still only beginning to be established. An exposition of the key issues in Earth science is neither simple or concise. From the scientific questions at hand there are many interconnections among them and the view of the Earth as a system is essential to their solution. The Earth science goals for the 1990's are presented for the following areas: hydrologic cycle; biogeochemical cycles; climatological processes; geophysical processes; oceanography; and solid earth.

  18. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  19. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  20. Earth on the Move.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  1. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  2. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  3. Earth Science, K-12.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Enochs, Larry G.

    1987-01-01

    Argues that the teaching of earth science is largely neglected in the elementary science curriculum. Provides examples of how more instruction in the earth sciences at all levels can enhance decision-making skills. Discusses the relationship between various learning theories and certain instructional strategies in earth science. (TW)

  4. Interior of the Earth

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1984-01-01

    Basic questions regarding the interior of the Earth in the 1990's are discussed. Research problems in the areas of plate tectonics, the Earth mantle the Earth core, and continental structure are discussed. Observational requirements of the GRAVSAT satellite mission are discussed.

  5. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect

    Zhang, Zhi-Jun; Lin, Xiao; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ► The O{sup 2−}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ► The 4f–5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ► There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130–157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and O–Zr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2−}-Sm{sup 3+}, O{sup 2−}-Dy{sup 3+} and O{sup 2−}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2−}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  6. LIFE AND EARTH SCIENCE, JUNIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    MAHLER, FRED

    CURRICULUM GUIDES FOR GRADE 7 "LIFE SCIENCE" AND GRADE 8 "EARTH SCIENCE" WERE DEVELOPED BY 24 AREA TEACHERS AND THREE SAM HOUSTON STATE COLLEGE PROFESSORS. THE PROJECT WAS SUPPORTED BY THE TEXAS SMALL SCHOOL ASSOCIATION, THE LOCAL SCHOOLS, AND FUNDS FROM THE TITLE III PROGRAM. THE TEACHER GUIDES WERE PREPARED TO IMPROVE THE JUNIOR HIGH SCHOOL…

  7. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This catalog presents a reference guide to NASA Earth science education programs and products. The topics include: 1) Student Support (Elementary and Secondary, Undergraduate and Graduate, Postgraduate, and Postdoctorate); 2) Teacher/Faculty Preparation and Enhancement; 3) Systemic Change; 4) Curriculum Support; and 5) Resources.

  8. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  9. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  10. Earth - Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by the Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. The color composite used images taken through the red, green and violet filters. The Pacific Ocean covers virtually all of the visible disk of the Earth in this picture. The glint of the Sun reflected from smooth water is near the center. This is a frame of the Galileo Earth spin movie, a 500-frame time-lapse motion picture showing a 25-hour period of Earths rotation and atmospheric dynamics.

  11. Secondary-School Earth Science: A Column for Teachers.

    ERIC Educational Resources Information Center

    Christman, Robert

    1984-01-01

    Six secondary school teachers describe their most successful earth science investigations. They include various outdoor field activities, road-map reading skills, student-prepared and conducted investigations, and use of several materials for studying volcanoes. (JN)

  12. Earth Sciences Division annual report 1981. [Lead abstract

    SciTech Connect

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  13. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2007-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in-depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Now sponsored by NSF, the network has expanded to nearly 40 institutions of higher learning committed to teacher Earth system science education. The program supports participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers are prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 K-12 teachers in Earth system science. Through NSF funding beginning in late 2006, IGES is enhancing and building on the ESSEA foundation by: 1. Introducing extensive use of data, models and existing Earth system educational materials to support the courses; 2. Implementing a rigorous evaluation program designed to demonstrate growth in teachers' Earth

  14. Super-earth Detection and "Planet Fever"

    NASA Astrophysics Data System (ADS)

    Pont, Frederic; Aigrain, S.; Zucker, S.

    2009-09-01

    Radial-velocity spectrographs and space transit searches have become sensitive enough to detect planets only a few times more massive than the Earth - the telluric planets or "super-Earths." We are getting one step nearer to knowing how common are Earth analogs. There is a catch however: many of the super-Earth detections are very close to the detection thresholds, and intrinsic stellar variations are an important source of false positive with both the radial velocity and transit technique. In preparation for the coming harvest of new detections, it seems worth attempting to develop some vaccine against the most extreme strands of "planet fever," the contagious disease of seeing extra-solar planet in any signal.

  15. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  16. Field-Based Research Experience in Earth Science Teacher Education.

    ERIC Educational Resources Information Center

    O'Neal, Michael L.

    2003-01-01

    Describes the pilot of a field-based research experience in earth science teacher education designed to produce well-prepared, scientifically and technologically literate earth science teachers through a teaching- and research-oriented partnership between in-service teachers and a university scientist-educator. Indicates that the pilot program was…

  17. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  18. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2006-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in- depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Beginning in 2006 NSF funding will enable ESSEA will expand to 40 institutions of higher learning that are committed to teacher education in Earth system science. The program will support participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers will be prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 k-12 teachers in Earth system science. Although NASA funding ended in late 2005, the courses continue to be offered by 17 of the original 20 institutions. Through NSF funding beginning in late 2006, IGES will enhance and build upon the ESSEA foundation by: 1.Using the ESSEA courses as a model to introduce newly upgraded Earth

  19. People and the Earth

    NASA Astrophysics Data System (ADS)

    Rogers, John James William; Feiss, P. Geoffrey

    1998-03-01

    People and the Earth examines the numerous ways in which this planet enhances and limits our lifestyles. Written with wit and remarkable insight, and illustrated with numerous case histories, it provides a balanced view of the complex environmental issues facing our civilization. The authors look at the geologic restrictions on our ability to withdraw resources--food, water, energy, and minerals--from the earth, the effect human activity has on the earth, and the lingering damage caused by natural disasters. People and the Earth examines the basic components of our interaction with this planet, provides a lucid, scientific discussion of each issue, and speculates on what the future may hold. It provides the fundamental concepts that will enable us to make wise and conscientious choices on how to live our day-to-day lives. People and the Earth is an ideal introductory textbook and will also appeal to anyone concerned with our evolving relationship to the earth.

  20. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  1. Earth - India and Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by the Galileo spacecraft on Dec. 11, 1990, when the spacecraft was about 1.5 million miles from the Earth. The color composite used images taken through the red, green and violet filters. India is near the top of the picture, and Australia is to the right of center. The white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Pacific, lower right. This is a frame of the Galileo Earth spin movie, a 500-frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  2. Capturing near-Earth asteroids around Earth

    NASA Astrophysics Data System (ADS)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  3. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  4. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  5. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  6. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  7. The Earth Needs You!

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    Celebrated annually on April 22, schools and communities organize numerous activities during Earth Day to promote awareness. To help teachers plan their own initiatives and to learn more about what is happening around the world, they can join the Earth Day Network at: http://network.earthday.net/. Once they have joined, they can create a webpage…

  8. The Earth Charter

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2010

    2010-01-01

    Humanity is part of a vast evolving universe. Earth is alive with a unique community of life. The forces of nature make existence a demanding and uncertain adventure, but Earth has provided the conditions essential to life's evolution. The resilience of the community of life and the well-being of humanity depend upon preserving a healthy biosphere…

  9. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  10. Earth-Bonding.

    ERIC Educational Resources Information Center

    Norgaard, Jim

    1988-01-01

    Defines "earth bonding" as dynamic interaction between individual and physical environment. Examines methods and goals of traditional environmental education. Describes development of five-day camping workshop for 11 outdoor education teachers. Describes how workshop facilitated earth bonding for teachers. Calls for further research in "bonding…

  11. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  12. Skylab Explores the Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This book describes the Skylab 4 Earth Explorations Project. Photographs of the earth taken by the Skylab astronauts are reproduced here and accompanied by an analytical and explanatory text. Some of the geological and geographical topics covered are: (1) global tectonics - some geological analyses of observations and photographs from Skylab; (2)…

  13. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  14. Spaceship Earth Curriculum Project.

    ERIC Educational Resources Information Center

    McInnis, Noel; And Others

    Three separate papers from the Project are included in this document. One of these, by the Center staff, is entitled "Potentials of the Spaceship Earth Metaphor". It discusses static, dynamic, and analogic representations of spaceship earth and their educational value. A second paper, "Some Resources for Introducing Environmental Education Into…

  15. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  16. Earth Science Week evolves

    NASA Astrophysics Data System (ADS)

    Earth Science Week, October 7-13, is an annual grassroots effort sponsored by the American Geological Institute (AGI) and its member societies, of which AGU is the largest. This year, for the first time, Earth Science Week has a general theme, evolution in Earth history. The Earth Science Week information kit for 2001, available from AGI, includes a variety of posters, bookmarks, and other materials that illustrate this concept. The kit contains a new 32-page “Ideas and Activities” booklet that emphasizes evolution in Earth history through an array of activities about rocks, fossils, and geologic time. It also has information on the upcoming Public Broadcasting Service series, “Evolution,” which is to be aired in late September.

  17. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  18. Earth as art three

    USGS Publications Warehouse

    U.S. Geological Survey

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  19. NASA's Earth observation programs

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Hammer, Theodore F.

    2006-09-01

    The purpose of NASA's Science Mission Directorate's Earth Science Division (ESD) is to develop a scientific understanding of Earth's system and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. ESD conducts and sponsors research, collects new observations from space, develops technologies and extends science and technology education to learners of all ages. We work closely with our global partners in government, industry, and the public to enhance economic security, and environmental stewardship, benefiting society in many tangible ways. We conduct and sponsor research to answer fundamental science questions about the changes we see in climate, weather, and natural hazards, and deliver sound science that helps decision-makers make informed decisions. Using the view from space to study the Earth, researchers can better predict critical changes to Earth and its space environment. ESD has a critical role in implementing three major national directives: •Climate Change Research through the Climate Change Science Program •Global Earth Observation System of Systems through the Interagency Working Group on Earth Observations (IWGEO) •U.S Ocean Action Plan. NASA's ESD currently has a system of spacecraft collecting observations of the Earth system and in the months and years ahead will deploy new satellites and constellations with advanced measurement capabilities.

  20. Earths, Super-Earths, and Jupiters

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Lee, Eve J.

    2015-12-01

    We review and add to the theory of how planets acquire atmospheres from parent circumstellar disks. We derive (in real time) a simple and general analytic expression for how a planet's atmosphere grows with time, as a function of the underlying core mass and nebular conditions, including the gas metallicity. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. The theory can be applied in any number of settings --- gas-rich vs. gas-poor nebulae; dusty vs. dust-free atmospheres; close-in vs. far-out distances --- and is confirmed against detailed numerical models for objects ranging in mass from Mars (0.1 Mearth) to the most extreme super Earths (10--20 Mearth). We explain why heating from planetesimal accretion, commonly invoked in models of core accretion, is irrelevant. This talk sets the stage for another presentation, "Breeding Super-Earths and Birthing Super-Puffs".

  1. Earth from Above

    NASA Astrophysics Data System (ADS)

    Parkinson, Claire L.

    Earth from Above provides an easy introduction to understanding and interpreting satellite images, using illustrative examples to instruct on the fantastically informative new global data sets. Beginning with two short chapters on visible satellite images and radiation, the book then covers six key Earth-atmosphere variables on such environmentally important topics as the Antarctic ozone hole, El Nino, deforestation, the missing carbon dilemma, and the effects of sea ice, snow cover, and volcanoes on atmospheric temperatures. A final chapter broadens the discussion to consider satellite Earth observations in general.

  2. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  3. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  4. Earth Sciences Division annual report 1980

    SciTech Connect

    Not Available

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  5. NASA 2014: Earth

    NASA Video Gallery

    For the first time in more than a decade, five NASA Earth science missions will be launched into space in the same year, opening new and improved remote eyes to monitor our changing planet. The lau...

  6. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  7. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  8. Beautiful Earth with GPM

    NASA Video Gallery

    This is a musical and visual tour of Earth from space followed by a discussion with scientists from NASA's new rain and snow satellite. During this one-hour event, students and teachers from across...

  9. Earth Reconnect -- July 2012

    NASA Video Gallery

    A visualization of Earth's magnetosphere on July 15-16, 2012, shows how constant magnetic reconnection caused by an arriving coronal mass ejection, or CME, from the sun disrupted the magnetosphere,...

  10. Energy for Planet Earth.

    ERIC Educational Resources Information Center

    Davis, Ged R.

    1990-01-01

    Examined is the world society's ability to meet energy needs without destroying the earth. Supply and demand issues are examined. International per capita energy use is compared. Historical trends are described. (CW)

  11. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  12. Mapping Earth Science Concepts.

    ERIC Educational Resources Information Center

    McDuffie, Thomas E., Jr.; Van Dine, William E.

    1978-01-01

    Presents two experiments concerned with mapping skills. Directions are given for calculating the circumference of the earth and for developing a model of the solar system using familiar territory as a frame of reference. (MA)

  13. Down to earth relativity

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1978-01-01

    The basic concepts of the special and general theories of relativity are described. Simple examples are given to illustrate the effect of relativity on measurements of time and frequency in the near-earth environment.

  14. The Whole Earth Dialogue.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1988-01-01

    Discusses the trend toward more "earth-as-a-system" approaches in research and teaching about global science. Uses the "greenhouse effect" as a prototypical global change problem that requires interdisciplinary problem-solving approaches. (TW)

  15. Geophysics: Earth's core problem

    NASA Astrophysics Data System (ADS)

    Dobson, David

    2016-06-01

    Measurements of the electrical resistance and thermal conductivity of iron at extreme pressures and temperatures cast fresh light on controversial numerical simulations of the properties of Earth's outer core. See Letters p.95 & 99

  16. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  17. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  18. Welcome Back to Earth

    NASA Video Gallery

    NASA astronaut Scott Kelly is interviewed by public affairs officer Rob Navias just after returning to Earth aboard a Soyuz spacecraft on March 1, 2016 (March 2, local Kazakh time) following a 340 ...

  19. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  20. Earth study from space

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  1. Skylab Earth Observation Studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  2. Earth's variable rotation

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  3. Solar System Portrait - Earth

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image of the Earth is one of 60 frames taken by the Voyager 1 spacecraft on Feb. 14, 1990 from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. This image the Earth is a mere point of light, a crescent only 0.12 pixel in size. Our planet was caught in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  4. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  5. Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1999-01-01

    Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.

  6. Skylab explores the Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data from visual observations are integrated with results of analyses of approxmately 600 of the nearly 2000 photographs taken of Earth during the 84-day Skylab 4 mission to provide additional information on (1) Earth features and processes; (2) operational procedures and constraints in observing and photographing the planet; and (3) the use of man in real-time analysis of oceanic and atmospheric phenomena.

