Sample records for earth science classroom

  1. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  2. The Earth Science for Tomorrows Classroom

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  3. Heating up the science classroom through global warming: An investigation of argument in earth system science education

    NASA Astrophysics Data System (ADS)

    Schweizer, Diane Mary

    This research investigated how the use of argument within an earth system science perspective offers potential opportunities for students to develop skills of scientific reasoning. Earth system science views Earth as a synergistic system governed by complex interdependencies between physical and biological spheres. Earth system science presents familiar and compelling societal problems about Earth's environment thereby providing a highly motivational vehicle for engaging students in science. Using global warming as an application of earth system science, my research investigated how middle school and undergraduate students use scientific evidence when constructing and assessing arguments. This dissertation includes three related research studies. The first study took in place in three seventh grade science classrooms and investigated student engagement in a global warming debate. This study illustrated students used evidence to support their central argument; to negate the central argument of the opposing side; to present challenges to the opposing side; and to raise new questions. The second research study is a comparative study and investigated how other students under different instructional settings constructed their arguments on the cause of global warming from the same evidence. This study took place in two seventh grade science classrooms. This study demonstrated that when constructing personal arguments on global warming, students developed an earth system perspective as they considered and integrated different pieces of evidence. Students participating in debate where given a particular view to defend and focused on evidence matching this view, thereby displaying singular views of the cause of global warming. The third research study investigated students abilities to scientifically assess arguments. By analyzing students' written evaluations of arguments on the global climate presented during oral debates, this study demonstrated that undergraduates focus

  4. Three-dimensional presentation of the earth and planets in classrooms and science centers with a spherical screen

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.

    2012-12-01

    Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.

  5. A Sky-High Classroom Provides a New Perspective for Earth Science Students

    ERIC Educational Resources Information Center

    Kolb, Albert C.

    1969-01-01

    Describes an earth science program conducted from an airplane for 8th grade students of Carmel Middle School, Carmel, California. The steps involved in getting the program started, the classroom work and the preparatory field trips, as well as the airborne lesson itself, are described. (LC)

  6. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  7. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  8. Streaming Seismograms into Earth-Science Classrooms

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  9. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  10. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  11. Connecting Science and Literacy in the Classroom: Using Space and Earth Science to Support Language Arts

    NASA Astrophysics Data System (ADS)

    Wessen, A. S.; Cobabe-Ammann, E. A.

    2009-12-01

    The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science provides an exciting vehicle in which to engage students on the path to literacy improvement. Combining literacy with science allows students to creatively explore the world or universe, and it. Combining science and literacy improves both reading and science scores, and increases students’ interest in science. At a time when over 40% of students beyond the 5th grade are reading two or more levels below grade level and are struggling with their current materials, finding ways to excite and engage them in the reading process is key. Literacy programs incorporating unique space science content can help prepare children for standardized language arts tests. It also engages our nation’s youngest learners and their teachers with the science, math, and technology of exploration in a language arts format. This session focuses on programs and products that bring the excitement of earth and space science into the literacy classroom, with a focus on research-based approached to combining science and language arts. Reading, Writing and Rings! Grades 1-2

  12. Dagik Earth: An affordable three-dimensional presentation of global geoscience data in classrooms and science museums

    NASA Astrophysics Data System (ADS)

    Saito, A.; Takahashi, M.; Tsugawa, T.; Nishi, N.; Odagi, Y.; Yoshida, D.

    2009-12-01

    Three-dimensional display of the Earth is a most effective way to impress audiences how the Earth looks and make them understand the Earth is one system. There are several projects to display global data on 3D globes, such as Science on a Sphere by NOAA and Geo Cosmos by Miraikan, Japan. They have made great successes to provide audiences opportunities to learn the geoscience outputs through feeling that they are standing in front of the "real" Earth. However, those systems are too large, complicated, and expensive to be used in classrooms and local science museums. We developed an easy method to display global geoscience data in three dimensions without any complex and expensive systems. The method uses a normal PC projector, a PC and a hemispheric screen. To display the geoscience data, virtual globe software, such as Google Earth and NASA World Wind, are used. The virtual globe software makes geometry conversion. That is, the fringe areas are shrunken as it is looked from the space. Thus, when the image made by the virtual globe is projected on the hemispheric screen, it is reversely converted to its original shape on the Earth. This method does not require any specific software, projectors and polarizing glasses to make 3D presentation of the Earth. Only a hemispheric screen that can be purchased with $50 for 60cm diameter is necessary. Dagik Earth is the project that develops and demonstrates the educational programs of geoscience in classrooms and science museums using this 3D Earth presentation method. We have developed a few programs on aurora and weather system, and demonstrated them in under-graduate level classes and science museums, such as National Museum of Nature and Science,Tokyo, Shizuoka Science Center and Kyoto University Museum, since 2007. Package of hardware, geoscience data plot, and textbook have been developed to be used as short-term rental to schools and science museums. Portability, low cost and easiness of development new contents are

  13. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    NASA Astrophysics Data System (ADS)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical

  14. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  15. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  16. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  17. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  18. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  19. Bringing Earth Magnetism Research into the High School Physics Classroom

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.

    2015-12-01

    We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely

  20. Graduate student involvement with designing inquiry-based Earth science field projects for the secondary-level classroom

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Scherf, L.; Ward, S.; Cady, P.; Bromley, J.; Varner, R. K.; Froburg, E.

    2008-12-01

    In a secondary-level Earth System Science (ESS) curriculum, the most authentic learning is achieved through the inquiry-based application of real-world research methods in the context of modern understanding of the interconnected components of the Earth System (e.g. lithosphere, hydrosphere, atmosphere, and biosphere). Following the intensive ESST-1 summer institute at UNH, during which teachers enhance their ESS content knowledge via interactions with UNH faculty, staff, and graduate students, each participating teacher is paired with one graduate student fellow for the duration of the school year. This graduate fellow provides a continuing link between the secondary-level school teaching environment and university resources, facilitating the implementation of new content knowledge and current scientific research methodology into the classroom setting. According to the National Science Education Standards (1), scientific inquiry is the central strategy for teaching science. "In successful science classrooms, teachers and students collaborate in the pursuit of ideas... Students formulate questions and devise ways to answer them, they collect data and decide how to represent it, they organize data to generate knowledge, and they test the reliability of the knowledge they have generated. As they proceed, students explain and justify their work to themselves and to one another, learn to cope with problems such as the limitations of equipment, and react to challenges posed by the teacher and by classmates." To speak to these goals, an ongoing local wetland field study has been conceptualized and implemented in three example classrooms (seventh grade general science, ninth grade physical science and tenth grade biology) in two school systems (Oyster River Middle School in Durham, NH and Berlin High School in Berlin, NH). These field studies were conducted using authentic scientific equipment to collect data, including a Li-Cor 840 infrared CO2 analyzer and handmade

  1. Preferred-Actual Learning Environment "Spaces" and Earth Science Outcomes in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Barufaldi, James P.

    2006-01-01

    This study examines the possibilities of differential impacts on students' earth science learning outcomes between different preferred-actual learning environment spaces by using a newly developed ESCLEI (Earth Science Classroom Learning Environment Instrument). The instrument emphasizes three simultaneously important classroom components:…

  2. Evaluating Earth and Space Sciences STEM Research Communication in 7th-12th Grade Rural Mississippi Classrooms and Resulting Student Attitudinal Impacts

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.

    2013-05-01

    Observation and evaluation of STEM graduate students from Mississippi State University communicating their research of the Earth and Space Sciences in rural 7th-12th grade classrooms participating in the Initiating New Science Partnerships in Rural Education (INSPIRE) NSF GK-12 project. The methods they utilize to communicate their STEM research includes introducing new technologies and inquiry based learning experiences. These communication experiences have been observed and evaluated using two observational systems, the Mathematics Science Classroom Observational Profile System (M-SCOPS) and the Presentation Skills Protocol (PSP). M-SCOPS has been used over the first three years of the project to evaluate what Earth and Space research the STEM graduate students communicate in classroom activities along with how they are introducing STEM research through a variety of communication methods and levels of understanding. PSP, which INSPIRE began using this year, evaluates and provides feedback to the STEM graduate students on their communication during these classroom experiences using a rubric covering a range of skills for successful communication. PSP also allows the participating INSPIRE teacher partners to provide feedback to the STEM graduate students about development of their communication skills over the course of the year. In addition to feedback from the INSPIRE project and participating teachers, the STEM graduate students have the opportunity to evaluate their personal communication skills through video documentation to determine specific skills they would like to improve. Another area of research to be discussed is how the STEM graduate students communicating Earth and Space sciences research in the participating classrooms is impacting student attitudes about science and mathematics over the last three years. Student Attitudinal Surveys (SAS) are administered as a pre-evaluation tool in the fall when the STEM graduate students first enter into their

  3. Graduate students teaching elementary earth science through interactive classroom lessons

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  4. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  5. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  6. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  7. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  8. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  9. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  10. A Course in Earth System Science: Developed for Teachers by Teachers

    NASA Astrophysics Data System (ADS)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  11. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  12. Earth Day in the Classroom: Mathematics and Science Materials and Resources for Teachers.

    ERIC Educational Resources Information Center

    Crow, Tracy, Ed.

    1995-01-01

    The 25th anniversary of Earth Day is 1995. This issue highlights useful, high quality educational materials and other resources that can be used to discuss environmental issues in the classroom. Activities, resources, and teaching materials in this Earth Day issue include: ATLAS 1: Studying Mysteries in the Earth's Atmosphere; Completing the…

  13. Transfer of New Earth Science Understandings to Classroom Teaching: Lessons Learned From Teachers on the Leading Edge

    NASA Astrophysics Data System (ADS)

    Butler, R.; Ault, C.; Bishop, E.; Southworth-Neumeyer, T.; Magura, B.; Hedeen, C.; Groom, R.; Shay, K.; Wagner, R.

    2006-05-01

    Teachers on the Leading Edge (TOTLE) provided a field-based teacher professional development program that explored the active continental margin geology of the Pacific Northwest during a two-week field workshop that traversed Oregon from the Pacific Coast to the Snake River. The seventeen teachers on this journey of geological discovery experienced regional examples of subduction-margin geology and examined the critical role of geophysics in connecting geologic features with plate tectonic processes. Two examples of successful transfer of science content learning to classroom teaching are: (1) Great Earthquakes and Tsunamis. This topic was addressed through instruction on earthquake seismology; field observations of tsunami geology; examination of tsunami preparedness of a coastal community; and interactive learning activities for children at an Oregon Museum of Science and Industry (OMSI) Science Camp. Teachers at Sunnyside Environmental School in Portland developed a story line for middle school students called "The Tsunami Hotline" in which inquiries from citizens serve as launch points for studies of tsunamis, earthquakes, and active continental margin geology. OMSI Science Camps is currently developing a new summer science camp program entitled "Tsunami Field Study" for students ages 12-14, based largely on TOTLE's Great Earthquakes and Tsunamis Day. (2) The Grand Cross Section. Connecting regional geologic features with plate tectonic processes was addressed many times during the field workshop. This culminated with teachers drawing cross sections from the Juan de Fuca Ridge across the active continental margin to the accreted terranes of northeast Oregon. Several TOTLE teachers have successfully transferred this activity to their classrooms by having student teams relate earthquakes and volcanoes to plate tectonics through artistic renderings of The Grand Cross Section. Analysis of program learning transfer to classroom teaching (or lack thereof) clearly

  14. Networking Antarctic Research Discoveries to a Science Classroom

    ERIC Educational Resources Information Center

    Podoll, Andrew; Olson, Barry; Montplaisir, Lisa; Schwert, Donald; McVicar, Kim; Comez, Dogan; Martin, William

    2008-01-01

    In 2006, a unique scenario transported eighth-grade Earth science students from the classroom into the cold, dry, pristine surroundings of Antarctica. The mission was to expose the students to hands-on science using satellite telephones, Contact 3.0 software, and some very creative improvisation. In addition, a detailed, well-illustrated blog…

  15. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions

  16. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  17. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  18. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  19. An Invitation to Kitchen Earth Sciences, an Example of MISO Soup Convection Experiment in Classroom

    NASA Astrophysics Data System (ADS)

    Kurita, K.; Kumagai, I.; Davaille, A.

    2008-12-01

    In recent frontiers of earth sciences such as computer simulations and large-scale observations/experiments involved researchers are usually remote from the targets and feel difficulty in having a sense of touching the phenomena in hands. This results in losing sympathy for natural phenomena particularly among young researchers, which we consider a serious problem. We believe the analog experiments such as the subjects of "kitchen earth sciences" proposed here can be a remedy for this. Analog experiments have been used as an important tool in various research fields of earth science, particularly in the fields of developing new ideas. The experiment by H. Ramberg by using silicone pate is famous for guiding concept of the mantle dynamics. The term, "analog" means something not directly related to the target of the research but in analogical sense parallel comparison is possible. The advantages of the analog experiments however seem to have been overwhelmed by rapid progresses of computer simulations. Although we still believe in the present-day meaning, recently we are recognizing another aspect of its significance. The essence of "kitchen earth science" as an analog experiment is to provide experimental setups and materials easily from the kitchen, by which everyone can start experiments and participate in the discussion without special preparations because of our daily-experienced matter. Here we will show one such example which can be used as a heuristic subject in the classrooms at introductory level of earth science as well as in lunch time break of advanced researchers. In heated miso soup the fluid motion can be easily traced by the motion of miso "particles". At highly heated state immiscible part of miso convects with aqueous fluid. At intermediate heating the miso part precipitates to form a sediment layer at the bottom. This layered structure is destroyed regularly by the instability caused by accumulated heat in the miso layer as a bursting. By showing

  20. Science teacher orientations and PCK across science topics in grade 9 earth science

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  1. College and University Earth System Science Education for the 21st Century (ESSE 21)

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials

  2. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  3. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  4. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    NASA Astrophysics Data System (ADS)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  5. A 2200-Year Old Inquiry-Based, Hands-On Experiment in Today's Science Classrooms

    ERIC Educational Resources Information Center

    Sotiriou, S.; Bogner, F. X.

    2015-01-01

    The ancient Eratosthenes experiment concerning the earth's circumference offers the opportunity of an inquiry-based revival in today's science classrooms: A multinational European science education initiative (acronym: OSR) introduced this experiment as a hands-on basis to extract the required variables and to exchange results with classroom peers…

  6. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    ERIC Educational Resources Information Center

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  7. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  8. Progress and Setbacks in K-12 Earth and Space Science Education During the Past Decade

    NASA Astrophysics Data System (ADS)

    Geary, E.; Hoffman, M.; Stevermer, A.; Barstow, D.

    2005-12-01

    Since publication of the National Science Education Standards in 1996, key Earth and space science concepts have been incorporated into the science education standards in virtually every state. However, the degree to which Earth and space science standards have been implemented in actual classroom curriculum and state science assessments varies greatly from state to state. In a similar vein, the No Child Left Behind legislation calls for a highly qualified teacher in every classroom: in Idaho over 96 percent of high school teachers are certified to teach Earth science, while in Illinois, less than 42 percent of teachers are certified. Furthermore, in some states, like New York, approximately 20 percent of high school students will take introductory Earth science each year, while in other states, like Texas, less than 1 percent of high school students will take introductory Earth science each year. Why do we have this high degree of variability with respect to the teaching and learning of Earth science across the United States? The answer is complex, as there are many institutional, attitudinal, budgetary, and policy factors affecting the teaching of Earth and space sciences. This presentation will summarize data on the current status of Earth and space science education in the United States, discuss where progress has been made and where setbacks have occurred during the past decade, and provide some suggestions and ideas for improving access to high quality Earth and space science education courses, curricula, assessments, and teachers at the state and local level.

  9. Connecting Teachers and Students with Science Experts: NASA's Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Mailhot, M.; Lindgren, C. F.

    2010-12-01

    Classroom teachers are challenged with engaging and preparing today’s students for the future. Activities are driven by state required skills, education standards, and high stakes testing. How can educators teach required standards and motivate students to not only learn essential skills, but also acquire a sense of intrigue to want to learn more? One way is to allow students to take charge of their learning and conduct student-driven research. NASA’s Expedition Earth and Beyond program, based at the NASA Johnson Space Center, is designed to do just that. The program, developed by both educators and scientists, promotes inquiry-based investigations in classrooms (grades 5-14) by using current NASA data. By combining the expertise of teachers, who understand the everyday challenges of working with students, and scientists, who work with the process of science as they conduct their own research, the result is a realistic and useable means in which to promote authentic research in classrooms. NASA’s Expedition Earth and Beyond Program was created with the understanding that there are three important aspects that enable teachers to implement authentic research experiences in the classroom. These aspects are: 1) Standards-aligned, inquiry based curricular resources and an implementation structure to support student-driven research; 2) Professional development opportunities to learn techniques and strategies to ensure seamless implementation of resources; and 3) Ongoing support. Expedition Earth and Beyond provides all three of these aspects and adds two additional and inspiring motivators. One is the opportunity for student research teams to request new data. Data requested and approved would be acquired by astronauts orbiting Earth on the International Space Station. This aspect is part of the process of science structure and provides a powerful way to excite students. The second, and perhaps more significant motivator, is the creation of connections between

  10. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  11. Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences

    NASA Astrophysics Data System (ADS)

    CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.

    2012-10-01

    The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace

  12. Assessment of an On-Line Earth System Science Course for Teachers

    NASA Astrophysics Data System (ADS)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  13. A Solid Earth educational module, co-operatively developed by scientists and high school teachers through the Scripps Classroom Connection GK12 Program

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.

