Sample records for earth science activities

  1. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  2. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  3. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  4. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  5. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  6. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  7. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  8. Activities in Planetary Geology for the Physical and Earth Sciences.

    ERIC Educational Resources Information Center

    D'Alli, Richard, Ed.; Greely, Ronald, Ed.

    The activities in this guide deal with concepts in planetary geology, but they can be generalized to illustrate broad problems in the earth sciences. They are designed to supplement or introduce topics usually encountered in earth science courses. The exercises, organized into independent units which can be presented in any order, are appropriate…

  9. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  10. Edible Earth and Space Science Activities

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  11. Earth Science Activities: A Guide to Effective Elementary School Science Teaching.

    ERIC Educational Resources Information Center

    Kanis, Ira B.; Yasso, Warren E.

    The primary emphasis of this book is on new or revised earth science activities that promote concept development rather than mere verification of concepts learned by passive means. Chapter 2 describes philosophies, strategies, methods, and techniques to guide preservice and inservice teachers, school building administrators, and curriculum…

  12. Board on Earth Sciences and Resources and Its Activities -- Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony R. de Souza, Ph.D. Director, Board on Earth Sciences and Resources

    2003-09-26

    The Board on Earth Sciences and Resources (BESR) provided oversight of the earth sciences and resources activities with the National Research Council (NRC). The Board reviewed research and public activities in the earth sciences; undertook analyses relevant to the discovery, supply, delivery, waste disposal and associated impacts and issues related to hydrocarbon, metallic, and nonmetallic mineral resources; and monitored the status of the earth sciences, assessed the health of the disciplines, identified research opportunities, and responded to specific agency requests for advice. These tasks were conducted by distinguished volunteers and NRC staff members that are representative of the breadth andmore » depth of the earth sciences and resources disciplines (e.g., ecology, geophysics, geochemistry, geobiology, hydrology, geography, geographic information science, materials science, mineral resources and mining, energy resources, paleontology, visualization, remote sensing, geophysical data and information). Each year the Board held two meetings. Most recently at the May 2003 Board meeting, the main topic of discussion was Coordination of Geospatial Data in the Era of the Department of Homeland Security. Speakers were Steven Cooper, DHS; Barry Napier, FEMA; Bill Shinar, VGIN; Barbara Ryan, USGS; and Hank Garie, DOI. Other topics were Circum-Pacific Council for Energy and Mineral Resources and New Opportunities in the Geology Discipline (Pat Leahy, USGS); Challenges to Understanding Biological Change in a Fluid Landscape (Sue Haseltine, USGS); and GIS and Remote Sensing at the USDA (Rodney Brown, USDA). The Board and the AGI also held a Leadership Forum. At the October 2003 Board meeting in Irvine, California, the Board plans to discuss earth resource issues, develop a white paper on the future directions of the Board, and review two of its standing committees--Committee on Seismology and Geodynamics, and the Committee on Geological and Geotechnical Engineering

  13. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  14. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  15. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  16. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  17. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  18. Earth-Space Science Activity Syllabus for Elementary and Junior High School Teachers of Science.

    ERIC Educational Resources Information Center

    Maier, Jack; And Others

    This syllabus is a collection of earth-space science laboratory activities and demonstrations intended for use at the elementary and junior high school levels. The activities are grouped into eight subject sections: Astronomy, Light, Magnetism, Electricity, Geology, Weather, Sound, and Space. Each section begins with brief background information,…

  19. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  20. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  1. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  2. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  3. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  4. Satellite and earth science data management activities at the U.S. geological survey's EROS data center

    USGS Publications Warehouse

    Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.

    1991-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.

  5. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  6. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  7. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  8. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  9. Learning about Earth Science: Tables and Tabulations. Superific Science Book X. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    In an effort to provide science teachers with the tables and scales most often used in teaching earth science, this document was designed to coordinate each table with meaningful activities, projects and experiments. The major areas covered by the booklet are: (1) electromagnetic waves (with activities about light waves and sound waves); (2) the…

  10. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  11. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  12. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.

    1995-01-01

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.

  13. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  14. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  15. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  16. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  17. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  18. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  19. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  20. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  1. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  2. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  3. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  4. NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.; Paules, Granville E., III

    1999-01-01

    Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.

  5. Early Earth Science Activities in the Sanford Underground Science and Engineering Laboratory at Homestake

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.

    2007-12-01

    On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m

  6. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Behnke, J.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.

  7. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    NASA Astrophysics Data System (ADS)

    Fadhli, Fathi Ali

    2000-10-01

    The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach

  8. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  9. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  10. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  11. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    ERIC Educational Resources Information Center

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  12. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  13. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  14. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne

    2016-01-01

    Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: (1) Data bits with no corruption, (2) Discoverability and access, (3) Readability, (4) Understandability, (5) Usability' and (6). Reproducibility of results. NASAs Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are published in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing product information pages.

  15. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  16. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  17. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  18. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  19. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  20. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  1. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  2. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  3. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  4. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  5. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  6. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  7. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  8. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  9. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  10. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  11. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  12. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  13. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  14. Earth Science in the News.

    ERIC Educational Resources Information Center

    Jackson, Julia A.; Paty, Alma Hale

    2000-01-01

    Offers two activities to help students explore the geosciences during Earth Science Week. Uses a fossil collection simulation that has students digging through strata of newspaper. Presents an interdisciplinary research project that has students investigate the fossils, minerals, and rocks of their home state. (ASK)

  15. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  16. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  17. Virtual Collections: An Earth Science Data Curation Service

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  18. Virtual Collections: An Earth Science Data Curation Service

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  19. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  20. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  1. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  2. Earth Science Syllabus, 1970 Edition.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This syllabus outlines a year earth science program designed to be activity oriented, investigatory in approach, and interdisciplinary in content. Each topic section contains a topic abstract and topic outline, major understandings, and information to teachers. The topic abstract lists behavioral objectives and general information about the topic…

  3. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  4. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    ERIC Educational Resources Information Center

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  5. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions

  6. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  7. Examples of learning activities for Earth and Space Sciences in the new Italian National curriculum

    NASA Astrophysics Data System (ADS)

    Macario, Maddalena

    2016-04-01

    In the last few years, starting from 2010, science curricula were changed dramatically in the secondary Italian school as consequence of a radical law reform. In particular, Earth Science and Astronomy subjects have been shifted from the last to the previous school years; in addition, these subjects have been integrated with other natural sciences learning, such as biology and chemistry. As a consequence, Italian teachers felt forced to totally revise their teaching methods for all of these disciplines. The most demanding need was adapting content to younger learners, as those of the first years are, who usually do have neither pre-knowledge in physics nor high level maths skills. Secondly, content learning was progressively driven toward a greater attention to environmental issues in order to raise more awareness in learners about global changes as examples of fragile equilibrium of our planet. In this work some examples of activities are shown, to introduce students to some astronomical phenomena in a simpler way, which play a key role in influencing other Earth's events, in order to make pupils more conscious about how and to what extent our planet depends on space, at different time scales. The activities range from moon motions affecting tides, to secondary Earth motions, which are responsible for climate changes, to the possibility to find life forms in other parts of the Universe, to the possibility for humans to live in the space for future space missions. Students are involved in hands-on inquiry-based laboratories that scaffold both theoretic knowledge and practical skills for a deeper understanding of cause-effect relationships existing in the Earth.

  8. What to do when the Universities reject High School Earth Science

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    It is hard to imagine a state of the union more affected by Earth processes than the state of California. However, the University of California actively discourages High School students from taking Earth Science courses. For admission into the University of California students are required to take at least 2 years of courses that offer a fundamental knowledge in at least two of these three foundational subjects: biology, chemistry, and physics. Earth Science courses simply don't qualify as laboratory science courses. The UC Admissions will sometimes make an exception for an Earth Science course only if it is shown to contain a large component of biology, chemistry and physics topics. Since students don't get credit for admission for taking Earth Science, High Schools are quick to drop Earth Science courses for their college-bound students. A group of teachers and University professors have been working to reverse this policy by creating a rigorous capstone Earth Science course that clearly merits laboratory status. Getting this course accepted by the University of California is well on its way, but getting the course into the High Schools will take a lot of work and probably some extra funding.

  9. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  10. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  11. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  12. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  13. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  14. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  15. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  16. Advancing the fundamental sciences: proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, 18-22 October 2004.

    Treesearch

    Michael J. Furniss; Catherine F. Clifton; Kathryn L. Ronnenberg

    2007-01-01

    This conference was attended by nearly 450 Forest Service earth scientists representing hydrology, soil science, geology, and air. In addition to active members of the earth science professions, many retired scientists also attended and participated. These 60 peer-reviewed papers represent a wide spectrum of earth science investigation, experience, research, and...

  17. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  18. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the

  19. DISCUS Ninth Grade, Earth Science, Part Two.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL. Project DISCUS.

    Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the second volume of a two volume, one year program in earth science, and contains these five units and activities: Rock Cycle, 12 activities; Minerals and Crystals, 6 activities; Weathering…

  20. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  1. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  2. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  3. Earth Science Research as IPY Priority

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V.; Leonov, Y.; Coakley, B.; Grikurov, G.; Johnson, L.; Kaminsky, V.; Kristoffersen, Y.; Leitchenkov, G.; Pavlenko, V.

    2004-05-01

    The preparations for IPY 2007/2008 are evolving from conceptual to implementation planning. Many earth scientists are concerned that the emerging plans for IPY are too narrowly focused on environmental processes and therefore appear discriminatory with respect to other fundamental sciences. National/international efforts such as USGCRP (U.S. Global Change Research program) and IPCC (Intergovernmental Panel on Climate Change) are also involved in the multitude of climate change issues, and just how the proposed IPY program could augment and complement these ongoing activities without reproducing them requires careful analysis and coordination. In particular, the polar research is unthinkable without study of the geological history of the Arctic and the Southern Oceans as a clue to tectonic evolution of the entire planet and test of the current geodynamic paradigm. In addition to these fundamental objectives, the circum-polar continental margins of the Arctic and Antarctica are likely to become the scenes of geopolitical intrigue provoked by implementation of the provisions of the Law of the Sea that require acquisition of specific earth science knowledge at internationally recognized levels of credibility. Interdisciplinary international programs (e. g. JEODI), based on geophysical data acquisition and analysis that would lead, where appropriate, to scientific drilling, had independently been proposed for studying the coupled tectonic and oceanographic history of the polar regions. Admitting the importance of identifying fundamental constraints for paleooceanography and climatic history of the high latitudes, and acknowledging the progress achieved so far in promoting IPY activities, the international earth science community has suggested developing the proposed approach into a major IPY endeavor - to examine the Polar Ocean Gateway Evolution (POGE). Such study would enable linking the geological history of the Polar Regions during the last 100 Ma and related

  4. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  5. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  8. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  9. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  10. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (4-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 4-year-olds is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  11. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  12. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  13. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  14. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (3-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 3-year-old children is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  15. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  16. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  17. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  18. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  19. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  20. Integrating LiDAR Data into Earth Science Education

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; de Groot, R. M.; Crosby, C. J.; Whitesides, A. S.; Colunga, J.

    2010-12-01

    The use of high-resolution topography derived from Light Detection and Ranging (LiDAR) in the study of active tectonics is widespread and has become an indispensable tool to better understand earthquake hazards. For this reason and the spectacular representation of the phenomena the data provide, it is appropriate to integrate these data into the Earth science education curriculum. A collaboration between Arizona State University, the OpenTopography Facility, and the Southern California Earthquake Center are developing, three earth science education products to inform students and other audiences about LiDAR and its application to active tectonics research. First, a 10-minute introductory video titled LiDAR: Illuminating Earthquakes was produced and is freely available online through the OpenTopography portal and SCEC. The second product is an update and enhancement of the Wallace Creek Interpretive Trail website (www.scec.org/wallacecreek). LiDAR topography data products have been added along with the development of a virtual tour of the offset channels at Wallace Creek using the B4 LiDAR data within the Google Earth environment. The virtual tour to Wallace Creek is designed as a lab activity for introductory undergraduate geology courses to increase understanding of earthquake hazards through exploration of the dramatic offset created by the San Andreas Fault (SAF) at Wallace Creek and Global Positioning System-derived displacements spanning the SAF at Wallace Creek . This activity is currently being tested in courses at Arizona State University. The goal of the assessment is to measure student understanding of plate tectonics and earthquakes after completing the activity. Including high-resolution topography LiDAR data into the earth science education curriculum promotes understanding of plate tectonics, faults, and other topics related to earthquake hazards.