  7. Guided earth boring tool

    SciTech Connect

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1987-09-22

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe, a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.

  8. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  9. Biosignatures of Early Earths

    NASA Astrophysics Data System (ADS)

    Pilcher, Carl B.

    2003-11-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1½ billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH3SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-μm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  10. Toward other Earths

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  11. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  12. Global Images of Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Global images of Earth from Galileo. In each frame, the continent of Antarctica is visible at the bottom of the globe. South America may be seen in the first frame (top left), the great Pacific Ocean in the second (bottom left), India at the top and Australia to the right in the third (top right), and Africa in the fourth (bottom right). Taken at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers (1.2 to 1.7 million miles). P-37630

    These images were taken during Galileo's first Earth flyby. This gravity assist increased Galileo's speed around the Sun by about 5.2 kilometers per second (or 11,600 miles per hour) and substantially redirected Galileo as required for its flybys of the asteroid Gaspra in October 1991 and Earth in 1992. Galileo's closest approach (960 kilometers, or 597 miles, above the Earth's surface) to the Earth was on December 8, 1990, 3 days before these pictures were taken.

    Each of these images is a color composite, made up using images taken through red, green, and violet filters. The four images are part of the Galileo Earth spin movie, a 256-frame time-lapse motion picture that shows a 25-hour period of Earth's rotation and atmospheric dynamics. The movie gives scientists a unique overall view of global weather patterns, as opposed to the limited view of weather satellite images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  13. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q.

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  14. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  15. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  16. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  17. Monitoring the Earth

    NASA Astrophysics Data System (ADS)

    Vita-Finzi, Claudio

    2003-02-01

    Monitoring the Earth is the first book to review the recent advances in satellite technology, computing and mass spectrometry that are opening up completely new avenues of enquiry to Earth scientists. Among the geological changes that were previously considered too slow or too extensive for direct measurements and that can now be monitored directly are continental displacements, mountain uplift, the growth and decay of icesheets and glaciers, the faulting and folding of rocks, the progress of weathering and sedimentation, and the growth of coral reefs. In addition to these developments, the book assesses progress in fields not normally considered part of physical geology, such as the shape and orbit of the gravity and the terrestrial magnetic field. The results from the new findings are already helping Earth scientists analyze and explain the underlying mechanisms, notably with regard to the storage and release of strain during earthquakes and the interaction of glacial history with the Earth's rate of rotation. The outcoe is a foretaste of the physical geology of the space age.^Fully illustrated with line drawings and photographs, and with a bibliography that encompasses the scattered and disparate litarature, Monitoring the Earth is intended for undergraduates in geology, geomorphology, geomatic engineering and planetary science, but it should also be of interest to astronomers and historians of science.

  18. Earth - Moon Conjunction

    NASA Technical Reports Server (NTRS)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  19. The Sun and Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  20. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  1. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  2. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  3. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  4. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    hours of class time for students from 13 to 14 years of age. During the learning process, different methodological tools of teaching and learning have been used. After reading and understanding news about natural disasters such as earthquakes and eruptions, cooperative group work and an oral presentation are prepared. In addition, it has been very useful to follow-up with some web simulations to predict natural phenomena, which can then be tested in the laboratory. Finally, the students apply their new understanding on a visit to a geological formation, where applying the language learned by observing the rocks, they demonstrate that the planet Earth has changed over the course of many millions of years. Natural hazards are a small and timely demonstration of the ability to change our planet.

  5. Refining and Mutual Separation of Rare Earths Using Biomass Wastes

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2013-10-01

    Two different types of adsorption gels were prepared from biomass wastes. The first gel was produced from astringent persimmon peel rich in persimmon tannin, a polyphenol compound, which was prepared by means of simple dehydration condensation reaction using concentrated sulfuric acid for crosslinking. This adsorption gel was intended to be employed for the removal of radioactive elements, uranium (U(VI)) and thorium (Th(IV)), from rare earths. The second gel was prepared from chitosan, a basic polysaccharide, produced from shells of crustaceans such as crabs, shrimps, prawns, and other biomass wastes generated in marine product industry, by immobilizing functional groups of complexanes such as ethylendiaminetetraacetic acid and diethylentriaminepentaacetic acid (DTPA). This gel was developed for the mutual separation of rare earths. Of the two adsorption gels evaluated, the DTPA immobilized chitosan exhibited the most effective mutual separation among light rare earths.

  6. Preparation Matters

    ERIC Educational Resources Information Center

    Dougherty, Chrys; Mellor, Lynn

    2009-01-01

    In "Orange Juice or Orange Drink?," the authors provided evidence that many students are receiving credit for courses with little indication that they have learned the content implied by the course titles (Dougherty, Mellor, & Jian, 2006). Yet in pursuit of the goal of preparing all students for college and careers, many policymakers…

  7. Dagik Earth and IUGONET

    NASA Astrophysics Data System (ADS)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.

    2015-09-01

    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  8. Better Than Earth

    NASA Astrophysics Data System (ADS)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  9. Earth's Trojan asteroid.

    PubMed

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-28

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years. PMID:21796207

  10. Pretrigeminal preparation.

    PubMed

    Zernicki, B

    1986-07-01

    The pretrigeminal preparation (pretrigeminal animal) is obtained by transection the pons in front of roots of the trigeminal nerves. The rostral part of the preparation (isolated cerebrum) has olfactory, visual and humoral inputs and controls vertical position of eye and their pupillary diameter and accommodation. The pretrigeminal preparation was described in the cat and rat. During the acute stage the isolated cerebrum is continuously awake, alternatively alert and drowsy. In the chronic stage a sleep-waking cycle recovers, but paradoxical sleep remains absent and synchronized sleep is reduced. Thus the cerebrum can largely compensate for the withdrawal of influences from the deactivating structures of the lower brain stem. Olfactory and visual stimuli produce a virtually normal arousal response. Its major components are: dilatation of pupils, desynchronization of cortical EEG activity, appearance of theta activity in the hippocampal EEG, and an increase of the cerebral blood flow. If the stimulus is repeated, the arousal response habituates with a normal rate. In the pretrigeminal cat there are two ocular targeting reflexes: vertical fixation and accommodation. The fixation reflex has a normal general course and shows normal habituation, but it is less precise than in the intact cat. The accommodation reflex is normal. Classical and instrumental ocular conditioned reflexes can be elaborated in the pretrigeminal cat. The conditioned pupillary dilatation appears at a normal rate. On the other hand, the elaboration of the conditioned vertical eye movement is slower than in the intact cat, possibly as a result of the lack of the proprioceptive feedback from the extraocular muscles. In conclusion, excitability, integrity and plasticity of the isolated cerebrum of the pretrigeminal preparation seem to be virtually normal. In contrast to the pretrigeminal preparation, the "cerveau isolé" is comatose during the acute stage. In the chronic stage, however, the sleep

  11. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  12. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  13. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  14. An Analysis of Earth Science Data Analytics Use Cases

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Kempler, S. J.

    2015-12-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https://earthdata.nasa.gov/about/system-performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co-analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  15. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  16. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  17. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  18. Preparation of radioactive rare earth targets for neutron capture study

    SciTech Connect

    Miller, G. G.; Rogers, P. S. Z.; Palmer, P. D.; Dry, D. E.; Rundberg, R. S.; Fowler, Malcolm M.; Wilhelmy, J. B.

    2002-01-01

    The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.

  19. Optimization of preparative chromatographic separation of multiple rare earth elements.

    PubMed

    Max-Hansen, Mark; Ojala, Frida; Kifle, Dejene; Borg, Niklas; Nilsson, Bernt

    2011-12-23

    This work presents a method to optimize multi-product chromatographic systems with multiple objective functions. The system studied is a neodymium, samarium, europium, gadolinium mixture separated in an ion exchange chromatography step. A homogeneous Langmuir Mobile Phase Modified model is calibrated to fit the experiments, and then used to perform the optimization task. For the optimization a multi-objective Differential Evolution algorithm was used, with weighting based on relative value of the components to find optimal operation points along the Pareto front. The objectives of the Pareto front are weighted productivity and weighted yield with purity as an equality constraint. A prioritizing scheme based on relative values is applied for determining the pooling order. A simple rule of thumb for pooling strategy selection is presented. The multi-objective optimization gives a Pareto front which shows the rule of thumb, as a gap in one of the objective functions. PMID:22079482

  20. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho, (Edited By); Diggles, M.F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  1. Blowing up the Earth

    NASA Astrophysics Data System (ADS)

    Benge, Raymond

    2006-10-01

    An occasional theme in science fiction involves blowing up a planet. In ``Star Wars,'' the Death Star blows up Alderan. In ``The Hitchhiker's Guide to the Galaxy,'' a Vorgon destructor fleet blows up Earth to make room for a cosmic bypass. So, as an exercise for upper division students, or the more advance first year calculus based physics students, the energy needed to disassemble Earth can be computed. Assuming that advanced scifi aliens get their energy from matter-antimatter interactions, students can then compute the amount of antimatter needed to accomplish the task.

  2. The wooing of earth

    SciTech Connect

    Dubos, R.

    1981-02-01

    Reckless use of energy by industrial nations has begun to alter the global climate. Each year more arable land is lost to desertification and erosion due to anthropogenic activities. Air pollutants carried by winds contaminate ecosystems in many parts of the globe. Various kinds of wilderness are being spoiled by overexploitation or permanent occupation. However, human interventions into nature have often revealed potentialities of the earth that would have remained unexpressed in the state of wilderness. With knowledge and a sense of responsibility for the welfare of the earth, human intervention into nature can be ecologically sound, aesthetically satisfying, and economically rewarding.

  3. The Earth's Plamasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  4. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  5. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  6. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  7. The earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1976-01-01

    The following aspects of the earth's magnetosphere were discussed: general structure, magnetic field merging and magnetospheric convection, time-varying convection and magnetospheric substorms, magnetic storms, and comparative magnetospheres. Solar flares and the magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus were also described.

  8. How life shaped Earth.

    PubMed

    Gross, Michael

    2015-10-01

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet. PMID:26726334

  9. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  10. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  11. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  12. Earth View, Art View

    ERIC Educational Resources Information Center

    Dambekalns, Lydia

    2005-01-01

    Educational practice today encourages interdisciplinary teaching as teachers address important basic themes from a variety of angles. In this article, the author talks about one of her successful projects that focuses on "sense of place" as one such theme, with the more specific charge of viewing Earth from both scientific and artistic…

  13. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  14. Earth as art 4

    USGS Publications Warehouse

    U.S. Geologic Survey

    2016-01-01

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  15. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  16. Exploring the Earth's Past

    ERIC Educational Resources Information Center

    Lindaman, Arnold D.; And Others

    1972-01-01

    Describes three approaches to a study of the earth's past: (1) development of a time line of the ages; (2) a study of rocks and how each was formed; and (3) a study of fossils as found in certain kinds of stone. (Editor)

  17. Earth flyby anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.

  18. Earth System science

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.

    1992-01-01

    Recent research has solidified a view of the Earth as a global-scale interactive system with complex chemical, physical, biological and dynamical processes that link the ocean, atmosphere, land (soils, ice, snow) and marine and terrestrial living organisms. These processes both within and between the major parts of the system help determine global and regional climate and control the biogeochemical and hydrologic cycles essential to life. The study of the Earth System requires measurements ranging from the scales of the smallest processes to the global scale. An ambitious satellite observational program, the Earth Observing System (EOS), carried out along with the complementary and ongoing World Climate Research Program (WCRP) and International Geosphere-Biosphere Program (IGBP) represents a major international effort to understand this System and predict its future changes. The complex and intriguing nature of the Earth System is discussed along with a number of closely coupled processes occurring within it. These are: clouds, precipitation and vegetation; ocean circulation, sea-surface temperature and phytoplankton; coupled oceanic and atmospheric circulation (the Southern Oscillation); biological activity, atmospheric chemistry and climate; and biological emissions and the ozone layer.

  19. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  20. Mission: New Earth.

    ERIC Educational Resources Information Center

    Sparks, David

    1997-01-01

    Describes an interdisciplinary unit on the environment and space travel in which students plan a fictional departure from Earth which is on the brink of destruction from environmental waste and neglect. Students travel through concepts in environmental education, math, art, English, and astronomy before reaching their destination with a clearer…

  1. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  2. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  3. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  4. Earth's magnetic environment

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1988-10-01

    The nature of the earth's magnetosphere is outlined. The magnetosphere is illustrated and its regions and features are discussed, including solar wind, bow shock, and the magnetopause. The formation process and characteristics of the magnetotail are presented. The plasmasphere, Van Allen belts, auroras, whistlers, and micropulsations are examined. Effects of the magnetosphere, including problems for communications lines, spacecraft electronics, and communication satellites are considered.

  5. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  6. Earth's City Lights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  7. Beyond Earth's Boundaries

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.

    This resource for teachers of elementary age students provides a foundation for building a life-long interest in the U.S. space program. It begins with a basic understanding of man's attempt to conquer the air, then moves on to how we expanded into near-Earth space for our benefit. Students learn, through hands-on experiences, from projects…

  8. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  9. Sun-Earth Day

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Michael Sandras, a member of the Pontchartrain Astronomical Society, explains his solar telescope to students of Second Street in Bay St. Louis, Hancock County and Nicholson elementary schools in StenniSphere's Millennium Hall on April 10. The students participated in several hands-on activities at Stennis Space Center's Sun-Earth Day celebration.

  10. The Island Earth

    ERIC Educational Resources Information Center

    Mead, Margaret

    1970-01-01

    Dr. Mead, the world-renowned anthropologist and expert behavioral scientist, is associated with the American Museum of Natural History, which acts as her headquarters as she documents her observations on Man, society and technology. She discusses the need to develop specialists with concern for saving the endangered planet earth. (Editor/GR)

  11. Google Earth Science

    ERIC Educational Resources Information Center

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  12. The Earth & Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  13. The Earth and Moon

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During its flight, the Galileo spacecraft returned images of the Earth and Moon. Separate images of the Earth and Moon were combined to generate this view. The Galileo spacecraft took the images in 1992 on its way to explore the Jupiter system in 1995-97. The image shows a partial view of the Earth centered on the Pacific Ocean about latitude 20 degrees south. The west coast of South America can be observed as well as the Caribbean; swirling white cloud patterns indicate storms in the southeast Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The lunar dark areas are lava rock filled impact basins. This picture contains same scale and relative color/albedo images of the Earth and Moon. False colors via use of the 1-micron filter as red, 727-nm filter as green, and violet filter as blue. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  14. Venus - Lessons for earth

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1992-01-01

    The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

  15. Early Earth differentiation

    NASA Astrophysics Data System (ADS)

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation (t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10 15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  16. Computer programs for plotting spot-beam coverages from an earth synchronous satellite and earth-station antenna elevation angle contours

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Singh, J. P.