    2010-12-01

    The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.

  14. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  15. Engaging Students with Subject Matter Experts and Science Content Through Classroom Connection Webinars

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Rampe, E.; Stefanov, W. L.; Vanderbloemen, L.; Higgins, M.

    2015-01-01

    Connecting students and teachers in classrooms with science, technology, engineering, and mathematics (STEM) experts provides an invaluable opportunity. Subject matter experts can share exciting science and science-related events as well as help to "translate" science being conducted by professionals. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Division at the NASA Johnson Space Center, has been providing virtual access to subject matter experts through classroom connection webinars for the last five years. Each year, the reach of these events has grown considerably, especially over the last nine months. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. These events also enable scientists and subject matter experts to help "translate" current science in an engaging and understandable manner while actively involving classrooms in the journey of science and exploration.

  16. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  17. Mt. Kilimanjaro expedition in earth science education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  18. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade

  19. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  20. A Typology of Actional-Operational Modes in Earth Science and Implications for Science Literacy Instruction

    ERIC Educational Resources Information Center

    Wilson, Amy Alexandra

    2013-01-01

    Framed in theories of social semiotics, this multiple case study describes and categorizes the actional-operational modes used by three middle school earth science teachers throughout the course of one school year. Data included fieldnotes, photographs, and video recordings of classroom instructions as well as periodic interviews with the…

  1. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  2. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  3. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  4. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  5. Earth-Shaking Seismology Activities for Middle School Classrooms

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2004-12-01

    A sequence of related earthquake and seismology activities provides an effective curriculum unit for inquiry-based science for the middle school level. The activities allow hands-on and in-depth study, progress from relatively simple "low-tech" approaches to more advanced activities emphasizing problem-solving and use of technology, and involve significant practice with science process skills. The unit begins with an earthquake plotting activity in which student teams find recent earthquake information from the Internet and plot epicenters on a classroom map. The activity continues throughout the year and provides opportunities for discovery, connections to other seismology activities, developing map skills, and cooperative learning. Subsequent activities include investigations of plate tectonics, plate boundaries, Earth's interior structure, seismic wave propagation, plotting earthquakes and volcanic eruptions on the computer using Alan Jones' Seismic/Eruption software, earthquake hazards, magnitude and intensity scales, and use of an educational seismograph in the classroom. The near real time monitoring of earthquakes provided by the mapping exercises and the educational seismograph, and the relevance of earthquake studies, generate student excitement and long term impact. We have shared this approach and the activities with K-12 teachers in many professional development settings. Many of the activities are available online at: www.eas.purdue.edu/~braile.

  6. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    NASA Astrophysics Data System (ADS)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  7. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  8. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  9. Rotating Science Classrooms.

    ERIC Educational Resources Information Center

    Hogg, Loretta A.

    1980-01-01

    Described is a science classroom program with centralized materials, and assistance and workshops for teachers. Classroom materials on one of five topics rotate every six weeks among five schools. Teachers plan specific units to match the arrival of the materials in their schools. (Author/DS)

  10. Earth Science Digital Museum (ESDM): Toward a new paradigm for museums

    NASA Astrophysics Data System (ADS)

    Dong, Shaochun; Xu, Shijin; Wu, Gangshan

    2006-07-01

    New technologies have pushed traditional museums to take their exhibitions beyond the barrier of a museum's walls and enhance their functions: education and entertainment. Earth Science Digital Museum (ESDM) is such an emerging effort in this field. It serves as a platform for Earth Scientists to build a Web community to share knowledge about the Earth and is of to benefit the general public for their life-long learning. After analyzing the purposes and requirements of ESDM, we present here our basic philosophy of ESDM and a four-layer hierarchical architecture for enhancing the structure of ESDM via Internet. It is a Web-based application to enable specimens to be exhibited, shared and preserved in digital form, and to provide the functionalities of interoperability. One of the key components of ESDM is the development of a metadata set for describing Earth Science specimens and their digital representations, which is particularly important for building ESDM. Practical demonstrations show that ESDM is suitable for formal and informal Earth Science education, including classroom education, online education and life-long learning.

  11. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  12. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  13. Using AN Essea Earth Systems Science Course in a Web-Enhanced Setting for Pre-Service Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Slattery, W.

    2003-12-01

    The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or

  14. Earth Science Unit for Second Grade: A Seed Crystal Approach.

    ERIC Educational Resources Information Center

    Abernathy, Sandra

    This teacher's guide to a second-grade earth science unit provides a range of activities, suggestions for classroom discussion, and open-ended questions suitable for each of the concepts developed. One of the central purposes of the unit is to develop independence and self confidence by encouraging the student to think through a problem clearly.…

  15. Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.

    NASA Astrophysics Data System (ADS)

    Zepecki, S., III; Dean, A. F.; Pisut, D.

    2017-12-01

    NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.

  16. An analysis of women's ways of knowing in a 10th grade integrated science classroom

    NASA Astrophysics Data System (ADS)

    Kochheiser, Karen Lynn

    All students can learn science, but how they learn science may differ. This study is about learning science and its relationship to gender. Women need to develop and establish connections with the objects that they are learning and be able to establish a voice in a science classroom. Unfortunately, traditional science classrooms still view science as a male domain and tend to discourage women from pursuing higher levels of science or science related careers. The ways that women learn science are a very complex set of interactions. In order to describe these interactions, this study explored how women's ways of knowing are represented in a high school science classroom. Nine women from an enriched integrated biology and earth science class contributed to this study. The women contributed to this study by participating in individual and group interviews, questionnaires, journals, observations and participant review of the interviews. The ways that these women learn science were described in terms of Belenky, Clinchy, Goldberger, and Tarule's Women's Ways of Knowing: The Development of Self, Voice, and Mind (1997). The women's ways of learning in this classroom tended to be situational with the women fitting different categories of knowing depending on the situation. Most of the women demonstrated periods of time where they wanted to be heard or tried to establish a voice in the classroom. The study helps to provide a theory for how women make choices in their learning of science and the struggle to be successful in a male dominated discipline. The women participating in this study gained an awareness of how they learn science and how that can be used to make them even more successful in the classroom. The awareness of how women learn science will also be of great benefit to other teachers and educators as the work for science reform continues to make science a 'science for all'.

  17. Science Students' Classroom Discourse: Tasha's Umwelt

    NASA Astrophysics Data System (ADS)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  18. Local and Long Distance Computer Networking for Science Classrooms. Technical Report No. 43.

    ERIC Educational Resources Information Center

    Newman, Denis

    This report describes Earth Lab, a project which is demonstrating new ways of using computers for upper-elementary and middle-school science instruction, and finding ways to integrate local-area and telecommunications networks. The discussion covers software, classroom activities, formative research on communications networks, and integration of…

  19. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  20. Understanding children's science identity through classroom interactions

    NASA Astrophysics Data System (ADS)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  1. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  2. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    NASA Astrophysics Data System (ADS)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    2009 3-day videoconferencing event, 3 graduate students and the lab PI connected to nine, 7th grade life science classes (~300 students) using SKYPE. Each of the nine videoconferences lasted for ~50 minutes and included a mini-lab tour, a short presentation on the graduate students’ field and lab-based research activities, and interspersed question and answer sessions. Teachers are currently exploring ways they can further capitalize on the connection to the research lab and are writing up a “how to” guide for SKYPE lab to classroom videoconferencing. LHS has been evaluating this videoconference project to get feedback from the participants about the collaboration, the technology, and the format in order to improve the program in the future. The collaboration has now been turned over to the graduate students and teachers with little facilitation by COSEE CA staff. COSEE CA is applying the approach to other earth and ocean science topics by offering “Virtual Lab Tours” as a broader impact option.

  3. Citizen Science in the Classroom: Perils and Promise of the New Web

    NASA Astrophysics Data System (ADS)

    Loughran, T.; Dirksen, R.

    2010-12-01

    Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage

  4. SUPPORTING TEACHERS IN IMPLEMENTING FORMATIVE ASSESSMENT PRACTICES IN EARTH SYSTEMS SCIENCE

    NASA Astrophysics Data System (ADS)

    Harris, C. J.; Penuel, W. R.; Haydel Debarger, A.; Blank, J. G.

    2009-12-01

    An important purpose of formative assessment is to elicit student thinking to use in instruction to help all students learn and inform next steps in teaching. However, formative assessment practices are difficult to implement and thus present a formidable challenge for many science teachers. A critical need in geoscience education is a framework for providing teachers with real-time assessment tools as well as professional development to learn how to use formative assessment to improve instruction. Here, we describe a comprehensive support system, developed for our NSF-funded Contingent Pedagogies project, for addressing the challenge of helping teachers to use formative assessment to enhance student learning in middle school Earth Systems science. Our support system is designed to improve student understanding about the geosphere by integrating classroom network technology, interactive formative assessments, and contingent curricular activities to guide teachers from formative assessment to instructional decision-making and improved student learning. To accomplish this, we are using a new classroom network technology, Group Scribbles, in the context of an innovative middle-grades Earth Science curriculum called Investigating Earth Systems (IES). Group Scribbles, developed at SRI International, is a collaborative software tool that allows individual students to compose “scribbles” (i.e., drawings and notes), on “post-it” notes in a private workspace (a notebook computer) in response to a public task. They can post these notes anonymously to a shared, public workspace (a teacher-controlled large screen monitor) that becomes the centerpiece of group and class discussion. To help teachers implement formative assessment practices, we have introduced a key resource, called a teaching routine, to help teachers take advantage of Group Scribbles for more interactive assessments. Routine refers to a sequence of repeatable interactions that, over time, become

  5. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  6. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  7. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  8. Earth System Science: Problem-based Learning Courses for Teachers Through ESSEA

    NASA Astrophysics Data System (ADS)

    Close, E.; Witiw, M. R.

    2007-12-01

    One method that has proven effective in the study of Earth system science is to use a problem-based and event- centered course organization. In such a course, different events that occur in the Earth system are examined and how each event influences subsequent events in each of Earth's spheres (the atmosphere, hydrosphere, biosphere and lithosphere) is studied. A course is composed of several problem-based modules, where each module is centered about a particular event or issue that is important to the Earth system. The Institute for Global Environmental Strategies (IGES) was recently awarded a grant by the National Science Foundation's Geo-Teach program to develop and implement courses for teachers in Earth system science. Through the Earth System Science Education Alliance (ESSEA), IGES subsequently made awards to a group of 24 universities. Under the ESSEA program, problem-based modules are being developed for courses for middle school and high school teachers. In a typical university schedule, each module is designed to last three weeks and includes both group work and individual assignments. In the first week ("Teacher as Problem Solver"), participants explore their own ideas concerning the event and exchange their ideas with other members of their group. In the second week ("Teacher as Scholar"), participants research the issue and become more familiar with the event and the sphere-to-sphere interactions that occur. In the last week ("Teacher as Designer"), each participant develops a lesson plan for his or her own classroom. Current ESSEA modules cover topics such as volcanoes, Brazilian deforestation, Antarctic ice sheets, coral reefs, and stratospheric ozone depletion. Many new modules are under development with topics that range from plate tectonics and tsunamis to agriculture and sustainable water systems. Seattle Pacific University, in cooperation with Seattle Public Schools, was recently awarded a three-year grant by IGES to provide Earth system

  9. The Effects of Student Multiple Intelligence Preference on Integration of Earth Science Concepts and Knowledge within a Middle Grades Science Classroom.

    ERIC Educational Resources Information Center

    Cutshall, Lisa Christine

    This research was conducted in an eastern Tennessee 8th grade science classroom with 99 students participating. The action research project attempted to examine an adolescent science student's integration of science concepts within a project-based setting using the multiple intelligence theory. In an effort to address the national science…

  10. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  11. Science beyond the Classroom Boundaries

    ERIC Educational Resources Information Center

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  12. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.

  13. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    NASA Astrophysics Data System (ADS)

    Fadhli, Fathi Ali

    2000-10-01

    will not be achieved through using the analyzed earth science textbooks. The low percentages of STS activities and topics indicated also that the STS approach would not be fairly presented in science classrooms as long as science teachers depend on science textbooks 90% of their teaching time. Moreover, the results of this study revealed also that the inclusion of STS approach in science textbooks is still considered to be very low despite the support provided to the STS approach by science teachers, educators, organizations, and education departments and also despite of the publishing of Project Syntheses (1977) since twenty eight years ago.

  14. Biological Evolution and the History of the Earth Are Foundations of Science

    NASA Astrophysics Data System (ADS)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  15. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  16. Mapping Science in Discourse-based Inquiry Classrooms

    NASA Astrophysics Data System (ADS)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  17. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  18. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    instructional strategies. The teacher co-instructors hold leadership roles for their peers and gain university teaching experience. The participants have a course that is content rich and tailored for their needs in the classroom. Earth scientists develop a “broader impact” for their science by increasing climate and earth science literacy for teachers who, in turn, reach 100s to 1000s of students every year, possibly stimulating interest for students becoming future earth scientists, but at the very least, increasing the public appreciation for earth science.

  19. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  20. Communicating the Science of the Earth System Through Arts and Culture to Reach Broad Audiences

    NASA Astrophysics Data System (ADS)

    Gardiner, L.; Genyuk, J.; Bergman, J.; Johnson, R.; Foster, S.; Hatheway, B.; Russell, R.

    2008-12-01

    Links between the science of Earth and the visual and literary arts, cultures, and human history provides important context and connections for learners of all ages. Several new features that foster a multidisciplinary approach to learning about our planet are now available on Windows to the Universe (www.windows.ucar.edu), an educational Web site that includes over 6000 pages of content and is used by over 20 million people each year. The Clouds in Art interactive encourages users to identify cloud types depicted in well-known landscape paintings. Examples of poems by historic poets describe weather phenomena and link to information about the science of weather. A new feature allows users to post their original poetry about an image of weather phenomena. Historic image collections emphasize human connections to the Earth system. For example, a collection of images that visually describes Inuit traditions is linked to Web content about Earth's polar regions and the impact of climate change in the Arctic. To support K-12 classroom learning of Earth system concepts and engage visual learners, several new classroom activities make use of photographs, satellite images, and animations of remote sensing data. In one activity, students learn about the impact of climate change in the Arctic by working with photographs of Alaskan glaciers taken over the past century. These new interdisciplinary features on Windows to the Universe, combined with a wealth of existing content on the site about the history of science and mythology, provide other ways to appreciate science phenomena as well as alternate avenues into science for the general public, teachers and students. Windows to the Universe, a project of the University Corporation for Atmospheric Research Office of Education and Outreach, provides users with content about the Earth and space sciences at three levels of instruction in both English and Spanish.

  1. A MOSAIC for the Science Classroom

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Costa, D.; Cadigan, J.; Clements, C.; May, S. K.

    2011-01-01

    MOSAIC (Mesospheric Ozone System for Atmospheric Investigations in the Classroom) is a project to engage secondary and undergraduate students in authentic inquiry-based science learning using a network of inexpensive spectrometers monitoring the mesospheric ozone concentration. The MOSAIC system observes the 11 GHz emission line of ozone using electronics built around satellite television equipment. The possibilities for student investigation are broad and scientifically significant. MOSAIC observations have confirmed diurnal variations in mesospheric ozone concentration and detected semiannual variations that may be due to inter-hemispheric meridional circulation of water vapor. Possible future projects include monitoring the temperature of the mesosphere and correlations with the solar cycle. Students are also encouraged to design their own investigations with MOSAIC data. Early results have been reported in a major scientific journal, and further scientific progress is likely as future MOSAIC systems are deployed -- increasing the sensitivity and geographic coverage of the network. Complete teaching units, including slides, laboratory activities, background information, student worksheets, and conformance with national and Massachusetts educational standards, have been developed to integrate MOSAIC into a classroom environment. One unit introduces the layers of the atmosphere, Earth's energy balance, the greenhouse effect, processes of ozone creation and destruction, noctilucent clouds, heat transfer, the laws of thermodynamics, radio waves (including radio astronomy), and fluid behavior. A second unit, currently being tested in classrooms, uses the MOSAIC system to motivate and deepen understanding of a large portion of electromagnetism in a conceptual physics class. MOSAIC has also been used in a local high school chemistry class. MOSAIC is still in development and is funded by the National Science Foundation.