  1. Earth Science (A Process Approach), Section 1: The Water Cycle.

    ERIC Educational Resources Information Center

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  2. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  3. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  4. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  5. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  6. A Course in Earth System Science: Developed for Teachers by Teachers

    NASA Astrophysics Data System (ADS)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  7. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  8. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  9. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  10. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  11. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  12. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  13. The ICTJA-CSIC Science Week 2016: an open door to Earth Sciences for secondary education students

    NASA Astrophysics Data System (ADS)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis; Garcia-Castellanos, Daniel; Geyer, Adelina; Jurado, Maria-Jose; Montoya, Encarni; Rejas Alejos, Marta; Sánchez-Pastor, Pilar; Valverde-Perez, Angel

    2017-04-01

    The Science Week is one of the main scientific outreach events every year in Spain. The Institute of Earth Sciences Jaume Almera of CSIC (ICTJA-CSIC) participates in it since many years ago, opening its doors and proposing several activities in which it is shown what kind of multidisciplinary research is being developed at the Institute and in Geosciences. The activities,developed as workshops, are designed and conducted by scientific and technical personnel of the centre, who participates in the Science Week voluntarily. The activities proposed by the ICTJA-CSIC staff are designed for a target audience composed by secondary school students (12-18 years). The ICTJA-CSIC joined Science Week 2016 in the framework of the activity entitled "What we investigate in Earth Sciences?". The aim is to show to the society what is being investigated in the ICTJA-CSIC. In addition, it is intended, with the contact and interaction between the public and the institute researchers, to increase the interest in scientific activity and, if possible, to generate new vocations in the field of the Earth Sciences among secondary school pupils. We show in this communication the experience of the Science Week 2016 at the ICTJA-CSIC, carried out with the effort and commitment of the of the Institute's personnel with the outreach of Earth Sciences research. Between November 14th and 19th 2016, more than 100 students from four secondary schools from Barcelona area visited the Institute and took part in the Science Week. A total of six interactive workshops were prepared showing different features of seismology, geophysical borehole logging, analog and digital modelling, paleoecology, volcanology and geochemistry. As a novelty, this year a new workshop based on an augmented reality sandbox was offered to show and to simulate the processes of creation and evolution of the topographic relief. In addition, within the workshop dedicated to geophysical borehole logging, six exact replicates of

  14. Secondary-School Earth Science: A Column for Teachers.

    ERIC Educational Resources Information Center

    Christman, Robert

    1984-01-01

    Six secondary school teachers describe their most successful earth science investigations. They include various outdoor field activities, road-map reading skills, student-prepared and conducted investigations, and use of several materials for studying volcanoes. (JN)

  15. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  16. Particle packing from an earth science viewpoint

    NASA Astrophysics Data System (ADS)

    Rogers, C. D. F.; Dijkstra, T. A.; Smalley, I. J.

    1994-04-01

    Particle packings are relevant to many aspects of the Earth sciences, and there is a long history of the study of packings from an Earth science viewpoint. Packings have also been studied in connection with other subjects and disciplines. Allen (1982) produced a major review which provides a solid base for Earth science related studies. This review complements Allen's work and in particular focuses on advances in the study of random packings over the last ten years. Transitions from packing to packing may be as important as the packings themselves, and possibly easier to model. This paper places emphasis on certain neglected works, in particular Morrow and Graves (1969) and the packing transition envelope, Kahn (1956) and the measurement of packing parameters, Griffiths (1962) on packings in one-dimension, and Getis and Boots (1978) on packings in two dimensions. Certain packing problems are relevant to current areas of study including structure collapse in loess (hydroconsolidation), flowslides in very sensitive soils, wind erosion, jewel quality in opals and the structure and functions of sand dunes. The region where interparticle forces become active (particles < 200 μm) is considered and the implications for packing are examined.

  17. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  18. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  19. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  20. Individualized Instruction in Science, Earth-Space Project, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) of the earth-space project, this manual presents self-directed activities especially designed for individualized instruction. Besides an introduction to LAP characteristics, sets of instructions are given in connection with the metric system, the earth's dimensions, indirect evidence for atomic…

  1. Earth Sciences data user community feedbacks to PARSE.Insight

    NASA Astrophysics Data System (ADS)

    Giaretta, David; Guidetti, Veronica

    2010-05-01

    The presentation in point reports on the topic of long term availability of environmental data as perceived by the Earth Science data user community. In the context of the European strategy for preserving Earth Observation (EO) data and as partner of the EU FP7 PARSE.Insight project (http://www.parse-insight.eu/), the European Space Agency (ESA) issued a public consultation on-line targeting its EO data user base. The timely and active participation confirmed the high interest in the addressed topic. Primary target of such an action is to provide ESA teams dedicated to environmental data access, archiving and re-processing with the first insight from the Earth Science community on the preservation of space data in the long-term. As a significant example, ESA's Climate Change Initiative requires activities like long-term preservation, recalibration and re-processing of data records. The time-span of EO data archives extends from a few years to decades and their value as scientific time-series increases considerably regarding the topic of global change. Future research in the field of Earth Sciences is of invaluable importance: to carry it on researchers worldwide must be enabled to find and access data of interest quickly. At present several thousands of scientists, principal investigators and operators, access EO missions' metadata, data and derived information daily. Main objectives may be to study the global climate change, to check the status of the instrument and the quality of EO data. There is a huge worldwide scientific community calling for the need to keep EO data accessible without time constrains, easily and quickly. The scientific community's standpoint is given over the stewardship of environmental data and the appropriateness of current EO data access systems as enabling digital preservation and offering HPC capabilities. This insight in the Earth Sciences community provides a comprehensive illustration of the users' responses over topics like use

  2. Three-dimensional presentation of the earth and space science data in collaboration among schools, science museums and scientists

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Tsugawa, Takuya

    Three-dimensional presentation of the earth and space science data is a best tool to show the scientific data of the earth and space. It can display the correct shape on the Earth while any two-dimensional maps distort shapes. Furthermore it helps audience to understand the scale size and phenomena of the earth and planets in an intuitive way. There are several projects of the 3-D presentation of the Earth, such as Science on a Sphere (SOS) by NOAA, and Geo-cosmos by Miraikan, Japan. We are developing a simple, portable and affordable 3-D presentation system, called Dagik Earth. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projector. The minimum size is 8cm and the largest size is 8m in diameter. The Dagik Earth project has developed the software of the 3-D projection in collaboration with scientists, and provides the software to the science museums and school teachers. Because the same system can be used in museums and schools, several science museums play a roll of hub for the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among schools, science centers, universities and research institutes.

  3. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  4. What's Under Your Feet? Activity Book. Earth Science for Everyone.

    ERIC Educational Resources Information Center

    Rubin, Penni; Robbins, Eleanora I.

    This profusely illustrated activity book helps students understand systems and cycles, how years change the look of the Earth, and how students can protect resources. The sections (and activities) in this book are: (1) The Earth (Introduction--View, Soil & Dirt); (2) Forces (Plate Tectonics, Earthquakes, Mountain Building, Erosion, Volcanoes,…

  5. Mars Exploration: Is There Water on Mars? An Educator's Guide with Activities for Physical and Earth and Space Science.

    ERIC Educational Resources Information Center

    TERC, Cambridge, MA.

    This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…

  6. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  7. Land Use Planning Experiment for Introductory Earth Science Courses

    ERIC Educational Resources Information Center

    Fetter, C. W., Jr.; Hoffman, James I.

    1975-01-01

    Describes an activity which incorporates topographic map interpretation, soils analysis, hydrogeology, and local geology in a five-week series of exercises for an introductory college earth science class. (CP)

  8. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-05-01

    The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  9. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  10. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA

  11. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  12. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  13. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  14. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  15. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  16. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  17. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Looy, Kris; Bouma, Johan; Herbst, Michael

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  18. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE PAGES

    Van Looy, Kris; Bouma, Johan; Herbst, Michael; ...

    2017-12-28

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  19. EOS ART: Six Artistic Projects Inspired by Earth Science

    NASA Astrophysics Data System (ADS)

    Kerlow, Isaac

    2015-04-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. EOS ART was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects. The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia. The paper provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand).

  20. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  1. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  2. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  3. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  4. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  5. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  6. NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data

    Atmospheric Science Data Center

    2015-05-08

    ... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...

  7. Earth Science

    NASA Image and Video Library

    1992-07-18

    Workers at Launch Complex 17 Pad A, Kennedy Space Center (KSC) encapsulate the Geomagnetic Tail (GEOTAIL) spacecraft (upper) and attached payload Assist Module-D upper stage (lower) in the protective payload fairing. GEOTAIL project was designed to study the effects of Earth's magnetic field. The solar wind draws the Earth's magnetic field into a long tail on the night side of the Earth and stores energy in the stretched field lines of the magnetotail. During active periods, the tail couples with the near-Earth magnetosphere, sometimes releasing energy stored in the tail and activating auroras in the polar ionosphere. GEOTAIL measures the flow of energy and its transformation in the magnetotail and will help clarify the mechanisms that control the imput, transport, storage, release, and conversion of mass, momentum, and energy in the magnetotail.

  8. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  9. Ivestigating Earth Science in Urban Schoolyards

    ERIC Educational Resources Information Center

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  10. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  11. International Year of Planet Earth - Activities and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  12. EVEREST: a virtual research environment for the Earth SciencesEVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Glaves, Helen; Albani, Mirko

    2017-04-01

    seismicity). Each of the VRCs represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907. The project is led by the European Space Agency (ESA), and involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.

  13. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  14. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  15. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-12-01

    The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  16. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    NASA Technical Reports Server (NTRS)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  17. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  18. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  19. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  20. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  1. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  2. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  3. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  4. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  5. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  6. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  7. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  8. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  9. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  10. Art-inspired Presentation of Earth Science Research

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Smith, D. K.; Smith, T.; Conover, H.; Robinson, E.

    2016-12-01

    This presentation features two posters inspired by modern and contemporary art that showcase different Earth science data at NASA's Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC). The posters are intended for the science-interested public. They are designed to tell an interesting story and to stimulate interest in the science behind the art. "Water makes the World" is a photo mosaic of cloud water droplet and ice crystal images combined to depict the Earth in space. The individual images were captured using microphysical probes installed on research aircraft flown in the Mid-latitude Continental Convective Clouds Experiment (MC3E). MC3E was one of a series of ground validation field experiments for NASA's Global Precipitation Measurement (GPM) mission which collected ground and airborne precipitation datasets supporting the physical validation of satellite-based precipitation retrieval algorithms. "The Lightning Capital of the World" is laid out on a grid of black lines and primary colors in the style of Piet Mondrian. This neoplastic or "new plastic art" style was founded in the Netherlands and was used in art from 1917 to 1931. The poster colorfully describes the Catatumbo lightning phenomenon from a scientific, social and historical perspective. It is a still representation of a moving art project. To see this poster in action, visit the GHRC YouTube channel at http://tinyurl.com/hd6crx8 or stop by during the poster session. Both posters were created for a special Research as Art session at the 2016 Federation of Earth Science Information Partners (ESIP) summer meeting in Durham, NC. This gallery-style event challenged attendees to use visual media to show how the ESIP community uses data. Both of these visually appealing posters draw the viewer in and then provide information on the science data used, as well as links for more information available. The GHRC DAAC is a joint venture of NASA's Marshall Space Flight Center and the

  11. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  12. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  13. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond

    NASA Technical Reports Server (NTRS)

    Trait, David M.; Neff, Jon M.; Valinia, Azita

    2007-01-01

    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  14. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  15. A Comparison of Student Outcomes in Various Earth Science Courses Taught by Seventeen Iowa Teachers.

    ERIC Educational Resources Information Center

    Schirner, Silas Wesley

    The effects of the type of earth science course (Earth Science Curriculum Project (ESCP) and non-ESCP), the directness or indirectness of teacher-pupil interaction in various teaching activities (I/D ratio), and the teacher's philosophical orientation (T/NT ratio) on various student outcomes such as understanding of science and scientists;…

  16. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  17. The Changing Earth Science Network- Projects and Results from the First Call

    NASA Astrophysics Data System (ADS)

    Dransfeld, Steffen; Fernandez, Diego; Doron, Maeva; Martinez, Elodie; Shutler, Jamie; Papandrea, Enzo; Biggs, Juliet; Dagestad, Knut-Frode; Palazzi, Elisa; Garcia-Comas, Maya; de Graaf, Martin; Schneising, Oliver; Pavon, Patricia Oliva

    2010-12-01

    To better understand the different processes and interactions that govern the earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency published in 2006 "The Changing Earth: New Scientific Challenges for ESA's living Planet Programme" as the main driver of ESA's new EO science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this context, and responding to a request from ESAC (Earth Science Advisory Committee) to enhance the ESA scientific support towards the achievement of "The Challenges", the Agency has launched the Changing Earth Science Network as an important programmatic component of the new Support To Science Element (STSE) of the Earth Observation Envelope Programme (EOEP). In this paper we summarize the objectives of this initive and provide a review of the first projects that were selected in 2009 and are now generating their first results.

  18. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  19. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  20. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  1. Earth Sciences Division annual report 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less

  2. It's Time to Stand up for Earth Science

    ERIC Educational Resources Information Center

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  3. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    NASA Astrophysics Data System (ADS)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  4. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  5. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  6. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  7. ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2015-01-01

    The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.

  8. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  9. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  10. A Primary Grade (K-3) Earth Science Program

    ERIC Educational Resources Information Center

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  11. Earth and Space Sciences: The Need for Diversity in Global Science

    NASA Astrophysics Data System (ADS)

    Hall, F. R.; Johnson, R.; Alexander, C.

    2004-12-01

    The Earth and Space sciences are truly global in nature and encompass the most diverse subject areas in science. Yet, the practitioners of these fields do not reflect the diversity of the populations that are impacted by the outcomes of the research in these fields of study. The global marketplace, migration, the search for economic and renewable resources, Earth Systems research, and understanding our place in the universe compels us to be more inclusive of the populations and cultures that inhabit our planet. In this talk, we discuss the relevancy of these issues on scientific endeavors in the 21st century and the need for the Earth and Space sciences to be the leaders within the broad scientific community of ensuring that science remains an inclusive enterprise.

  12. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  13. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  14. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  15. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  16. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  17. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  18. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  19. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  20. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  1. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  2. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  3. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    ERIC Educational Resources Information Center

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  4. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  5. Assessment of an On-Line Earth System Science Course for Teachers

    NASA Astrophysics Data System (ADS)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  6. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  7. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  8. THE EOS ART Projects: Six Art Projects Inspired by Earth Science

    NASA Astrophysics Data System (ADS)

    Kerlow, I.