    1972-01-01

    A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.

  17. The Earth's Biosphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  18. Astronaut William Gregory prepares to exit his sleep quarters

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, ejects a cassette and prepares to bail out of his sleep quarters aboard the Earth orbiting Space Shuttle Endeavour. The astronaut was about to begin a shift of support to the red team.

  19. Mission to Planet Earth - The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Lee, Robert B., III

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth.

  20. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  1. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  2. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  3. Superhydrophobic surfaces engineered using diatomaceous earth.

    PubMed

    Oliveira, Nuno M; Reis, Rui L; Mano, João F

    2013-05-22

    We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic surfaces were obtained by a further surface chemical modification through fluorosilanization. The wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a controlled way by exposure time variation. The chemical surface modification by fluorosilanization and posterior fluorinated SH surface modification by plasma treatment was analyzed by XPS. Using appropriated hollowed masks only specific areas on the surface were exposed to plasma permitting to pattern hydrophilic features with different geometries on the superhydrophobic surface. We showed that the present strategy can be also applied in other substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces. PMID:23647196

  4. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  5. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  6. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  7. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  8. Earth resources data processor

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    The recent development of manned and unmanned space vehicles has brought about an almost unprecedented advance in studies concerned with remotely sensed earth observations. With this advance comes an unprecedented amount of data. The problem arises of how to efficiently analyze and compress unmanageable amounts of data into manageable amounts of useful information. A recently developed computer program is proposed as a partial solution to the above problem. The computer program is designed to determine the ground scene location and distribution of features extracted from remotely sensed earth observation data without human involvement in the data processing or a priori knowledge of ground truth. Human involvement and judgement are reserved for identification of the features presented in the compressed data.

  9. Monitoring Earth's Ecosystems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Partnered with Goddard Space Flight Center, Sensit Technologies Inc. developed a third-generation Portable Apparatus for Rapid Acquisitions of Bidirectional Observations of Land and Atmosphere, or PARABOLA III for short. Now commercially available, PARABOLA III is designed to measure the reflected signature of a variety of Earth surface types, from rangeland vegetation to ice and snow. It can rapidly acquire data for almost the complete sky and ground-looking hemispheres, with no missing data and sufficient dynamic range to measure direct solar radiance. The instrument was actively used in the Boreal Ecosystem- Atmosphere Study which provided useful information in designing a Multi-angle Imaging SpectroRadiometer, a small satellite being built by the Jet Propulsion Laboratory that will measure sunlight reflected by the Earth into space.

  10. Physics of the Earth

    NASA Astrophysics Data System (ADS)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  11. The Sounds of Earth

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Flying board Voyagers 1 and 2 are identical 'golden' records, carrying the story of Earth far into deep space. The 12 inch gold-plated copper discs contain greetings in 60 languages, samples of music from different cultures and eras, and natural and man-made sounds from Earth. They also contain electronic information that an advanced technological civilization could convert into diagrams and photographs. The cover of each gold plated aluminum jacket, designed to protect the record from micrometeorite bombardment, also serves a double purpose in providing the finder a key to playing the record. The explanatory diagram appears on both the inner and outer surfaces of the cover, as the outer diagram will be eroded in time. Currently, both Voyager probes are sailing adrift in the black sea of interplanetary space, having left our solar system years ago.

  12. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  13. Earth radiation budgets

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; Campbell, G. G.; Vonder Haar, T. H.

    1981-01-01

    The annual and seasonal averaged earth atmosphere radiation budgets, derived from the most complete set of satellite observations available in late 1979, are presented. The budgets are derived using a composite of 48 monthly mean radiation budget maps. The annual, global average emitted infrared flux is 234 W/sq m, the planetary albedo is 0.30, and the net flux is zero within measurement uncertainty. In addition, the annual cycle of net flux is studied in detail, and the observed globally averaged net flux is found to display an annual cycle that is of similar magnitude and phase to the annual cycle imposed by the influence of sun-earth distance variations on solar radiation input into the atmosphere.

  14. Earth - Antarctica Mosaic

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color picture of the limb of the Earth, looking north past Antarctica, is a mosaic of 11 images taken during a ten-minute period near 5:45 p.m. PST Dec. 8, 1990, by Galileo's imaging system. Red, green and violet filters were used. The picture spans about 1,600 miles across the south polar latitudes of our planet. The morning day/night terminator is toward the right. The South Pole is out of sight below the picture; the visible areas of Antarctica are those lying generally south of South America. The violet-blue envelope of Earth's atmosphere is prominent along the limb to the left. At lower left, the dark blue Amundsen Sea lies to the left of the Walgreen and Bakutis Coasts. Beyond it, Peter Island reacts with the winds to produce a striking pattern of atmospheric waves.

  15. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  16. Earth System and Space Science Curriculum for High Schools

    NASA Astrophysics Data System (ADS)

    Leck, J. P.

    2005-12-01

    Earth System and Space Science emphasizes the dynamic interrelationships between the atmosphere, the geosphere, the hydrosphere, the biosphere and the earth-universe system. There is a strong emphasis on internet-based and technology activities, and laboratory activities. Science skills and processes learned in this course prepare for continued development of scientific inquiry in other science disciplines. A partnership with the Goddard Space Flight Center and collaboration with Anne Arundel County Public Schools provides enhanced richness to the learning activities. Earth and Space scientists from NASA GSFC gave their expertise in the development of ESSS. Their suggestions were the foundation for the development of this curriculum. Earth System and Space Science is a course, which develops student knowledge and understanding of the Earth System and its place in the universe. This course seeks to empower students to understand their dynamic local and global environments and the Earth as part of a complex system. The student will learn the science content necessary to make wise personal and social decisions related to quality of life, and the management of the Earth's finite resources, environments, and hazards. During much of the recent past, scientists have been concerned with examining individual physical, chemical, and biological processes or groups of processes in the atmosphere, hydrosphere, lithosphere, and biosphere. Recently, however, there has been a movement in Earth Science to take a planetary or "system" approach to investigating our planet. Satellite images show planet Earth as one entity without boundaries. There are concerns with environmental issues on regional, global, and even planetary scales. In Earth/Space Systems Science, Earth is viewed as a complex evolving planet that is characterized by continually interacting change over a wide scale of time and space.

  17. NPP and the Earth System

    NASA Video Gallery

    NPP is a continuation of the existing Earth-observing satellites and it builds on the legacy of multi decades of critical data. NPP will continue to deliver data to all users on Earth who will use ...

  18. Photosynthesis and early Earth.

    PubMed

    Shih, Patrick M

    2015-10-01

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. PMID:26439346

  19. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  20. Earth orientation parameters

    NASA Technical Reports Server (NTRS)

    Eanes, Richard J.

    1994-01-01

    Since the beginning of regular space geodetic measurements, Satellite Laser Ranging (SLR) has routinely provided polar motion and length of day solutions. At the present time, Global Positioning Systems (GPS) regularly produces daily polar motion solutions with 0.4 mas accuracy, equivalent to the routine 1-day VLBI experiments and SLR solutions using 3 days of Lageos-1 data. This rapid progress of the GPS technique forces a review of any resource allocations for VLBI and SLR measurements of Earth orientation.

  1. Testing Earth science

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The Keck Geology Consortium is offering students from ethnic minorities an opportunity to test their interest in careers in Earth science by conducting research on their own and in groups. Collegiate sophomores and juniors of African American, American Indian, Native Alaskan, Hispanic, or Native Pacific Island heritage will work for as long as a year on research projects that originate during a month of field and laboratory work in the summer of 1997.

  2. The Active Solid Earth

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia

    2016-04-01

    Dynamic processes in Earth's crust, mantle and core shape Earth's surface and magnetic field over time scales of seconds to millennia, and even longer time scales as recorded in the ca. 4 Ga rock record. Our focus is the earthquake-volcano deformation cycles that occur over human time scales, and their comparison with time-averaged deformation studies, with emphasis on mantle plume provinces where magma and volatile release and vertical tectonics are readily detectable. Active deformation processes at continental and oceanic rift and back arc zones provide critical constraints on mantle dynamics, the role of fluids (volatiles, magma, water), and plate rheology. For example, recent studies of the East African rift zone, which formed above one of Earth's largest mantle upwellings reveal that magma production and volatile release rates are comparable to those of magmatic arcs, the archetypal zones of continental crustal creation. Finite-length faults achieve some plate deformation, but magma intrusion in the form of dikes accommodates extension in continental, back-arc, and oceanic rifts, and intrusion as sills causes permanent uplift that modulates the local time-space scales of earthquakes and volcanoes. Volatile release from magma intrusion may reduce fault friction and permeability, facilitating aseismic slip and creating magma pathways. We explore the implications of active deformation studies to models of the time-averaged structure of plume and extensional provinces in continental and oceanic plate settings.

  3. The Far Infrared Earth

    NASA Technical Reports Server (NTRS)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  4. Formation of the earth

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1990-01-01

    The origin of the earth is discussed in the context of the formation of the sun and the planets, and a standard model for such a formation assuming gravitational instability in a dense interstellar molecular cloud is outlined, along with the most significant variant of the model in which the loss of the nebular gas occurred after the formation of the earth. The formation of the sun and solar nebulae is addressed, and the coagulation of grains and the formation of small planetesimals are covered, along with the gravitational accumulation of planetesimals into planetary embryos and final stages of accumulation - embryos of planets. It is pointed out that the final stage of accumulation consists of the collision of these embryos; because of their large size, particularly after their further growth, these collisions represent giant impacts. It is concluded that the earth was initially an extremely hot and melted planet, surrounded by a fragile atmosphere and subject to violent impacts by bodies of the size of Ceres and even the moon.

  5. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  6. Finding the Next Earth

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie M.; Kepler Team

    2013-01-01

    Twenty years ago, we knew of no planets orbiting other Sun-like stars, yet today, the roll call is nearly 1,000 strong. Statistical studies of exoplanet populations are possible, and words like "habitable zone" are heard around the dinner table. Theorists are scrambling to explain not only the observed physical characteristics but also the orbital and dynamical properties of planetary systems. The taxonomy is diverse but still reflects the observational biases that dominate the detection surveys. We've yet to find another planet that looks anything like home. The scene changed dramatically with the launch of the Kepler spacecraft in 2009 to determine, via transit photometry, the fraction of stars harboring earth-size planets in or near the Habitable Zone of their parent star. Early catalog releases hint that nature makes small planets efficiently: over half of the sample of 2,300 planet candidates discovered in the first two years are smaller than 2.5 times the Earth's radius. I will describe Kepler's milestone discoveries and progress toward an exo-Earth census. Humankind's speculation about the existence of other worlds like our own has become a veritable quest.

  7. Earth System Monitoring, Introduction

    NASA Astrophysics Data System (ADS)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  8. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  9. The Earth Through Time

    NASA Astrophysics Data System (ADS)

    Mertzman, Stanley A.

    The Earth Through Time successfully fills a gap in the world of introductory level geology textbooks, a gulf created by the nature of typical undergraduate students. The introductory course taught at many institutions is physical geology wherein potential geology majors and students who simply want to fulfill part of a natural science requirement form a cosmopolitan class. Students who are convinced that geology is the major for them go on to historical geology in the second semester often using the Dott and Batten text, Evolution of the Earth, a text that is rigorous and designed strictly with the geology major in mind. Based on my experience, however, a sizable number of students who have no intention of majoring in geology desire to take a second course in the field out of pure interest and as a means of satisfying the second part of a typical 2-semester science requirement. The Earth Through Time provides a viable alternative to Dott and Batten's book, one certainly as broad in its overall coverage but with discrete topics—such as local stratigraphic nomenclature and detailed discussions of geology outside of North America—being de-emphasized.

  10. Mining the earth

    SciTech Connect

    Young, J.E.

    1992-01-01

    Substances extracted from the earth - stone, iron, bronze - have been so critical to human development that historians name the ages of our past after them. But while scholars have carefully tracked human use of minerals, they have never accounted for the vast environmental damage incurred in mineral production. Few people would guess that a copper mining operation has removed a piece of Utah seven times the weight of all the material dug for the Panama Canal. Few would dream that mines and smelters take up to a tenth of all the energy used each year, or that the waste left by mining measures in the billions of tons - dwarfing the world's total accumulation of more familiar kinds of waste, such as municipal garbage. Indeed, more material is now stripped from the earth by mining than by all the natural erosion of the earth's rivers. The effects of mining operations on the environment are discussed under the following topics: minerals in the global economy, laying waste, at what cost cleaning up, and dipping out. It is concluded that in the long run, the most effective strategy for minimizing new damage is not merely to make mineral extraction cleaner, but to reduce the rich nations needs for virgin (non-recycled) minerals.

  11. Ames Lab 101: Rare Earths

    SciTech Connect

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  12. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  13. Earth Education: A New Beginning.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    The Institute for Earth Education is a nonprofit volunteer group made up of an international network of individuals and member organizations devoted to helping people live more lightly on the earth. This book proposes an alternative path to solve environmental problems. The program, called the earth education path, seeks to accomplish one of…

  14. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  15. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  16. PREPARATION OF PURE METAL FROM THEIR COMPOUNDS

    DOEpatents

    Slatin, H.L.

    1961-08-01

    S>A method is described for the preparation of uranium from U/sub 3/O/ sub 6/ by electrolytic deposition at the cathode from an alkali and/or alkaline earth fused salt bath such as fused strontium potassium chloride. (AEC)

  17. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  18. Rare-earth-metal dialkynyl dimethyl aluminates.

    PubMed

    Nieland, Anja; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2013-06-17

    A new class of rare-earth-metal alkynyl complexes has been prepared. The reactions of the tris(tetramethylaluminate)s of lanthanum, praseodymium, samarium, yttrium, holmium, and thulium, [Ln(AlMe₄)₃], with phenylacetylene afforded compounds [Ln{(μ-C≡CPh)₂AlMe₂}₃] (Ln=La (1), Pr (2), Sm (3), Y (4), Ho (5), Tm (6)). All of these compounds have been characterized by NMR spectroscopy, X-ray crystallography, and by elemental analysis. NMR spectroscopic studies of the series of para- magnetic compounds [Ln(AlMe₄)₃] and [Ln{(μ-C≡CPh)₂AlMe₂}₃] have also been performed. PMID:23616205

  19. Unit: The Earth, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The core portion of this trial unit prepared by the Australian Science Education Project provides an introduction to the structure of the earth, volcanic activity, the types of igneous rocks, earthquakes, and seismology, with an emphasis on the techniques of inference used to relate external evidence to internal structure. The optional activities…

  20. Future Technologies for Earth Science with Spaceborne GPS

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Meehan, T. K.; Srinivasan, J. M.; Young, L. E.