  2. Physical Science Connected Classrooms: Case Studies

    ERIC Educational Resources Information Center

    Irving, Karen; Sanalan, Vehbi; Shirley, Melissa

    2009-01-01

    Case-study descriptions of secondary and middle school classrooms in diverse contexts provide examples of how teachers implement connected classroom technology to facilitate formative assessment in science instruction. Connected classroom technology refers to a networked system of handheld devices designed for classroom use. Teachers were…

  3. GeoBrain for Facilitating Earth Science Education in Higher-Education Institutes--Experience and Lessons-learned

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2007-12-01

    Data integration and analysis are the foundation for the scientific investigation in Earth science. In the past several decades, huge amounts of Earth science data have been collected mainly through remote sensing. Those data have become the treasure for Earth science research. Training students how to discover and use the huge volume of Earth science data in research become one of the most important trainings for making a student a qualified scientist. Being developed by a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. Although still in development, the GeoBrain system has been operational since 2005. A number of education materials have been developed for facilitating the use of GeoBrain as a powerful education tool for Earth science education at both undergraduate and graduate levels. Thousands of online higher-education users worldwide have used GeoBrain services. A number of faculty members in multiple universities have been funded as GeoBrain education partners to explore the use of GeoBrain in the classroom teaching and student research. By summarizing and analyzing the feedbacks from the online users and the education partners, this presentation presents the user experiences on using GeoBrain in Earth science teaching and research. The feedbacks on classroom use of GeoBrain have demonstrated that GeoBrain is very useful for

  4. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  5. Geographic Information System Incorporated into Earth Science Classrooms to Enhance Individual Learning Development with Interconnected Concepts

    NASA Astrophysics Data System (ADS)

    Garifo, Mary Anna

    2017-04-01

    Geographic Information System, GIS, is a powerful tool and when incorporated into Earth Science classrooms, can enhance and empower students' engagement in their learning. Through utilization of GIS, students can process what they are learning in a spatially orientated method, which allows them to make connections among different related concepts. For example, if students are given a map in a GIS software with multiple layers of data on earthquakes, plate technics, and volcanoes then they can manipulate this information to come up with their own patterns. Through allowing students to develop their spatial recognition of where the Earth's plate boundaries are and where earthquakes have occurred, students can see how these two concepts are connected. In a guided but exploratory activity, students would be given multiple different websites that they could explore to research what different type of plates there are while they are working simultaneously with the GIS software. Using a plate technics layer, including data on type of boundary, students can explore and estimate which direction the plates are moving. When they look up convergent boundaries and see that the oceanic plates submerge under continental plates they can see where volcanic chains might be. Once they understand this in a spatial way, students can predict where they think volcanoes could be, based on where convergent boundaries are. When they manipulate the volcanic layer and see abnormalities to what they just learned, it will cause them to have cognitive dissonance, which will force them into seeking further understanding. The concept of a hot spot can then be introduced to resolve the cognitive dissonance and emphasis the idea that plates we live on are moving. Concepts can further be developed through GIS by showing how the strength and frequency of earthquakes are related to the level of activity at the plate boundary. This can be done by manipulating the map layer that represents earthquakes so

  6. Investigating Science Discourse in a High School Science Classroom

    ERIC Educational Resources Information Center

    Swanson, Lauren Honeycutt

    2011-01-01

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The…

  7. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  8. Enhancing the earth-science content and inquiry basis of physical geography education in Singapore schools

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Chong, E.

    2011-12-01

    Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.

  9. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  10. Graduate Student and High School Teacher Partnerships Implementing Inquiry-Based Lessons in Earth Science

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Preston, L.; Graham, K.

    2007-12-01

    Partnering science graduate students with high school teachers in their classroom is a mutually beneficial relationship. Graduate students who may become future university level faculty are exposed to teaching, classroom management, outreach scholarship, and managing time between teaching and research. Teachers benefit by having ready access to knowledgeable scientists, a link to university resources, and an additional adult in the classroom. Partnerships in Research Opportunities to Benefit Education (PROBE), a recent NSF funded GK-12 initiative, formed partnerships between science and math graduate students from the University of New Hampshire (UNH) and local high school science teachers. A primary goal of this program was to promote inquiry-based science lessons. The teacher-graduate student teams worked together approximately twenty hours per week on researching, preparing, and implementing new lessons and supervising student-led projects. Several new inquiry-based activities in Geology and Astronomy were developed as a result of collaboration between an Earth Science graduate student and high school teacher. For example, a "fishbowl" activity was very successful in sparking a classroom discussion about how minerals are used in industrial materials. The class then went on to research how to make their own paint using minerals. This activity provided a capstone project at the end of the unit about minerals, and made real world connections to the subject. A more involved geology lesson was developed focusing on the currently popular interest in forensics. Students were assigned with researching how geology can play an important part in solving a crime. When they understood the role of geologic concepts within the scope of the forensic world, they used techniques to solve their own "crime". Astronomy students were responsible for hosting and teaching middle school students about constellations, using a star- finder, and operating an interactive planetarium

  11. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  12. Using Science and the Internet as Everyday Classroom Tools

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    1999-01-01

    The Everyday Classroom Tools project developed a K-6 inquiry-based curriculum to bring the tools of scientific inquiry, together with the Internet, into the elementary school classroom. Our curriculum encourages students and teachers to experience the adventure of science through investigation of the world around us. In this project, experts in computer science and astronomy at SAO worked closely with teachers and students in Massachusetts elementary schools to design and model activities which are developmentally appropriate, fulfill the needs of the curriculum standards of the school district, and provide students with a chance to experience for themselves the joy and excitement of scientific inquiry. The results of our efforts are embodied in the Threads of Inquiry, a series of free-flowing dialogues about inquiry-inspiring investigations that maintain a solid connection with our experience and with one another. These investigations are concerned with topics such as the motion of the Earth, shadows, light, and time. Our work emphasizes a direct hands-on approach through concrete experience, rather than memorization of facts.

  13. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  14. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  15. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  16. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    NASA Astrophysics Data System (ADS)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  17. Everyday Assessment in the Science Classroom.

    ERIC Educational Resources Information Center

    Atkin, J. Myron, Ed.; Coffey, Janet E., Ed.

    The assessment that occurs each day in the science classroom is often overlooked amidst calls for accountability in education and renewed debates about external testing. Research points to the positive influence that improved, ongoing classroom assessment can have on learning. Documents that offer visions for science education such as the National…

  18. Cogenerating fluency in urban science classrooms

    NASA Astrophysics Data System (ADS)

    Lavan, Sarah-Kate

    This critical ethnographic study employed the use of cogenerative dialogue (Roth & Tobin, 2002) as a means to allow participants of a science classroom to reflect on and transform classroom structures while at the same time create opportunities for all stakeholders to develop collective responsibility for teaching and learning. The research was situated in a science classroom in an inner city charter high school that was both a challenging place for the teacher (Jen Beers) and an oppressive place for the students as all struggled to reconcile issues related to power hierarchies and significant differences in social and cultural histories. As a result, cultural misinterpretations and the undervaluing of students' cultural capital served as a foundation for learning. This study examined the various fields and forms of practice that created opportunities for refining teaching practices and at the same time afforded the development of collective responsibility by addressing the roles, identities and agency of all classroom participants. Specifically, I asked the following questions: (1) How can co-generative dialogue can be used to involve all classroom participants in creating a learning community? (2) How does this shape the identities and roles of the participants who were involved? and (3) How do the changed roles and practices lead toward science fluency? The framework of cultural sociology, specifically the dialectical relationship of structure and agency, interaction ritual theory (Collins, 2003) and research on dispositions (Boykin, 1986), provided analytic tools to investigate the practices of the various stakeholders and the classroom structures as well as the historical and cultural contexts surrounding them. Multiple data resources such as field notes, videotape, interviews and artifacts were drawn on from two fields (the science classroom and cogenerative dialogues) to elicit and support findings at micro, meso and macroscopic levels. The major findings of

  19. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  20. Project CUES: A New Middle-School Earth System Science Curriculum Being Developed by the American Geological Institute

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Smith, M. J.; Lederman, N.; Southard, J. B.; Rogers, E. A.; Callahan, C. N.

    2002-12-01

    Project CUES is a middle-school earth systems science curriculum project under development by the American Geological Institute (AGI) and funded by the National Science Foundation (ESI-0095938). CUES features a student-centered, inquiry pedagogy and approaches earth science from a systems perspective. CUES will use the expanded learning cycle approach of Trowbridge and Bybee (1996), known as the 5E model (engage-explore-explain-elaborate-evaluate). Unlike AGI's Investigating Earth Systems (IES) curriculum modules, CUES will include a single hard-bound textbook, and will take one school-year to complete. The textbook includes a prologue that addresses systems concepts and four main units: Geosphere, Hydrosphere, Atmosphere, and Biosphere. Each eight-week unit takes students through a progression from guided inquiry to open-ended, student-driven inquiry. During first 4 to 5 weeks of each unit, students explore important earth science phenomena and concepts through scripted investigations and narrative reading passages written by scientists as "inquiry narratives". The narratives address the development of scientific ideas and relay the personal experiences of a scientist during their scientific exploration. Aspects of the nature of science will be explicitly addressed in investigations and inquiry narratives. After the guided inquiry, students will develop a research proposal and conduct their own inquiry into local or regional scientific problems. Each unit culminates with a science conference at which students present their research. CUES will be the first NSF-funded, comprehensive earth systems textbook for middle school that is based on national standards. CUES will be pilot tested in 12 classrooms in January 2003, with a national field test of the program in 50 classrooms during the 2003-2004 school year.

  1. Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1999-01-01

    Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.

  2. Integrating Earth System Science Data Into Tribal College and University Curricula

    NASA Astrophysics Data System (ADS)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget

  3. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  4. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  5. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  6. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  7. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  8. Incorporating Geoethics in Introductory Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  9. ERESE: An online forum for research-based earth science inquiry

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Koppers, A.; Helly, M.; Staudigel, H.; Miller, S. P.

    2007-12-01

    The Enduring Resources for Earth Science Education (ERESE) Project bridges the gap between earth science research and science education by providing a forum for electronic collaboration between practicing scientists and classroom teachers. By combining the resources of Scripps Institution of Oceanography (SIO) and the expertise of educators, ERESE leverages a wide variety of assets to provide state-of-the-art, online digital resources through two National Science Digital Library collections: Earthref.org (http://www.Earthref.org/ERESE) and SIOExplorer (http://SIOExplorer.ucsd.edu). Earthref.org provides a wealth of plate tectonic-related content appropriate for designing and enacting inquiry lessons. The SIOExplorer Digital Library houses marine geophysical data from over 800 research cruises each containing a variety of data types from meteorological, to oceanographic, geophysical and navigational data. Built on successful collaboration between scientists and middle and high school teachers from across the country beginning in 2004, ERESE has expanded into a multifaceted repository for thought-provoking earth science data and images, virtual field trips and inquiry lessons designed by our partner teachers. More than static interfaces, both Earthref.org and SIOExplorer introduce users to current topics in science, seeking to answer outstanding questions about the earth, its processes, formation, and future. To provide a starting point for new users to design and contribute lessons to Earthref.org we have created a basic inquiry lesson plan template that models the process of investigating a real scientific problem. The template is designed on the basis of our five-stage model of inquiry adapted to the National Science Education Standards. As with all inquiry lessons, our model focuses on the shift of power from the teacher at the outset of the lesson to the students upon completion of the lesson.

  10. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  11. Holistic Approach to Secondary Earth Science Teacher Professional Development: the Triad of Project-based Instruction, Earth Science Content, and GIS Technology

    NASA Astrophysics Data System (ADS)

    Rubino-Hare, L.; Sample, J. C.; Fredrickson, K.; Claesgens, J.; Bloom, N.; Henderson-Dahms, C.; Manone, M.

    2011-12-01

    We have provided two years of professional development for secondary and middle school teachers with a focus on project-based instruction (PBI) using GIS. The EYE-POD project (funded by NSF-ITEST) involved pairs of teachers from Arizona and the surrounding region in two-week institutes during Summer, 2010, and an advanced institute in Summer, 2011. The NAz-POD project (funded by Arizona Department of Education and administered by Science Foundation Arizona) provided similar PD experiences, but the institutes occurred during weekends in the academic year. The institutes were led by a team with expertise in Earth science content, professional development and pedagogy, and GIS. The teachers developed learning modules using the project based learning instructional model. Pedagogy, content, and GIS skills were combined throughout the professional development activities. Academic year follow up by NAU personnel included classroom observations and technical support. For assessing student work we provided a rubric, but learned that teachers were not prepared to assess GIS products in order to determine the level of student understanding. In year two of the project we incorporated strategies for assessment of student products into the professional development. Teacher-participants and their students completed several pre- and post- assessments. Teacher assessments included a geospatial performance assessment, classroom observations, and content tests. Student data collection included attitude and efficacy questionnaires, content tests, and authentic assessments including products using GIS. Content tests were the same for teachers and students and included spatial reasoning, data analysis, and Earth science content. Data was also collected on teacher perception of professional development delivery and self-reported confidence in teaching with PBI and geospatial technology. Student assessments show that improvement occurred in all areas on the content test. Possible factors

  12. Learning Science beyond the Classroom.

    ERIC Educational Resources Information Center

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  13. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    NASA Astrophysics Data System (ADS)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  14. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    process piloted as ESI I and ESI II was successful in improving MiTEP teacher understanding of Earth Science content and that it was helpful to use the ESLP framework. Ultimately, a small sample of student scores will look at the impact on student learning in the MiTEP teacher classrooms.

  15. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    ERIC Educational Resources Information Center

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  16. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  17. Space Science in the Kindergarten Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2000-12-01

    With the advent of probes to our closest planet Mars and the multi-national construction of Earth's first International Space Station, it is not presumptive to introduce 5 year old school children to the space sciences. K. E. Little Elementary School is located in the community of Bacliff, Texas. It is the largest elementary school (950 students) in the Dickinson Independent School District. K. E. Little is a Title 1 school with a multi-ethnic student population. It's close proximity to the Johnson Space Center and the Lunar and Planetary Institute provide ample instructional support and material. Last fall, two kindergarten classes received space science instruction. Both were class sizes of 19 with one class predominantly children of Vietnamese immigrants. Our goal was to create curiosity and awareness through a year-long integrated space science program of instruction. Accurate information of the space sciences was conveyed through sources i.e. books and videos, as well as conventional song, movement, and artistic expression. Videotaping and photographs replaced traditional anecdotal records. Samples of student work were compiled for classroom and school display. This year, two fifth grade classes will receive space science instruction using the Jason Project XII curriculum. Students will engage in a year-long exploration of the Hawaiian Islands. Information will be conveyed via internet and live video presentations as well as traditional sources i.e. books and videos, as well as song, movement, and artistic expression. Comparison of volcanic activity in Hawaii to volcanoes on other planets will be one of several interplanetary correlations. Samples of student work will be compiled for classroom, school, and community display.

  18. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  19. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data

  20. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    NASA Astrophysics Data System (ADS)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  1. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  2. Investigating Science Discourse in a High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren Honeycutt

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The present work focused on addressing the following questions: 1) In what ways is science discourse taken up and used by students and their teacher? 2) Are there differences in how science discourse is used by students depending on their English language proficiency? Data collection consisted of interviewing the science teacher and the students, filming whole class and small group discussions during two lesson sequences, and collecting lesson plans, curricular materials, and student work. These data were analyzed qualitatively. Findings indicated that the teacher characterized science discourse along three dimensions: 1) the use of evidence-based explanations; 2) the practice of sharing one's science understandings publically; and 3) the importance of using precise language, including both specialized (i.e., science specific) and non-specialized academic words. Analysis of student participation during in-class activities highlighted how students progressed in each of these science discourse skills. However, this analysis also revealed that English learners were less likely to participate in whole class discussions: Though these students participated in small group discussions, they rarely volunteered to share individual or collective ideas with the class. Overall, students were more adept at utilizing science discourse during class discussions than in written assignments. Analysis of students' written work highlighted difficulties that were not visible during classroom interactions. One potential explanation is the increased amount of scaffolding the teacher provided during class discussions as compared to written

  3. Earth2Class: Assessing Interactions Between Research Scientists and Classroom Teachers

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Iturrino, G.; Assumpcao, C. M.; Baggio, F. D.

    2006-12-01

    success. The second reports: The E2C program and its associated resources provide unique, high-quality professional development to both teachers in the E2C workshops and to those that seek on-line professional development and/or useful classroom materials and ideas. The E2C website promises to be a site of first choice when searching for curricular materials. Although there are negligible concerns regarding the scalability of the program, Earth2Class has proven that cutting-edge research in the Earth sciences can be made accessible to classroom teachers, who, in turn, can share exciting research with their students. The E2C concept clearly warrants further exploration and testing at other sites. This exciting, innovative program has successfully modeled a synergistic relationship between notable scientists and K-12 teachers. Through this program, K-12 teachers receive unparalleled professional development and researchers are provided with a clearly delineated, direct means of achieving their mandated education and public outreach (Criterion 2) responsibilities. One can hardly imagine a more fruitful, win/win situation. Cooperating scientists utilized this program to make results of their investigations known to hundreds of teachers and, through them, thousands of students. Participants in the Workshops and others using archived versions on www.earth2class.org gained new understandings about many areas of geoscience and how scientists identify questions to explore. Middle and high school Earth Science teachers and students benefited from the myriad of online resources.

  4. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  5. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  6. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    The Earth Exploration Toolbook (EET) Workshops Project provides a mechanism for teachers and students to have successful data-using educational experiences. In this professional development project, teachers learn to use National Science Digital Library (NSDL), the Digital Library for Earth System Education (DLESE), and an Earth Exploration Toolbook (EET) chapter. In an EET Data Analysis Workshop, participants walk through an Earth Exploration Toolbook (EET) chapter, learning basic data analysis techniques and discussing ways to use Earth science datasets and analysis tools with their students. We have offered twenty-eight Data Analysis Workshops since the project began. The total number of participants in the twenty-eight workshops to date is three hundred eleven, which reflects one hundred eighty different teachers participating in one or more workshops. Our workshops reach middle and high school teachers across the United States at schools with lower socioeconomic levels and at schools with large numbers of minority students. Our participants come from thirty-eight different states including Alaska, Maine, Florida, Montana, and many others. Eighty-six percent of our participants are classroom teachers. The remaining fourteen percent are staff development specialists, university faculty, or outreach educators working with teachers. Of the classroom teachers, one third are middle school teachers (grades 6 to 8) and two thirds are high school teachers (grades 9 to 12.) Thirty-four percent of our participants come from schools where minority populations are the majority make up of the school. Twenty-five percent of our participants are at schools where the majority of the students receive free or reduced cost lunches. Our professional development workshops are helping to raise teachers' awareness of both the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). Prior to taking one of our workshops, forty-two percent of

  7. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  8. Opportunities in Education and Public Outreach for Scientists at the School of Ocean and Earth Sciences and Technology

    NASA Astrophysics Data System (ADS)

    Hicks, T.