    2015-12-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. The EOS ART 2010-2013 was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects.The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia.The presentation provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand). http://art-science-media.com/the-eos-art-projects/

  9. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES)

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Mabee, B.; Wulf Tregar, S.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. There is a need to substantiate the benefits of Earth science applications in socially and economically meaningful terms in order to demonstrate return on investment and to prioritize investments across data products, modeling capabilities, and information systems. However, methods and techniques for quantifying the value proposition of Earth observations are currently not fully established. Furthermore, it has been challenging to communicate the value of these investments to audiences beyond the Earth science community. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. The VALUABLES Consortium will focus on three pillars: (a) a research pillar that will apply existing and innovative methods to quantify the socioeconomic benefits of information from Earth observations; (b) a capacity building pillar to catalyze interdisciplinary linkages between Earth scientists and social scientists; and (c) a communications pillar that will convey the value of Earth observations to stakeholders in government, universities, the NGO community, and the interested public. In this presentation, we will describe ongoing and future activities of the VALUABLES Consortium, provide a brief overview of frameworks to quantify the socioeconomic value of Earth observations, and describe how Earth scientists and social scientist can get involved in the Consortium's activities.

  10. GeoBus: bringing Earth science learning to secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Robinson, Ruth; Roper, Kathryn; Pike, Charlotte

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Almost 35,000 pupils will have been involved in experiential Earth science learning activities by April 2015, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning within the Scotland Curriculum for Excellence, and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. A key aim of GeoBus is to incorporate research outcomes directly into workshops, and to involve early career researchers in project development. One example that is currently in progress is a set of hydrology workshops that focus on the water

  11. GeoBus: bringing experiential Earth science learning to secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Pike, C. J.; Robinson, R. A. J.; Roper, K. A.

    2014-12-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Over 30,000 pupils will have been involved in experiential Earth science learning activities by December 2014, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning in Scotland and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. Three potentially unsurprising observations hold true for all the schools that GeoBus visits: young learners like to experiment and use unfamiliar equipment to make measurements, the element of competition stimulates learners to ask questions and maintain focus and enthusiasum

  12. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  13. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  14. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  15. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  16. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  17. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  18. Charting a Course to Earth System Science Literacy

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  19. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  20. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  1. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  2. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  3. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  4. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  5. EarthTrek - helping scientists to get citizens involved in real science. (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, G.

    2010-12-01

    Citizen science programs are not new and many scientists can report good success at engaging the public in their research. However, many scientists who could really benefit from the collective pool of eager volunteers do not have the time or patience to develop system to track and manage the collective “enthusiasm”. EarthTrek takes on that role and provides scientists with the support for their venture into a citizen science program. EarthTrek manages the people, rewards them for their involvement and provides avenues for scientists to communicate with the participants. Scientists concentrate on developing sounds collection protocols (with EarthTrek’s help if needed) and then provide feedback once the data stars to come in. EarthTrek is about linking people with real research. EarthTrek will work with scientists from every field as long as projects are collecting data for research, are time constrained and the lead scientists agree to a communication schedule for results back to participants. Examples of active science projects include weathering rates on gravestones, invasive plant species and phenology. EarthTrek is a project of the Geological Society of America and partners around the globe. EarthTrekker collecting data for the Gravestone Project

  6. Characteristics of Abductive Inquiry in Earth and Space Science: An Undergraduate Teacher Prospective Case Study

    NASA Astrophysics Data System (ADS)

    Ramalis, T. R.; Liliasari; Herdiwidjaya, D.

    2016-08-01

    The purpose this case study was to describe characteristic features learning activities in the domain of earth and space science. Context of this study is earth and space learning activities on three groups of student teachers prospective, respectively on the subject of the shape and size of Earth, land and sea breeze, and moon's orbit. The analysis is conducted qualitatively from activity data and analyze students doing project work, student worksheets, group project report documents, note and audio recordings of discussion. Research findings identified the type of abduction: theoretical models abduction, factual abduction, and law abduction during the learning process. Implications for science inquiry learning as well as relevant research were suggested.

  7. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  8. Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.

    2001-12-01

    Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment

  9. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  10. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  11. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  12. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  13. Innovations in making EarthScope science and data accessible (Invited)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.

    2013-12-01

    EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for

  14. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  15. Key Provenance of Earth Science Observational Data Products

    NASA Astrophysics Data System (ADS)

    Conover, H.; Plale, B.; Aktas, M.; Ramachandran, R.; Purohit, P.; Jensen, S.; Graves, S. J.

    2011-12-01

    learned about an entity after the event of its creation in the provenance record. We will discuss extensions to the Open Provenance Model (OPM) and modifications to the Karma tool suite to address this issue, more efficient representations of earth science kinds of provenance, and definition of metadata structures for capturing related knowledge about the data products and science algorithms used to generate them. Use scenarios for provenance information is an active topic of investigation. It has additionally become clear through the project that not all provenance is created equal. In processing pipelines, some provenance is repetitive and uninteresting. Because of the volume of provenance, this obscures what are the interesting pieces of provenance. Methodologies to reveal science-relevant provenance will be presented, along with a preview of the AMSR-E Provenance Browser.

  16. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of

  17. The application of Legacy Cycles in the development of Earth Science curriculum

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  18. Pennsylvania's Energy Curriculum for the Secondary Grades: Earth Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    Two dozen energy-related earth science lessons comprise this guide for secondary school teachers. Intended to provide information about energy issues that exist in Pennsylvania and throughout the world, the activities cover topics such as coal mining, radioactivity, and the distribution of oil and gas in Pennsylvania. Lessons include objectives,…

  19. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  20. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  1. The EPOS Architecture: Integrated Services for solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the

  2. Earth Science Education in Sudan

    NASA Astrophysics Data System (ADS)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  3. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  4. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    NASA Astrophysics Data System (ADS)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  5. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  6. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  7. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  8. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  9. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  10. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  11. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  12. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  13. Engaging Underserved and Underrepresented Students in the Earth Sciences through a Summer Outreach Program

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Olgin, J. G.; Pennington, D. D.

    2016-12-01

    The EarthTech outreach program at the University of Texas at El Paso (UTEP) seeks to expand the inclusion of underserved and under-represented high-school students into the geoscience pipeline. A successful partnership with the federally funded, year round college preparatory program for high school students Upward Bound (UB) program at UTEP was decisive for the success and execution of the program. Program activities aimed to engage students and expand their knowledge of the Earth Sciences through participation in STEM hands-on activities, incorporating technology and field experiences. For its second year, the program chose to address the intersection of science and societal issues by selecting an overall topic for the weeklong program that students could relate and understand from personal experiences, facilitating participation. The exposure to outdoor on-site learning experiences via field trips proved a critical component based on student feedback, by allowing the students to engage with their surroundings and relate to basic Earth Science knowledge and principles. Qualitative feedback and discussion of the program and its activities are presented here.

  14. Heating up the science classroom through global warming: An investigation of argument in earth system science education

    NASA Astrophysics Data System (ADS)

    Schweizer, Diane Mary

    This research investigated how the use of argument within an earth system science perspective offers potential opportunities for students to develop skills of scientific reasoning. Earth system science views Earth as a synergistic system governed by complex interdependencies between physical and biological spheres. Earth system science presents familiar and compelling societal problems about Earth's environment thereby providing a highly motivational vehicle for engaging students in science. Using global warming as an application of earth system science, my research investigated how middle school and undergraduate students use scientific evidence when constructing and assessing arguments. This dissertation includes three related research studies. The first study took in place in three seventh grade science classrooms and investigated student engagement in a global warming debate. This study illustrated students used evidence to support their central argument; to negate the central argument of the opposing side; to present challenges to the opposing side; and to raise new questions. The second research study is a comparative study and investigated how other students under different instructional settings constructed their arguments on the cause of global warming from the same evidence. This study took place in two seventh grade science classrooms. This study demonstrated that when constructing personal arguments on global warming, students developed an earth system perspective as they considered and integrated different pieces of evidence. Students participating in debate where given a particular view to defend and focused on evidence matching this view, thereby displaying singular views of the cause of global warming. The third research study investigated students abilities to scientifically assess arguments. By analyzing students' written evaluations of arguments on the global climate presented during oral debates, this study demonstrated that undergraduates focus

  15. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  16. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  17. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  18. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  19. Improving Access to NASA Earth Science Data through Collaborative Metadata Curation

    NASA Astrophysics Data System (ADS)

    Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.

    2017-12-01

    The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.

  20. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  1. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  2. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  3. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  4. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  5. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    , satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. The EPOS Thematic Services will rely in part on strong and sustainable participation by national organisations and international consortia. While this distributed architecture will contribute to ensure pan European involvement in EPOS, it also raises specific challenges: ensuring similar granularity of services, compatibility of technical solutions, homogeneous legal agreements and sustainable financial engagement from the partner institutions and organisations. EPOS is engaging actions to address all of these issues during 2016-2017, after which the services will enter a final validation phase by the EPOS Board of Governmental Representatives.

  6. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    ERIC Educational Resources Information Center

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  7. Resources Available for Earth Science Education. Final Report.

    ERIC Educational Resources Information Center

    Clausen, Eric

    A study of schools was conducted to determine needs of earth science programs, and what, if any, services could effectively be provided by an earth science resource center. Contacts were made with approximately one-half the schools in the Minot State College service region. Discussions were held with administrators and teachers, and facilities at…

  8. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  9. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  10. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  11. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  12. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  13. Grid Technology as a Cyber Infrastructure for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.

  14. Building a better search engine for earth science data

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.

    2017-12-01

    Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search

  15. Utah Science Activities, Update 2010

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS), a bureau of the U.S. Department of the Interior, serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS has become a world leader in the natural sciences thanks to our scientific excellence and responsiveness to society's needs. This newsletter describes some of the current and recently completed USGS earth-science activities in Utah. As an unbiased, multi-disciplinary science organization that focuses on biology, geography, geology, and water, we are dedicated to the timely, relevant, and impartial study of the landscape, our natural resources, and the natural hazards that threaten us. Learn more about our goals and priorities for the coming decade in the USGS Science Strategy at http://www.usgs.gov/science_strategy/ .

  16. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  17. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  18. Earth Science

    NASA Image and Video Library

    1990-10-24

    Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.

  19. Technology thrusts for future Earth science applications

    NASA Astrophysics Data System (ADS)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  20. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  1. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  2. An experience of science theatre: Earth Science for children

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  3. Earth Science Teaching Strategies Used in the International Polar Year

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2009-04-01

    There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.

  4. Windows to the Universe: Earth Science Enterprise Education Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.

  5. ArXives of Earth science

    NASA Astrophysics Data System (ADS)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  6. A decade of Earth science

    NASA Astrophysics Data System (ADS)

    2018-01-01

    Great Earth science has been published over the ten years since the launch of Nature Geoscience. The field has also become more interdisciplinary and accountable, as well as more central to society and sustainability.

  7. Information Quality as a Foundation for User Trustworthiness of Earth Science Data.

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Moroni, D. F.; Ramapriyan, H.; Peng, G.

    2017-12-01

    Information quality is multidimensional. Four different aspects of information quality can be defined based on the lifecycle stages of Earth Science data products: science, product, stewardship and services. With increasing requirements on ensuring and improving information quality coming from multiple government agencies and throughout industry, there have been considerable efforts toward improving information quality during the last decade, much of which has not been well vetted in a collective sense until recently. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) in 2011, and reactivated in the summer of 2014, has been active with membership from multiple organizations. The IQC's objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are also considered vital toward improving the trustworthiness of Earth science data to a vast and interdisciplinary community of data users. During 2016, several members of the IQC have led the development and assessment of four use cases. This was followed up in 2017 with multiple panel sessions at the 2017 Winter and Summer ESIP Meetings to survey the challenges posed in the various aspects of information quality. What was discovered to be most lacking is the transparency of data lineage (i.e., provenance and maturity), uniform methods for uncertainty characterization, and uniform quality assurance data and metadata. While solutions to these types of issues exist, most data producers have little time to investigate and collaborate to arrive at and conform to a consensus approach. The IQC has positioned itself as a community platform to bring together all relevant stakeholders from data producers, repositories, program managers, and the end users. A combination of both well-vetted and "trailblazing" solutions are presented to address how data trustworthiness can

  8. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  9. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  10. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    ERIC Educational Resources Information Center

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  11. Visualizing global change: earth and biodiversity sciences for museum settings using HDTV

    NASA Astrophysics Data System (ADS)

    Duba, A.; Gardiner, N.; Kinzler, R.; Trakinski, V.

    2006-12-01

    Science Bulletins, a production group at the American Museum of Natural History (New York, USA), brings biological and Earth system science data and concepts to over 10 million visitors per year at 27 institutions around the U.S.A. Our target audience is diverse, from novice to expert. News stories and visualizations use the capabilities of satellite imagery to focus public attention on four general themes: human influences on species and ecosystems across all observable spatial extents; biotic feedbacks with the Earth's physical system; characterizing species and ecosystems; and recent events such as natural changes to ecosystems, major findings and publications, or recent syntheses. For Earth science, we use recent natural events to explain the broad scientific concepts of tectonic activity and the processes that underlie climate and weather events. Visualizations show the global, dynamic distribution of atmospheric constituents, ocean temperature and temperature anomaly, and sea ice. Long-term changes are set in contrast to seasonal and longer-term cycles so that viewers appreciate the variety of forces that affect Earth's physical system. We illustrate concepts at a level appropriate for a broad audience to learn more about the dynamic nature of Earth's biota and physical processes. Programming also includes feature stories that explain global change phenomena from the perspectives of eminent scientists and managers charged with implementing public policy based on the best available science. Over the past two and one-half years, biological science stories have highlighted applied research addressing lemur conservation in Madagascar, marine protected areas in the Bahamas, effects of urban sprawl on wood turtles in New England, and taxonomic surveys of marine jellies in Monterey Bay. Earth science stories have addressed the volcanic history of present-day Yellowstone National Park, tsunamis, the disappearance of tropical mountain glaciers, the North Atlantic

  12. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  13. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  14. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  15. Active learning in forensic science using Brownfield Action in a traditional or hybrid course in earth, environmental, or engineering sciences

    NASA Astrophysics Data System (ADS)

    Bower, P.; Liddicoat (2), J.