    1995-01-01

    Spaceborne Global Positioning System (GPS) receivers will one day make important contributions to atmospheric, ionospheric, and solid Earth science. A number of GPS microsatellite missions are already in preparation in several countries. These missions require GPS flight receivers with capabilities well beyond the needs of most space missions. Receiver and microsatellite future technology is discussed.

  1. Earth science teachers' knowledge of the water system and its reflections in their lesson plans

    NASA Astrophysics Data System (ADS)

    Nam, Younkyeong

    2011-12-01

    suggests a need to reform teacher preparation in a way that the teachers could gain basic and fundamental knowledge of earth system and elaborate their skills to apply earth system knowledge for teaching.

  2. Lunar Orbiter: Moon and Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  3. New Developments Regarding the KT Event and Other Catastrophes in Earth History

    SciTech Connect

    Not Available

    1994-01-01

    Papers presented at the conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History are included. Topics covered include: trajectories of ballistic impact ejecta on a rotating earth; axial focusing of impact energy in the earth's interior: proof-of-principle tests of a new hypothesis; in search of Nemesis; impact, extinctions, volcanism, glaciations, and tectonics: matches and mismatches. Separate abstracts have been prepared for articles from this report.

  4. Stovetop Earth Pecan Pie

    NASA Astrophysics Data System (ADS)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  5. Radioluminescence study of rare earth doped some yttrium based phosphors

    NASA Astrophysics Data System (ADS)

    Ayvacıklı, Mehmet; Ege, Arzu; Ekdal, Elçin; Popovici, Elisabeth-Jeanne; Can, Nurdoğan

    2012-09-01

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O4 activated by rare earth ions such as Eu3+ and Tb3+. The influence of these rare earth ions on the radioluminescence (RL) of yttrium niobate and tantalate phosphors was investigated. The luminescent properties were studied under X-ray and preliminary RL measurements to further evaluate prepared materials. The emission centers of the rare earth activators (Eu3+, Tb3+) were found to contribute efficiently to the total luminescence. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing the broad band variation of visible RL from blue to red.

  6. Introduction. Progress in Earth science and climate studies.

    PubMed

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties. PMID:18818152

  7. Earth in the balance

    SciTech Connect

    Gore, A. Jr.

    1992-01-01

    Earth in the Balance is a lucid, scientifically grounded treatise on the global environments. The author's description of the world's water, air, and land use problems is clear, lively, and knowledgable. A major section of the book explores the psychological dimensions of global environmental problems. He attempts to synthesize ideas across many fields of thought. Gore offers a Global Marshall Plan - a worldwide strategic environment initiative that would help phase out older technologies and disseminate benign substitutes, change accounting methods so environmental costs are considered, and use education as a tool.

  8. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  9. Earth observations - STS-7

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Earth observations - STS-7. North part of Western Australia province, Dampier Land, Fitzroy and Lennard Rivers and the Buccaneer Archipelago (35792); Lake Titicaca, on the Peru-Bolivia border. The Bolivian capital city La Paz is also visible (35793); Denham Sound and Shark Bay in Western Australia are easily recognizable (35794); The Mona Loa Volcano, on the island of Hawaii can be seen in this view. A close look reveals lava flows from the active volcano (35795); Africa; Namibia, Grandberg and Cape Cross, Atlantic Ocean as photographed from the Challenger (35796); View of Venezuela, Aruba, Curacao, and Peninsula de Paraguana (35797).

  10. Climate in Earth history

    NASA Technical Reports Server (NTRS)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  11. Predicting earth's dynamic changes

    NASA Technical Reports Server (NTRS)

    Rasool, S. I.

    1986-01-01

    Given a suitable strategy for conducting measurements, satellite-based remote sensing of the earth can furnish valuable information on the dynamic changes of such planetary characteristics as ocean surface temperatures and atmospheric CO2. Observations must be global and synoptic, quantitatively validated, and consistent over the long term. A program spanning 20 years will study such critical variables as solar flux, stratospheric temperature, aerosols and ozone, cloud cover, tropospheric gases and aerosols, radiation balance, surface temperature, albedo, precipitation, vegetation cover, moisture, snow and ice, as well as oceanic color, topography, and wind stress.

  12. A Star on Earth

    SciTech Connect

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  13. Terraforming earth and Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The uncontrolled character of current earth environment changes ascribable to anthropogenic pollutants is presently contrasted with the prospects for a controlled, long-term program of 'terraforming' for Mars, whose culmination could be the introduction of organisms able to thrive in the new Martian environment in carefully designed ways. A detailed discussion is conducted concerning the chemical building-blocks available on Mars for this manner of 'environmental engineering', with frequent reference to comparable and contrasting features of the terrestrial surface, hydrosphere and atmosphere.

  14. What Shall We do With The Data We Are Expecting From Upcoming Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1998-01-01

    The community of researchers studying global climate change is preparing to launch the first Earth Observing System (EOS) satellite, EOS AM-1. The satellite will generate huge amounts of data, filling gaps in the information available to address critical questions about Earth's climate.

  15. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience

    ERIC Educational Resources Information Center

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth

    2012-01-01

    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  16. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    's lives will be shown. Next year, 2002, Sun-Earth Day is planned for March 20, the solar equinox. Many arrangements have already been made and a variety of new approaches will be used to make the events of the day even more widespread and visible. The number of packets of materials will be increased. There will be TV programs and webcasts created specifically for Sun-Earth Day. Native American relationships and interactions with the Sun will be an underlying theme. As always, the involvement of AGU scientists is the highlight of many of the planned programs. Come listen to the variety of ways that you can get involved, many requiring very little in time commitment or preparation, yet providing a major boost to keeping the value of science in the minds of the general public.

  17. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. PMID:26332985

  18. Galileo Earth Moon Flyby

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video has five sections. The first is a live discussion of the information that scientists hope to gain by the Galileo flyby of the Moon. This section has no introduction. There is a great deal of the discussion about the lunar craters and lunar volcanism. There is also some discussion of the composition of the far side of the moon. The second section is a short animation that shows the final step to Jupiter with particular emphasis on the gravitational assisted velocity boost, which was planned to give the spacecraft the requisite velocity to make the trip to Jupiter. The next section is an update of the status of the flyby of the Moon, and the Earth, with an explanation of the trajectory around the earth, and the moon. A photograph of the tracking station in Canberra, Australia is included. The next section is a tour of a full-scale model of the spacecraft. The last section is a discussion with the person charged with the procurement of the instrumentation aboard the spacecraft; the importance of the lunar flyby to assist in the calibration of the instruments is discussed.

  19. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  20. Near Earth asteroid rendezvous

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.

  1. Active Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2015-08-01

    Past activity from Near Earth Asteroids is recorded in the meteoroid streams that cause our meteor showers. Automated meteoroid orbit surveys by photographic, low-light video, specular radar, and head-echo radar reflections are providing the first maps of meteor shower activity at different particle sizes. There are distinct differences in particle size distributions among streams. The underlaying mechanisms that created these streams are illuminated: fragmentation from spin-up or thermal stresses, meteoroid ejection by water vapor drag, and ejection of icy particles by CO and CO2 sublimation. The distribution of the meteoroid orbital elements probe the subsequent evolution by planetary perturbations and sample the range of dynamical processes to which Near Earth Asteroids are exposed. The non-stream "sporadic" meteors probe early stages in the evolution from meteoroid streams into the zodiacal dust cloud. We see that the lifetime of large meteoroids is generally not limited by collisions. Results obtained by the CAMS video survey of meteoroid orbits are compared to those from other orbit surveys. Since October 2010, over 200,000 meteoroid orbits have been measured. First results from an expansion into the southern hemisphere are also presented, as are first results from the measurement of main element compositions. Among the many streams detected so far, the Geminid and Sextantid showers stand out by having a relatively high particle density and derive from parent bodies that appear to have originated in the main belt.

  2. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  3. Skylab and Earth Limb

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overhead view of the Skylab Orbital Workshop in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against the pale blue Earth. During launch on May 14, 1973, some 63 seconds into flight, the micrometeor shield on the Orbital Workshop (OWS) experienced a failure that caused it to be caught up in the supersonic air flow during ascent. This ripped the shield from the OWS and damaged the tie downs that secured one of the solar array systems. Complete loss of one of the solar arrays happened at 593 seconds when the exhaust plume from the S-II's separation rockets impacted the partially deployed solar array system. Without the micrometeoroid shield that was to protect against solar heating as well, temperatures inside the OWS rose to 126 degrees fahrenheit. The gold 'parasol' clearly visible in the photo, was designed to replace the missing micrometeoroid shield, protecting the workshop against solar heating. The replacement solar shield was deployed by the Skylab I crew. This enabled the Skylab Orbital Workshop to fulfill all its mission objects serving as home to additional crews before being deorbited in 1978.

  4. Solar energy and its interaction with Earth`s atmosphere

    SciTech Connect

    Tulunay, Y. ||

    1993-12-31

    The Sun is responsible for many of the phenomena on Earth, including the maintenance of life. In addition, magnetic storms, capable of disrupting radio communication, and auroral displays are associated with solar events. Man-made electrical, satellite, and communication systems are affected strongly by the near-Earth space environments. The purpose of this paper is to review briefly the interaction of solar activity with the near-Earth environment. These processes can be studied by examing two sets of interactions. That is, the interaction of the solar electromagnetic output with the Earth`s neutral atmosphere, and the solar corpuscular output with the geomagnetic field. In order to understand the types of interactions one needs to know more details of the interacting components. Therefore, the near-Earth environments which comprise neutral atmospheric, ionospheric and magnetospheric regions will be discussed in relation to the direct and indirect influences of solar activity.

  5. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  6. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  7. School, Earth and Imagination

    NASA Astrophysics Data System (ADS)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  8. Compositions of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Nelson, Marcia L.

    1990-01-01

    Observational studies of near-earth asteroids and development of techniques for determining their composition were continued. The analysis techniques were applied to the spectra of several bodies in preparation for their application of near-earth asteroids. In mid-November 1989, near-IR observations of three near-earth atseroids, 1865 Cerberus, 1989 VA, and 1989 VB, were made. These asteroids were observed in six broadband visual and near-IR filters (0.4 to 2.5 microns), and a few narrowband measurements in the IR were obtained, but the asteroids were too faint to measure beyond 2.5 microns. Simultaneous, high-resolution visual CCD spectra were measured for these objects, but the data were not yet reduced to determine their quality. Narrowband spectra of the Martian satellite Deimos in the 1 to 3 micron spectral region were obtained. Simultaneous with the observing project, laboratory studies of meteorites and meteorite analogs which are used in spectral analysis of the telescopic data are continuing to be performed. Extensive work was performed in developing applications of Hapke reflectance theory to compositional analysis. Hapke theory is an adaptation of radiative reflectance theory to particulate surfaces.

  9. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  10. Earth Co-orbital Objects

    NASA Astrophysics Data System (ADS)

    Wiegert, P.; Connors, M.; Chodas, P.; Veillet, C.; Mikkola, S.; Innanen, K.

    2002-12-01

    The recent discovery of asteroid 2002 AA29 by the LINEAR survey and the realization of its co-orbital relationship with Earth lead us to consider the characteristics of Earth Co-orbital Objects (ECOs) in general. An object with semimajor axis between 0.99 and 1.01 AU is in 1:1 resonance with the Earth. To be co-orbital in the sense of moving along the Earth's orbit, an object must further have its other orbital parameters similar to those of the Earth. Clarification is needed as to what range of orbital parameters can be regarded as similar enough to permit classification as an ECO. ECOs would be expected to librate on tadpole or horseshoe orbits, be relatively easy to access with spacecraft, and to sometimes exhibit quasisatellite behavior. 2002 AA29 is on a horseshoe orbit and was discovered in a general asteroid survey while near Earth at one end of the horseshoe orbit. Searches for Earth Trojan asteroids, which would be members of the ECO class on tadpole orbits near a triangular Lagrange Point, have not yet been successful. While 2002 AA29 has an orbit even less eccentric than Earth's, it has an inclination of about 10 degrees. 2000 PH5 and 2001 GO2 are on horseshoe orbits and interact gravitationally with Earth to 'bounce' when they approach the Earth from either side. With eccentricities of .23 and .17 respectively, they do not have decidedly Earth-like orbits despite inclinations less that 5 degrees. When in quasi-satellite mode, a body exhibits a looping motion relative to Earth in some ways resembling a satellite orbit. Several resonant bodies including 3753 Cruithne exhibit this behavior at times, but ECOs remain close to Earth while doing it. We suggest that directed searches be used to discover ECOs and characterize this class of objects. Orbital simulations suggest the best target spaces, which are only partially covered by present general searches.

  11. Chemical Differentiation of Earth Before and After Earth Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Boyet, M.; Jackson, M. G.; O'Neil, J.; Qin, L.; Rizo Garza, H. L.

    2013-12-01

    Isotopic variability in the daughter elements of short-lived (< 100 Ma half life) radiogenic systems in various Earth rocks shows that Earth's differentiation began early in Solar System history. Evidence for planetesimal growth to the point of core-mantle-crust differentiation within 0.1 to 2 Ma of Solar System formation suggests that Earth grew primarily from already differentiated objects, and likely inherited some first-order compositional features as a result. The most obvious is Earth's depletion in volatile elements that is dated by Mn-Cr systematics to have occurred within 0 to 4 Ma of Solar System formation. The accessible portion of Earth's mantle also appears to be slightly depleted in the highly incompatible refractory lithophile elements possibly due to impact erosion of crust from accreting planetesimals, but more likely reflective of an early silicate differentiation on Earth, in which case, an untapped, complementary incompatible element enriched reservoir must be present in Earth's deep interior. The evidence is a small excess in the bulk-Earth 142Nd/144Nd ratio compared to most chondrites, although the exact interpretation of this result is clouded by uncertainties on the nature of nucleosynthetic isotopic variability in Nd that is clearly observed in meteorites. Perhaps the strongest argument that the accessible Earth's mantle has a slightly superchondritic Sm/Nd ratio is that the modern mantle source of large igneous provinces with low 4He/3He has Nd and Pb isotopic compositions and incompatible element abundances similar to those predicted from the chondrite-Earth offset in 142Nd/144Nd. Variability in 142Nd/144Nd in early Earth rocks reflects the early stages of Earth's differentiation that now includes both incompatible element enriched and depleted sources for Eoarchean rocks from southwest Greenland. Correlated Sm/Nd and 142Nd/144Nd variability in mafic gneisses from the Nuvvuagittuq greenstone belt in northern Quebec suggest that the

  12. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  13. The Reality of the Earth Science Classroom.