    2004-12-01

    The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.

  9. Mathematics and Science Learning Opportunities in Preschool Classrooms

    PubMed Central

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  10. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  11. Science Careers in the Classroom.

    ERIC Educational Resources Information Center

    Smith, Walter S.

    1983-01-01

    Suggests systematically exposing early adolescents/middle school students to community people who use science in their work to demonstrate the value of science/mathematics study. Discusses activities related to classroom visits of resource personnel, sources of resource people, and Career Oriented Modules to Explore Topics in Science for grades…

  12. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  13. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  14. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  15. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  16. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  17. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  18. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  19. Explanation, argumentation and dialogic interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Aguiar, Orlando G.

    2016-12-01

    As a responsive article to Miranda Rocksén's paper "The many roles of `explanation' in science education: a case study", this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts of dialogue and dialogism in science classrooms contexts. Dialogism is discussed as the basic tenet from which Rocksén developed her research design and methods. In turn, dialogues in science classrooms may be considered as a particular type of discourse that allows the students' culture, mostly based on everyday knowledge, and the science school culture, related to scientific knowledge and language to be interwoven. I argue that in school, science teachers are always committed to the resolution of differences according to a scientific position for the knowledge to be constructed. Thus, the institution of schooling constrains the ways in which dialogue can be conducted in the classrooms, as the scientific perspective will be always, beforehand, the reference for the conclusions to be reached. The second theme developed here, in dialogue with Rocksén, is about explanations in science classrooms. Based on Jean Paul Bronckart (Atividade de linguagem, textos e discursos: por um interacionismo sócio-discursivo, Educ, São Paulo, 1999), the differences and relationship between explanation and argumentation as communicative acts are re-discussed as well its practical consequences to science teaching. Finally, some epistemological questions are raised about the status of scientific explanations in relation to non-scientific ones.

  20. Primary school children and teachers discover the nature and science of planet Earth and Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  1. Active Classroom Participation in a Group Scribbles Primary Science Classroom

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit

    2011-01-01

    A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…

  2. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.

    1995-01-01

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.

  3. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  4. Earth System Science Education Alliance (ESSEA) IPY Modules

    NASA Astrophysics Data System (ADS)

    Blaney, L. S.; Myers, R. J.; Schwerin, T.

    2008-12-01

    The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn

  5. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  6. Diversity and Innovation for Geosciences (dig) Texas Earth and Space Science Instructional Blueprints

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Bohls-Graham, E.; Riggs, E. M.; Serpa, L. F.; Jacobs, B. E.; Martinez, A. O.; Fox, S.; Kent, M.; Stocks, E.; Pennington, D. D.

    2014-12-01

    The NSF-sponsored DIG Texas Instructional Blueprint project supports the development of online instructional blueprints for a yearlong high school-level Earth science course. Each blueprint stitches together three-week units that contain curated educational resources aligned with the Texas state standards for Earth and Space Science and the Earth Science Literacy Principles. Units focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of geoscientists, pedagogy specialists, and practicing science teachers chose unit themes and resources for twenty-two units during three workshops. In summer 2014 three Education Interns (Earth science teachers) spent six weeks refining the content of the units and aligning them with the Next Generation Science Standards. They also assembled units into example blueprints. The cross-disciplinary collaboration among blueprint team members allowed them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members and Education Interns learned where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool developed by the Science Education Resource Center (SERC). SERC is the repository for the DIG Texas blueprint web pages. Work is underway to develop automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing units from other blueprints, or creating new units and blueprints. These innovations will enhance the use of the units by secondary Earth science educators beyond Texas. This presentation provides an overview of the project, shows examples of blueprints and units, reports on the preliminary results of classroom implementation by Earth science teachers, and considers challenges encountered in developing and testing the blueprints. The

  7. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  8. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  9. Development and Application of the Elementary School Science Classroom Environment Scale (ESSCES): Measuring Student Perceptions of Constructivism within the Science Classroom

    ERIC Educational Resources Information Center

    Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.

    2014-01-01

    This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…

  10. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes

  11. Engaging Students Through Classroom Connection Webinars to Improve Their Understanding of the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.; Achilles, Cherie

    2013-01-01

    Planetary exploration missions to other worlds, like Mars, can generate a lot of excitement and wonder for the public. The Mars Science Laboratory Mission is one of the latest planetary missions that has intrigued the public perhaps more than most. How can scientists and educational specialists capitalize on the allure of this mission and involve students and teachers in a way that not only shares the story of the mission, but actively engages classrooms with scientists and improves their understanding of the science? The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center achieves this by facilitating MSL mission focused classroom connection webinars. Five MSL-focused webinars facilitated through EEAB during the 2012 fall semester engaged almost 3000 students and teachers. Involved STEM experts/role models helped translate the science behind the Mars Science Laboratory mission in a comprehensive, exciting, and engaging manner. These virtual events captured participants attention while increasing their science awareness and understanding of the MSL mission.

  12. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  13. Pre-Service Science Teachers' Understandings of Classroom Research and the Problems in Conducting Classroom Research Projects

    ERIC Educational Resources Information Center

    Jantarakantee, Ekgapoom; Roadrangka, Vantipa; Clarke, Anthony

    2012-01-01

    This research paper explores pre-service science teachers' understandings of classroom research, problems in conducting classroom research and the supports that pre-service science teachers need from their cooperating teachers to help them conduct a classroom research project during the internship period. The participants in this study are 19…

  14. You Asked, We Answered! A Podcasting Series by Scientists for K-12 Teachers Through the Pennsylvania Earth Science Teachers Association (PAESTA)

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.; Tait, K.

    2015-12-01

    The Pennsylvania Earth Science Teachers Association (PAESTA) recently initiated a podcasting series "You Asked, We Answered!" for K-12 teachers to increase their science content knowledge through short audio podcasts, supplemented with relevant resources. The 2015-2016 PAESTA President Kathy Tait generated the idea of tapping in to the content expertise of higher education faculty, post-doctoral researchers, and graduate students to assist K-12 teachers with increasing their own Earth and space content knowledge. As time and resources for professional development are decreasing for K-12 teachers, PAESTA is committed to not only providing curricular resources through our online database of inquiry-based exercises in the PAESTA Classroom, but providing an opportunity to learn science content from professionals in an audio format.Our goal at PAESTA has been to release at least one new podcast per month that answers the questions asked by PAESTA members. Each podcast is recorded by an Earth/space science professional with content expertise and placed online with supporting images, links, and relevant exercises found in the PAESTA Classroom. Each podcast is available through the PAESTA website (http://www.paesta.psu.edu/podcasts) and PAESTA iTunes channel (https://itunes.apple.com/us/podcast/paesta-podcasts/id1017828453). For ADA compliance, the PAESTA website has a transcript for each audio file. In order to provide these podcasts, we need the participation of both K-12 teachers and science professionals. On the PAESTA Podcast website, K-12 teachers can submit discipline questions for us to pass along to our content experts, questions relating to the "what" and "how" of the Earth and space sciences, as well as questions about Earth and space science careers. We ask science professionals for help in answering the questions posed by teachers. We include online instructions and tips to help scientists generate their podcast and supporting materials.

  15. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  16. Science Education Supporting Weather Broadcasters On-Air and in the Classroom with NASA "Mini-Education Supplements"

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    NASA-Goddard Space Flight Center has initiated a new project designed to expand on existing news services and add value to classrooms through the development and distribution of two-minute 'mini-supplements' which give context and teach about current weather and Earth research phenomena. The innovative mini-supplements provide raw materials for weather forecasters to build news stories around NASA related missions without having to edit the more traditional and cumbersome long-form video format. The supplements cover different weather and climate topics and include NASA data, animations, video footage, and interviews with scientists. The supplements also include a curriculum package with educational lessons, educator guide, and hand-on activities. One goal is to give on-air broadcasters who are the primary science educators for the general public what they need to 'teach' about the science related to NASA research behind weather and climate news. This goal achieves increasing public literacy and assures higher accuracy and quality science reporting by the media. The other goal is to enable on-air broadcasters to serve as distributors of high quality, standards-based educational curricula and supplemental material when they visit 8-12 grade classrooms. The focus of 'pilot effort' centers around the success of NASA's Tropical Rainfall Measuring Mission (TRMM) but is likely expandable to other NASA earth or space science missions.

  17. Robotics Competitions and Science Classrooms

    ERIC Educational Resources Information Center

    Benke, Gertraud

    2012-01-01

    This paper looks at the distinctions between science classrooms and the robotics competition described in the article "Examining the mediation of power in a collaborative community: engaging in informal science as authentic practice" written by Anton Puvirajah, Geeta Verma and Horace Webb. Using the framework of "productive disciplinary…

  18. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  19. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  20. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    NASA Astrophysics Data System (ADS)

    Dimaggio, E.

    2010-12-01

    , students were shown data on the recent 8.8 magnitude Chile earthquake (including epicenter, magnitude, and focus) as well as photos and a short video. Students then viewed real-time earthquakes and plate boundaries in Google Earth using KML files downloaded from the USGS website. During the ensuing discussion, and with minimal teacher direction, students made the connection between the recent earthquake and the convergent plate boundary along Chile that they had previously studied in their earth science unit. Additionally, students asked numerous questions allowing the classroom discussion to expand to topics of interest to each student population. Current events help demonstrate to students that, unlike fact-filled textbooks suggest, science is not static and scientists are actively investigating many ‘textbook’ concepts. Showing students the process and progressive nature of scientific information reinforces critical thinking rather than pure memorization.

  1. The flipped classroom: practices and opportunities for health sciences librarians.

    PubMed

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  2. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  3. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  4. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.

  5. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  6. Earth Science Data for a Mobile Age

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    Earth science data access needs to be interoperable and automatic. Recently, increasingly savvy data users combined with more complex web and mobile applications have placed increasing demands on how this Earth science data is being delivered to educators and students. The MY NASA DATA (MND) and S'COOL projects are developing a strategy to interact with the education community in the age of mobile devices and platforms. How can we provide data and meaningful scientific experiences to educational users through mobile technologies? This initiative will seek out existing technologies and stakeholders within the Earth Science community to identify datasets that are relevant and appropriate for mobile application development and use by the educational community. Targeting efforts within the educational community will give the project a better understanding of the previous attempts at data/mobile application use in the classroom and its problems. In addition, we will query developers and data providers on what successes and failures they've experienced in trying to provide data for applications designed on mobile platforms. This feedback will be implemented in new websites, applications and lessons that will provide authentic scientific experiences for students and end users. We want to create tools that help sort through the vast amounts of NASA data, and deliver it to users automatically. NASA provides millions of gigabytes of data that is publicly available through a large number of services spread across the World Wide Web. Accessing and navigating this data can be time consuming and problematic with variety of file types and methods for accessing this data. The MND project, through its' Live Access Server system, provides selected datasets that are relevant and targets National Standards of Learning for educators to easily integrate into existing curricula. In the future, we want to provide desired data to users with automatic updates, anticipate future data queries

  7. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  8. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  9. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  10. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    NASA Astrophysics Data System (ADS)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  11. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  12. Field-Study Science Classrooms as Positive and Enjoyable Learning Environments

    ERIC Educational Resources Information Center

    Zaragoza, Julien M.; Fraser, Barry J.

    2017-01-01

    We investigated differences between field-study classrooms and traditional science classrooms in terms of the learning environment and students' attitudes to science, as well as the differential effectiveness of field-study classrooms for students differing in sex and English proficiency. A modified version of selected scales from the What Is…

  13. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    This guide gives elementary school teachers suggestions for providing a safe environment for their students and covers general safety concerns in the science classroom. Information is printed in a flip chart format for easy reference. Safety areas covered include: (1) In Case of Accident; (2) Eye Protection; (3) Plants in the Classroom; (4) First…

  14. Teaching and learning science in linguistically diverse classrooms

    NASA Astrophysics Data System (ADS)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  15. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  16. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  17. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    NASA Astrophysics Data System (ADS)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  18. DIG Texas Blueprints - Pathways for Teaching a Rigorous Earth Science Course

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Pennington, D. D.; Fox, S.; Larsen, K.; Ledley, T. S.; Stocks, E.; Mosher, S.; Miller, K. C.

    2013-12-01

    The DIG (Diversity and Innovation for Geosciences) Texas Instructional Blueprint project supports the development of five online instructional blueprints that document what to teach in a yearlong high school-level Earth science course. Each blueprint stitches together units that contain approximately 10 well-vetted, curated educational resources and learning activities. Units may focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of Earth scientists, pedagogy specialists, and practicing science teachers are creating the blueprints. The cross-disciplinary collaboration among blueprint team members provides opportunities for them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members also learn where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool. Blueprint development is guided by the Next Generation Science Standards and selected educational resources are aligned with the Texas state standards (Texas Essential Knowledge and Skills) for Earth and Space Science and the Earth Science Literacy Principles. The Science Education Resource Center (SERC) serves as the repository for the DIG Texas blueprint web pages. The Cyber-ShARE Center of Excellence at UTEP and SERC are engaged in the development of automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing and matching units from other blueprints, or creating new units and blueprints. These innovations are intended to provide access to the blueprints in such a way that enhances their use by secondary Earth science educators. In this presentation, we provide an overview of the project, showcase examples of the blueprints, report on the preliminary results of classroom implementation, and consider

  19. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  20. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  1. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    NASA Astrophysics Data System (ADS)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  2. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  3. Your Science Classroom: Becoming an Elementary/Middle School Science Teacher

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Downey, Laura

    2012-01-01

    Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…

  4. Earth Knowledge Acquired by Middle School Students

    NASA Technical Reports Server (NTRS)

    Ride, Sally

    2008-01-01

    Earth Knowledge Acquired by Middle School Students (EarthKAM), an education activity, allows middle school students to program a digital camera on board the International Space Station to photograph a variety of geographical targets for study in the classroom. Photos are made available on the web for viewing and study by participating schools around the world. Educators use the images for projects involving Earth Science, geography, physics, and social science.

  5. ED20. Crisis or Opportunity? Earth and Space Science Education at the State and National Levels

    NASA Astrophysics Data System (ADS)

    Brett, J. M.

    2011-12-01

    Scientists and researchers, those often in oversight positions and often control of the purse strings, have historically not been kind to the Earth Systems Science (ESS) discipline. This is puzzling to those of us who are ESS educators because we know that to appreciate how our planet works it is necessary to integrate and apply all the disciplines of science. With our amazing technologies and the increasing demands of a growing population we are dramatically changing our home planet. Perhaps a crisis? As the last century ended we found ESS in the same minor league position it was in when the 20th Century started. During the review period of what was to become the National Science Education Standards (NSES) draft after draft, no matter what color the cover was, seemed to ignore, omit, or severely limit ESS topics in meteorology and oceanography. Once published the NSES became the basis for the science standards in many states with what many said were critical gaps. In the years following 1996 different groups have worked to correct the omissions they found by developing guides...Ocean Literacy: Essential Principles of Ocean Science K-12 and Climate Literacy: The Essential Principals of Climate Science. An observer on the side might have considered each effort one of lobbying to get attention, funding and materials. Each effort was clearly interested in making an impact where it mattered...in the classroom. Now our Opportunity! The NAS process for developing "A Framework for K-12 Science Education" presented ESS educators with a real opportunity and we can proudly say we made our voices heard. And while there is great enthusiasm for the framework and the Chapter 7 Earth and Space we face critically important work to bring real Earth Space Science Education into the K-12 classroom. The possibility of the standards to be developed from the Framework becoming Common Core for the majority of states following the course of ELA and mathematics requires that those who

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. Development of Classroom Management Scale for Science Teachers

    ERIC Educational Resources Information Center

    Temli-Durmus, Yeliz

    2016-01-01

    Students cannot learn in chaotic, badly managed classrooms. In the first years of teaching experiences, teachers revealed that novice teachers came to recognize the importance of discipline skills and classroom management for effective instruction. The purpose of the study was (i) to develop Science teachers' views towards classroom management…

  8. Ecojustice in science education: leaving the classroom

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.

    2011-06-01

    Eduardo Dopico and Eva Garcia-Vázquez's article enriched the ecojustice literature with an interesting metaphor of leaving the classroom, which I argue for here. Glasson and Boggs help to highlight the challenges and fortitude of working ecojustice perspectives in science education and the ways that a dialogical conversation addresses the world at large rather than focusing narrowly and exclusively on science education. Considering the metaphor of `leaving the classroom' I want to explore the tensions that can be experienced by science educators who do research focused on ecosocial justice. While it is not a new idea to suggest that there are gatekeepers in science education who try to maintain what counts in terms of impact in the classroom and what counts or not for the purposes of doing good work in science education, I anticipate highlighting the tensions that ecojustice educators may experience and why they can and should persevere with the incisive work that they are doing to conserve the prospects of future generations. Ecojustice no longer belongs constrained under the confines of environmental sciences or environmental education in science education. It is a separate and distinct field of study that should be generally accepted for the ways it brings clarity and conversation to ideas, curriculum studies, and thick descriptions of how people engage in eco-justice and ethics.