    2009-04-01

    Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.

  16. The Heritage of Earth Science Applications in Policy, Business, and Management of Natural Resources

    NASA Astrophysics Data System (ADS)

    Macauley, M.

    2012-12-01

    From the first hand-held cameras on the Gemini space missions to present day satellite instruments, Earth observations have enhanced the management of natural resources including water, land, and air. Applications include the development of new methodology (for example, developing and testing algorithms or demonstrating how data can be used) and the direct use of data in decisionmaking and policy implementation. Using well-defined bibliographic search indices to systematically survey a broad social science literature, this project enables identification of a host of well-documented, practical and direct applications of Earth science data in resource management. This literature has not previously been well surveyed, aggregated, or analyzed for the heritage of lessons learned in practical application of Earth science data. In the absence of such a survey, the usefulness of Earth science data is underestimated and the factors that make people want to use -- and able to use -- the data are poorly understood. The project extends and updates previous analysis of social science applications of Landsat data to show their contemporary, direct use in new policy, business, and management activities and decisionmaking. The previous surveys (for example, Blumberg and Jacobson 1997; National Research Council 1998) find that the earliest attempts to use data are almost exclusively testing of methodology rather than direct use in resource management. Examples of methodology prototyping include Green et al. (1997) who demonstrate use of remote sensing to detect and monitor changes in land cover and use, Cowen et al. (1995) who demonstrate design and integration of GIS for environmental applications, Hutchinson (1991) who shows uses of data for famine early warning, and Brondizio et al. (1996) who show the link of thematic mapper data with botanical data. Blumberg and Jacobson (in Acevedo et al. 1996) show use of data in a study of urban development in the San Francisco Bay and the

  17. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  18. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  19. Earth Stewardship Science: International Research Networks based in Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Gaines, S. M.

    2010-12-01

    The role of networking in student and early career years is critical in the development of international interdisciplinary earth system science. These networks - both peer and mentor-based - can build community, foster enthusiasm and further research applications in addition to the traditional goal of identifying and obtaining work. UNESCO has nearly 40 years of experience in building international research teams through the International Geoscience Program (IGCP) and has recently focused their attention on the status of the earth sciences in Africa. UNESCO’s Earth Science Education Initiative in Africa ran a series of regional scoping workshops around the continent in order to develop an integrated status report on the earth sciences in Africa. The results, which are globally relevant, indicate that the field is limited by the level of basic science education of incoming students and restricted laboratory facilities, but also by a lack of connectedness. This isolation relates both to the interaction between researchers within countries and around the world but also the divide between Universities and Industry and the failure of the field to communicate its relevance to the public. In a context where livelihood opportunities are the driver of study and the earth sciences provide a major source of income, practical academic ties to industry are an essential element of the attractiveness of the field to students. Actions and ideas for addressing this situation will be presented to reinforce the role of the earth sciences in improving human and environmental well-being.

  20. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong

  1. Booklets for children related with Earth Sciences published in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz, S. A.; Nieto-Samaniego, A. F.

    2009-04-01

    The Centro de Geociencias, at the Universidad Nacional Autonoma de Mexico, has published a series of booklets for children, entitled "Simple experiments to understand a complex Earth". It is part of the activities of the Mexican committee of the International Year of the Planet Earth. Each booklet contains experiments related with an Earth Sciences topic and includes the procedure to do one of the "Ten most beautiful experiments in physics" (Crease, P., Physics World May 2002 p17 and September 2002 pp19-20). In Mexico, as in other developing countries, there is very little information about Science in general and Earth Sciences in particular, in the basic education programs. Also, there is poor bibliography in Spanish about science experiments. For this reason, we try to fill the vacuum by distributing free the booklets in Science Museums and rural basic schools in paper, and by Internet in the Centro de Geociencias web site (http://www.geociencias.unam.mx/geociencias/difusion/indice.html). At present, we have been distributed 100,000 copies of 5 issues: 1."Atmospheric pressure and the falling bodies", it deals with the Galileo experiment of falling bodies, he proposed that all the bodies fall down at the same velocity. We discuss the properties of the atmosphere air (temperature, pressure and volume) and concluded that Galileo is right but when the bodies are very light. 2. "The light and the colors" is based in the Newton's decomposition of sunlight with a prism experiment. This booklet contains nine experiments to explain the colors that we find in Earth like the blue of the sky, the orange of the sunset, the rainbow and the mirage. 3. "¿Eureka! oceans and continents float". This booklet presents seven experiments related with density and buoyancy to explain the principles of the Plate tectonics theory. 4. "Climate hanging by a thread", Foucault pendulum demonstrates the rotation of Earth without seeing the stars, in this booklet, we explain, through 9

  2. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  3. Investigating Pathways from the Earth Science Knowledge Base to Candidate Solutions

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Johnson, E.; Mita, D.; Dabbiru, L.; Katragadda, S.; Lewis, D.; O'Hara, C.

    2007-12-01

    A principle objective of the NASA Applied Sciences Program is to support the transition of scientific research results into decisions which benefit society. One of the Solutions Network activities supporting this goal is the generation of Candidate Solutions derived from NASA Earth Science research results that have the potential to enhance future operational systems for societal benefit. In short, the program seeks to fill gaps between Earth Science results and operational needs. The Earth Science Knowledge Base (ESKB) is being developed to provide connectivity and deliver content for the research information needs of the NASA Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, examine the individual components of that research, and assist in developing strategies for furthering research. The ESKB will include information about organizations that conduct NASA-funded Earth Science research, NASA research solicitations, principal investigators, research publications and other project reports, publication authors, inter-agency agreements like memoranda-of-understanding, and NASA assets, models, decision support tools, and data products employed in the course of or developed as a part of the research. The generation of candidate solutions is the first step in developing rigorously tested applications for operational use from the normal yet chaotic process of natural discovery. While the process of 'idea generation' cannot be mechanized, the ESKB serves to provide a resource for testing theories about advancing research streams into the operational realm. Formulation Reports are the documents which outline a Candidate Solution. The reports outline the essential elements, most of which are detailed in the ESKB, which must be analyzed

  4. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  5. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  6. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  7. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  8. Earth System Science Education Centered on Natural Climate Variability

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; Ladochy, S.; Patzert, W. C.; Willis, J. K.

    2009-12-01

    Several new courses and many educational activities related to climate change are available to teachers and students of all grade levels. However, not all new discoveries in climate research have reached the science education community. In particular, effective learning tools explaining natural climate change are scarce. For example, the Pacific Decadal Oscillation (PDO) is a main cause of natural climate variability spanning decades. While most educators are familiar with the shorter-temporal events impacting climate, El Niño and La Niña, very little has trickled into the climate change curriculum on the PDO. We have developed two online educational modules, using an Earth system science approach, on the PDO and its role in climate change and variability. The first concentrates on the discovery of the PDO through records of salmon catch in the Pacific Northwest and Alaska. We present the connection between salmon abundance in the North Pacific to changing sea surface temperature patterns associated with the PDO. The connection between sea surface temperatures and salmon abundance led to the discovery of the PDO. Our activity also lets students explore the role of salmon in the economy and culture of the Pacific Northwest and Alaska and the environmental requirements for salmon survival. The second module is based on the climate of southern California and how changes in the Pacific Ocean , such as the PDO and ENSO (El Niño-Southern Oscillation), influence regional climate variability. PDO and ENSO signals are evident in the long-term temperature and precipitation record of southern California. Students are guided in the module to discover the relationships between Pacific Ocean conditions and southern California climate variability. The module also provides information establishing the relationship between climate change and variability and the state's water, energy, agriculture, wildfires and forestry, air quality and health issues. Both modules will be

  9. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  10. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  11. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes

  12. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how

  13. Earth Science community support in the EGI-Inspire Project

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  14. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  15. DIG Texas Blueprints - Pathways for Teaching a Rigorous Earth Science Course

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Pennington, D. D.; Fox, S.; Larsen, K.; Ledley, T. S.; Stocks, E.; Mosher, S.; Miller, K. C.

    2013-12-01

    The DIG (Diversity and Innovation for Geosciences) Texas Instructional Blueprint project supports the development of five online instructional blueprints that document what to teach in a yearlong high school-level Earth science course. Each blueprint stitches together units that contain approximately 10 well-vetted, curated educational resources and learning activities. Units may focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of Earth scientists, pedagogy specialists, and practicing science teachers are creating the blueprints. The cross-disciplinary collaboration among blueprint team members provides opportunities for them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members also learn where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool. Blueprint development is guided by the Next Generation Science Standards and selected educational resources are aligned with the Texas state standards (Texas Essential Knowledge and Skills) for Earth and Space Science and the Earth Science Literacy Principles. The Science Education Resource Center (SERC) serves as the repository for the DIG Texas blueprint web pages. The Cyber-ShARE Center of Excellence at UTEP and SERC are engaged in the development of automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing and matching units from other blueprints, or creating new units and blueprints. These innovations are intended to provide access to the blueprints in such a way that enhances their use by secondary Earth science educators. In this presentation, we provide an overview of the project, showcase examples of the blueprints, report on the preliminary results of classroom implementation, and consider

  16. Ensuring and Improving Information Quality for Earth Science Data and Products Role of the ESIP Information Quality Cluster

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K. (Rama); Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  17. Ensuring and Improving Information Quality for Earth Science Data and Products: Role of the ESIP Information Quality Cluster

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Peng, Ge; Moroni, David; Shie, Chung-Lin

    2016-01-01

    Quality of products is always of concern to users regardless of the type of products. The focus of this paper is on the quality of Earth science data products. There are four different aspects of quality - scientific, product, stewardship and service. All these aspects taken together constitute Information Quality. With increasing requirement on ensuring and improving information quality, there has been considerable work related to information quality during the last several years. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) has been active with membership from multiple organizations. Its objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are discussed briefly.

  18. The EarthServer project: Exploiting Identity Federations, Science Gateways and Social and Mobile Clients for Big Earth Data Analysis

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Messina, Antonio; Pappalardo, Marco; Passaro, Gianluca

    2013-04-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. Six Lighthouse Applications are being established in EarthServer, each of which poses distinct challenges on Earth Data Analytics: Cryospheric Science, Airborne Science, Atmospheric Science, Geology, Oceanography, and Planetary Science. Altogether, they cover all Earth Science domains; the Planetary Science use case has been added to challenge concepts and standards in non-standard environments. In addition, EarthLook (maintained by Jacobs University) showcases use of OGC standards in 1D through 5D use cases. In this contribution we will report on the first applications integrated in the EarthServer Science Gateway and on the clients for mobile appliances developed to access them. We will also show how federated and social identity services can allow Big Earth Data Providers to expose their data in a distributed environment keeping a strict and fine-grained control on user authentication and authorisation. The degree of fulfilment of the EarthServer implementation with the recommendations made in the recent TERENA Study on

  19. Communicating the Science of the Earth System Through Arts and Culture to Reach Broad Audiences

    NASA Astrophysics Data System (ADS)

    Gardiner, L.; Genyuk, J.; Bergman, J.; Johnson, R.; Foster, S.; Hatheway, B.; Russell, R.

    2008-12-01

    Links between the science of Earth and the visual and literary arts, cultures, and human history provides important context and connections for learners of all ages. Several new features that foster a multidisciplinary approach to learning about our planet are now available on Windows to the Universe (www.windows.ucar.edu), an educational Web site that includes over 6000 pages of content and is used by over 20 million people each year. The Clouds in Art interactive encourages users to identify cloud types depicted in well-known landscape paintings. Examples of poems by historic poets describe weather phenomena and link to information about the science of weather. A new feature allows users to post their original poetry about an image of weather phenomena. Historic image collections emphasize human connections to the Earth system. For example, a collection of images that visually describes Inuit traditions is linked to Web content about Earth's polar regions and the impact of climate change in the Arctic. To support K-12 classroom learning of Earth system concepts and engage visual learners, several new classroom activities make use of photographs, satellite images, and animations of remote sensing data. In one activity, students learn about the impact of climate change in the Arctic by working with photographs of Alaskan glaciers taken over the past century. These new interdisciplinary features on Windows to the Universe, combined with a wealth of existing content on the site about the history of science and mythology, provide other ways to appreciate science phenomena as well as alternate avenues into science for the general public, teachers and students. Windows to the Universe, a project of the University Corporation for Atmospheric Research Office of Education and Outreach, provides users with content about the Earth and space sciences at three levels of instruction in both English and Spanish.

  20. Increasing Participation in the Earth Sciences A 35 year Journey

    NASA Astrophysics Data System (ADS)

    Blueford, J. R.

    2006-12-01

    In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.

  1. Earth Science Unit for Second Grade: A Seed Crystal Approach.

    ERIC Educational Resources Information Center

    Abernathy, Sandra

    This teacher's guide to a second-grade earth science unit provides a range of activities, suggestions for classroom discussion, and open-ended questions suitable for each of the concepts developed. One of the central purposes of the unit is to develop independence and self confidence by encouraging the student to think through a problem clearly.…

  2. The 6th International Earth Science Olympiad: A Student Perspective

    ERIC Educational Resources Information Center

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  3. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  4. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  5. Earth benefits from NASA research and technology. Life sciences applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.

  6. Earth and Space Science. A Guide for Secondary Teachers.

    ERIC Educational Resources Information Center

    Bolles, William H.; And Others

    Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment,…

  7. Experiential learning for education on Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  8. Introduction. Progress in Earth science and climate studies.