    ERIC Educational Resources Information Center

    Yates, Billy Charles; And Others

    A 1991 survey of Kansas earth science teachers provides findings concerning earth science students, earth science teachers, and some current practices in earth science instruction. Generally students take earth science in seventh, eighth, or ninth grade. About two-thirds of the students taking earth science do so at the ninth grade level. The…

  14. Space Weather - Sun Earth Relations

    NASA Astrophysics Data System (ADS)

    Raman, K. Sundara

    2011-03-01

    Sun, a star of spectral type G2 is the main source of energy to the Earth. Being close to the Earth, Sun produces a resolvable disk of great detail, which is not possible for other stars. Solar flares and coronal mass ejections are the enigmatic phenomena that occur in the solar atmosphere and regularly bombard the Earth's environment in addition to the solar wind. Thus it becomes important for us not only to understand these physical processes of the Sun, but in addition how these activities affect the Earth and it's surrounding. Thus a branch of study called "Space Weather" had emerged in the recent past, which connects the Sun Earth rela-tions. This paper details about the solar activity and associated energetic phenomena that occur in the atmosphere of the Sun and their influence on the Earth.

  15. Earth Abides Arsenic Biotransformations

    PubMed Central

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  16. Earth's early biosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  17. Earth System Environmental Literacy

    NASA Astrophysics Data System (ADS)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.

  18. Density distribution in Earth.

    PubMed

    Press, F

    1968-06-14

    Earth models selected by a Monte Carlo procedure were tested against geophysical data; 5 million models were examined and six have passed all tests. Common features of successful models are an increased core radius and a chemically inhomogeneous core consistent with Fe-Ni alloy (20 to 50 percent Fe) for the solid portion and Fe-Si alloy (15 to 25 percent Fe) for the fluid core. The inhomogeneous mantle is consistent with an increase in the FeO:FeO + MgO ratio by a factor of 2 in the deep mantle. The transition zone is a region of not only phase change but also composition change; this condition would inhibit mantlewide convection. The upper-mantle solutions show large fluctuations in density; this state implies insufficient constraint on solutions for this region, or lateral variations in mantle composition ranging from pyrolite to eclogite. PMID:17818740

  19. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  20. Physical Properties of Modified Compositions of Strontium Ruthenates

    NASA Astrophysics Data System (ADS)

    Gulian, Armen; Nikoghosyan, Vahan

    2014-03-01

    We performed systematic research on ceramic materials Sr2RuO4 with Sulfur, Selenium or Tellurium added, in combination with other dopants such as: Au, Pt, Al, Zn, Mn, Ba, Na, Ca, Os, Co, Ni, Fe, and Ir. Data on resistive, magnetic, structural, compositional, morphological and other physical properties are obtained, and the most interesting results are presented, as well as corresponding synthesis conditions. ONR Grants N000141210768 and N000141210244 are acknowledged.

  1. NMR study of new ruthenates with high magnetic ordering

    NASA Astrophysics Data System (ADS)

    Paulose, P. L.; Chakrabarty, Tanmoy

    The Ru based compounds, Ca3LiRuO6 and Ca3NaRuO6 show unusually high magnetic ordering temperature. Extended super exchange model is invoked to explain the magnetic behavior in the isostructural compound Ca3LiOsO6. We have carried out NMR investigation on these two Ru-based compounds. Ca3LiRuO6 is a weak ferromagnet with a magnetic ordering temperature (TC) of 115 K which is explored by the temperature dependence of 7Li NMR line shift, line-width and spin-lattice relaxation rate (1/T1) . Above TC, a broad maximum is observed in the evolution of line-width of the spectra. We speculate that this feature might be attributed to some low-dimensional magnetic behavior. Contrastingly, Ca3NaRuO6 with similar structure and local geometry of the Ru5+ ions is a conventional antiferromagnet with a transition temperature of 90 K. The temperature dependence of 23Na NMR line shift and 1/T1 is studied across magnetic transition in Ca3NaRuO6. The temperature variation of line-width is found to be different compared to Ca3LiRuO6. In both these systems, 1/T1 decreases significantly below ordering temperature, characteristic of many antiferromagnetic systems.

  2. Geoengineering the Earth's Climate

    SciTech Connect

    Google Tech Talks

    2008-01-08

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  3. Geoengineering the Earth's Climate

    ScienceCinema

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  4. Earth's Electromagnetic Environment

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2016-01-01

    The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10^{-4}-10^4 Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10^4 Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at ˜1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth's internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz-3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3-30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7-2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

  5. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  6. Theory of Earth

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  7. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  8. Libration in the earth's rotation

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Liu, H. S.; Dong, D. N.; Herring, T. A.

    1991-01-01

    External luni-solar torque exerted on the difference (B-A) of the earth's two equatorial principal moments of inertia gives rise to two types of librational motions in the earth's rotation: the semidiurnal libration in spin and the prograde diurnal libration in polar motion. Formulas for the librations considering a realistic earth model and their tidal decompositions are derived and evaluated. The spin libration has a maximum peal-to-peak amplitude of 0.90 milliarcseconds, that of the polar libration is 0.06 milliarcseconds. Implications concerning their detectability and role in the tidal variation of earth rotation are discussed.

  9. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  10. Windows on Earth - Virtual Globes for Earth Science Education

    NASA Astrophysics Data System (ADS)

    Barstow, D.

    2006-12-01

    Windows on Earth enables museum visitors to explore Earth from space. Under active development and testing (with funding from the National Science Foundation), the exhibit uses a digital globe and a visualization engine to provides an interactive experience, as if looking at the Earth from a large window on the International Space Station. The high-resolution Earth data have been carefully color corrected for accurate representations, and the interface provides tools for creative exploration of Earth's processes, as revealed from this unique perspective. The experience also includes data overlays and hot links to extend the learning. The project also will create a web site, with extended capabilities and a rich simulation of the orbital experience, revealing the awe-inspiring beauty of our home planet, as well as insights into Earth as a dynamic, interconnected system. Windows on Earth builds on cognitive research on how people make meaning of Earth images. The team lead is TERC (an educational R&D non-profit). Partners include GeoFusion (engine), WorldSat (data), JKA (museum design), and Dr. Jay Apt (astronaut). The exhibit will be installed in National Air and Space Museum, Boston Museum of Science, St. Louis Science Center, and Montshire Museum of Science.

  11. Delamination in super-Earths extrapolated from the Earth model

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.

    2015-05-01

    It is suggested that the delamination process, in which the mantle lithosphere is peeled into the asthenosphere, contributes to the topographies and magmatism of the Earth. We investigated the vigorousness of the delamination in super-Earths by applying the Earth model to planets of heavy mass. Delamination is induced in planets of mass 5M⊕ by the negative buoyancy of the mantle lithosphere. However, assuming pressure dependent rheology, the thermal Rayleigh number decreases due to the high pressure in super-Earths and thus the magnitude of convection in the Moho decreases. Because reduced convection in the Moho weakens the peeling of the mantle lithosphere, the delaminated area is narrower. The magnitude of the heat flux caused by the delamination process is also reduced in planets large in size compared with Earth. Although further work is needed, our model indicates that delamination can transfer more heat than the conduction of the lithosphere if the planet's mass is less than 5M⊕.

  12. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  13. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  14. Thermodynamics of the Earth

    NASA Astrophysics Data System (ADS)

    Stacey, Frank D.

    2010-04-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 × 1012 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>104 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  15. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  16. Heterogeneity of an earth

    NASA Astrophysics Data System (ADS)

    Litvinova, T.; Petrova, A.

    2009-04-01

    The study of magnetic anomaly field structure of the Barents Sea water area along seismic and extended profiles intersecting known fields is carried out. Geomagnetic and density sections down to 40 km depth are constructed. This allowed the estimation of heterogeneities of the Barents Sea water area deep structure. The analysis of geomagnetic and density sections along extended profiles showed the confinedness of oil-and-gas bearing provinces to deep permeable zones characterized by reduced magnetic and density features. Based on the analysis of permeable zones, regional diagnostic features similar to those obtained earlier in oil-and-gas bearing provinces in other regions, for example, in Timan-Pechora, Volga-Urals and Siberian, as well as in the Northern and Norwegian seas water areas, are revealed. The analysis of magnetic and gravity fields over the region area allowed the delineation of weakened zones as intersection areas of weakly magnetic areals with reduced density. Within the Barents Sea water area, permeable areas with lenticular-laminated structure of the upper and lower Earth's crust containing weakly magnetic areals with reduced rock density within the depth range of 8-12 and 15-20 km are revealed. Such ratio of magnetic and density heterogeneities in the Earth's crust is characteristic for zones with proved oil-and-gas content in the European part of the Atlantic Ocean water area. North Kildin field on 1 AR profile is confined to a trough with thick weakly magnetic stratum discontinuously traced to a depth of 6-10 km. At a depth of approximately 15 km, a lens of weakly magnetic and porous formations is observed. Ludlov field in the North Barents trough is confined to a zone of weakly magnetic rocks with reduced density traced to a depth of 8-9 km. Deeper, at Н=15 km, a lenticular areal of weakly magnetic formations with reduced density is observed. The profile transecting the Stockman field shows that it is located in the central part of a permeable

  17. Teaching Waves with Google Earth

    ERIC Educational Resources Information Center

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  18. Polar Misunderstandings: Earth's Dynamic Dynamo

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  19. Earth's Caretakers: Native American Lessons.

    ERIC Educational Resources Information Center

    Nyberg, Lisa M., Ed.

    Written by Native American teachers and by teachers of Native Americans, this book presents examples of ways to learn respect for the Earth and its people. The hope is that students will learn to walk softly upon the Earth and to respect all living things. Lessons and activities engage elementary and middle school students in a four-step…

  20. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  1. LIMNOLOGICAL OPTOMETRY: EXAMINING EARTH'S EYE

    EPA Science Inventory

    In Thoreau's Walden, a lake is described as the landscape's most expressive feature and the earth's eye. Collectively, scientists are charged by society to assess, monitor, and remedy maladies of earth's eye in the same way optometrists maintain the health of the human eye. This ...

  2. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  3. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  4. The Earth System Modeling Framework and Earth System Curator: Software Components as Building Blocks of Community

    NASA Astrophysics Data System (ADS)

    Deluca, C.; Balaji, V.; da Silva, A.; Dunlap, R.; Hill, C.; Mark, L.; Mechoso, C. R.; Middleton, D.; Nikonov, S.; Rugaber, S.; Suarez, M.

    2006-05-01

    The Earth System Modeling Framework (ESMF) is an established U.S. initiative to develop high performance common modeling infrastructure for climate and weather models. ESMF is the technical foundation for the NASA Modeling, Analysis, and Prediction (MAP) Climate Variability and Change program and the DoD Battlespace Environments Institute (BEI). It has been incorporated into the Community Climate System Model (CCSM), the Weather Research and Forecast (WRF) Model, NOAA NCEP and GFDL models, Army, Navy, and Air Force models, and many others. The new, NSF-funded Earth System Curator is a related database and toolkit that will store information about model configurations, prepare models for execution, and run them locally or in a distributed fashion. The key concept that underlies both ESMF and the Earth System Curator is that of software components. Components are software units that are "composable", meaning they can be combined to form coupled applications. These components may be representations of physical domains, such as atmospheres or oceans; processes within particular domains such as atmospheric radiation or chemistry; or computational functions, such as data assimilation or I/O. ESMF provides interfaces, an architecture, and tools for structuring components hierarchically to form complex, coupled modeling applications. The Earth System Curator will enable modelers to describe, archive, search, compose, and run ESMF and similar components. Together these projects encourage a new paradigm for modeling: one in which the community can draw from a federation of many interoperable components in order to create and deploy applications. The goal is to enable a network of collaborations and new scientific opportunities for the Earth modeling community.

  5. Intrinsic Hydrophobicity of Rammed Earth

    NASA Astrophysics Data System (ADS)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  6. Phase stable rare earth garnets

    SciTech Connect

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  7. NASA to Survey Earth's Resources

    NASA Technical Reports Server (NTRS)

    Mittauer, R. T.

    1971-01-01

    A wide variety of the natural resources of earth and man's management of them will be studied by an initial group of foreign and domestic scientists tentatively chosen by the National Aeronautics and Space Administration to analyze data to be gathered by two earth-orbiting spacecraft. The spacecraft are the first Earth Resources Technology Satellite (ERTS-A) and the manned Skylab which will carry an Earth Resources Experiment Package (EREP). In the United States, the initial experiments will study the feasibility of remote sensing from a satellite in gathering information on ecological problems. The objective of both ERTS and EREP aboard Skylab is to obtain multispectral images of the surface of the earth with high resolution remote sensors and to process and distribute the images to scientific users in a wide variety of disciplines. The ERTS-A, EREP, and Skylab systems are described and their operation is discussed.

  8. Near earth propagation study

    NASA Astrophysics Data System (ADS)

    Wert, R.; Goroch, A.; Tremper, D.; Schuette, L.; Wendland, D.

    2005-05-01

    Networks of small ground sensors and other near earth devices deployed in the battlefield are postulated to be of considerable value to the future warfighter. The radio frequency (RF) link between devices will dictate the resilience of the network in communicating critical information in the battlespace. A prior knowledge of the RF environment inches above the ground is required to properly design the sensor network. Signal strength was measured with antennas at 4, 7, and 120 inches above the ground over a range of 10 to 400 feet. The source consisted of a 1780 MHz, 1/4 watt transmitter feeding a quarter wave vertical monopole. The receive equipment consisted of a corner reflector monopole, spectrum analyzer and data logger program. Data points were taken at 10-foot increments over the 400-foot range. The received signal, at heights of 4 and 7 inches, were compared to the measurements taken at a height of 120 inches (close to "free space"). It was found that there is a significant increase in path loss as the antenna approached the ground. There was a 15 dB increase in path loss from when the antennas were at 120 inches to 7 inches off the ground and 18 dB increase in path loss with the antenna 4 inches off the ground. Variations in path loss (10 dB) over time (seconds) were also noted.