  9. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  10. Research Based Science Education: Bringing Authentic Scientific Research into the Secondary Classroom

    NASA Astrophysics Data System (ADS)

    Sayers, J.

    2003-12-01

    Teachers and students at Northview High School in Brazil, Indiana have the opportunity to engage in authentic scientific research through our participation in two national projects, TLRBSE and PEPP. Teacher Leaders in Research Based Science Education (TLRBSE) is a teacher professional development and retention program coupled with authentic scientific research projects in astronomy. Teacher-Leaders are trained in research-based pedagogy and serve as mentors to less experienced colleagues and work with students to develop science research methods and research projects for the classroom. Astronomical data collected at Kitt Peak by astronomers and teachers is made available on CD for classroom use. Northview is in its second year as a TLRBSE school. The Princeton Earth Physics Project (PEPP) trains mentor teachers in fundamentals of research in seismology. Teachers and students then gain hands on experience in science research through operation of a research quality seismic station sited at the high school. Data from the Northview seismometer are stored locally and also transmitted over the Internet to a database at Indiana University. Students have access to local data as well as seismic databases accessible through the Internet to use for research projects. The Northview Seismic Station has been in operation since 1998. In this presentation, I will describe how these projects have been incorporated into the physics and earth science programs at Northview High School. I will discus how our teachers and students have benefited from the opportunity to take part in hands-on scientific research under the guidance of university faculty. In particular, I will describe our participation in a regional seismic network through seismic data acquisition, data analysis using seismological software, and students' experiences in a university-based student research symposium. I reflect on the some of the successes and barriers to high-school teachers' and students' involvement in

  11. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. Globalization and Mobilization of Earth Science Education with GeoBrain Geospatial Web Service Technology

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2005-12-01

    The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research

  13. Participating in Authentic Science with the Aid of Learning Progressions through Mission Earth Workshops

    NASA Astrophysics Data System (ADS)

    Lewis, P. M., Jr.; Taylor, J.; Harte, T.; Czajkowski, K. P.

    2016-12-01

    "MISSION EARTH: Fusing GLOBE with NASA Assets to Build Systemic Innovation In STEM Education" is one of the new education cooperative agreements funded by the NASA Science Mission Directorate. Students will learn how to conduct "real science" through hands-on data collection using Global Learning and Observations to Benefit the Environment (GLOBE) protocols combined with other NASA science educational materials. This project aims to work with educators spanning the full K-12 range, requiring three grade bands of learning progressions and vertical alignment among materials and resources to best meet classroom needs. From K to 12 students have vastly different abilities to conduct and learn from scientific investigations. Hand-picked NASA assets will provide appropriate exposure across the curriculum and grade bands, and we are developing unique learning progressions that bring together GLOBE protocols for data collection and learning activities, NASA data sets through MY NASA DATA for data comparison, and more. The individual materials are not limited to science, but also include all elements of STEM with literacy components added in where appropriate. This will give the students an opportunity to work on better understanding the world around them in a well-rounded way, and offer cross-subject/classroom exposure to improve student understanding. To ensure that these learning progressions can continue to be used in the classroom in the future, alignment to the Next Generation Science Standards will help frame all of the materials and products. The learning progressions will be living documents that will change based on context. After several iterations, it is our goal to produce learning progressions for grades K-12 that will allow any STEM teacher to pick up and infuse NASA and GLOBE in their classroom at any location and at any time in their school year. This presentation will share results from the first year of development for this project.

  14. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  15. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  16. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  17. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  18. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  19. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  20. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  1. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  2. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  3. Pedagogy for the Connected Science Classroom: Computer Supported Collaborative Science and the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Foley, Brian J.; Reveles, John M.

    2014-01-01

    The prevalence of computers in the classroom is compelling teachers to develop new instructional skills. This paper provides a theoretical perspective on an innovative pedagogical approach to science teaching that takes advantage of technology to create a connected classroom. In the connected classroom, students collaborate and share ideas in…

  4. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  5. Associations between school-level environment and science classroom environment in secondary schools

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey P.; Fraser, Barry J.; McRobbie, Campbell J.

    1995-09-01

    This article describes a study of links between school environment and science classroom environment. Instruments to assess seven dimensions of school environment (viz., Empowerment, Student Support, Affiliation, Professional Interest, Mission Consensus, Resource Adequacy and Work Pressure) and seven dimensions of classroom environment (viz., Student Affiliation, Interactions, Cooperation, Task Orientation, Order & Organisation, Individualisati n and Teacher Control) in secondary school science classrooms were developed and validated. The study involved a sample of 1,318 students in 64 year 9 and year 12 science classes and 128 teachers of science in Australian secondary schools. Using the class mean as the unit of analysis for student data, associations between school and classroom environment were investigated using simple, multiple and canonical correlational analyses. In general, results indicated weak relationships between school and classroom environments and they reinforced the view that characteristics of the school environment are not transmitted automatically into science classrooms.

  6. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    NASA Astrophysics Data System (ADS)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  7. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  8. Using Socioscientific Issues in Primary Classrooms

    ERIC Educational Resources Information Center

    Dolan, Thomas J.; Nichols, Bryan H.; Zeidler, Dana L.

    2009-01-01

    In this article, we provide three examples of the use of socioscientific issues (SSI) in a 5th-grade classroom. Taken from Earth science (beach sand replacement), life science (the Canadian seal hunt), and physical science (speed limits), the examples show how teachers can embed scientific content in controversial social issues that engage younger…

  9. Everyday classroom assessment practices in science classrooms in Sweden

    NASA Astrophysics Data System (ADS)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  10. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    NASA Technical Reports Server (NTRS)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and

  11. Expedition Earth and Beyond: Using NASA data resources and integrated educational strategies to promote authentic research in the classroom

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W.; Willis, K.; Runco, S.

    2009-12-01

    Teachers in today’s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and

  12. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  13. Science Learning Outcomes in Alignment with Learning Environment Preferences

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-04-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth Science Learning Outcomes Inventory. The results showed that most students preferred learning in a classroom environment where student-centered and teacher-centered instructional approaches coexisted over a teacher-centered learning environment. A multivariate analysis of covariance also revealed that the STBIM students' cognitive achievement and attitude toward earth science were enhanced when the learning environment was congruent with their learning environment preference.

  14. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  15. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  16. Approaches to Classroom-Based Computational Science.

    ERIC Educational Resources Information Center

    Guzdial, Mark

    Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…

  17. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  18. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  19. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  20. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    NASA Astrophysics Data System (ADS)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  1. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  2. Bringing the Science of Climate Change to Elementary Students with new Classroom Activities from Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.

    2016-12-01

    To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).

  3. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  4. Supporting Ngss-Congruent Instruction in Earth & Space Science Through Educator Implementation and Feedback: Refining the Dig Texas Blueprints

    NASA Astrophysics Data System (ADS)

    Jacobs, B. E.; Bohls-Graham, C. E.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; McIver, H.; Sergent, C.

    2015-12-01

    The development of the Next Generation Science Standards (NGSS) as a framework around which to guide K-12 science instruction has generated a call for rigorous curricula that meets the demand for developing a workforce with expertise in tackling modern Earth science challenges. The Diversity and Innovation in Geosciences (DIG) Texas Blueprints project addresses this need for quality, aligned curricula with educator-vetted, freely available resources carefully selected and compiled into three week thematic units that have been aligned with the Earth Science Literacy Principles and the NGSS. These units can then be packaged into customized blueprints for a year-long Earth & Space Science course that engages students in the relevant disciplinary core ideas, crosscutting concepts and science and engineering practices. As part of supporting NGSS-congruent instruction, each unit has extensive scaffolding notes for the learning activities selected for that unit. Designed with both the new and veteran teacher in mind, these scaffolding notes yield information regarding advanced teacher preparation, student prerequisite skills, and potential challenges that might arise during classroom implementation. Feedback from Texas high school teachers implementing the DIG Texas Blueprints in the classroom, in addition to that of university secondary education majors in a preparation course utilizing the blueprints, instigated the most recent revisions to these scaffolding notes. The DIG Texas Blueprints Educator Intern Team charged with these revisions then determined which learning activities became candidates for either inclusion in the refined units, retention as an additional resource, or elimination from the blueprints. This presentation will focus on the development of these scaffolding notes and their role in supporting congruence with the NGSS. A review of the second year of implementation of the blueprints and the feedback that generated the final revisions will be shared

  5. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    NASA Astrophysics Data System (ADS)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  6. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  7. Cross-Cultural Collaboration in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.

    2006-12-01

    Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.

  8. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  9. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  10. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  11. A theoretical understanding of the literature on student voice in the science classroom

    NASA Astrophysics Data System (ADS)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom.

  12. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    NASA Astrophysics Data System (ADS)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  13. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  14. Science for Girls: Successful Classroom Strategies

    ERIC Educational Resources Information Center

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  15. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    NASA Astrophysics Data System (ADS)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  16. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  17. Reversing the Downward Spiral of Science Instruction in K-2 Classrooms

    NASA Astrophysics Data System (ADS)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2011-10-01

    This study investigated the extent to which teacher professional development led to changes in science instruction in K-2 classrooms in rural school districts. The research specifically examined changes in (a) teachers' content knowledge in science; (b) teachers' self-efficacy related to teaching science; (c) classroom instructional time allotted to science; and (d) instructional strategies used in science. The study also investigated contextual factors contributing to or hindering changes in science instruction. Data sources included a teacher survey, a self-efficacy assessment, content knowledge tests, interviews, and classroom observations. After one year in the program, teachers showed increased content knowledge and self-efficacy in teaching science; they spent more instructional time on science and began using different instructional strategies. Key contextual factors included curricular demands, resources, administrative support, and support from other teachers.

  18. Religious beliefs in science classrooms

    NASA Astrophysics Data System (ADS)

    Fysh, Robert; Lucas, Keith B.

    1998-12-01

    The question of the relationship between science and religion assumes importance for many secondary school students of science, especially but not exclusively for those in Christian schools. Science as presented in many school classrooms is not as objective and value free as it might seem on first examination, nor does it represent adequately the range of beliefs about science held by students and teachers. This paper reports part of a larger research study into beliefs about science and religion held by students, teachers and clergy in a Lutheran secondary school. Results indicate that participants in the study was the relationship between science and religious belief in ways unforeseen and unappreciated by traditional school science programs. The stories of selected participants are told and they frame a discussion of implications of the study for science teaching.

  19. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  20. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  1. Integrating Engineering into an Urban Science Classroom

    ERIC Educational Resources Information Center

    Meyer, Helen

    2017-01-01

    This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…

  2. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  3. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    ERIC Educational Resources Information Center

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  4. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  5. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    Dean, Robert A.; And Others

    This safety guide for elementary school science teachers who plan science activities or laboratories for their students, presents information in the form of a flip chart that can be posted in the classroom and referred to in an emergency. Space is provided for emergency telephone numbers. A safety checklist is given for the teacher. Topics…

  6. Reversing the Downward Spiral of Science Instruction in K-2 Classrooms

    ERIC Educational Resources Information Center

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2011-01-01

    This study investigated the extent to which teacher professional development led to changes in science instruction in K-2 classrooms in rural school districts. The research specifically examined changes in (a) teachers' content knowledge in science; (b) teachers' self-efficacy related to teaching science; (c) classroom instructional time allotted…

  7. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  8. Alternative Conceptions Concerning the Earth's Interior Exhibited by Honduran Students

    ERIC Educational Resources Information Center

    Capps, Daniel K.; McAllister, Meredith; Boone, William J.

    2013-01-01

    Although multiple studies of misconceptions in Earth science have been completed using samples of North American and European students and teachers, little research has been conducted on alternative Earth science conceptions in developing countries. The current study was conducted in 5th- and 6th-grade classrooms in eastern Honduras, Central…

  9. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  10. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    ERIC Educational Resources Information Center

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  11. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  12. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  13. Classroom management at the university level: lessons from a former high school earth science teacher

    NASA Astrophysics Data System (ADS)

    Lazar, C.

    2009-12-01

    Just a few days before my career as a fledgling science teacher began in a large public high school in New York City, a mentor suggested I might get some ideas about how to run a classroom from a book called The First Days Of School by Harry Wong. Although the book seemed to concentrate more on elementary students, I found that many of the principles in the book worked well for high school students. Even as I have begun to teach at the university level, many of Wong’s themes have persisted in my teaching style. Wong’s central thesis is that for learning to occur, a teacher must create the proper environment. In education jargon, a good climate for learning is generated via classroom management, an array of methods used by elementary and secondary school teachers to provide structure and routine to a class period via a seamless flow of complementary activities. Many college professors would likely consider classroom management to be chiefly a set of rules to maintain discipline and order among an otherwise unruly herd of schoolchildren, and therefore not a useful concept for mature university students. However, classroom management is much deeper than mere rules for behavior; it is an approach to instructional design that considers the classroom experience holistically. A typical professorial management style is to lecture for an hour or so and ask students to demonstrate learning via examinations several times in a semester. In contrast, a good high school teacher will manage a class from bell-to-bell to create a natural order and flow to a given lesson. In this presentation, I will argue for an approach to college lesson design similar to the classroom management style commonly employed by high school and elementary school teachers. I will suggest some simple, practical techniques learned during my high school experience that work just as well in college: warm-up and practice problems, time management, group activities, bulletin boards, learning environment

  14. Hands-on earth science with students at schools for the Deaf

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  15. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-05-01

    The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  16. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  17. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  18. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    NASA Astrophysics Data System (ADS)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  19. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  20. Metacognitive Strategies on Classroom Participation and Student Achievement in Senior Secondary School Science Classrooms

    ERIC Educational Resources Information Center

    ibe, Helen Ngozi

    2009-01-01

    Teachers constantly face the challenges of the most effective methods of instruction that could enhance academic achievement and match the diversity among students. This study therefore aimed at examining the effects of metacognitive strategies on classroom participation and student achievement in Senior Secondary School Science classrooms. One…

  1. The Teach for America RockCorps, Year 2: Using Authentic Research Experiences in Geophysics for STEM Teachers to Inspire Earth Science-Themed Lessons in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.

    2016-12-01

    Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, p

  2. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  3. Studying Earth's Environment From Space: Classroom and Laboratory Activities with Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    2001-01-01

    Standard, text-book based learning for earth, ocean, and atmospheric sciences has been limited by the unavailability of quantitative teaching materials. While a descriptive presentation, in a lecture format, of discrete satellite images is often adequate for high school classrooms, this is seldom the case at the undergraduate level. In order to address these concerns, a series of numerical exercises for the Macintosh was developed for use with satellite-derived Sea Surface Temperature, pigment and sea ice concentration data. Using a modified version of NIH Image, to analyze actual satellite data, students are able to better understand ocean processes, such as circulation, upwelling, primary production, and ocean/atmosphere coupling. Graphical plots, image math, and numerical comparisons are utilized to substantiate temporal and spatial trends in sea surface temperature and ocean color. Particularly for institutions that do not offer a program in remote sensing, the subject matter is presented as modular units, each of which can be readily incorporated into existing curricula. These materials have been produced in both CD-ROM and WWW format, making them useful for classroom or lab setting. Depending upon the level of available computer support, graphics can be displayed directly from the CD-ROM, or as a series of color view graphs for standard overhead projection.

  4. Life Skills from the Perspectives of Classroom and Science Teachers

    ERIC Educational Resources Information Center

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  5. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  6. Making the Most of a Limited Opportunity: Empowering our Future Earth Science Educators by Engaging Them in Field-Based Inquiry.

    NASA Astrophysics Data System (ADS)

    Levy, R.; David, H.; Carlson, D.; Kunz, G.

    2004-12-01

    Geoscience courses that engage students in our K-12 learning environments represent a fundamental method to increase public awareness and understanding of Earth systems science. K-12 teachers are ultimately responsible for developing and teaching these courses. We recognize that it is our role as university instructors to ensure that our future K-12 teachers receive a high-quality and practical Earth science education; unfortunately many education majors at our institution receive no formal exposure to geoscience. Furthermore, for those students who choose to take a geoscience course, the experience is typically limited to a large introductory lecture-lab. While these courses are rich in content they neither provide opportunities for students to experience `real' Earth science nor address the skills required to teach Earth science to others. In 2002 we began to develop a field-based introductory geoscience course designed specifically for education students. Our major goal was to attract education majors and provide a field-based geoscience learning experience that was challenging, exciting, and directly applicable to their chosen career. Specific objectives of our project were to: (1) teach geoscience concepts and skills that K-12 teachers are expected to understand and teach to their students (outlined in national standards); (2) provide students with an opportunity to learn through scientific inquiry; (3) enhance student confidence in their ability to teach geoscience in the K-12 classroom. We piloted a two-week field course during summer 2004. The field excursion followed a route through Nebraska and Wyoming. Instructors focused on exposing students to the Earth systems concepts and content outlined in national education standards. The primary instructional approach was to engage students in inquiry-based learning. Students were provided many opportunities to utilize science process skills including: observation, documentation, classification, questioning

  7. Classroom Animals Provide More Than Just Science Education

    NASA Astrophysics Data System (ADS)

    Herbert, Sandra; Lynch, Julianne

    2017-03-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's learning can be affected by many factors. This paper focuses on teachers' perceptions of classroom animals, drawing on accounts and reflections provided by 19 participants located in an Australian primary school where each classroom kept an animal. This study aims to progress the conversation about classroom animals, the learning opportunities that they afford, and the issues they present. Phenomenographic analysis of data resulted in five categories of teachers' perceptions of the affordances and constraints of keeping classroom animals.