    PubMed

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  9. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    NASA Astrophysics Data System (ADS)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  10. GENESI-DR - A single access point to Earth Science data

    NASA Astrophysics Data System (ADS)

    Cossu, R.; Goncalves, P.; Pacini, F.

    2009-04-01

    The amount of information being generated about our planet is increasing at an exponential rate, but it must be easily accessible in order to apply it to the global needs relating to the state of the Earth. Currently, information about the state of the Earth, relevant services, analysis results, applications and tools are accessible in a very scattered and uncoordinated way, often through individual initiatives from Earth Observation mission operators, scientific institutes dealing with ground measurements, service companies, data catalogues, etc. A dedicated infrastructure providing transparent access to all this will support Earth Science communities by allowing them to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The use of high-speed networks (GÉANT) and the experimentation of new technologies, like BitTorrent, will also contribute to better services for the Earth Science communities. GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories), an ESA-led, European Commission (EC)-funded two-year project, is taking the lead in providing reliable, easy, long-term access to Earth Science data via the Internet. This project will allow scientists from different Earth Science disciplines located across Europe to locate, access, combine and integrate historical and fresh Earth-related data from space, airborne and in-situ sensors archived in large distributed repositories. GENESI-DR builds a federated collection of heterogeneous digital Earth Science repositories to establish a dedicated infrastructure providing transparent access to all this and allowing Earth Science communities to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The federated digital repositories, seen as services and data providers, will share access to their resources (catalogue functions, data access, processing services etc

  11. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    NASA Astrophysics Data System (ADS)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  12. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  13. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  14. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  15. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  16. Earth Science Data Education through Cooking Up Recipes

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Maskey, M.; Smith, T.; Conover, H.

    2016-12-01

    One of the major challenges in Earth science research and applications is understanding and applying the proper methods, tools, and software for using scientific data. These techniques are often difficult and time consuming to identify, requiring novel users to conduct extensive research, take classes, and reach out for assistance, thus hindering scientific discovery and real-world applications. To address these challenges, the Global Hydrology Resource Center (GHRC) DAAC has developed a series of data recipes that novel users such as students, decision makers, and general Earth scientists can leverage to learn how to use Earth science datasets. Once the data recipe content had been finalized, GHRC computer and Earth scientists collaborated with a web and graphic designer to ensure the content is both attractively presented to data users, and clearly communicated to promote the education and use of Earth science data. The completed data recipes include, but are not limited to, tutorials, iPython Notebooks, resources, and tools necessary for addressing key difficulties in data use across a broad user base. These recipes enable non-traditional users to learn how to use data, but also curates and communicates common methods and approaches that may be difficult and time consuming for these users to identify.

  17. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  18. A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.

  19. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  20. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  1. Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  2. Pedotransfer functions in Earth system science: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Van Looy, K.; Minasny, B.; Nemes, A.; Verhoef, A.; Weihermueller, L.; Vereecken, H.

    2017-12-01

    We make a stronghold for a new generation of Pedotransfer functions (PTFs) that is currently developed in the different disciplines of Earth system science, offering strong perspectives for improvement of integrated process-based models, from local to global scale applications. PTFs are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. To meet the methodological challenges for a successful application in Earth system modeling, we highlight how PTF development needs to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly capture the spatial heterogeneity of soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration and organic carbon content, root density and vegetation water uptake. We present an outlook and stepwise approach to the development of a comprehensive set of PTFs that can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques and soil information availability provide a true breakthrough for this, yet further improvements are necessary in three domains: 1) the determining of unknown relationships and dealing with uncertainty in Earth system modeling; 2) the step of spatially deploying this knowledge with PTF validation at regional to global scales; and 3) the integration and linking of the complex model parameterizations (coupled parameterization). Integration is an achievable goal we will show.

  3. A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.

    2016-12-01

    Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.

  4. Syllabus for Weizmann Course: Earth System Science 101

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  5. INDIGO-DataCloud solutions for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin

    2017-04-01

    INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big

  6. Schoolyard Science: 101 Easy and Inexpensive Activities

    ERIC Educational Resources Information Center

    Lord, Thomas R.; Travis, Holly J.

    2011-01-01

    With 101 easy and inexpensive activities to do on school grounds, "Schoolyard Science" can help students develop their observation and inquiry skills as well as an appreciation of their outdoor environment. Covering topics such as lower plants, gardens, insects and other invertebrates, energy, and Earth science, Thomas Lord and Holly Travis…

  7. Effective Integration of the World-Wide Web in Earth Science Education.

    ERIC Educational Resources Information Center

    Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn

    The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…

  8. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  9. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  10. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Roggenthen, W.; Wang, J.

    2004-12-01

    next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.

  11. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  12. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    NASA Astrophysics Data System (ADS)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  13. Solid earth science in the 1990s. Volume 2: Panel reports

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.

  14. Native America: American Indian Geoscientists & Earth System Science Leaders

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2011-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands across the Americas. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all Tribal societies. These changes have accelerated the momentum to ensure the future of American Indian Geoscientists and Earth Systems Science Leaders. The presentation will bring to prominence the unique recruitment and mentoring necessary to achieve success that emerged through working with Tribal people. The presentation will highlight: 1) past and present philosophies on recruitment and mentoring of Native/Tribal students in geoscience and earth systems science; 2) current Native leadership and research development; 3) unique collaborations "bridging" Native people across geographic areas (International) in developing educational/research experiences which integrate the distinctive geoscience and earth systems science knowledge of Tribal peoples throughout the Americas. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native geoscientists and earth systems science leaders.

  15. Software Reuse Within the Earth Science Community

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  16. Earth Sciences Division Research Summaries 2002-2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  17. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  18. Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.

    2011-12-01

    Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.

  19. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  20. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be

  1. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are

  2. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and

  3. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  4. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  5. EarthScope National Office Education and Outreach Program: 2013 Update on Activities and Outcomes

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Robinson, S.; Bohon, W.; Schwab, P.; Arrowsmith, R.; Garnero, E. J.; Fouch, M. J.; Pettis, L.; Baumback, D.; Dick, C.

    2013-12-01

    The EarthScope Program (www.earthscope.org) funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. Data and findings from EarthScope continue to transform geoscientific studies throughout the Earth, enhance understanding and mitigation of hazards, and inform applications of geoscience toward environmental sustainability. The EarthScope Program also marshals significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including the EarthScope Steering Committee, researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and web-hosted resources, newsletters and published articles, E&O workshops for informal educators (interpreters), assistance to grassroots K-12 STEM teacher professional development projects (typically led by EarthScope researchers), continuing education for researchers, collaborations with other Earth-science E&O providers, and biannual national conferences. The EarthScope E&O program at ESNO leads and supports wide dissemination of the data, findings, and legacy of EarthScope. Notable activities in 2013 include expansion of social-media and web-based content, two Interpretive Workshops in the eastern United States, the Great ShakeOut, the EarthScope National Meeting in Raleigh, and continuing partnerships with affiliated E&O providers. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  6. A New Dimension for Earth Science Learning

    NASA Astrophysics Data System (ADS)

    Bland, G.; Henry, A.; Bydlowski, D.

    2017-12-01

    NASA Science Objectives include capturing the global view of Earth from space. This unique perspective is often augmented by instrumented research aircraft, to provide in-situ and remote sensing observations in support of the world picture. Our "Advancing Earth Research Observations with Kites and Atmospheric /Terrestrial Sensors" (AEROKATS) project aims to bring this novel and exciting perspective into the hands of learners young and old. The practice of using instrumented kites as surrogate satellites and aircraft is gaining momentum, as our team undertakes the technical, operational, and scientific challenges in preparations to bring new and easy-to-field tools to broad audiences. The third dimension in spatial perception ("up") has previously been difficult to effectively incorporate in learning and local-scale research activities. AEROKATS brings simple to use instrumented aerial systems into the hands of students, educators, and scientists, with the tangible benefits of detailed, high resolution measurements and observations directly applicable to real-world studies of the environments around us.

  7. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  8. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  9. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  10. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  11. Earth Sciences Division Research Summaries 2006-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial

  12. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-021)] NASA Advisory Council; Science...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to...

  13. Viewing the Earth with Closed Eyes.

    ERIC Educational Resources Information Center

    Kaschner, Susan K.

    1978-01-01

    Describes earth science activities for the visually impaired student. Includes soil type identification, stream table erosion, and relief map activities. Recommends a multisensory approach to the teaching of earth science and hands-on activities. (MA)

  14. Use of USGS earth-science products by county planning agencies in the San Francisco Bay region, California

    USGS Publications Warehouse

    Kockelman, William J.

    1976-01-01

    An inventory of the use of USGS products in selected planning studies, plans, ordinances, and other planning activities was made for eight counties in the San Francisco Bay region--a region of almost five million people. This inventory was designed to determine and document the use of the 87 earth-science information products prepared as a part of the San Francisco Bay Region Environment and Resources Planning Study (SFBRS). The inventory showed that: (1) all eight counties had planning staffs who were very familiar with SFBRS products and had made frequent use of such products; (2) all eight counties had prepared planning documents which cite SFBRS products; (3) the types of planning applications most often indicated were: geologic hazards studies, seismic safety and public safety plan elements, general reference, and the preparation and review of environmental impact reports and statements; (4) over 90 percent of the 87 SFBRS products were used at least once, and nine of the products were used over 30 times each for various county planning activities; and (5) at least 85 other USGS products were also used for various county planning activities. After the inventory, selected county officials, employees, and consultants were interviewed and asked--among other things--to indicate any problems in the use of the SFBRS products, to suggest improvements, and to identify any needed or desired earth-science information. The responses showed that: (1) the scales commonly used for working maps were 1:62,500 or larger and for plan implementation were 1:24,000 or larger; (2) only one county had a geologist on its planning staff, although six others had the benefit of geotechnical services from private consulting firms, county engineering staffs, or the State Division of Mines and Geology; (3) seven of the eight counties expressed some problems in using the products, primarily because of their small scale or lack of detail; (4) all eight counties expected to continue to use

  15. European grid services for global earth science

    NASA Astrophysics Data System (ADS)

    Brewer, S.; Sipos, G.

    2012-04-01

    This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task

  16. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  17. Increasing Expertise in Earth Science Education through Master's Education

    ERIC Educational Resources Information Center

    Huntoon, Jackie; Baltensperger, Brad

    2012-01-01

    The processes of developing and the results of testing a master's degree program designed to increase the number and quality of secondary-level earth science teachers are described in this paper. The master's program is intended to serve practicing secondary-level science and math teachers who lack subject-area endorsement in earth science. There…

  18. Individualized Instruction in Science, Earth Space Project, Learning Activities Package.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    Learning Activity Packages (LAP) relating to the earth and space are presented for use in sampling a new type of learning for a whole year. Eighteen topics are incorporated into five units: (1) introduction to individualized learning, (2) observation versus interpretation, (3) chemistry in the space age, (4) the space age interdisciplines, and (5)…

  19. Enhancing Earth Science And IT Literacy Through Environmental Science Information Technology Activities

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Molinaro, M.

    2004-12-01

    The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany

  20. Earth Sciences' Capacity Building In Developing Countries through International Programmes

    NASA Astrophysics Data System (ADS)

    Eder, W.

    2007-12-01

    Within the framework of "traditional" programmes, like the joint UNESCO-IUGS "International Geoscience Programme" (IGCP), the "International Continental Scientific Drilling Program" (ICDP), the "Integrated Ocean Drilling Program" (IODP) or the "International Lithosphere Programme" (ILP) numerous opportunities are provided to strengthen postgraduate geo-scientific education of representatives from developing countries. Recently established new initiatives, such as the "International Year of Planet Earth" (IYPE) or UNESCO's Global Network of Geoparks complement these in addition as important components to UNESCO's 'Education for All' programme, notably the youth, as well as to the United Nations Decade of Education for Sustainable Development (2005 - 2014). The "International Year of Planet Earth" is a joint initiative of the International Union of Geological Sciences (IUGS) and UNESCO. The central aims and ambitions of the Year, proclaimed for 2008 by the UN General Assembly, are to demonstrate the great potential of the Earth sciences in building a safer, healthier and wealthier society, and to encourage more widespread and effective application of this potential by targeting politicians and other decision-makers, educational systems, and the general public. Promotion of international collaboration, as well as capacity building and training of students of developing countries in all fields of Earth Sciences seem to be the most appropriate way to meet also the challenges of the IYPE. Another opportunity to improve the international recognition of Earth Scinces, also in developing countries, is the use of Geoparks as a promotional tool for education and popularization of Earth Sciences. Geoparks, notably those included in the European and/or Global Geoparks Networks, provide an international platform of cooperation and exchange between experts and practitioners in geological heritage matters, and are as such excellent instruments in highlighting Earth sciences. The

  1. Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura

    NASA Technical Reports Server (NTRS)

    Fisher, Dominic

    2017-01-01

    This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.

  2. Pedotransfer Functions in Earth System Science: Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Van Looy, Kris; Bouma, Johan; Herbst, Michael; Koestel, John; Minasny, Budiman; Mishra, Umakant; Montzka, Carsten; Nemes, Attila; Pachepsky, Yakov A.; Padarian, José; Schaap, Marcel G.; Tóth, Brigitta; Verhoef, Anne; Vanderborght, Jan; van der Ploeg, Martine J.; Weihermüller, Lutz; Zacharias, Steffen; Zhang, Yonggen; Vereecken, Harry

    2017-12-01

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.

  3. Museum-Based Teacher Professional Development: Peabody Fellows in Earth Science

    ERIC Educational Resources Information Center

    Pickering, Jane; Ague, Jay J.; Rath, Kenneth A.; Heiser, David M.; Sirch, James N.