  9. Earth Science Imagery Registration

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Morisette, Jeffrey; Cole-Rhodes, Arlene; Johnson, Kisha; Netanyahu, Nathan S.; Eastman, Roger; Stone, Harold; Zavorin, Ilya

    2003-01-01

    The study of global environmental changes involves the comparison, fusion, and integration of multiple types of remotely-sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, as well as for the validation of new instruments or for new data analysis. Furthermore, future multiple satellite missions will include many different sensors carried on separate platforms, and the amount of remote sensing data to be combined is increasing tremendously. For all of these applications, the first required step is fast and automatic image registration, and as this need for automating registration techniques is being recognized, it becomes necessary to survey all the registration methods which may be applicable to Earth and space science problems and to evaluate their performances on a large variety of existing remote sensing data as well as on simulated data of soon-to-be-flown instruments. In this paper we present one of the first steps toward such an exhaustive quantitative evaluation. First, the different components of image registration algorithms are reviewed, and different choices for each of these components are described. Then, the results of the evaluation of the corresponding algorithms combining these components are presented o n several datasets. The algorithms are based on gray levels or wavelet features and compute rigid transformations (including scale, rotation, and shifts). Test datasets include synthetic data as well as data acquired over several EOS Land Validation Core Sites with the IKONOS and the Landsat-7 sensors.

  10. Earth at a Crossroads

    NASA Astrophysics Data System (ADS)

    Bossel, Hartmut

    1998-07-01

    We are fast becoming a global society. Flagging economies and social problems, environmental pollution and ecological destruction are burdens that fall on the shoulders of our international community. As we stand on the threshold of the twenty-first century, we search for cooperative answers to take us through the next millennium, and are confronted with the task of establishing a future that is both environmentally and socially sustainable. Earth at a Crossroads offers an integrated view for the development of human society within the natural environment on which it depends for support. The book stresses the dynamic and interconnected nature of feedback processes, traces possible future paths of societal development and their impacts, determines their sustainability, and points at necessary changes. Two alternative visions of the future are presented: Path A resulting from continuation of current trends, and a contrasting Path B that would result from adhering to principles of sustainability and protection of the natural system in the interests of future generations. This book will become an important reference in the discussion of global society's path into the next millennium. It will be a valuable read for anyone looking forward to a healthier world, and a well-thumbed resource for environmental scientists and policy-makers. Hartmut Bossel received his Ph.D. in mechanical engineering at the University of California at Berkeley. He is the author of ten books and over 300 papers. His research includes studies of agricultural policy for the German Bundestag.

  11. The Earth in Transition

    NASA Astrophysics Data System (ADS)

    Woodwell, George M.

    1991-01-01

    The Earth's biotic resources are experiencing a spreading crisis, which is leading not only to the most rapid loss of species in the past 65 million years, but also causing abrupt changes in the structure and function of natural communities. This disturbance, unfortunately, is the result of man's carelessness in the name of advancing civilization. To identify and begin rectifying this dangerous situation, a group of outstanding environmental scientists has compiled a collection of case studies that illustrate the changes being wrought on the biosphere by the human presence. The first part of the book frames the issue with a series of papers on global change and patterns of impoverishment, with particular emphasis on the effects of air pollution. Successive sections explore the nature of chronic disturbances in a variety of ecosystems including forests, woodlands, grasslands, tundra, and aquatic systems. The book concludes with two chapters that offer possible solutions to this critical situation. By defining the major types of changes in the structure and function of natural communities exposed to chronic disturbance, the authors hope to instill concern and, ultimately, a change of policy.

  12. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more. PMID:16915369

  13. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  14. Rotation of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Lissauer, J. J.; Barnes, J. W.; Chambers, J.

    2013-12-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1° and 24.5°. Without lunar influence, a frequency-map analysis by Laskar et al. (Laskar, J., Joutel, F., Robutel, P. [1993]. Nature 361, 615-617) showed that the obliquity could vary between 0° and 85°. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25° in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of prograde rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  15. Louisiana, A Leader in Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Totten, I. M.

    2002-05-01

    Earth and Space Science is too often viewed as a peripheral science compared to chemistry, biology, and physics. It is typically found integrated with geography, ecology, and general science in various stages of the curriculum, and is rarely considered holistically or as a discrete discipline. The status of earth and space science is also commonly reflected in the inadequate preparation of teachers and in the lack of government recognition of the value of earth science education. Louisiana is a state that does not follow the typical trend. It is a leader in earth and space science education with its cadre of programs that impact teacher preparation, state testing programs, curriculum development and technology initiatives. The state science framework introduces earth science in middle school. Grades 5-7 have an integrated science curriculum that includes an earth science component. Grade 8 has either an earth science or an integrated science course depending upon the availability of certified teachers in the district. Earth science is also included in Louisiana's high school science curriculum. It satisfies one science credit required for graduation. The Louisiana Educational Assessment Program (LEAP 21) and the Graduation Exit Exam (GEE 21) compose Louisiana's new criterion-referenced testing program. The content standards measured by the LEAP 21/GEE 21science tests include earth and space science. The LEAP 21 is administered at grades 4 and 8, and the GEE 21 at grades 10 and 11. Students have to pass the GEE 21 to graduate from high school. Therefore, all students graduating from a Louisiana high school will have been exposed to earth science concepts multiple times throughout their K-12 schooling. Louisiana also has an array of programs that provide statewide curriculum and student resources and professional development that impact earth and space science education. The Making Connections Project provides web-site resources and lesson plans that have been

  16. Transforming Instructional Designs in Earth Science (TIDES)

    NASA Astrophysics Data System (ADS)

    McWilliams, H.; McAuliffe, C.; Penuel, W.

    2008-12-01

    An enduring challenge in Earth system science education has been to prepare teachers to teach for deep understanding of subject matter. Standards and trade textbooks are often too broad to allow for in-depth treatment of specific topics, and many teachers have had limited exposure to how to plan instruction for the core concepts of Earth system science they are expected to teach. High-quality curriculum materials do exist that provide young people with opportunities to explore concepts in depth and to experience the inquiry process. At the same time, few programs provide teachers with the necessary skills and knowledge to enact and adapt those materials to the unique circumstances of their classrooms and schools. Our interdisciplinary team of curriculum and staff developers, researchers, and district personnel developed a program focused on preparing teachers to use a principled approach to curriculum adaptation in Earth system science. In this program, teachers learned how to use the Understanding by Design (UbD) approach developed by Grant Wiggins and Jay McTighe to organize and adapt materials from an expert-designed curriculum. As part of the program, teachers learn to select or modify materials from the curriculum based on how likely the materials are to develop so-called "enduring understandings" of concepts in the district standards. Teachers also learn how to apply the approach in incorporating materials from other sources besides the expert-designed curriculum, which can include their textbook and materials they design on their own or with colleagues. Third, teachers learn how to collect and interpret evidence of student understanding by designing or adapting performance tasks that call for students to apply knowledge acquired during the unit to solve a problem or complete a project. Evidence from a randomized controlled trial indicates the program we created is effective in improving the quality of teacher assignments and in improving student achievement

  17. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  18. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  19. Soluble rare-earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Pernin, Christopher G.

    1999-11-01

    The cluster Eu8(DMF)13(mu4-O)(mu 3-OH)12(Se3)(Se4)2(Se 5)2 was synthesized from the reaction of EuCl3 dissolved in tetrahydrofaran with K2Se4 dissolved in N,N-dimethylformamide (DMF). The Eu8(O)(OH)12 10+ core is the first example such a polyoxometallo-core. The compound is further unusual in that it contains three different polyselenide chain lengths attaching adjacent Eu atoms. A similar reaction between Ln Cl3·6H2O and K2Se4 in DMF was found to produce the cluster compounds Gd8(DMF) 13(mu4-O)(mu3-OH)12(Se3)(Se 4)2(Se5)2, Yb8 (DMF) 11(mu4-O)(mu3-OH)12(Se4) 2(Se5)2Cl2·(DMF), and Y 8(DMF)12(mu4-O)(mu3-OH)12 (Se4)4Cl2·(DMF)6. Each of these clusters has a similar Ln8(mu 4-OH)(mu3-OH)1210+ core coordinated by a variety of polyselenide and chloride ligands. The organometallic rare-earth chalcogenide compounds (C5H 5)2Y [N( Q PPh2)2] ( Q = S, Se) have been prepared in good yield from the protonolysis reaction between CP3Y and HN( Q PPh2)2 in THF. In both compounds, the [N( Q PPh2)2]-- ligand is bound eta 3 to the Y center. The Y atom is also coordinated to two (C5 H5)-- ligands and so is formally 9-coordinate. 1H, 31P, 77Se, and 89Y NMR data indicate that the solid state connectivity is retained in solution. The compounds (C5H5)2Ln[N( Q PPh2)2] (Ln = La, Gd, Er, Yb, for Q = Se; Ln = Yb for Q = S) were synthesized. The series of compounds indicates that the smaller rare-earth elements cannot accommodate eta3-bonding from the imidodiphosphinochalcogenido ligand. The compounds Y[N( Q PPh2)2]3 ( Q = S (1), Se(2)) have been synthesized from the reactions between Y[N(SiMe3)2]3 and HN( Q PPh2)2. In 1, the Y atom is surrounded by three similar [N(SPPh2)2]-- ligands bound eta3 through two S atoms and an N atom. In 2 , the Y atom is surrounded again by three [N(SePPh2) 2]-- ligands, but two are bound eta2 through the two Se atoms and the other ligand is bound eta3 through the two Se atoms and an N atom. Although a fluxional process is detected in the 31P and 77Se NMR spectra

  20. Earth Science Research as IPY Priority

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V.; Leonov, Y.; Coakley, B.; Grikurov, G.; Johnson, L.; Kaminsky, V.; Kristoffersen, Y.; Leitchenkov, G.; Pavlenko, V.

    2004-05-01

    The preparations for IPY 2007/2008 are evolving from conceptual to implementation planning. Many earth scientists are concerned that the emerging plans for IPY are too narrowly focused on environmental processes and therefore appear discriminatory with respect to other fundamental sciences. National/international efforts such as USGCRP (U.S. Global Change Research program) and IPCC (Intergovernmental Panel on Climate Change) are also involved in the multitude of climate change issues, and just how the proposed IPY program could augment and complement these ongoing activities without reproducing them requires careful analysis and coordination. In particular, the polar research is unthinkable without study of the geological history of the Arctic and the Southern Oceans as a clue to tectonic evolution of the entire planet and test of the current geodynamic paradigm. In addition to these fundamental objectives, the circum-polar continental margins of the Arctic and Antarctica are likely to become the scenes of geopolitical intrigue provoked by implementation of the provisions of the Law of the Sea that require acquisition of specific earth science knowledge at internationally recognized levels of credibility. Interdisciplinary international programs (e. g. JEODI), based on geophysical data acquisition and analysis that would lead, where appropriate, to scientific drilling, had independently been proposed for studying the coupled tectonic and oceanographic history of the polar regions. Admitting the importance of identifying fundamental constraints for paleooceanography and climatic history of the high latitudes, and acknowledging the progress achieved so far in promoting IPY activities, the international earth science community has suggested developing the proposed approach into a major IPY endeavor - to examine the Polar Ocean Gateway Evolution (POGE). Such study would enable linking the geological history of the Polar Regions during the last 100 Ma and related

  1. Our Sustainable Earth

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  2. Other Worlds, Other Earths

    NASA Astrophysics Data System (ADS)

    Sunbury, Susan; Gould, R. R.

    2011-05-01

    The Harvard-Smithsonian Center for Astrophysics is developing a two-to-three week NSF-funded program for middle and high school students using telescope-based investigations of real world cutting edge scientific questions. The goal is to reveal and enhance students' understanding of core concepts in the physical sciences as well as to develop their proficiency in the practice of scientific inquiry. Specifically, students and teachers are joining scientists in the search for habitable worlds by exploring transiting exoplanets. Using robotic telescopes, image processing software and simulations, students take images and then measure the brightness of their target star to create a portrait of a transiting planet including how large it is; the tilt of its orbit; how far it is from its star and what its environment might be like. Once classes collect and analyze their own data, they can begin to compare, combine, and communicate their findings with others in the community. Interactive models help students predict what they might expect to find and interpret what they do find. During the past two years, the Center for Astrophysics has tested the concept in fifty middle-and high-school classrooms, enrichment classes and after school science clubs in 13 states across the United States. To date, astronomy, earth science, and physics students have successfully detected Jupiter-sized planets transiting stars such as TRES-3, HATP-10, and HATP-12. Preliminary results indicate that learning of core concept did occur. Gains in content were most significant in middle school students as this project delivered new information to them while it served primarily as a review of concepts and application of skills for advanced placement classes. A significant change also occurred in students’ self reported knowledge of exoplanets. There was also an increase in students’ awareness of exoplanets and attitudes about science after participating in this project.

  3. Near earth propagation: physics revealed

    NASA Astrophysics Data System (ADS)

    Wert, R.; Goroch, A.; Worthington, E.; Wong, V.

    2007-04-01

    Both the military and consumer sectors are pursuing distributed networked systems and sensors. A major stumbling block to deployment of these sensors will be the radio frequency (RF) propagation environment within a few wavelengths of the earth. Increasing transmit power (battery consumption) is not a practical solution to the problem. This paper will discuss some of the physical phenomena related to the near earth propagation (NEP) problem. When radiating near the earth the communications link is subjected to a list of physical impairments. On the list are the expected Fresnel region encroachment and multipath reflections. Additionally, radiation pattern changes and near earth boundary layer perturbations exist. A significant amount of data has been collected on NEP. Disturbances in the NEP atmosphere can have a time varying attenuation related to the time of day and these discoveries will be discussed. Solutions, or workarounds, to the near earth propagation problem hinge on dynamic adaptive RF elements. Adaptive RF elements will allow the distributed sensor to direct energy, beam form, impedance correct, increase communication efficiency, and decrease battery consumption. Small electrically controllable elements are under development to enable antenna impedance matching in a dynamic environment. Additionally, small dynamic beam forming arrays are under development to focus RF energy in the direction of need. With an increased understanding of the near earth propagation problem, distributed autonomous networked sensors can become a reality within a few centimeters of the earth.

  4. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  5. Preparation of polyphenols by oxidation of hydroxybenzaldehydes

    SciTech Connect

    Formanek, K.; Michelet, D.; Petre, D.

    1984-03-06

    Optionally aldehyde substituted polyphenols are prepared by oxidizing, with hydrogen peroxide, a hydroxybenzaldehyde bearing at least one aldehyde substituent ortho- and/or para- to the nuclear hydroxyl group, in an aqueous reaction medium and in the presence of an alkali or alkaline earth metal base, the process being characterized in that the pH of the reaction medium is continuously maintained at a value no greater than 7 throughout the course of the oxidation reaction. The subject process is well suited for the preparation of, e.g., hydroxy-p-vanillin from guaiacol, and the novel compound 2,4,6-triformylphenol.

  6. Earth - South America (first frame of Earth Spin Movie)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  7. Applications to particle transport in the Earth`s aurora

    SciTech Connect

    Jasperse, J.R.