  8. Effectiveness of 1:1 technology in the science classroom

    NASA Astrophysics Data System (ADS)

    Weiss, Courtney Tara

    The purposes of this study were: (a) to determine if using e-text technology in a middle school resource science classroom increases student academic performance, (b) to determine if using e-text technology in a middle school science resource classroom increases student engagement/on-task behavior, and (c) to evaluate student comfort and satisfaction in using an electronic textbook or print textbook in a middle school resource science classroom. Ten middle school students, four in grade 7 and six in grade 8 participated in the study using the Discovery Education Science Techbook and the AGS General Science series. A single subject design with ABABA phases was used with the printed textbook from AGS as the baseline and the e-text as the intervention. During the baseline and intervention, students completed vocabulary and guided notes on science content. Their performance was evaluated through homework completion, quiz and test scores. Their on task behaviors were observed and recorded in five-minute time intervals daily. Results showed that even though the students preferred the e-text over the printed textbook, their academic scores and engagement were lower when using the e-text.

  9. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  10. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  11. Inquiry-based instruction in secondary science classrooms: A survey of teacher practice

    NASA Astrophysics Data System (ADS)

    Gejda, Linda Muggeo

    The purpose of this quantitative investigation was to describe the extent to which secondary science teachers, who were certified through Connecticut's BEST portfolio assessment process between 1997 and 2004 and had taught secondary science during the past academic year, reported practicing the indicators of inquiry-based instruction in the classroom and the factors that they perceived facilitated, obstructed, or informed that practice. Indicators of inquiry-based instruction were derived from the Biological Sciences Curriculum Study (BSCS) 5E model (Bybee, 1997). The method for data collection was a researcher-developed, self-report, questionnaire entitled "Inquiry-based Instruction in Secondary Science Classrooms: A Survey", which was developed and disseminated using a slightly modified Dillman (2000) approach. Almost all of the study participants reported practicing the 5Es (engage, explore, explain, elaborate, and evaluate) of inquiry-based instruction in their secondary science classrooms. Time, resources, the need to cover material for mandatory assessments, the science topics or concepts being taught, and professional development on inquiry-based instruction were reported to be important considerations in participants' decisions to practice inquiry-based instruction in their science classrooms. A majority of the secondary science teachers participating in this study indicated they had the time, access to resources and the professional development opportunities they needed to practice inquiry-based instruction in their secondary classrooms. Study participants ranked having the time to teach in an inquiry-based fashion and the need to cover material for mandated testing as the biggest obstacles to their practice of inquiry-based instruction in the secondary classroom. Classroom experience and collegial exchange informed the inquiry-based instruction practice of the secondary science teachers who participated in this study. Recommendations for further research

  12. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  13. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  14. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  15. Interactions between Classroom Discourse, Teacher Questioning, and Student Cognitive Engagement in Middle School Science

    ERIC Educational Resources Information Center

    Smart, Julie B.; Marshall, Jeff C.

    2013-01-01

    Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using…

  16. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  17. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  18. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  19. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  20. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    NASA Astrophysics Data System (ADS)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  1. Classroom Animals Provide More than Just Science Education

    ERIC Educational Resources Information Center

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  2. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    how learners can engage in authentic research experiences using real data in the secondary science classroom. In this session you will receive a brief overview of the EarthLabs project, learn more about IODP Expedition 341, and see some of the resources that the module makes available to students to help them analyze the data.

  3. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  4. Ivestigating Earth Science in Urban Schoolyards

    ERIC Educational Resources Information Center

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  5. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  6. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  7. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  8. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  9. The Journal of Earth System Science Education: Peer Review for Digital Earth and Digital Library Content

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Ruzek, M.; Weatherley, J.

    2001-05-01

    The Journal of Earth System Science Education is a new interdisciplinary electronic journal aiming to foster the study of the Earth as a system and promote the development and exchange of interdisciplinary learning resources for formal and informal education. JESSE will serve educators and students by publishing and providing ready electronic access to Earth system and global change science learning resources for the classroom and will provide authors and creators with professional recognition through publication in a peer reviewed journal. JESSE resources foster a world perspective by emphasizing interdisciplinary studies and bridging disciplines in the context of the Earth system. The Journal will publish a wide ranging variety of electronic content, with minimal constraints on format, targeting undergraduate educators and students as the principal readership, expanding to a middle and high school audience as the journal matures. JESSE aims for rapid review and turn-around of resources to be published, with a goal of 12 weeks from submission to publication for resources requiring few changes. Initial publication will be on a quarterly basis until a flow of resource submissions is established to warrant continuous electronic publication. JESSE employs an open peer review process in which authors and reviewers discuss directly the acceptability of a resource for publication using a software tool called the Digital Document Discourse Environment. Reviewer comments and attribution will be available with the resource upon acceptance for publication. JESSE will also implement a moderated peer commentary capability where readers can comment on the use of a resource or make suggestions. In the development phase, JESSE will also conduct a parallel anonymous review of content to validate and ensure credibility of the open review approach. Copyright of materials submitted remains with the author, granting JESSE the non-exclusive right to maintain a copy of the resource

  10. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-12-01

    The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  11. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  12. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  18. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  19. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  20. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  1. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    NASA Astrophysics Data System (ADS)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  2. Incorporating Informal Learning Environments and Local Fossil Specimens in Earth Science Classrooms: A Recipe for Success

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2009-01-01

    In an online graduate paleontology course taken by practicing Earth Science teachers, we designed an investigation using teachers' local informal educational environments. Teachers (N = 28) were responsible for photographing, describing, and integrating fossil specimens from two informal sites into a paleoenvironmental analysis of the landscape in…

  3. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  4. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  5. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  6. Examining classroom interactions related to difference in students' science achievement

    NASA Astrophysics Data System (ADS)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  7. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  8. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  9. Becoming urban science teachers by transforming middle-school classrooms: A study of the Urban Science Education Fellows Program

    NASA Astrophysics Data System (ADS)

    Furman, Melina Gabriela

    The current scenario in American education shows a large achievement and opportunity gap in science between urban children in poverty and more privileged youth. Research has shown that one essential factor that accounts for this gap is the shortage of qualified science teachers in urban schools. Teaching science in a high poverty school presents unique challenges to beginner teachers. Limited resources and support and a significant cultural divide with their students are some of the common problems that cause many novice teachers to quit their jobs or to start enacting what has been described as "the pedagogy of poverty." In this study I looked at the case of the Urban Science Education Fellows Program. This program aimed to prepare preservice teachers (i.e. "fellows") to enact socially just science pedagogies in urban classrooms. I conducted qualitative case studies of three fellows. Fellows worked over one year with science teachers in middle-school classrooms in order to develop transformative action research studies. My analysis focused on how fellows coauthored hybrid spaces within these studies that challenged the typical ways science was taught and learned in their classrooms towards a vision of socially just teaching. By coauthoring these hybrid spaces, fellows developed grounded generativity, i.e. a capacity to create new teaching scenarios rooted in the pragmatic realities of an authentic classroom setting. Grounded generativity included building upon their pedagogical beliefs in order to improvise pedagogies with others, repositioning themselves and their students differently in the classroom and constructing symbols of possibility to guide their practice. I proposed authentic play as the mechanism that enabled fellows to coauthor hybrid spaces. Authentic play involved contexts of moderate risk and of distributed expertise and required fellows to be positioned at the intersection of the margins and the center of the classroom community of practice. In

  10. Exploring the Classroom: Teaching Science in Early Childhood

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; de Wit, Nele; van de Keere, Kristof; Vervaet, Stephanie

    2016-01-01

    This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N = 57) and the children were 4-6 years old. In order to assess children's attention for causal events and their understanding at the level of…

  11. Exploring the Classroom: Teaching Science in Early Childhood

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; De Wit, Nele; Van de Keere, Kristof; Vervaet, Stephanie

    2016-01-01

    This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57) and the children were 4-6 years old. In order to assess children's attention for causal events and their understanding at the level of…

  12. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  13. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  14. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  15. Silencing of Voices in a Swedish Science Classroom

    ERIC Educational Resources Information Center

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  16. Making Science Trade Book Choices for Elementary Classrooms

    ERIC Educational Resources Information Center

    Atkinson, Terry S.; Matusevich, Melissa N.; Huber, Lisa

    2009-01-01

    Teachers often use science trade books in the classroom for a number of reasons: to enhance science instruction, to augment an adopted science textbook, or to integrate literacy with subject-area content. Using Patricia Hunsader's mathematics trade book evaluation rubric published in the April 2004 issue of "Reading Teacher" as a model, the…

  17. Toward a critical approach to the study of learning environments in science classrooms

    NASA Astrophysics Data System (ADS)

    Lorsbach, Anthony; Tobin, Kenneth

    1995-03-01

    Traditional learning environment research in science classrooms has been built on survey methods meant to measure students' and teachers' perceptions of variables used to define the learning environment. This research has led mainly to descriptions of learning environments. We argue that learning environment research should play a transformative role in science classrooms; that learning environment research should take into account contemporary post-positivist ways of thinking about learning and teaching to assist students and teachers to construct a more emancipatory learning environment. In particular, we argue that a critical perspective could lead to research playing a larger role in the transformation of science classroom learning environments. This argument is supplemented with an example from a middle school science classroom.

  18. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  19. NASA/Aerospace Education Services Program. Classroom Activities.

    ERIC Educational Resources Information Center

    Nations, Jim, Comp.

    This document consists of a collection of classroom activities as they appeared in the "Aviation and Space Education News" from 1988 to 1991. The 45 activities in the document are organized in the following sections: (1) Aeronautics; (2) Earth Science; (3) Space Science; (4) Life in Space; (5) Rockets; and (6) Models. Each activity is…

  20. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  1. Learning in the Middle School Earth Science Classroom: Students Conceptually Integrate New Knowledge Using Intelligent Laserdiscs.

    ERIC Educational Resources Information Center

    Freitag, Patricia K.; Abegg, Gerald L.

    A study was designed to describe how middle school students select, link, and determine relationships between textual and visual information. Fourteen authoring groups were formed from both eighth-grade earth science classes of one veteran teacher in one school. Each group was challenged to produce an informative interactive laservideodisc project…

  2. Explanation, Argumentation and Dialogic Interactions in Science Classrooms

    ERIC Educational Resources Information Center

    Aguiar, Orlando G., Jr.

    2016-01-01

    As a responsive article to Miranda Rocksén's paper "The many roles of "explanation" in science education: a case study," this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts…

  3. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  4. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  5. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  6. Learning technologies and the cyber-science classroom

    NASA Astrophysics Data System (ADS)

    Houlihan, Gerard

    Access to computer and communication technology has long been regarded `part-and-parcel' of a good education. No educator can afford to ignore the profound impact of learning technologies on the way we teach science, nor fail to acknowledge that information literacy and computing skills will be fundamental to the practice of science in the next millennium. Nevertheless, there is still confusion concerning what technologies educators should employ in teaching science. Furthermore, a lack of knowledge combined with the pressures to be `seen' utilizing technology has lead some schools to waste scarce resources in a `grab-bag' attitude towards computers and technology. Such popularized `wish lists' can only drive schools to accumulate expensive equipment for no real learning purpose. In the future educators will have to reconsider their curriculum and pedagogy with a focus on the learning environment before determining what appropriate computing resources to acquire. This will be fundamental to the capabilities of science classrooms to engage with cutting-edge issues in science. This session will demonstrate the power of a broad range of learning technologies to enhance science education. The aim is to explore classroom possibilities as well as to provide a basic introduction to technical aspects of various software and hardware applications, including robotics and dataloggers and simulation software.

  7. Socioscience and ethics in science classrooms: Teacher perspectives and strategies

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Amirshokoohi, Aidin; Kazempour, Mahsa; Allspaw, Kathleen M.

    2006-04-01

    This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty-two middle and high school science teachers from three US states participated in semi-structured interviews, and researchers employed inductive analyses to explore emergent patterns relative to the following two questions. (1) How do science teachers conceptualize the place of ethics in science and science education? (2) How do science teachers handle topics with ethical implications and expression of their own values in their classrooms? Profiles were developed to capture the views and reported practices, relative to the place of ethics in science and science classrooms, of participants. Profile A comprising teachers who embraced the notion of infusing science curricula with SSI and cited examples of using controversial topics in their classes. Profile B participants supported SSI curricula in theory but reported significant constraints which prohibited them from actualizing these goals. Profile C described teachers who were non-committal with respect to focusing instruction on SSI and ethics. Profile D was based on the position that science and science education should be value-free. Profile E transcended the question of ethics in science education; these teachers felt very strongly that all education should contribute to their students' ethical development. Participants also expressed a wide range of perspectives regarding the expression of their own values in the classroom. Implications of this research for science education are discussed.

  8. Group Work in Science Classrooms

    ERIC Educational Resources Information Center

    McGregor, Debbie; Tolmie, Andrew

    2009-01-01

    This article considers how students might work together in small groups, from two to eight, in either a primary or secondary science classroom. The nature of group work can vary widely and could include, for example, a pair carrying out an illustrative experiment, a trio or quad debating climate change, or six or seven rehearsing how they will…

  9. It's Time to Stand up for Earth Science

    ERIC Educational Resources Information Center

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  10. Teaching Science in a Technology-Rich Environment: The Impact of Three Innovative Tools on Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Felt, Wallace A.

    2011-01-01

    This qualitative case study of a rural high school examines the impact of technology tools on secondary science classrooms. Specifically, document cameras, student response systems, and probeware are examined for their affect in instructional practices in science classrooms where they are used. Observational data, student surveys, and teacher…

  11. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  12. The effect of an STC orientation to teaching on student academic performance and motivation in secondary earth science

    NASA Astrophysics Data System (ADS)

    Corbin, Robert Arthur

    Student achievement gaps among subgroups remain a prevalent and critical issue in urban education systems. In many classes these students remain the target---and often the victims---of test-driven curriculum. Missing from their urban education is one of the most important aspects of a true education: a sense of place within that education. Science educators and educational researchers might consider the benefits of Sociotransformative Constructivism (STC) as a means of creating a more meaningful education for urban youth. This study examined the impact of an STC teaching orientation on student motivation and academic performance in secondary earth science students. The mixed methodology employed used both qualitative and quantitative data. Data collection consisted of STC activities, survey data, classroom observations, studentgenerated work and threaded discussions. Statistical analysis included independent t-tests of pre- and post-instruction concept maps. The results showed that the adaptation of an STC teaching orientation has a positive impact on student motivation and performance in secondary earth science.

  13. Exploring the variability in how educators attend to science classroom interactions

    NASA Astrophysics Data System (ADS)

    Gillespie, Colleen Elizabeth

    Many researchers assert educators must develop a shared instructional vision in order for schools to be effective. While this research tends to focus on educators' alignment around goals of science classrooms, I argue that we can't assume that educators agree on what they see when they look at science classrooms. In this dissertation, I explore the variability in what teachers and leaders notice in science classroom episodes and how they reason about what they notice. I ground my studies in real classroom practice: a videotaped lesson in the first study and a live classroom observation in the second. In Chapter 2, I discuss the importance of grounding discussions about teaching and learning in classroom artifacts, a commitment that motivates my dissertation: educators may have a shared vision when discussing teaching and learning in the abstract but disagree about whether that vision is being realized in a classroom. I then describe and analyze the video clip I used in my interviews, highlighting moments that I consider to be good teaching and learning. In Chapter 3, I present my first study, in which I showed this episode to 15 different science teachers, science instructional leaders, and principals. I found that participants attended to many different features in the episode, which led to significant disagreement about what is happening in the episode. Additionally, I found that these differences in attention corresponded to differences in how participants were framing the activity of watching the clip. In Chapter 4, I explore the attentional variability of one science instructional leader, Valerie, in multiple contexts. In addition to interviewing Valerie about the videotaped lesson, I also observed Valerie engage in an "observation cycle" with a teacher. Even though Valerie is quite skilled at attending to student thinking in some contexts, I found that Valerie's attention is strongly context-dependent and gets pulled away from students' scientific thinking

  14. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  15. Classrooms Matter: The Design of Virtual Classrooms Influences Gender Disparities in Computer Science Classes

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam

    2011-01-01

    Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…

  16. Research on same-gender grouping in eighth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  17. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  18. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the

  19. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  20. "But at school … I became a bit shy": Korean immigrant adolescents' discursive participation in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    2013-09-01

    In reform-based science curricula, students' discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants' othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.

  1. Teaching Monte Carlo Strategies for Earth System Modelling using a Guided Group-Learning Approach in the Classroom

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Pianosi, F.; Woods, R. A.

    2016-12-01

    The need for quantifying uncertainty in earth system modelling has now been well established on both scientific and policy-making grounds. There is an urgent need to bring the skills and tools needed for doing so into practice. However, such topics are currently largely constrained to specialist graduate courses or to short courses for PhD students. Teaching the advanced skills needed for implementing and for using uncertainty analysis is difficult because students feel that it is inaccessible and it can be boring if presented using frontal teaching in the classroom. While we have made significant advancement in sharing teaching material, sometimes even including teaching notes (Wagener et al., 2012, Hydrology and Earth System Sciences), there is great need for understanding how we can bring such advanced topics into the undergraduate (and even graduate) curriculum in an effective manner. We present the results of our efforts to teach Matlab-based tools for uncertainty quantification in earth system modelling in a civil engineering undergraduate course. We use the example of teaching Monte Carlo strategies, the basis for the most widely used uncertainty quantification approaches, through the use of guided group-learning activities in the classroom. We utilize a three-step approach: [1] basic introduction to the problem, [2] guided group-learning to develop a possible solution, [3] comparison of possible solutions with state-of-the-art algorithms across groups. Our initial testing in an undergraduate course suggests that (i) overall students find a group-learning approach more engaging, (ii) that different students take charge of advancing the discussion at different stages or for different problems, and (iii) that making appropriate suggestions (facilitator) to guide the discussion keeps the speed of advancement sufficiently high. We present the approach, our initial results and suggest how a wider course on earth system modelling could be formulated in this manner.