    2012-01-01

    The Peabody Fellows in Earth Science program was a professional development opportunity for middle and high school teachers to enhance their knowledge of, and teaching skills in, the Earth sciences. It combined a summer institute and academic year workshops with the production of new curricular resources on the interpretation of landforms in…

  4. Digital Archive Issues from the Perspective of an Earth Science Data Producer

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    2004-01-01

    Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.

  5. Development of online instructional resources for Earth system science education: An example of current practice from China

    NASA Astrophysics Data System (ADS)

    Dong, Shaochun; Xu, Shijin; Lu, Xiancai

    2009-06-01

    Educators around the world are striving to make science more accessible and relevant to students. Online instructional resources have become an integral component of tertiary science education and will continue to grow in influence and importance over the coming decades. A case study in the iterative improvement of the online instructional resources provided for first-year undergraduates taking " Introductory Earth System Science" at Nanjing University in China is presented in this paper. Online instructional resources are used to conduct a student-centered learning model in the domain of Earth system science, resulting in a sustainable online instructional framework for students and instructors. The purpose of our practice is to make Earth system science education more accessible and exciting to students, changing instruction from a largely textbook-based teacher-centered approach to a more interactive and student-centered approach, and promoting the integration of knowledge and development of deep understanding by students. Evaluation on learning performance and learning satisfaction is conducted to identify helpful components and perception based on students' learning activities. The feedbacks indicate that the use of online instructional resources has positive impacts on mitigating Earth system science education challenges, and has the potential to promote deep learning.

  6. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  7. Alien Earths: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2004-05-01

    Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute

  8. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the

  9. EVEREST: Creating a Virtual Research Environment for Earth Science

    NASA Astrophysics Data System (ADS)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  10. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  11. Developing and Applying a Set of Earth Science Literacy Principles

    ERIC Educational Resources Information Center

    Wysession, Michael E.; LaDue, Nicole; Budd, David A.; Campbell, Karen; Conklin, Martha; Kappel, Ellen; Lewis, Gary; Raynolds, Robert; Ridky, Robert W.; Ross, Robert M.; Taber, John; Tewksbury, Barbara; Tuddenham, Peter

    2012-01-01

    The 21st century will be defined by challenges such as understanding and preparing for climate change and ensuring the availability of resources such as water and energy, which are issues deeply rooted in Earth science. Understanding Earth science concepts is critical for humanity to successfully respond to these challenges and thrive in the…

  12. Earth Science Content Guidelines Grades K-12.

    ERIC Educational Resources Information Center

    American Geological Inst., Alexandria, VA.

    Teams of teachers, other science educators, and scientists selected from a national search for project writers have proposed using the following set of questions to guide the inclusion of earth science content into the kindergarten through grade 12 curriculum. The Essential Questions are organized in a K-12 sequence by six content areas: (1) Solid…

  13. The role of the space station in earth science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less

  14. The 1994 Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  15. Demystifying Scientific Data ­ Using Earth Science to Teach the Scientific Method

    NASA Astrophysics Data System (ADS)

    Nassiff, P. J.; Santos, E. A.; Erickson, P. J.; Niell, A. E.

    2006-12-01

    The collection of large quantities of data and their subsequent analyses are important components of any scientific process, particularly at research institutes such as MIT's Haystack Observatory, where the collection and analyses of data is crucial to research efforts. Likewise, a recent study on science education concluded that students should be introduced to analyzing evidence and hypotheses, to critical thinking - including appropriate skepticism, to quantitative reasoning and the ability to make reasonable estimates, and to the role of uncertainty and error in science. In order to achieve this goal with grades 9-12 students and their instructors, we developed lesson plans and activities based on atmospheric science and geodetic research at Haystack Observatory. From the complex steps of experimental design, measurement, and data analysis, students and teachers will gain insight into the scientific research processes as they exist today. The use of these space weather and geodesy activities in classrooms will be discussed. Space Weather: After decades of data collection with multiple variables, space weather is about as complex an area of investigation as possible. Far from the passive relationship between the Sun and Earth often taught in the early grades, or the beautiful auroras discussed in high school, there are complex and powerful interactions between the Sun and Earth. In spite of these complexities, high school students can learn about space weather and the repercussions on our communication and power technologies. Starting from lessons on the basic method of observing space weather with incoherent scatter radar, and progressing to the use of simplified data sets, students will discover how space weather affects Earth over solar cycles and how severe solar activity is measured and affects the Earth over shorter time spans. They will see that even from complex, seemingly ambiguous data with many variables and unknowns, scientists can gain valuable

  16. The Internet of Samples in the Earth Sciences (iSamples)

    NASA Astrophysics Data System (ADS)

    Carter, M. R.; Lehnert, K. A.

    2015-12-01

    Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical

  17. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  18. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  19. Building Scalable Knowledge Graphs for Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  20. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  1. Preferred-Actual Learning Environment "Spaces" and Earth Science Outcomes in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Barufaldi, James P.

    2006-01-01

    This study examines the possibilities of differential impacts on students' earth science learning outcomes between different preferred-actual learning environment spaces by using a newly developed ESCLEI (Earth Science Classroom Learning Environment Instrument). The instrument emphasizes three simultaneously important classroom components:…

  2. Fostering Diversity in the Earth and Space Sciences: The Role of AGU

    NASA Astrophysics Data System (ADS)

    Snow, J. T.; Johnson, R. M.; Hall, F. R.

    2002-12-01

    In May 2002, AGU's Committee on Education and Human Resources (CEHR) approved a new Diversity Plan, developed in collaboration with the CEHR Subcommittee on Diversity. Efforts to develop a diversity plan for AGU were motivated by the recognition that the present Earth and space science community poorly represents the true diversity of our society. Failure to recruit a diverse scientific workforce in an era of rapidly shifting demographics could have severe impact on the health of our profession. The traditional base of Earth and space scientists in the US (white males) has been shrinking during the past two decades, but women, racial and ethnic minorities, and persons with disabilities are not compensating for this loss. The potential ramifications of this situation - for investigators seeking to fill classes and recruit graduate students, for institutions looking to replace faculty and researchers, and for the larger community seeking continued public support of research funding - could be crippling. AGU's new Diversity Plan proposes a long-term strategy for addressing the lack of diversity in the Earth and space sciences with the ultimate vision of reflecting diversity in all of AGU's activities and programs. Four key goals have been identified: 1) Educate and involve the AGU membership in diversity issues; 2) Enhance and foster the participation of Earth and space scientists, educators and students from underrepresented groups in AGU activities; 3) Increase the visibility of the Earth and space sciences and foster awareness of career opportunities in these fields for underrepresented populations; and 4) Promote changes in the academic culture that both remove barriers and disincentives for increasing diversity in the student and faculty populations and reward member faculty wishing to pursue these goals. A detailed implementation plan that utilizes all of AGU's resources is currently under development in CEHR. Supportive participation by AGU members and

  3. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  4. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  5. Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.

    ERIC Educational Resources Information Center

    Heller, Robert L.

    This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth…

  6. Stories from dynamic Earth: developing your sense of place through Landsat-based citizen science

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J.; Bianchetti, R. A.; O'Connell, K.; Morrell, P.

    2016-12-01

    Many citizen science activities provide opportunities to understand a specific location on Earth at human scale and to collect local ecological knowledge that can improve the scientific endeavor of monitoring Earth. However, it can be challenging to comprehend ecological changes occurring at larger spatial and temporal scales. Based on the results of two professional development workshops designed for Oregon middle school science teachers in 2011-2013 and 2013-2016, we describe how working with multi-decade Landsat imagery transformed participants and students. Collaborating with scientists, the teachers used 30 years of time-series Landsat imagery with LandTrendr and IceTrendr algorithms to distill several study sites in Oregon, Washington, and Alaska (U.S) into periods of consistent long or short-duration landscape dynamics (e.g. stable areas, forestry activities, flooding, urbanization, tree growth). Using the spatial, tabular, and graphic outputs from this process, the teachers created climate change curriculum aligned to state and national standards. Web-enabled visualization tools, such as Google Earth, provided a platform that engaged students in understanding the drivers of their local landscape changes. Students and teachers reported increased interest in and understanding of their landscape. In addition to fulfilling classroom needs, the activities contributed data used in regional carbon modeling and land cover monitoring throughout California, Oregon, and Washington (U.S). We will discuss strategies and challenges to translating expert-level scientific data, models, methods, vocabulary, and conclusions into citizen science materials that support place-based climate change education across age ranges and educational disciplines. Finally, we share ways you can deepen your own sense of place while participating in citizen science activities that improve land cover and land use monitoring at local, regional, and global scales.

  7. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    NASA Astrophysics Data System (ADS)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  8. Advanced platform technologies for Earth science

    NASA Astrophysics Data System (ADS)

    Lemmerman, Loren; Raymond, Carol; Shotwell, Robert; Chase, James; Bhasin, Kul; Connerton, Robert

    2005-01-01

    Historically, Earth science investigations have been independent and highly focused. However, the Earth's environment is a very dynamic and interrelated system and to understand it, significant improvements in spatial and temporal observations will be required. Science needs to document the need for constellations to achieve desired spatial and temporal observations. A key element envisioned for accomplishing these difficult challenges is the idea of a distributed, heterogeneous, and adaptive observing system or sensor web. This paper focuses on one possible approach based on a LEO constellation composed of 100 spacecraft. A cost analysis has been done to indicate the financial pressures of each mission phase and conclusions are drawn suggesting that new technology investments are needed, directed toward lowering production costs; that operations costs will need to be reduced through autonomy; and that, of the on-board subsystems considered, advanced power generation and management may be the most enabling of new technologies.

  9. Benefits of Delay Tolerant Networking for Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  10. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  11. The Revolution in Earth and Space Science Education.

    ERIC Educational Resources Information Center

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  12. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  13. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  14. An Expert System toward Buiding An Earth Science Knowledge Graph

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  15. Providing Elementary Teachers in South Texas with Professional Development to Improve Earth Science Instruction

    NASA Astrophysics Data System (ADS)

    Borrego, H.; Ellins, K. K.

    2011-12-01

    Through three years of participation in the TeXas Earth and Space Science (TXESS) Revolution, an NSF-sponsored teacher professional development program, my knowledge of earth science, new pedagogical approaches, and confidence has improved dramatically. I have also received instructional materials and learned how to access high quality online resources and use a variety of web-based tools. In this session, I will share my experiences and report on how I used my own learning to help both teachers and students to become more earth science literate individuals. Earth Science test scores at the elementary level throughout South Texas are consistently low in comparison to other regions in the state. The majority of the teachers lack the content-knowledge, confidence, or experience to teach Earth Sciences. My TXESS Revolution experience helped me to understand the needs of these teachers and to identify teaching resources that would be useful to them. Particularly noteworthy are TERC's EarthLabs: Earth System Science and GLOBE activities. Although these Earthlab investigations are designed for high schools students, I demonstrated how they could be adapted for elementary students. As a result, I have provided professional development in the Earth Sciences to about 300 South Texas elementary teachers. TXESS Revolution has also equipped me to empower the students I teach. My students this past year presented their challenge Legacy Cycle Project to the community. The TXESS Revolution teamed up with the Texas Water Development Board to deliver training on the implementation of a new online challenged-based curriculum called the Water Exploration Legacy Cycles. This training gave me the tools to guide my students learning through authentic scientific research. To carry out their challenge, students researched an area of interest, read literature, consulted with experts in the field, consider different prospective, and presented their final products via PowerPoint, poster

  16. Creating State-based Alliances to Support Earth and Space Science Education Reform

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  17. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    NASA Astrophysics Data System (ADS)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  18. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  19. Earth Science Curriculum Enrichment Through Matlab!

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.

  20. Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2010-01-01

    Software assets from existing Earth science missions can be reused for the new decadal survey missions that are being planned by NASA in response to the 2007 Earth Science National Research Council (NRC) Study. The new missions will require the development of software to curate, process, and disseminate the data to science users of interest and to the broader NASA mission community. In this paper, we discuss new tools and a blossoming community that are being developed by the Earth Science Data System (ESDS) Software Reuse Working Group (SRWG) to improve capabilities for reusing NASA software assets.

  1. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  2. Strategies for Growth in a Young Earth Sciences Department

    NASA Astrophysics Data System (ADS)

    Clement, B. M.; Hickey-Vargas, R.; Draper, G.

    2005-12-01

    The Department of Earth Sciences at Florida International University (FIU) has been fortunate to be part of a rapidly growing university. FIU began offering classes in 1972 with an initial enrollment of 5600 students, and today enrollment exceeds 35,000 students. During this time the Department of Earth Sciences has grown to a faculty of 14 and offers the BA, BS, MS and PhD degrees. Our department, however, has faced the same challenges meeting many Earth Science departments in that our number of undergraduate majors has not grown at the same pace as the university enrollment (or at the same pace as enrollment in our graduate program). Two strategies have proven effective and have helped the department build its program in spite of this challenge. The first strategy was to create tenure-track positions with a 50% assignment in the Earth Sciences Department and 50% in a research center on campus. We currently have two faculty who have half-time appointments in the Southeast Environmental Research Center, and we have a new faculty member joining in the Spring who will have a joint appointment with the International Hurricane Research Center. This strategy has made it possible to gain expertise in, and to offer courses in, critical areas (such as hydrogeology and meteorology) that we otherwise would not be able to offer. The second strategy is to develop strong courses for non-majors that satisfy FIU's University Common Curriculum requirements. A particularly successful example is a new course titled "The History of Life". This course was designed to take advantage of our existing expertise in paleobiology, and offer a class that satisfies the University Common Curriculum requirement that every student take a laboratory course in the life sciences. This class now fills to capacity each semester with more than 200 students. This course not only boosts our department's productivity, but it lets us reach 200 new students each semester with many potential new Earth

  3. Big Outcrops and Big Ideas in Earth Science K-8 Professional Development

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.; Cooper, C. M.; Cavagnetto, A.; Morrison, J.; Adesope, O.