    1994-12-31

    The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.

  8. Earth albedo effects in the motion of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Lala, P.

    Different models of the earth albedo values and geographical distribution are compared. Effects of the local cloud cover on the satellite perturbing acceleration are investigated. Resulting changes of the satellite orbit obtained by the method of numerical integration in the spherical coordinate system are given. It is shown that a sufficiently sensitive microaccelerometer on board a special satellite could significantly improve existing models of the earth albedo.

  9. Earth contamination free sample acquisition from an Earth Contaminated Spacecraft

    NASA Technical Reports Server (NTRS)

    Dolgin, B.; Bickler, D.; Carson, J.; Chung, S.; Quicksall, J.; Troy, R.; Yarbrough, C.

    2000-01-01

    The paper describes the first step in the feasibility demonstration of a novel low cost Mars Sample Return Transfer Sequence (STS) that does not require cleaning and sterilization of the entire spacecraft. The proposed STS relies on ability to collect (and in the future deliver to Earth) Earth-contamination-free samples from a spacecraft that was cleaned only to the levels achieved on the Pathfinder.

  10. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  11. History of the earth's crust

    SciTech Connect

    Eicher, D.L.; Mcalester, A.L.; Rottman, M.L.

    1984-01-01

    The history of the earth's crust since its formation 4.6 Gyr ago is traced in an introductory textbook, with consideration of the global climate and the general outline of biological evolution. The methodology of paleogeology is introduced, and the origin of the solar system, the accumulation and differentiation of the earth, the beginnings of life, and the history of the moon are examined. Separate chapters are then devoted to the Precambrian, Paleozoic, Mesozoic, and Cenozoic earth. Photographs, maps, diagrams, and drawings are provided. 49 references.

  12. Preparing for climate change.

    PubMed

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  13. Rare Earth-Bearing Murataite Ceramics

    SciTech Connect

    Stefanovsky, Sergey; Stefanovsky, Olga; Yudintsev, Sergey; Nikonov, Boris

    2007-07-01

    Phase composition of the murataite-based ceramics containing 10 wt.% lanthanum, cerium, neodymium, europium, gadolinium, yttrium, zirconium oxides was studied. The ceramics were prepared by melting of oxide mixtures in 20 mL glass-carbon crucibles in air at {approx}1500 deg. C. They are composed of predominant murataite-type phases and minor extra phases: rutile, crichtonite, perovskite, ilmenite/pyrophanite, and zirconolite (in the Zr-bearing sample only). Three murataite-related phases with five- (5C), eight- (8C), and three-fold (3C) elementary fluorite unit cell are normally present in all the ceramics. These phases form core, intermediate zone, and rim of the murataite grains, respectively. They are predominant host phases for the rare earth elements whose concentrations are reduced in a row: 5C>8C>3C. Appreciate fraction of La and Ce may enter the perovskite phase. (authors)

  14. ERIPS: Earth Resource Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Quinn, M. J.

    1975-01-01

    The ERIPS is an interactive computer system used in the analysis of remotely sensed data. It consists of a set of software programs which are executed on an IBM System/360 Model 75J computer under the direction of a trained analyst. The software was a derivative of the Purdue LARSYS program and has evolved to include an extensive pattern recognition system and a number of manipulative, preprocessing routines which prepare the imagery for the pattern recognition application. The original purpose of the system was to analyze remotely sensed data, to develop and perfect techniques to process the data, and to determine the feasibility of applying the data to significant earth resources problems. The System developed into a production system. Error recovery and multi-jobbing capabilities were added to the system.

  15. The Earth System Grid Federation (ESGF) Project

    NASA Astrophysics Data System (ADS)

    Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark

    2015-04-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.

  16. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  17. Clouds and the Earth`s radiant energy system (CERES): An Earth observing system experiment

    SciTech Connect

    Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.

    1996-05-01

    Clouds and the Earth`s Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback on the Earth`s climate system. The CERES broadband scanning radiometers are an improved version of the Earth`s Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes. CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data. Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities. 62 refs., 10 figs., 3 tabs.

  18. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  19. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  20. Hidden Magnetic Portals Around Earth

    NASA Video Gallery

    A NASA-sponsored researcher at the University of Iowa has developed a way for spacecraft to hunt down hidden magnetic portals in the vicinity of Earth. These gateways link the magnetic field of our...

  1. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  2. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  3. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  4. Synchronous Earth Observatory Satellite /SEOS/

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1974-01-01

    NASA/GSFC is currently studying the applications and technical requirements for a Synchronous Earth Observations Satellite (SEOS). Such a satellite would combine the relatively high resolution and multi-spectral capability of the Earth Resources Technology Satellite (ERTS) with the on-station continuous monitoring of the Synchronous Meteorological Satellite (SMS). SEOS capability is geared to perform disaster warning of tornadoes and floods as well as to monitor transient phenomena affecting earth resources (e.g., green waves and algae blooms). The heart of the system is a Large Earth Survey Telescope (LEST) which has a designed 1.5 meter diameter. Spectral bands in the visible, near- and far-infrared have been selected to optimize SEOS utility. A microwave sounder will be used in conjunction with the LEST for meteorological applications.

  5. Earth and ocean dynamics program

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1976-01-01

    The objectives and requirements of the Earth and Ocean Dynamics Programs are outlined along with major goals and experiments. Spaceborne as well as ground systems needed to accomplish program goals are listed and discussed along with program accomplishments.

  6. Children's knowledge of the Earth

    NASA Astrophysics Data System (ADS)

    Siegal, Michael; Nobes, Gavin; Panagiotaki, Georgia

    2011-03-01

    Children everywhere are fascinated by the sky, stars and Sun. Emerging evidence from cultures throughout the world suggests that even young children can acquire knowledge of the Earth and its place in the Universe.

  7. Asteroid 433 Eros Approaches Earth

    NASA Video Gallery

    Asteroid 433 Eros made a close approach to Earth the morning of January 31st coming within 0.17 AU (15 million miles) of our planet. In this set of images taken that morning, the bright moving dot ...

  8. Space Weather and Earth's Aurora

    NASA Video Gallery

    Aurora are colorful lights in the night time sky primarily appearing in Earth's polar regions. But what causes them? The culprit behind aurora is our own Sun and the solar plasma that is ejected du...

  9. Early Earth: Atmosphere's solar shock

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses

    2016-06-01

    Frequent storms on the young Sun would have ejected energetic particles and compressed Earth's magnetosphere. Simulations suggest that the particles penetrated the atmosphere and initiated reactions that warmed the planet and fertilized life.

  10. Towards open applied Earth sciences

    EPA Science Inventory

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizatio...

  11. The earth's trapped radiation belts

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Mcelroy, M. B.

    1975-01-01

    The near-earth charged particle environment is discussed in terms of spacecraft design criteria. Models are presented of the trapped radiation belts and based on in-situ data obtained from spacecraft.

  12. NASA's Earth Day Video Contest

    NASA Video Gallery

    Everyone knows NASA as the space exploration agency. It's easy to forget that exploring Earth is also exploring a celestial body. It is, in fact, the only planet we've ever been to -- our Home Fron...

  13. Earth Day Illustrated Haiku Contest

    NASA Astrophysics Data System (ADS)

    2007-02-01

    As part of their 2007 Chemists Celebrate Earth Day Celebration, the American Chemical Society is sponsoring an illustrated haiku contest for students in grades K 12 around the theme, Recycling—Chemistry Can!

  14. Earth as Seen from Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On its 449th martian day, or sol (April 29, 2005), NASA's Mars rover Opportunity woke up approximately an hour after sunset and took this picture of the fading twilight as the stars began to come out. Set against the fading red glow of the sky, the pale dot near the center of the picture is not a star, but a planet -- Earth.

    Earth appears elongated because it moved slightly during the 15-second exposures. The faintly blue light from the Earth combines with the reddish sky glow to give the pale white appearance.

    The images were taken with Opportunity's panoramic camera, using 440-nanometer, 530-nanometer, and 750-nanometer color filters. In processing on the ground, the images were shifted slightly to compensate for Earth's motion between one image and the next.

  15. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  16. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  17. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  18. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  19. Neutrino Oscillograms of the Earth

    SciTech Connect

    Smirnov, Alexei Yu.

    2008-04-16

    Oscillograms are 'neutrino portraits' of the Earth. They encode unique information about the Earth interior and provide a comprehensive description of neutrino oscillation phenomena. I will explain the physical effects involved and the structure of the oscillograms. Dependence of the oscillograms on neutrino parameters, in particular, on the currently unknown q1-3, mixing and CP-violation phase will be considered. A program of measurements of the oscillograms will be outlined.

  20. Lunar Orbiter I - Moon & Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    First view of the earth and moon from space. Published in: Spaceflight Revolution: Langley Research Center From Sputnik to Apollo, by James R. Hansen. NASA History Series. NASA SP ; 4308. p ii. Caption: 'The picture of the century was this first view of the earth from space. Lunar Orbiter I took the photo on 23 August 1966 on its 16th orbit just before it passed behind the moon. The photo also provided a spectacular dimensional view of the lunar surface.'

  1. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  2. Through-the-earth radio

    DOEpatents

    Reagor, David; Vasquez-Dominguez, Jose

    2006-12-12

    A through-the-earth communication system that includes a digital signal input device; a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth; a data compression circuit that is connected to an encoding processor; an amplifier that receives encoded output from the encoding processor for amplifying the output and transmitting the data to an antenna; and a receiver with an antenna, a band pass filter, a decoding processor, and a data decompressor.

  3. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  4. Next-generation Digital Earth

    PubMed Central

    Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346

  5. Greenhouse Earth: A Traveling Exhibition

    SciTech Connect

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

  6. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  7. A study of the Earth-Manna multithreaded system

    SciTech Connect

    Hum, H.H.J.; Maquelin, O.; Theobald, K.B.; Tian, Xinmin; Gao, G.R.; Hendren, L.J.

    1996-08-01

    Multithreaded architectures have been proposed for future multiprocessor systems. However, some open issues remain. Can multithreading be supported in a multiprocessor so that it can tolerate synchronization and communication latencies, with little intrusion on the performance of sequentially-executed code? How much does such support contribute to scalable performance when communication and synchronization demands are high? In this paper, we describe the design of EARTH, an architecture which addresses these issues. Each processor in EARTH has an off-the-shelf Execution Unit (EU) for executing threads, and an ASIC Synchronization Unit (SU) supporting dataflow-like thread synchronizations, scheduling, and remote requests. In preparation for an implementation of the SU, we have emulated a basic EARTH model on MANNA 2.0, an existing multiprocessor whose hardware configuration closely matches EARTH. This EARTH-MANNA testbed is fully functional, enabling us to experiment with large benchmarks with impressive speed. With this platform, we demonstrate that multithreading support can be efficiently implemented (with little emulation overhead) in a multiprocessor without a major impact on uniprocessor performance. Also, we measure how much basic multithreading support can help in tolerating increasing communication/synchronization demands.

  8. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  9. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  10. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  11. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  12. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy; Wellnitz, Dennis D.

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  14. Students prepare biological space samples

    NASA Technical Reports Server (NTRS)

    2001-01-01

    High school students screen crystals of various proteins that are part of the ground-based work that supports Alexander McPherson's protein crystal growth experiment. The students also prepared and stored samples in the Enhanced Gaseous Nitrogen Dewar, which was launched on the STS-98 mission for delivery to the ISS. The crystals grown on the ground will be compared with crystals grown in orbit. Participants include Joseph Negron (shown), of Terry Parker High School, Jacksonville, Florida; Megan Miskowski, of Ridgeview High School, Orange Park, Florida; and Sam Swank, of Fletcher High School, Neptune Beach, Florida. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center.

  15. Students prepare biological space samples

    NASA Technical Reports Server (NTRS)

    2001-01-01

    High school students screen crystals of various proteins that are part of the ground-based work that supports Alexander McPherson's protein crystal growth experiment. The students also prepared and stored samples in the Enhanced Gaseous Nitrogen Dewar, which was launched on the STS-98 mission for delivery to the ISS. The crystals grown on the ground will be compared with crystals grown in orbit. Participants include Joseph Negron, of Terry Parker High School, Jacksonville, Florida; Megan Miskowski (shown), of Ridgeview High School, Orange Park, Florida; and Sam Swank, of Fletcher High School, Neptune Beach, Florida. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center.

  16. Students prepare biological space samples

    NASA Technical Reports Server (NTRS)

    2001-01-01

    High school students screen crystals of various proteins that are part of the ground-based work that supports Alexander McPherson's protein crystal growth experiment. The students also prepared and stored samples in the Enhanced Gaseous Nitrogen Dewar, which was launched on the STS-98 mission for delivery to the ISS. The crystals grown on the ground will be compared with crystals grown in orbit. Participants include Joseph Negron, of Terry Parker High School, Jacksonville, Florida; Megan Miskowski, of Ridgeview High School, Orange Park, Florida; and Sam Swank (shown), of Fletcher High School, Neptune Beach, Florida. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center.

  17. Preparative electrophoresis of living lymphocytes

    NASA Technical Reports Server (NTRS)

    Vanoss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low molecular weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of 0 gravity conditions. Another method that has been tested at 1 G, is the electrophoresis of lymphocytes in a upward direction in vertical columns. By both methods up to 10 to the 7th power lymphocytes can be separated at one time in a 30 cm glass column of 8 mm inside diameter, at 12 v/cm, in 2 hours. Due to convection and sedimentation problems, the separation at 1 G is less than ideal, but it is expected that at 0 gravity electrophoresis will prove to be a uniquely powerful cell separation tool. The technical feasibility of electrophoresing inert particles at 0 G has been proven earlier, during the flight of Apollo 16.