  2. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    NASA Astrophysics Data System (ADS)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  3. Earth and Space Sciences: The Need for Diversity in Global Science

    NASA Astrophysics Data System (ADS)

    Hall, F. R.; Johnson, R.; Alexander, C.

    2004-12-01

    The Earth and Space sciences are truly global in nature and encompass the most diverse subject areas in science. Yet, the practitioners of these fields do not reflect the diversity of the populations that are impacted by the outcomes of the research in these fields of study. The global marketplace, migration, the search for economic and renewable resources, Earth Systems research, and understanding our place in the universe compels us to be more inclusive of the populations and cultures that inhabit our planet. In this talk, we discuss the relevancy of these issues on scientific endeavors in the 21st century and the need for the Earth and Space sciences to be the leaders within the broad scientific community of ensuring that science remains an inclusive enterprise.

  4. Elementary Teachers' Perception of Language Issues in Science Classrooms

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    Although the importance of language in science learning has been widely recognized by researchers, there is limited research on how science teachers perceive the roles that language plays in science classrooms. As part of an intervention design project that aimed to enhance teachers' capacity to address the language demands of science, interview…

  5. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    ERIC Educational Resources Information Center

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  6. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  7. Highlighting hybridity: A critical discourse analysis of teacher talk in science classrooms

    NASA Astrophysics Data System (ADS)

    Hanrahan, Mary U.

    2006-01-01

    There is evidence that alienation from science is linked to the dominant discourse practices of science classrooms (cf. Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex). Yet, in secondary science education it is particularly hard to find evidence of curriculum reform that includes explicit changes in pedagogic discourses to accommodate the needs of students from a wide range of backgrounds. However, such evidence does exist and needs to be highlighted wherever it is found to help address social justice concerns in science education. In this article, I show how critical discourse analysis can be used to explore a way of challenging the dominant discourse in teacher - student interactions in science classrooms. My findings suggest a new way of moving toward more socially just science curricula in middle years and secondary classrooms by using hybrid discourses that can serve emancipatory purposes.

  8. Building an Outdoor Classroom for Field Geology: The Geoscience Garden

    ERIC Educational Resources Information Center

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna

    2016-01-01

    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  9. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  10. A case study on the formation and sharing process of science classroom norms

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  11. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  12. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  13. A Cultural Historical Theoretical Perspective of Discourse and Design in the Science Classroom

    ERIC Educational Resources Information Center

    Adams, Megan

    2015-01-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser have initiated an important conversation in science education as they use sociocultural theory to introduce design based scenarios into the science classroom. This response seeks to expand Azevedo, Martalock and Keser's article "The discourse of design-based science classroom activities" by…

  14. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  15. Using Web Logs in the Science Classroom

    ERIC Educational Resources Information Center

    Duplichan, Staycle C.

    2009-01-01

    As educators we must ask ourselves if we are meeting the needs of today's students. The science world is adapting to our ever-changing society; are the methodology and philosophy of our educational system keeping up? In this article, you'll learn why web logs (also called blogs) are an important Web 2.0 tool in your science classroom and how they…

  16. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  17. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  18. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  19. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  20. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  1. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  2. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    NASA Astrophysics Data System (ADS)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  3. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  4. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  5. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  6. Socio-Scientific Decision Making in the Science Classroom

    ERIC Educational Resources Information Center

    Siribunnam, Siripun; Nuangchalerm, Prasart; Jansawang, Natchanok

    2014-01-01

    The learning ability of students in science is improved by socio-scientific decision-making, an important activity that improves a student's scientific literacy, conceptual understanding, scientific inquiry, attitudes, and social values. The socio-scientific issues must be discussed during science classroom activities in the current state of 21st…

  7. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    NASA Astrophysics Data System (ADS)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  8. Earth Works Central. [Educational Packet].

    ERIC Educational Resources Information Center

    Kids for Saving Earth Worldwide, Minneapolis, MN.

    Earth Works Central is an educational curriculum tool designed to provide environmental education support for the classroom. It features environmental materials for science, geography, history, art, music, dramatics, and physical education. It includes information on creating an environmental center where kids can learn and become empowered to…

  9. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    ERIC Educational Resources Information Center

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  10. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    ERIC Educational Resources Information Center

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  11. Flipping the Science Classroom: Exploring Merits, Issues and Pedagogy

    ERIC Educational Resources Information Center

    Ng, Wan

    2014-01-01

    Educators are continually being challenged to think about how best to integrate digital technologies meaningfully and effectively in their classrooms. A current trend in educational technology which has the potential to enable this in a pragmatic manner is the flipped classroom concept. This paper aims to explore the idea in Science teaching and…

  12. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  13. Using Infographics in the Science Classroom

    ERIC Educational Resources Information Center

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  14. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  15. Summer of Seasons Workshop Program for Emerging Educators in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj

    2002-01-01

    Norfolk State University BEST Lab successfully hosted three Summer of Seasons programs from 1998-2001. The Summer of Seasons program combined activities during the summer with additional seminars and workshops to provide broad outreach in the number of students and teachers who participated. Lessons learned from the each of the first two years of this project were incorporated into the design of the final year's activities. The "Summer of Seasons" workshop program provided emerging educators with the familiarity and knowledge to utilize in the classroom curriculum materials developed through NASA sponsorship on Earth System Science. A special emphasis was placed on the use of advanced technologies to dispel the commonly held misconceptions regarding seasonal, climactic and global change phenomena.

  16. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  17. Technology Integration in Science Classrooms: Framework, Principles, and Examples

    ERIC Educational Resources Information Center

    Kim, Minchi C.; Freemyer, Sarah

    2011-01-01

    A great number of technologies and tools have been developed to support science learning and teaching. However, science teachers and researchers point out numerous challenges to implementing such tools in science classrooms. For instance, guidelines, lesson plans, Web links, and tools teachers can easily find through Web-based search engines often…

  18. Reading the Environment: Children's Literature in the Science Classroom.

    ERIC Educational Resources Information Center

    Cerullo, Mary M.

    Science trade books, both fiction and nonfiction, nurture a child's personal journey of discovery through the anecdotes, adventures, and experiences of others and through vivid word and picture images. This book focuses on the use of children's literature in the science classroom. Chapters include: (1) "Why Science and Literature Belong…

  19. The impact of single-gender classrooms on science achievement of middle school gifted girls

    NASA Astrophysics Data System (ADS)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  20. Creating a Science Area in a Preschool Classroom.

    ERIC Educational Resources Information Center

    Rivera, Martha

    Preschool children need direct involvement with science content hands-on experiences that involve them in gathering, organizing, analyzing, and evaluating. This paper describes how to create a science area in a preschool classroom. The paper delineates the equipment needed to maintain a mentally stimulating environment for young children. It also…

  1. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  2. The function of questions in Omani fourth grade inquiry-based science classrooms: A sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Al-Shaibani, Madiha Ahmed

    2005-11-01

    Studies indicate that science education reforms are globally converging. Many countries are adopting the globally advocated science education reforms for the purpose of obtaining the competitive edge in science education and technology that are viewed as the driving forces of modern economies. Globally, science education reforms are emphasizing paradigm shifts in which constructivist instructional are foregrounded. Many science education curricular documents advocate teaching science through engaging students in scientific inquiry. As a result, science classrooms are becoming more student-centered where students are typically actively engaged in inquiry learning. Even though inquiry instruction has become the common approach in teaching science, the actual implementation of inquiry in classrooms indicates that there is a big gap between the intended inquiry advocated in curricula documents and the actual practices in classroom settings. One of the main features of inquiry instruction is student questions. Authentic student questions are essential for the initiating and main scientific inquiry. However, studies have also illustrated the rarity of student questions in classrooms. This dearth in student questions has been attributed to the discursive practices in classrooms. Classrooms that implement the traditional IRE discourse structure tend to have less student questions. On the other hand, reflective questioning is considered a more appropriate classroom discourse structure because it intentionally invites student questions and engages students in classroom discussions. This qualitative study addresses the issue of questioning in fourth grade inquiry-based science classrooms of the Omani Basic Education system. Methods employed in this study included: participant observation, individual interviews, focus group interviews and the collection of artifacts. Findings of this study illustrated the rarity of student questions in the classrooms. However this

  3. Energy matters: An investigation of drama pedagogy in the science classroom

    NASA Astrophysics Data System (ADS)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  4. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  5. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  6. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  7. Preservice Secondary Science Teachers' Experiences and Ideas about Bullying in Science Classrooms

    ERIC Educational Resources Information Center

    Raven, Sara; Jurkiewicz, Melissa A.

    2014-01-01

    Given the prevalence of bullying in schools, it is imperative that preservice secondary science teachers (PSSTs) know how to deal with this issue in the classroom. This is especially important in science, as the content covered in classes can sometimes lead to discussions of race, religion, and sexual orientation, which can be sensitive topics. In…

  8. Learning from History: A Lesson on the Model of the Earth

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu

    2006-01-01

    It is suggested that historical material concerning the model of the earth be utilised in the science classroom to construct narrative explanations. The article includes the various ancient models of the earth, the discovery of the spherical earth model, and the arguments and experiments coupled with it. Its instructional gain may lie in the…

  9. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  10. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  11. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  12. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  13. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and

  14. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  15. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  16. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    NASA Astrophysics Data System (ADS)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  17. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  18. Earth observation images taken as part of the EarthKAM educational program

    NASA Image and Video Library

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  19. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  20. Undergraduate Non-Science Majors' Descriptions and Interpretations of Scientific Data Visualizations

    ERIC Educational Resources Information Center

    Swenson, Sandra Signe

    2010-01-01

    Professionally developed and freely accessible through the Internet, scientific data maps have great potential for teaching and learning with data in the science classroom. Solving problems or developing ideas while using data maps of Earth phenomena in the science classroom may help students to understand the nature and process of science. Little…

  1. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    NASA Astrophysics Data System (ADS)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  2. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  3. Teacher and student perspectives on motivation within the high school science classroom

    NASA Astrophysics Data System (ADS)

    Pickens, Melanie Turnure

    The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational

  4. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  5. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  6. Science Learning Outcomes in Alignment with Learning Environment Preferences

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-01-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth…

  7. Flipped Classrooms for Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  8. From the field to the classroom: Connecting climate research to classroom lessons

    NASA Astrophysics Data System (ADS)

    Brinker, R.; Steiner, S. M.; Coleman, L.

    2015-12-01

    Improving scientific literacy is a goal in the United States. Scientists from the United States are often expected to present research findings in ways that are meaningful and accessible to the general public, including K-12 students. PolarTREC - Teachers and Researchers Exploring and Collaborating, a program funded by the National Science Foundation, partners teachers with scientists in the Arctic and Antarctica. Teachers communicate the research to general audiences on a regular basis. After the field experience, they then create classroom-ready lessons to relay the science exploration into science curriculum. In this presentation, secondary level educators, will share their experiences with being part of field research teams in the Arctic and Antarctica, and their strategies for bringing current science research into the classroom and aligning lessons with Next Generation Science Standards (NGSS). Topics include an overview on using polar science to teach about climate change, application of field research techniques to improve students' understanding of scientific investigation methodology, phenology observations, soil porosity and permeability, litter decomposition, effect of sunlight on release of carbon dioxide from thawing permafrost, and understanding early life on Earth by studying stromatolites in Antarctica.

  9. Questioning Profiles in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Almeida, Patricia; de Souza, Francisle Neri

    2010-01-01

    In this paper, we are concerned with the role of both teachers and students' questioning in classroom interaction. Bearing in mind that the current guidelines point out to student centred teaching, our aim is to analyse and characterise the questioning patterns of contemporary secondary science classes and compare them to the questioning profiles…

  10. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    NASA Astrophysics Data System (ADS)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  11. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  12. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Wu, Jason S.

    2017-01-01

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City.…

  13. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  14. Virtual Collections: An Earth Science Data Curation Service

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  15. Virtual Collections: An Earth Science Data Curation Service

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  16. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  17. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  18. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    NASA Astrophysics Data System (ADS)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  19. Student Engagement and Empowerment Through Earth System Science

    NASA Astrophysics Data System (ADS)

    Low, R.; Schnurrenberger, D.

    2001-12-01

    Through ESSEA's curricula, we promote empowerment of our diverse student body through access to excellence in science education and technology. Global change, by virtue of its economic relevance and environmental urgency, engages students in science inquiry. Global change is emerging as a political issue as countries with fewer resources are less able to buffer their economic systems from hardships resulting from climatic change. The ESS and global change emphasis facilitates in-depth classroom examination of the social ramifications of science and technology as required by Minnesota's state science standards. Access to ESSEA courses for in-service teachers is promoted by several programmatic initiatives of the University of Minnesota. High school and undergraduate versions of the on-line course are now in development. Summer research experiences for teachers, research projects by secondary classrooms tracking local environmental change, and involvement of graduate student scientists as on-line mentors of the ESSEA courses are components of a broader program that is building a multidisciplinary science-based learning community in Minnesota. ESSEA is the flagship program of Science CentrUM, a consortium of science and education colleges at the University of Minnesota promoting excellence in science education through content-based professional development for K-12 educators.

  20. New FINESSE Faculty Institutes for NASA Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, Stephanie; Marshall, Sunette Sophia; Stork, Debra; Pomeroy, J. Richard R

    2014-06-01

    In a systematic effort to improve the preparation of future science teachers, scholars coordinated by the CAPER Center for Astronomy & Physics Education Research are providing a series of high-quality, 2-day professional development workshops, with year-round follow-up support, for college and university professors who prepare future science teachers to work with highly diverse student populations. These workshops focus on reforming and revitalizing undergraduate science teaching methods courses and Earth and Space science content courses that future teachers most often take to reflect contemporary pedagogies and data-rich problem-based learning approaches steeped in authentic scientific inquiry, which consistently demonstrate effectiveness with diverse students. Participants themselves conduct science data-rich research projects during the institutes using highly regarded approaches to inquiry using proven models. In addition, the Institute allocates significant time to illustrating best practices for working with diverse students. Moreover, participants leave with a well-formulated action plan to reform their courses targeting future teachers to include more data-rich scientific inquiry lessons and to be better focused on improving science education for a wide diversity of students. Through these workshops faculty use a backwards faded scaffolding mechanism for working inquiry into a deeper understanding of science by using existing on-line data to develop and research astronomy, progressing from creating a valid and easily testable question, to simple data analysis, arriving at a conclusion, and finally presenting and supporting that conclusion in the classroom. An updated schedule is available at FINESSEProgram.org

  1. The perception of science teachers on the role of student relationships in the classroom

    NASA Astrophysics Data System (ADS)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  2. From interaction to interaction: Exploring shared resources constructed through and mediating classroom science learning

    NASA Astrophysics Data System (ADS)

    Tang, Xiaowei

    Recent reform documents and science education literature emphasize the importance of scientific argumentation as a discourse and practice of science that should be supported in school science learning. Much of this literature focuses on the structure of argument, whether for assessing the quality of argument or designing instructional scaffolds. This study challenges the narrowness of this research paradigm and argues for the necessity of examining students' argumentative practices as rooted in the complex, evolving system of the classroom. Employing a sociocultural-historical lens of activity theory (Engestrom, 1987, 1999), discourse analysis is employed to explore how a high school biology class continuously builds affordances and constraints for argumentation practices through interactions. The ways in which argumentation occurs, including the nature of teacher and student participation, are influenced by learning goals, classroom norms, teacher-student relationships and epistemological stances constructed through a class' interactive history. Based on such findings, science education should consider promoting classroom scientific argumentation as a long-term process, requiring supportive resources that develop through continuous classroom interactions. Moreover, in order to understand affordances that support disciplinary learning in classroom, we need to look beyond just disciplinary interactions. This work has implications for classroom research on argumentation and teacher education, specifically, the preparation of teachers for secondary science teaching.

  3. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  4. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  5. Changes in science classrooms resulting from collaborative action research initiatives

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  6. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  7. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  8. Metacognitive Strategies in the Introduction to Political Science Classroom

    ERIC Educational Resources Information Center

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  9. Hearing Female Voices in Life Science Classrooms.