    2014-12-01

    Washington State has recently adopted the Next Generation Science Standards (NGSS) and state leaders are now working toward supporting teachers' implementation of the new standards and the pedagogical practices that support them. This poster encompasses one of one such professional development (PD) effort. The Enhancing Understanding of Concepts and Processes of Science (EUCAPS) project serves 31 K-8 in-service teachers in two southeast Washington school districts. In year two of this three year PD project, in-service teachers explored the Earth sciences and pedagogical approaches such as the Science Writing Heuristic, concept mapping, and activities which emphasized the epistemic nature of science. The goals of the EUCAPS PD project are to increase in-service teachers' big ideas in science and to provide support to in-service teachers as they transition to the NGSS. Teachers used concepts maps to document their knowledge of Earth science processes before and after visiting a local field site in Lewiston, Idaho. In the context of immersive inquiries, teachers collected field-based evidence to support their claims about the geological history of the field site. Teachers presented their claims and evidence to their peers in the form a story about the local geologic history. This poster will present an overview of the PD as well as provide examples of teacher's work and alignment with the NGSS.

  4. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  5. Progress and Setbacks in K-12 Earth and Space Science Education During the Past Decade

    NASA Astrophysics Data System (ADS)

    Geary, E.; Hoffman, M.; Stevermer, A.; Barstow, D.

    2005-12-01

    Since publication of the National Science Education Standards in 1996, key Earth and space science concepts have been incorporated into the science education standards in virtually every state. However, the degree to which Earth and space science standards have been implemented in actual classroom curriculum and state science assessments varies greatly from state to state. In a similar vein, the No Child Left Behind legislation calls for a highly qualified teacher in every classroom: in Idaho over 96 percent of high school teachers are certified to teach Earth science, while in Illinois, less than 42 percent of teachers are certified. Furthermore, in some states, like New York, approximately 20 percent of high school students will take introductory Earth science each year, while in other states, like Texas, less than 1 percent of high school students will take introductory Earth science each year. Why do we have this high degree of variability with respect to the teaching and learning of Earth science across the United States? The answer is complex, as there are many institutional, attitudinal, budgetary, and policy factors affecting the teaching of Earth and space sciences. This presentation will summarize data on the current status of Earth and space science education in the United States, discuss where progress has been made and where setbacks have occurred during the past decade, and provide some suggestions and ideas for improving access to high quality Earth and space science education courses, curricula, assessments, and teachers at the state and local level.

  6. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  7. CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps

    NASA Astrophysics Data System (ADS)

    Pallamraju, D.; Kozyra, J.; Basu, S.

    Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future

  8. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  9. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  10. Home area geology and Alabama earth science teachers: A resource to improve the understanding and use of the state's rocks to supplement textbook concepts in earth history

    NASA Astrophysics Data System (ADS)

    Lacefield, James Anderson

    Recent studies have suggested that teachers of earth science in Alabama secondary schools are undertrained in the content areas of the subject. A survey of academic training and certification of active earth science teachers (Hall, 1985) was replicated as part of a study of the current inservice needs of Alabama earth science teachers (Logue & Lacefield, 1995). Only one-third of responding teachers were found to be properly certified to teach the subject; most had been trained for teaching life science. Approximately one-half had never had a course in geology, astronomy, or meteorology--the three primary components of the typical earth science course. Of 32 earth science topics suggested for possible additional inservice workshops, teachers responding to the Logue and Lacefield survey selected Alabama and Southeastern geology as the topic of greatest interest and need. As an alternative to conventional inservice training, an illustrated book on Alabama geologic history was developed for publication. Its purpose was to supply an ongoing, usable geologic reference for Alabama earth science teachers and their students and to promote greater understanding of Alabama geology by the public in general. Entitled Lost Worlds in Alabama Rocks: The Half-Billion Year Record of Change in the State's Life and Landscape, the 82-page book (included as appendix) explains how geologic history is reconstructed using evidence from rocks, surveys the major sets of sedimentary rocks found within the state, details what each means in terms of ancient environment, and describes how Alabama's present landscape can be interpreted to reflect past geologic changes. The resource includes nearly 200 color photographs and graphics and 12 pages of fossil identification guides illustrating the most common fossil organisms found within the state. A selected group of professional geologists and earth science educators evaluated the book for scientific accuracy, format, presentation of content, and

  11. The Earth Science for Tomorrows Classroom

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  12. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  13. Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan

    NASA Astrophysics Data System (ADS)

    Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki

    2010-05-01

    The GSJ is the main supporting organization of IYPE Japan, which is an implementation body of IYPE in Japan, serving as its secretariat. During the IYPE triennial activity, the GSJ has been supporting development of Geparks, establishment of "the Geology Day" and the Earth Science Olympiad activities with some academic societies, and has distributed geological maps with IYPE logo. The GSJ also established an outreach network "Geo-networks Tsukuba" as a local legacy of the IYPE, and has managed it with a local government, research organizations, nonprofit corporations and local media to increase geological and environmental literacy of public, especially among young people. The GSJ-AIST has also contributed internationally to IYPE by joining two international projects, OneGeology and the CCOP Book project. Geoparks in Japan are characterized by following features. The Japanese Islands and the surrounding seas are situated in the area of unique geologic features; the place where several tectonic plates meet and collide. This causes earthquakes and volcanic activities, and makes Japan one of most dynamic areas on the earth. The dynamics of the earth bring about not only geological hazards but also a lot of blessings. In August of 2009, three Geoparks, the Toya Caldera and Usu Volcano Geopark, the Itoigawa Geopark and the Unzen Volcanic Area Geopark, were accepted to join the Global Geopark Network from Japan for the first time. Since its launch in 2006, the GSJ has been playing a major role in promoting Geoparks in Japan together with Geological Society of Japan. The GSJ hosts the Japan Geopark Committee (JGC) for quality evaluation, serving as the information center of Geoparks in Japan. The Geology Day of Japan (10th of May) has been set up by the academic societies for geology in Japan and GSJ in 2007. The Geology Day is expected to provide the chances for the public to enjoy field trips and excursions and to understand the importance of geo-diversity. The Day

  14. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  15. Mt. Kilimanjaro expedition in earth science education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  16. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  17. Applications of surface analytical techniques in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

    2015-03-01

    This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences

  18. A Directory of Societies in Earth Science.

    ERIC Educational Resources Information Center

    Geotimes, 1981

    1981-01-01

    Lists the titles and addresses of approximately 450 domestic and foreign organizations which deal with earth science fields, including geology, paleontology, mining, and geophysics. Also listed are U.S. state geological surveys. (WB)

  19. EVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Glaves, H. M.; Marelli, F.; Albani, M.

    2015-12-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Data providers will be also able to monitor user experiences and collect feedback through the VRE, improving their capacity to adapt to the changing requirements of their end-users. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary ES domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRC represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows.

  20. Thematic Mapper research in the earth sciences

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Stuart, Locke

    1989-01-01

    This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.

  1. Community Resilience, the Foundation for Earth Science and the ESIP Federation: Bouncing Forward with Collective Impact

    NASA Astrophysics Data System (ADS)

    Robinson, E.

    2015-12-01

    The Federal Government has a long history of cross-community coordination between the Scientific Research community, and the Earth Observations and Data Provider communities. Since 1998, the Federation of Earth Science Information Partners (ESIP), organically organized using a collective impact approach that fostered these interactions primarily around Earth science interoperability problems. Unlike most collaborations, collective impact initiatives named in 2011 by the Stanford Social Innovation Review, involve a backbone infrastructure, a dedicated staff, and a structured process that leads to a common agenda, shared measurement, continuous communication, and mutually reinforcing activities among all participants. Over the last ten years, the Foundation for Earth Science (FES) has a proven track record of providing backbone support to ESIP. This presentation will cover FES's general approach to providing backbone support that enables communities to define shared agenda and then will show these practices in two case studies: (1) ESIP at-large as a mature network of developed partnerships and (2) a new project, the Local Community Resilience cluster. This new cluster aims to bridge the gap from the established ESIP network to engage local communities in order to equip citizens, professionals, and other decision-makers with the scientific underpinning necessary to make informed decisions (bounce forward) for society by leveraging the strong existing ESIP community, the backbone capabilities of FES and extending Federal Earth Science, Technology and Innovation Investments.

  2. Earth Science Capability Demonstration Project

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  3. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  4. Earth and Space Science Ph.D. Class of 2003 Report released

    NASA Astrophysics Data System (ADS)

    Keelor, Brad

    AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.

  5. The Federation of Earth Science Information Partners ESIP

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2013-01-01

    A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.

  6. Global Cooperation in the Science of Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Davila, Joseph

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the International Space Weather Initiative (ISWI), the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Living with a Star (ILWS) program. These programs have brought scientists together to tackle the scientific issues related to short and long term variability of the Sun and the consequences in the heliosphere. The ISWI program is a continuation of the successful International Heliophysical Year (IHY) 2007 program in focusing on science, observatory deployment, and outreach. The IHY/ISWI observatory deployment has not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. The ISWI schools and UN workshops are the primary venues for interaction and information exchange among scientists from developing and developed countries that lead to collaborative efforts in space weather. This paper presents a summary of ISWI activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  7. Assessing Teachers' Comprehension of What Matters in Earth Science

    NASA Astrophysics Data System (ADS)

    Penuel, W. R.; Kreikemeier, P.; Venezky, D.; Blank, J. G.; Davatzes, A.; Davatzes, N.

    2006-12-01

    Curricular standards developed for individual U.S. States tell teachers what they should teach. Most sets of standards are too numerous to be taught in a single year, forcing teachers to make decisions about what to emphasize in their curriculum. Ideally, such decisions would be based on what matters most in Earth science, namely, the big ideas that anchor scientific inquiry in the field. A measure of teachers' ability to associate curriculum standards with fundamental concepts in Earth science would help K-12 program and curriculum developers to bridge gaps in teachers' knowledge in order to help teachers make better decisions about what is most important to teach and communicate big ideas to students. This paper presents preliminary results of an attempt to create and validate a measure of teachers' comprehension of what matters in three sub-disciplines of Earth science. This measure was created as part of an experimental study of teacher professional development in Earth science. It is a task that requires teachers to take their state's curriculum standards and identify which standards are necessary or supplemental to developing students' understanding of fundamental concepts in the target sub-disciplines. To develop the task, a team of assessment experts and educational researchers asked a panel of four Earth scientists to identify key concepts embedded within middle school standards for the state of Florida. The Earth science panel reached a consensus on which standards needed to be taught in order to develop understanding of those concepts; this was used as a basis for comparison with teacher responses. Preliminary analysis of the responses of 44 teachers who participated in a pilot validation study identified differences between teachers' and scientists' maps of standards to big ideas in the sub-disciplines. On average, teachers identified just under one-third of the connections seen by expert Earth scientists between the concepts and their state standards

  8. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  9. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  10. Theories of the Earth and the Nature of Science.

    ERIC Educational Resources Information Center

    Williams, James

    1991-01-01

    Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)

  11. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  12. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  13. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  14. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  15. A Geograns update. New experiences to teach earth sciences to students older than 55

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Pinazo, S.

    2009-04-01

    How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the

  16. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  17. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    NASA Technical Reports Server (NTRS)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  18. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  19. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  20. A Balancing Act in the Third Space: Graduate-Level Earth Science in an Urban Teacher-Residency Program

    ERIC Educational Resources Information Center

    Zirakparvar, N. Alex

    2015-01-01

    This article describes a museum-based urban teacher-residency (UTR) program's approach to building subject-specific content knowledge and research experience in Earth Science teacher candidates. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth…

  1. Earth Science Digital Museum (ESDM): Toward a new paradigm for museums

    NASA Astrophysics Data System (ADS)

    Dong, Shaochun; Xu, Shijin; Wu, Gangshan

    2006-07-01

    New technologies have pushed traditional museums to take their exhibitions beyond the barrier of a museum's walls and enhance their functions: education and entertainment. Earth Science Digital Museum (ESDM) is such an emerging effort in this field. It serves as a platform for Earth Scientists to build a Web community to share knowledge about the Earth and is of to benefit the general public for their life-long learning. After analyzing the purposes and requirements of ESDM, we present here our basic philosophy of ESDM and a four-layer hierarchical architecture for enhancing the structure of ESDM via Internet. It is a Web-based application to enable specimens to be exhibited, shared and preserved in digital form, and to provide the functionalities of interoperability. One of the key components of ESDM is the development of a metadata set for describing Earth Science specimens and their digital representations, which is particularly important for building ESDM. Practical demonstrations show that ESDM is suitable for formal and informal Earth Science education, including classroom education, online education and life-long learning.

  2. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  3. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  4. Development of a transferable student engagement and knowledge retention framework for the earth sciences

    NASA Astrophysics Data System (ADS)

    Palsole, Sunay Vasant

    The earth sciences play an important role in engaging students in science and in science, technology, engineering and mathematics (STEM) disciplines, because of the integrative nature of the disciplines. It then becomes important for us to provide an engaging experience for students taking earth science courses, because it serves a dual purpose of possibly increasing new majors in the discipline and helping to create a science literate population. Given that a majority of students in the larger introductory courses are non-majors, it behooves us to explore alternative engagement techniques and measure their efficacy in student engagement, which in turn can help inform instructional design for advanced geoscience courses. This study focused on creating a highly engaging course using inquiry based learning scenarios inter-spread throughout the semester along with heuristic quizzes (a series of questions in a specific sequence that map to a process) with very specific feedback that help students understand the development of the earth processes. Along with the heuristic quizzes, the course was transformed into an active learning based hybrid course, where the didactic content was uploaded and made available to the students using a learning management system and class time was spent working on application exercises that were developed by me. I chose specific scenarios and processes that the students could possibly encounter in the greater El Paso region to provide a local and situational aspect to the exercises. The course and instructional design process followed a period of 18 months with each semester providing data to jigsaw into the final design. Student performance data, both qualitative (self efficacy, self reported engagement ) as well as quantitative scales (performance on assessments, course grades) was collected over the entire development period. Comparative data of the hybrid course and a traditional course indicate improved student performance in the

  5. Tools and Techniques to Teach Earth Sciences to Young People

    NASA Astrophysics Data System (ADS)

    Constantino, R.; Dicelis, G.; Molina, E. C.