  18. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  19. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  20. Discovering asteroids temporarily captured by the Earth with LSST

    NASA Astrophysics Data System (ADS)

    Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Jedicke, Robert

    2015-08-01

    Granvik et al. (2012, Icarus 218) predict that there is a population of small asteroids orbiting the Earth at any given time. These asteroids have been temporarily captured by the Earth from the much larger population of near-Earth asteroids. Temporarily-captured asteroids have elliptic geocentric orbits and come to within 0.03 au from the Earth. We divide the population into temporarily-captured orbiters (TCOs, or minimoons) that make at least one full revolution around the Earth, and into temporarily-captured flybys (TCFs) which make less than one revolution around the Earth. Recent results suggest that at any given time there is one 2--3-meter-diameter asteroid captured on a geocentric orbit within 0.03 au from the Earth (Fedorets et al., in preparation). At any given time, there is a dozen 1-meter-diameter captured asteroids, 2--3 of which are TCFs.The Large Synoptic Survey Telescope (LSST) will become operational in early 2020's. LSST is expected cover the available sky from its location in Chile every 4 nights for the duration of a 10 years. The observational cadence combined with the expected limited magnitude, r=24.5, suggest that LSST will detect a new minimoon once a month (Bolin et al. 2014, Icarus 241). Only one minimoon, asteroid 2006 RH120, has so far been discovered (Kwiatkowski et al. 2009, A&A 495).Whereas Bolin et al. (2014, Icarus 241) investigated possibilities for detecting minimoons by current and upcoming survey telescopes we extend the analysis to include the linking of minimoon detections, that is, aiming at extracting minimoon trajectories and, further, minimoon orbits from LSST data. We will test the performance of the current LSST pipeline with simulated TCO and TCF data assuming a realistic magnitude distribution derived from a novel NEO model by Granvik et al. (in preparation).Proving that minimoons can be discovered using LSST data will increase the scientific interest towards them, perhaps primarily as a population of asteroids in

  1. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  2. The Visibility of Earth Transits

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Doyle, Laurance; McIntosh, Dawn; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The recent photometric detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet across a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of solar-like stars that satisfy the geometric condition for Earth transit visibility are presented.

  3. The Visibility of Earth Transits

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The recent detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet around a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming, of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of candidate target stars, their properties, and simulations of the photometric Earth transit signal detectability at each target is presented.

  4. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  5. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  6. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  7. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  8. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  9. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  10. Orbital Analysis for Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Chodas, P. W.

    1995-01-01

    For recently discovered Near-Earth Objects (NEO) two body computations can be used to determine the minimum distance between the object's orbit and that of the Earth. Determinations can then be made for potential near-term threats to the Earth. This preliminary orbit analysis must be followed with planetary perturbation computations of the object's future motion to predict actual close Earth approaches.

  11. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  12. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to...

  13. Earth Resources Survey and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stow, W. K.; Andryczyk, R. W.

    1975-01-01

    The impact that the shuttle is expected to have on the Earth Resources Program and several concepts for exploiting the shuttle characteristics are discussed. The utilization of the space shuttle in its sortie mode for earth resources and the application of an earth observations standard package to earth resources missions were studied.

  14. Periods of the Earth's seismicity activation and their relationship to variations in the Earth's rotation velocity

    NASA Astrophysics Data System (ADS)

    Sasorova, Elena; Levin, Boris

    2015-04-01

    It is known that Earth's seismic activity (SA) demonstrates distinct roughness (nonuniformity) in time. Periods of intensification of the SA followed by periods of its decaying. For strong earthquakes these periods are continued several decades. It was also noted that there is a pronounced periodic amplification and attenuation of the SA with a period of about 30 years, which is manifested mainly in two latitudinal belts 50°N-30°N and 0°-30°S [Levin, Sasorova, 2014, 2015]. This work deals with the hypothesis that it is the properties of rotating non-uniform rate of the planet may be the cause of the periodicity of manifestations SA. The objective of this work is the searching of the spatial-temporal interconnection between the Earth rotation irregularity and the observed cyclic increasing and decreasing of the Earth's SA. This requires preparation a long series of observations of seismic events with representative data sets (EQ selected from 1895 up to date with a magnitude M> = 7.5, based on the catalog NEIC). Two sources of data on the angular velocity of the Earth's rotation of (length of day, LOD) were adapted: the world-known database IERS (Annual Report, International Earth Rotation Service) and the data, which were presented in the work (McCarthy, D.D., and Babcock A.K., 1986). The first one contains daily observations from 1962 to 2013, the second one was identified semi-annual observations from 1720 to 1984. It was prepared concatenated data set (CLOD) for the period from 1720 to 2013. Characteristic periods in the time series CLOD: 62, 32, and 23 years have been isolated by the use of spectral analysis. Next, it were used a band-pass filters for the four frequency bands from 124 to 45 years, from 37 do 25 years, from 25 to 19 years, and in the range of less than 19 years. In the frequency bands 37-25 years and 25-19 years marked clear periodic oscillations close to a sine wave. The amplitude of the oscillations with the 1720 to 1790 gradually

  15. Space environment: A new dimension in the preparation of unique solids

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1972-01-01

    The preparation of solids, particularly electronic solids in space is discussed. Particular attention is given to the effect of non-gravational environments on the development of homogeneous materials that cannot be manufactured on earth.

  16. Spacecraft orbit/earth scan derivations, associated APL program, and application to IMP-6

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1971-01-01

    The derivation of a time shared, remote site, demand processed computer program is discussed. The computer program analyzes the effects of selected orbit, attitude, and spacecraft parameters on earth sensor detections of earth. For prelaunch analysis, the program may be used to simulate effects in nominal parameters which are used in preparing attitude data processing programs. After launch, comparison of results from a simulation and from satellite data will produce deviations helpful in isolating problems.

  17. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  18. ESA's Earth Observation in Support of Geoscience

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  19. Studies of earth simulation experiments

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    The low gravity environment of earth orbit offers the potential for performing experiments involving baroclinic Geophysical Fluid Dynamics (GFD) on spherical surfaces. These experiments in turn have the potential for providing deeper understanding of large scale planetary and solar circulations. However, to perform these experiments, one requires an experimental technique whereby a radially directed body force can be generated to simulate a radial gravitational force field. One viable technique is the use of dielectric fluids with temperature dependent dielectric permittivity in a radially directed electric field. Application of the Boussinesq approximation to the equations of motion for this system and restrictions on the size of certain electrodynamic terms in the energy equations yields a set of equations which are analogous to the equations of motions of geophysical systems like the earth's atmosphere on term by term basis. The theoretical design of GFD experiments for performance in earth orbit are described along with results of preliminary tests of a prototype.

  20. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data. PMID:17839632

  1. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  2. An Earth Penetrating Modeling Assessment

    SciTech Connect

    Stokes, E; Yarrington, P; Glenn, L

    2005-06-21

    Documentation of a study to assess the capability of computer codes to predict lateral loads on earth penetrating projectiles under conditions of non-normal impact. Calculations simulated a set of small scale penetration tests into concrete targets with oblique faces at angles of 15 and 30 degrees to the line-of-flight. Predictive codes used by the various calculational teams cover a wide range of modeling approaches from approximate techniques, such as cavity expansion, to numerical methods, such as finite element codes. The modeling assessment was performed under the auspices of the Phenomenology Integrated Product Team (PIPT) for the Robust Nuclear Earth Penetrator Program (RNEP). Funding for the penetration experiments and modeling was provided by multiple earth penetrator programs.

  3. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  4. NASA Earth Science Data Stewardship

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Ramapriyan, H. K.

    2009-12-01

    The Earth Science Data and Information System (ESDIS) Project at NASA Goddard Space Flight Center was established in the early 1990s to develop and maintain a core collection of NASA’s critical earth science data. Its mission was to provide an archive and distribution system for the huge volume of data and products from the major EOS missions. We have encountered and addressed engineering, scientific and organizational challenges that show stewardship is more than preserving the bits. Engineering - including petabyte scale archives that appeared daunting when we got started, but not so anymore, thanks to advances in hardware and information systems technology. Scientific - having knowledgeable people familiar with data being archived responsible for data in their respective disciplines; understanding what needs to be preserved; defining appropriate metadata; preserving usability; determining active research period vs. “inactive” preservation for potential future use, and the value of peer review processes. Organizational - setting up DAACs, getting them to work together, interoperability, enforcing standards and the producer’s point view as well as the end users’ point of view. This presentation will highlight organizational and technical aspects of being good data stewards for the data and information from the EOS missions. A timeline of key events, activities and accomplishments illustrate the fundamental elements of Earth science data stewardship over the course of the 15 year program. These range from the backup of raw instrument datasets at the onset to extending a common data model across a broad and diverse Earth science community. The relative advantages of standard and unique data formats, standard and extended metadata and data representation, and documentation continue to be specific to each Earth science discipline community practices. Best practices for sizing and technology refresh vary by data center but have application in planning future

  5. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  6. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  7. Satellite imagery of the earth

    USGS Publications Warehouse

    Merifield, P.M.; Cronin, J.; Foshee, L.L.; Gawarecki, S.J.; Neal, J.T.; Stevenson, R.E.; Stone, R.O.; Williams, R.S., Jr.

    1969-01-01

    Photography of the Earth from spacecraft has application to both atmospheric and Earth sciences. Gemini and Apollo photographs have furnished information on sea surface roughness, areas of potential upwelling and oceanic current systems. Regional geologic structures and geomorphologic features are also recorded in orbital photographs. Infrared satellite imagery provides meteorological and hydrological data and is potentially useful for locating fresh water springs along coastal areas, sources of geothermal power and volcanic activity. Ground and airborne surveys are being undertaken to create a basis for the interpretation of data obtained from future satellite systems.

  8. Earth vicinity trades and options

    NASA Technical Reports Server (NTRS)

    Stump, William R.; Babb, Gus R.; Davis, Hubert P.

    1986-01-01

    The options for recovering a returned manned Mars spacecraft are surveyed. Earth parking orbits from libration point to low circular are discussed, with a 500 km perigee, 24 hour period elliptical orbit chosen as a baseline for further calculation. Several techniques for recovering up to 100 metric tons of returned spacecraft are investigated, including recovery by a low Earth orbit (LEO) based orbit transfer vehicle (OTV) pushing the spacecraft to LEO, and OTV transporting and aerobrake to the spacecraft, and an OTV delivering propellant to the spacecraft. Methods utilizing OTVs results in less total mass in LEO, but may not be the minimum cost solutions if significant development and testing are required.

  9. Pingos on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Burr, Devon M.; Tanaka, Kenneth L.; Yoshikawa, Kenji

    2009-05-01

    Pingos are massive ice-cored mounds that develop through pressurized groundwater flow mechanisms. Pingos and their collapsed forms are found in periglacial and paleoperiglacial terrains on Earth, and have been hypothesized for a wide variety of locations on Mars. This literature review of pingos on Earth and Mars first summarizes the morphology of terrestrial pingos and their geologic contexts. That information is then used to asses hypothesized pingos on Mars. Pingo-like forms (PLFs) in Utopia Planitia are the most viable candidates for pingos or collapsed pingos. Other PLFs hypothesized in the literature to be pingos may be better explained with other mechanisms than those associated with terrestrial-style pingos.

  10. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  11. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  12. Rare earth fluoride nano-/microstructures: hydrothermal synthesis, luminescent properties and applications.

    PubMed

    Zhao, Qian; Xu, Zhenhe; Sun, Yaguang

    2014-02-01

    Rare earth fluoride materials have attracted wide interest and come to the forefront in nanophotonics due to their distinct electrical, optical and magnetic properties as well as their potential applications in diverse fields such as optical telecommunication, lasers, biochemical probes, infrared quantum counters, and medical diagnostics. This review presents a comprehensive overview of the flourishing field of rare earth fluorides materials in the past decade. We summarize the recent research progress on the preparation, morphology, luminescent properties and application of rare earth fluoride-based luminescent materials by hydrothermal systems. Various rare earth fluoride materials are obtained by fine-tuning of experimental conditions, such as capping agents, fluoride source, acidity, temperature and reaction time. The controlled morphology, luminescent properties and application of the rare earth fluorides are briefly discussed with typical examples. PMID:24749449

  13. Preparing Teachers to Support the Development of Climate Literate Students

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.

    2014-12-01

    The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.

  14. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  15. EIGHTH-GRADE EARTH SCIENCE. TEXTBOOK READABILITY AND OTHER FACTORS WHICH COULD INFLUENCE THE SUCCESS OF THE EIGHTH-GRADE EARTH SCIENCE COURSE IN THE TEXAS PUBLIC SCHOOLS.

    ERIC Educational Resources Information Center

    KLINE, LOREN E., JR.

    THE PURPOSE OF THIS STUDY WAS (1) TO DETERMINE THE READING DIFFICULTY OF THE EIGHTH-GRADE SCIENCE TEXTBOOKS ADOPTED FOR USE IN TEXAS PUBLIC SCHOOLS AND (2) TO DETERMINE THE ADEQUACY OF TEACHER PREPARATION, EQUIPMENT, AND SCHOOL FACILITIES FOR PRESENTING A COURSE IN EARTH SCIENCE BASED UPON THE TEXTBOOKS ADOPTED IN 1964. DATA FOR THE READABILITY…

  16. Preparing School Leaders.

    ERIC Educational Resources Information Center

    Lashway, Larry

    1999-01-01

    This issue reviews five publications that provide a sampling of current perspectives on the preparation of school leaders. Joseph Murphy's "Preparation for the School Principalship: The United States' Story" traces the history of leadership preparation programs in the United States from the 19th century to the present. David L. Clark's "Searching…

  17. Pt nanoparticles modified by rare earth oxides: Electronic effect and influence to catalytic hydrogenation of 3-phenoxybenzaldehyde

    SciTech Connect

    Mou, Zhigang; Han, Ming; Li, Gang; Du, Yukou; Yang, Ping; Zhang, Hailu; Deng, Zongwu

    2013-11-15

    Graphical abstract: - Highlights: • The rare earths modified Pt/Al{sub 2}O{sub 3} were prepared by colloidal deposition method. • Modification of Pt by the rare earth enhanced catalytic hydrogenation activity. • The activity improvement is due to electron interaction between Pt and rare earth. • The hydrogenation mechanism of rare earth modified Pt catalyst was proposed. - Abstract: The rare earth elements (La, Ce, Nd, Sm, Pr, and Gd) modified Pt/Al{sub 2}O{sub 3} catalysts were prepared by the colloidal deposition and chemical reduction methods, respectively. Pt nanoparticles with average size 3 ± 0.5 nm were uniformly dispersed on the surface of Al{sub 2}O{sub 3} for the samples prepared by the colloidal deposition method, which exhibited higher activities in the hydrogenation of 3-phenoxybenzadehyde than the corresponding samples prepared by chemical reduction method. Moreover, except Gd, the catalysts modified by rare earth elements showed better catalytic performance than unmodified Pt/Al{sub 2}O{sub 3}. For Pt–Ce/Al{sub 2}O{sub 3} catalyst, when the weight percent of Pt and Ce was 0.5 and 0.25, respectively, the hydrogenation conversion of 3-phenoxybenzaldehyde was 97.3% after 6 h reaction. This activity improvement is due to the electronic interaction between Pt and rare earth elements, which was investigated by X-ray photoelectron spectroscopy.

  18. Lessons from Earth's Deep Time

    ERIC Educational Resources Information Center

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  19. Multispectral photography for earth resources

    NASA Technical Reports Server (NTRS)

    Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.

    1972-01-01

    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.

  20. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…