    2010-12-01

    This study aims to identify the tools available to disseminate the Earth sciences to young people in Brazil and to propose new techniques that may help in the teaching of such subjects. The use of scientific dissemination can be a great tool for the consolidation of a scientific culture, especially for a public of young students. The starting point of this study is an important characteristic that is present in virtually all the children: curiosity. The young public tries to understand how the world is and how it works. The use of scientific dissemination and some educational experiences have shown that these students have a great ability to learn and deal with various topics within the Earth Sciences. Another relevant point is the possibility to show that the Earth sciences, e.g., geophysics, oceanography, meteorology, geology and geography, can be an educational attractive option. Several ways of disseminating Earth sciences are commonly used with the purpose of attracting and mainly teaching these subjects, such as websites, interactive museums and cultural and educational spaces. The objectives of this work are: i) Investigate the role of science centers as motivators in disseminating the scientific knowledge by examining the communication resources that are being employed, the acceptance, reaction, and interest of children to these means, and ii) From this analysis, to list suggestions of contents and new tools that could be used for obtaining better results.

  6. Earth Science

    NASA Image and Video Library

    1996-01-13

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft undergoing preflight preparation in the Spacecraft Assembly Encapsulation Facility-2 (SAEF-2) at Kennedy Space Center (KSC). NEAR will perform two critical mission events - Mathilde flyby and the Deep-Space maneuver. NEAR will fly-by Mathilde, a 38-mile (61-km) diameter C-type asteroid, making use of its imaging system to obtain useful optical navigation images. The primary science instrument will be the camera, but measurements of magnetic fields and mass also will be made. The Deep-Space Maneuver (DSM) will be executed about a week after the Mathilde fly-by. The DSM represents the first of two major burns during the NEAR mission of the 100-pound bi-propellant (Hydrazine/nitrogen tetroxide) thruster. This maneuver is necessary to lower the perihelion distance of NEAR's trajectory. The DSM will be conducted in two segments to minimize the possibility of an overburn situation.

  7. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  8. Interoperability Barriers in NASA Earth Science Data Systems from the Perspective of a Science User (Invited)

    NASA Astrophysics Data System (ADS)

    Kuo, K.

    2010-12-01

    As a practitioner in the field of atmospheric remote sensing, the author, like many other similar science users, depends on and uses heavily NASA Earth Science remote sensing data. Thus the author is asked by the NASA Earth Science Data Information System Project (ESDIS) to assess the capabilities of the Earth Observing System Data and Information System (EOSDIS) in order to provide suggestions and recommendations for the evolution of EOSDIS in the path towards its 2015 Vision Tenets. As NASA's Earth science data system, EOSDIS provides data processing and data archiving and distribution services for EOS missions. The science operations of EOSDIS are the focus of this report, i.e. data archiving and distribution, which are performed within a distributed system of many interconnected nodes, namely the Science Investigator-led Processing Systems, or SIPS, and distributed data centers. Since its inception in the early 1990s, EOSDIS has represented a democratization of data, a break from the past when data dissemination was at the discretion of project scientists. Its “open data” policy is so highly valued and well received by its user communities that it has influenced other agencies, even those of other countries, to adopt the same open policy. In the last ~10 years EOSDIS has matured to serve very well users of any given science community in which the varieties of data being used change infrequently. The unpleasant effects of interoperability barriers are now more often felt by users who try to use new data outside their existing familiar set. This paper first defines interoperability and identifies the purposes for achieving interoperability. The sources of interoperability barriers, classified by the author into software, hardware, and human categories, are examined. For a subset of issues related to software, it presents diagnoses obtained from experience of the author and his survey of the EOSDIS data finding, ordering, retrieving, and extraction services

  9. Low bit rate coding of Earth science images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.

    1993-01-01

    In this paper, the authors discuss compression based on some new ideas in vector quantization and their incorporation in a sub-band coding framework. Several variations are considered, which collectively address many of the individual compression needs within the earth science community. The approach taken in this work is based on some recent advances in the area of variable rate residual vector quantization (RVQ). This new RVQ method is considered separately and in conjunction with sub-band image decomposition. Very good results are achieved in coding a variety of earth science images. The last section of the paper provides some comparisons that illustrate the improvement in performance attributable to this approach relative the the JPEG coding standard.

  10. Future Earth, Global Science and Regional Programs: Building regional integrated science capacities in a global science organization

    NASA Astrophysics Data System (ADS)

    Tewksbury, J.

    2016-12-01

    Future Earth has emerged from the more than 30-year history of Global Change Research Programs, including IGBP, DIVERSITAS and IHDP. These programs supported interdisciplinary science in service of societies around the world. Now, their focus on building a greater understanding of changing Earth systems and their couplings with society has passed to Future Earth - with an important addition: Future Earth was also established to focus global change efforts around key societal challenges. The implications for the structure of Future Earth are large. Many challenges within topics, such as the water, energy, food nexus or the future of cities, are manifested within local, national, and regional contexts. How should we organize globally to most effectively confront these multi-scale challenges? The solution proposed in the framing of Future Earth was the formation of regional as well as national committees, as well as the formation of regional centers and offices. Regional Committees serve to both advocate for Future Earth in their regions and to advocate for regional interests in the global Future Earth platform, while regional Centers and offices are built into the Future Earth secretariat to perform a parallel regional implementation function. Implementation has not been easy, and the process has placed regionally-focused projects in an awkward place. Programs such as the Monsoon Asia Integrated Regional Study (MAIRS), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the South/Southeast Asia Research Initiative (SARI) represent some of the best global change communities in the world, but by design, their focus is regional. The effective integration of these communities into the Future Earth architecture will be critical, and this integration will require the formation of strong regional committees and regional centers.

  11. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  12. US National Committee for the International Year of the Planet Earth: Plans and Activities

    NASA Astrophysics Data System (ADS)

    Hess, J. W.

    2007-12-01

    The International Year of the Planet Earth, as proclaimed by Resolution 60/192 of the United Nations General Assembly at its 60th Session, is a 3-year event (2007-2009) aimed at promoting the contribution to sustainable development of society by using geoscience knowledge and information. It is a joint initiative by the International Union of Geological Sciences (IUGS and UNESCO. The US National Committee (USNC) for the International Year of the Planet Earth is responsible for developing national science and outreach activities that contribute to the success of the global awareness on the use of geosociety for society. The USNC plans for a launch activity early in 2008 and a national outreach activity in the fall. Various US based geoscience societies and federal agencies will be conducting IYPE branded activities in support of the year.

  13. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    ERIC Educational Resources Information Center

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  14. Incorporating Geoethics in Introductory Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  15. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    NASA Astrophysics Data System (ADS)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  16. The Use of HDTV Format and the Electronic Theater in Presenting Earth Science

    NASA Technical Reports Server (NTRS)

    Summey, Barbara; Hasler, Arthur; Jentoft-Nilsen, Marit; Manyin, Michael; Bene, Meredith; Allen, Jesse

    2000-01-01

    In order to maximize the public's awareness of earth science observations, earth science data must be available in multiple media formats. This talk will focus on the use High Definition TV format in presenting earth science data, The Television (HDTV) networks are mandated to completely switch over from the current TV standard (NTSC) to HDTV in the next seven years. Museums are also beginning to use HDTV format in their displays. The Visualization Analysis Laboratory at Goddard Space Flight Center has been experimenting with the use of HDTV to present earth science data. The experimental package we have developed is called the Electronic Theater (e-theater). The e-theater is a mobile presentation system used for displaying and teaching groups about earth science and the delicate interdependence between the various earth systems. The e-theater takes advantage of a double-wide screen to show the audiences high resolution data displays. The unique architecture used in this exhibit allows several data sets to be displayed at one time, demonstrating the connections between different earth systems. The data animations are manipulated in real-time during the presentation and can be paused, moved forward, backward, looped, or zoomed into, to maximize the flexibility of the presentation. Because HDTV format is used within the e-theater, the materials generated for the e-theater are made available to the news media and museums.

  17. [Activities of Center for Lidar and Atmospheric Sciences Students, Hampton University

    NASA Technical Reports Server (NTRS)

    Temple, Doyle

    2004-01-01

    The mission of CLASS was to provide education and training in NASA-related mathematics, technology and science to US. students who are underrepresented. In these areas and to encourage them to pursue advanced degrees. The project has three goals which support this mission: research training, curriculum development and outreach. All project activities are designed to meet a concrete objective which directly advances one of these goals. The common theme of all project activities is NASA's Earth Science Enterprise, in particular, the use of laser-based remote sensing systems (lidars) to monitor and understand the earth's environment

  18. Earth Science Data Analysis in the Era of Big Data

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Clune, T. L.; Ramachandran, R.

    2014-01-01

    Anyone with even a cursory interest in information technology cannot help but recognize that "Big Data" is one of the most fashionable catchphrases of late. From accurate voice and facial recognition, language translation, and airfare prediction and comparison, to monitoring the real-time spread of flu, Big Data techniques have been applied to many seemingly intractable problems with spectacular successes. They appear to be a rewarding way to approach many currently unsolved problems. Few fields of research can claim a longer history with problems involving voluminous data than Earth science. The problems we are facing today with our Earth's future are more complex and carry potentially graver consequences than the examples given above. How has our climate changed? Beside natural variations, what is causing these changes? What are the processes involved and through what mechanisms are these connected? How will they impact life as we know it? In attempts to answer these questions, we have resorted to observations and numerical simulations with ever-finer resolutions, which continue to feed the "data deluge." Plausibly, many Earth scientists are wondering: How will Big Data technologies benefit Earth science research? As an example from the global water cycle, one subdomain among many in Earth science, how would these technologies accelerate the analysis of decades of global precipitation to ascertain the changes in its characteristics, to validate these changes in predictive climate models, and to infer the implications of these changes to ecosystems, economies, and public health? Earth science researchers need a viable way to harness the power of Big Data technologies to analyze large volumes and varieties of data with velocity and veracity. Beyond providing speedy data analysis capabilities, Big Data technologies can also play a crucial, albeit indirect, role in boosting scientific productivity by facilitating effective collaboration within an analysis environment

  19. ERESE: An online forum for research-based earth science inquiry

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Koppers, A.; Helly, M.; Staudigel, H.; Miller, S. P.

    2007-12-01

    The Enduring Resources for Earth Science Education (ERESE) Project bridges the gap between earth science research and science education by providing a forum for electronic collaboration between practicing scientists and classroom teachers. By combining the resources of Scripps Institution of Oceanography (SIO) and the expertise of educators, ERESE leverages a wide variety of assets to provide state-of-the-art, online digital resources through two National Science Digital Library collections: Earthref.org (http://www.Earthref.org/ERESE) and SIOExplorer (http://SIOExplorer.ucsd.edu). Earthref.org provides a wealth of plate tectonic-related content appropriate for designing and enacting inquiry lessons. The SIOExplorer Digital Library houses marine geophysical data from over 800 research cruises each containing a variety of data types from meteorological, to oceanographic, geophysical and navigational data. Built on successful collaboration between scientists and middle and high school teachers from across the country beginning in 2004, ERESE has expanded into a multifaceted repository for thought-provoking earth science data and images, virtual field trips and inquiry lessons designed by our partner teachers. More than static interfaces, both Earthref.org and SIOExplorer introduce users to current topics in science, seeking to answer outstanding questions about the earth, its processes, formation, and future. To provide a starting point for new users to design and contribute lessons to Earthref.org we have created a basic inquiry lesson plan template that models the process of investigating a real scientific problem. The template is designed on the basis of our five-stage model of inquiry adapted to the National Science Education Standards. As with all inquiry lessons, our model focuses on the shift of power from the teacher at the outset of the lesson to the students upon completion of the lesson.

  20. The Next Generation Science Standards: An Historic Opportunity for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Passow, M. J.; Holzer, M. A.; Moore, J.

    2014-12-01

    The Next Generation Science Standards (NGSS) provide an historic opportunity to significantly improve Earth and space science (ESS) education nationally at the K-12 level. The increased emphasis on ESS related topics in the NGSS relative to previous standards provides a real opportunity for ensuring all K-12 students in adopting states learn about the ESS - allowing us to reach many more students than are currently are exposed to our discipline. The new standards are also exciting in that they explicitly couple science and engineering practice, cross-cutting concepts, and disciplinary core ideas in such a way that student must actively demonstrate their understanding through actions rather than through mere regurgitation of memorized responses. Achieving mastery of NGSS Performance Expectations will require practice with higher-order learning skills - with students engaging in the practices of scientists and engineers. Preparing students for this mastery will be a challenging task for teachers, since in many states professional development support is limited at best for the current curriculum - let alone the curricula that will be developed to address the NGSS. As adoption of the NGSS expands across the country, states will be at various levels of implementation of the new standards over the next several years - and there is real concern that teachers must have sufficient professional development to be able to be successful in preparing their students - particularly in view of likely coupled assessments and teacher evaluations. NESTA strongly supports implementation of the NGSS, and the rigorous and compelling ESS education it will engender, when coupled with a strong emphasis nationwide on teacher professional development. For the past two years, the National Earth Science Teachers Association (NESTA) has continued our leadership in K-12 ESS education through workshops, web seminars, events and publications that emphasize implementation of the NGSS in ESS