    ERIC Educational Resources Information Center

    Dunlap, Julie

    1990-01-01

    The author makes a case for keeping sensitivity and intuitive approaches in the science classroom. The importance of emotional connections with other organisms, considered a critical part of enriched, effective scientific thinking, is emphasized. Female and male learning styles are described. (KR)

  10. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  11. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  12. Exploring the contexts of urban science classrooms: Cogenerative dialogues, coteaching, and cosmopolitanism

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    The body of work presented in this dissertation is a response to the reported association between poor outcomes in science achievement and students of color in urban schools. By presenting counterexamples to the cultural motif that urban students of color perform poorly in science, I argue that poor achievement cannot be traced to a group of people but can be linked to institutions promoting subject delivery methods that instill distaste for science and compel students to display an illusion of disinterest in school. There are two major goals of this study. First, I plan to demonstrate how plans of action generated by coteachers and cogenerative dialogue groups can coalesce under the ethos of making science and schooling accessible to populations that are traditionally marginalized from science achievement. My second aim is to develop mechanisms for transforming science learning contexts into cosmopolitan learning communities that develop student success in science. Through a three-year ethnographic study of physics and chemistry classrooms in a high school in New York City, I present explorations of the culture and context of the urban classroom as a chief means to meet my goals. In my research, I find that obstacles to identity development around science can be tied to corporate understandings of teaching and learning that are amenable to local efforts toward change. This change is facilitated through the use of transformative tools like cogenerative dialogues, coteaching, and cosmopolitanism. Through the application of these research tools, I uncover and investigate how various misalignments that present themselves in physics and chemistry classrooms serve as signifiers of macro issues that permeate science classrooms from larger fields. By utilizing cogenerative dialogues as a tool for investigating both micro enactments within classrooms and the macro structures that generate these enactments, I show how students and teachers can work together as co

  13. A cultural historical theoretical perspective of discourse and design in the science classroom

    NASA Astrophysics Data System (ADS)

    Adams, Megan

    2015-06-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser have initiated an important conversation in science education as they use sociocultural theory to introduce design based scenarios into the science classroom. This response seeks to expand Azevedo, Martalock and Keser's article The discourse of design- based science classroom activities by using a specific perspective within a sociocultural framework. Through using a cultural historical (Vygotsky in The history and development of higher mental functions, Plenum Press, New York, 1987) reading of design based activity and discourse in the science classroom, it is proposed that learning should be an integral part of these processes. Therefore, everyday and scientific concepts are explained and expanded in relation to Inventing Graphing and discourse presented in Azevedo, Martalock and Keser's article. This response reports on the importance of teacher's being explicit in relation to connecting everyday and scientific concepts alongside design based activity and related science concepts when teaching students. It is argued that explicit teaching of concepts should be instigated prior to analysis of discourse in the science classroom as it is only with experience and understanding these processes that students have the resources to call upon to argue like practicing scientists.

  14. Exploration of instruction, assessment, and equity in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Szpyrka, Donna A.

    2001-07-01

    In order to determine equitable practices of middle school science teachers questionnaire responses, classroom observations, teacher interviews, and assessment artifacts were examined to discover relationships between classroom instruction, assessment practices, and equity. Teachers in middle school science classrooms in six different schools completed a National Center for Education Statistics questionnaire, offered assessment artifacts, and participated in interviews. Observers using a classroom observation protocol and an equity profile rated 22 lessons. The study found that a distinction could be made between teachers who were more equitable and those who were less equitable. Careful planning and organization; the incorporation of tasks, roles, and interactions consistent with investigative science; a collaborative approach to learning; and instruction that takes into account what transpired in previous lessons---appear to be characteristics of lesson design of the more equitable teachers. In addition, instructional strategies and activities that addressed access, equity, and diversity as well as, a classroom climate that was respectful of students' contributions were found to a greater extent in the more equitable teachers' classrooms. While all teachers used multiple methods of assessment, the more equitable teachers used assessment differently. They also provided written feedback to students, relied on more than one aspect of student performance for determining grades, and explicated clear and specific assessment practices.

  15. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  16. Earth Science Education in Sudan

    NASA Astrophysics Data System (ADS)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  17. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  18. Block scheduling: Instructional practices in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Richelsoph, Barry

    Proponents of block scheduling perceive this approach to be a 'structural lever' to invite and impel teachers to change their teaching (Marshak, 1997). This desired shift is supposed to be manifest in movement from the traditional classroom structure, focusing on the teacher as lecturer or transmitter of subject matter, to that of teacher as coach with students as active learners, engaged in a variety of activities involving them individually and collaboratively in their education (Canady & Rettig, 1995). Block scheduling changes the formal structure of the school day, but does it really change pedagogical practices in high school science classrooms? Fraser's Individualized Classroom Environment Questionnaire (ICEQ) the instrument used in this study of science classes in five block-scheduled high schools in Connecticut, incorporates the tenets for an enriched classroom environment in its five scales or constructs: Participation---Extent to which students are encouraged to participate rather than be passive learners; Personalization---Emphasis on opportunities for individual students to interact with the teacher and on concern for the personal welfare and social growth of the individual; Investigation---Emphasis on the skills and processes of inquiry and their use in problem solving and investigation. Independence---Extent to which students are allowed to make decisions and have control over their own learning environment and behavior; Differentiation---Emphasis on the selective treatment of students on the basis of ability, learning style, interests, and rate of working (Fraser, 1990). The results and conclusions from this research study suggested that the block-scheduled high school science classes that participated in this research do promote, to varying degrees, those tenets that define an enriched classroom environment. Both the teachers and their classes of students perceived opportunities for Participation, Personalization, and Investigation constructs as

  19. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  20. The perspectives of Caribbean high school students' experiences in American science classrooms

    NASA Astrophysics Data System (ADS)

    Ferguson, Renae Luenell

    The purpose of this study was to describe the perspectives of Caribbean high school students' experiences in American science classrooms. Research suggests that psychological, cultural, and socioeconomic perspectives influence the science experiences of African Americans or Blacks; the result of which is under-representation (Lewis et al., 2000). Nonetheless, what is uncertain is if these and other perspectives are similar to the science experiences of Caribbeans who also are majority black by race and rank as the 3 rd largest immigrant population in America's schools (Suarez-Orozco, 2000). Questions guiding this study were: (1) What are the perspectives of Caribbean high school students' experiences in American science classrooms? (2) What can we learn from the perspectives of Caribbean high school students' science experiences that may address issues of participation and interest; consequently, influencing the overall performance of ethnic minorities in school science? Sociocultural theory provides the framework for the analysis of the study. Four Caribbean born students in an American high school participated in this naturalistic qualitative research. A constant comparative method was used to categorize and analyze the data and uncover meaningful patterns that emerged from the four interviews and written documents. Although there were similarities between African Americans' science experiences as documented in the literature and that of Caribbeans in this study, the Caribbean participants relied on prior native experiences to dictate their perspectives of their science experiences in America. According to Caribbean students, American science high schools classrooms utilize an objective style of assessments; are characterized by a lack of teacher support; allow behavioral problems in the classroom; and function through different communication styles than the native Caribbean science classroom environment. This study implies science educators should be sensitive

  1. Scientific Caricatures in the Earth Science Classroom: An Alternative Assessment for Meaningful Science Learning

    NASA Astrophysics Data System (ADS)

    Clary, Renee M.; Wandersee, James H.

    2010-01-01

    Archive-based, historical research of materials produced during the Golden Age of Geology (1788-1840) uncovered scientific caricatures (SCs) which may serve as a unique form of knowledge representation for students today. SCs played important roles in the past, stimulating critical inquiry among early geologists and fueling debates that addressed key theoretical issues. When historical SCs were utilized in a large-enrollment college Earth History course, student response was positive. Therefore, we offered SCs as an optional assessment tool. Paired t-tests that compared individual students’ performances with the SC option, as well as without the SC option, showed a significant positive difference favoring scientific caricatures ( α = 0.05). Content analysis of anonymous student survey responses revealed three consistent findings: (a) students enjoyed expressing science content correctly but creatively through SCs, (b) development of SCs required deeper knowledge integration and understanding of the content than conventional test items, and (c) students appreciated having SC item options on their examinations, whether or not they took advantage of them. We think that incorporation of SCs during assessment may effectively expand the variety of methods for probing understanding, thereby increasing the mode validity of current geoscience tests.

  2. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  3. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  4. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  5. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  6. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    NASA Astrophysics Data System (ADS)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  7. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    NASA Astrophysics Data System (ADS)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop

  8. An analysis of the New York State Earth Science Curriculum with respect to standards, classroom practices, and the Regents Examination

    NASA Astrophysics Data System (ADS)

    Contino, Julie Anna

    In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. In New York State, standards are provided to the teachers who then create individual curricula that will lead to student success on the state assessment. This mixed methods study presents an analysis of the alignment between the National Science Education Standards (NSES), New York State Physical Setting/Earth Science Core Curriculum (Core Curriculum), and New York State Earth Science Regents Examination (Regents)---the sources teachers use for creating Earth Science curricula in New York State. The NSES were found to have a 49% overlap with the Core Curriculum and a 27% overlap with the Regents. The Core Curriculum and Regents, represented by matrices consisting of performance indicators and cognitive demands, were compared using the Porter alignment index. The alignment was 0.35, categorized as slightly aligned, due to the different emphases on cognitive levels (the Core Curriculum focused on Understand and Apply while the Regents focused on Apply followed by Understand and Remember). Additionally, a purposeful sample of experienced and innovative teachers were surveyed and interviewed to gain insight on how NYS Earth Science teachers organize their scope and sequences, align their lessons with the Core Curriculum, establish internal lesson coherence, and prepare their students for the Regents Exam. Teachers' scope and sequences were well-aligned with the Core Curriculum and Regents but misalignment was found between their lessons and the Core Curriculum as well as between the stated objectives for their students and evaluation of those objectives. Based on the findings, it is suggested that the NSES be revised and the Core Curriculum updated to include quantifiable emphasis on the major understandings such as percentage of time, as well as an emphasis on alignment principles. Teacher professional development focused on alignment issues

  9. Classroom Model of a Wadati Zone.

    ERIC Educational Resources Information Center

    Shea, James H.

    1980-01-01

    Describes a plexiglass and aluminum model of a Wadati zone suitable for classroom exercises and demonstrations in earth science to let students test the hypothesis that earthquake hypocenters near oceanic trenches tend to occur along planes that dip away from the trenches, toward associated island arc or continental mountain chain. (Author/JN)

  10. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  11. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  12. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  13. Introducing Future Teachers to Science Beyond the Classroom

    NASA Astrophysics Data System (ADS)

    Kisiel, James

    2013-02-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations—they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum interactions within the context of the school field trip, there is limited research that examines other ways that such institutions might support classroom teachers. A growing number of studies, however, examine how incorporating such ideas of connections of ISEIs to pre-service teacher education might improve teacher perceptions and awareness. Pre-service elementary teachers enrolled in a science methods class participated in a semester-long assignment which required participation in their choice of activities and events (workshops, field trips, family day activities) conducted at local ISEIs. Students generally saw this embedded assignment as beneficial, despite the additional out-of-class time required for completion. Comparison of pre-/post-class responses suggested that teachers shifted their perceptions of ISEIs as first and foremost as places for field trips or hands-on experiences, to institutions that can help teachers with classroom science instruction. Although basic awareness of the existence of such opportunities was frequently cited, teachers also recognized these sites as places that could enhance their teaching, either by providing materials/resources for the classroom or by helping them learn (content and pedagogy) as teachers. Implications for practice, including the role of ISEIs in teacher preparation and indication, are also discussed.

  14. The role of assessment infrastructures in crafting project-based science classrooms

    NASA Astrophysics Data System (ADS)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  15. Pedagogical Relationship in Secondary Social Science Classrooms

    ERIC Educational Resources Information Center

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  16. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  17. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  18. The current practice of using multiple representations in year 4 science classrooms

    NASA Astrophysics Data System (ADS)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  19. Establishing a Social Media Presence and Network for the Pennsylvania Earth Science Teachers Association (PAESTA)

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.; Merkel, C.

    2011-12-01

    In Spring 2011, the Pennsylvania Earth Science Teachers Association (PAESTA) became an official state chapter of the National Earth Science Teachers Association (NESTA). Established with funds from the National Science Foundation, PAESTA is focused on advancing, extending, improving, and coordinating all levels of Earth Science education in Pennsylvania. Our goal is to reach earth science educators across Pennsylvania and beyond who are not physically co-located. An early priority of this new organization was to establish a web presence (http://www.paesta.psu.edu/) and to build an online community to support PAESTA activities and members. PAESTA exists as a distributed group made up of educators across Pennsylvania. Many initial members were participants in summer Earth and space science workshops held at Penn State University, which has allowed for face-to-face connections and network building. PAESTA will hold sessions and a reception at the Pennsylvania Science Teachers Association annual conference. The work of the group also takes place virtually via the PAESTA organizational website, providing professional development opportunities and Earth Science related teaching resources and links. As PAESTA is still in the very early days of its formation, we are utilizing a variety of social media tools to disseminate information and to promote asynchronous discussions around Earth and space science topics and pedagogy. The site features discussion boards for members and non-members to post comments along a specific topic or theme. For example, each month the PAESTA site features an article from one of the National Science Teacher's Association (NSTA)'s journals and encourages teachers to discuss and apply the pedagogical approach or strategy from the article to their classroom situation. We send email blasts so that members learn about organizational news and professional development opportunities. We also leverage in-person training sessions and conference sessions

  20. Ethnographic case study of a high school science classroom: Strategies in stem education

    NASA Astrophysics Data System (ADS)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  1. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    NASA Astrophysics Data System (ADS)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  2. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  3. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    ERIC Educational Resources Information Center

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  4. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  5. Relation between Classroom Climate and Achievement in Physical Science of Secondary School Pupils

    ERIC Educational Resources Information Center

    R., Smitha; Sajan, K. S.

    2010-01-01

    This study estimates the extent of relationship between "Achievement in Physical Science" and "Classroom Climate" for the total sample and Sub sample based on gender. The tools used for collecting the data are scale of classroom climate and achievement test in physical science. The study reveals that boys show indifferent or…

  6. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  7. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  8. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  9. Stories from dynamic Earth: developing your sense of place through Landsat-based citizen science

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J.; Bianchetti, R. A.; O'Connell, K.; Morrell, P.

    2016-12-01

    Many citizen science activities provide opportunities to understand a specific location on Earth at human scale and to collect local ecological knowledge that can improve the scientific endeavor of monitoring Earth. However, it can be challenging to comprehend ecological changes occurring at larger spatial and temporal scales. Based on the results of two professional development workshops designed for Oregon middle school science teachers in 2011-2013 and 2013-2016, we describe how working with multi-decade Landsat imagery transformed participants and students. Collaborating with scientists, the teachers used 30 years of time-series Landsat imagery with LandTrendr and IceTrendr algorithms to distill several study sites in Oregon, Washington, and Alaska (U.S) into periods of consistent long or short-duration landscape dynamics (e.g. stable areas, forestry activities, flooding, urbanization, tree growth). Using the spatial, tabular, and graphic outputs from this process, the teachers created climate change curriculum aligned to state and national standards. Web-enabled visualization tools, such as Google Earth, provided a platform that engaged students in understanding the drivers of their local landscape changes. Students and teachers reported increased interest in and understanding of their landscape. In addition to fulfilling classroom needs, the activities contributed data used in regional carbon modeling and land cover monitoring throughout California, Oregon, and Washington (U.S). We will discuss strategies and challenges to translating expert-level scientific data, models, methods, vocabulary, and conclusions into citizen science materials that support place-based climate change education across age ranges and educational disciplines. Finally, we share ways you can deepen your own sense of place while participating in citizen science activities that improve land cover and land use monitoring at local, regional, and global scales.

  10. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  11. How to Talk About Science: Lessons from a Middle School Science Classroom

    NASA Astrophysics Data System (ADS)

    Cushman-Patz, B. J.

    2010-12-01

    Middle school students are curious, energetic, and impatient. A middle school science teacher is always challenged to find ways to relate the content she’d like to convey to the students’ everyday lives, working to both satiate and foster their natural curiosity. She must communicate science in language appropriate for her audience, teaching new vocabulary words the first time she uses them, and reviewing them often. A thriving middle school science classroom is noisy, messy, and fun. Understanding what makes this classroom dynamic work can lead to better communication about science to any audience. 1) Know your bottom-line message, and keep it simple. Research science is complicated and nuanced. Your audience may be interested in some of these details, but start with the big picture first, and fill in the details as appropriate. 2) Avoid jargon. Use language that you would use to explain science to your 13-year-old neighbor or your 85-year old grandmother. They know what a volcano is, but they may not know the difference between a crater and a caldera. They definitely don’t know what a phreatomagmatic eruption is. As you introduce necessary jargon into your discussion, define it clearly in terms of something you are sure they do know and understand. 3) Engage the audience. Use pictures; use your hands; use common-reference points. Whenever possible, get the audience members to use their hands to mimic your motion. Encourage them to try to reframe what you say in terms that they’re comfortable with. Make it a two-way conversation 4) Pause. New concepts take time to absorb. Take a breath; give your audience a moment to absorb what you just explained and to formulate questions they may have. 5) Pay attention to cues. Middle school students make it obvious when they’re bored; adults tend to be more subtle. When eyes wander or eyelids droop, ask a question that engages your audience, even if it’s just, “do you follow?” or, “where did I lose you

  12. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  13. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  14. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  15. Perezhivanie and Classroom Discourse: A Cultural-Historical Perspective on "Discourse of Design Based Science Classroom Activities"

    ERIC Educational Resources Information Center

    Adams, Megan; March, Sue

    2015-01-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser challenge the "argumentation focus of science lessons" and propose that through a 'design-based approach' emergent conversations with the teacher offer possibilities for different types of discussions to enhance pedagogical discourse in science classrooms. This important paper offers a…

  16. Language of poverty strategies: Implemented in the urban elementary science classroom

    NASA Astrophysics Data System (ADS)

    Jeanpierre, Bobby Jo

    2000-08-01

    This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.

  17. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  18. Student Science Teachers' Accounts of a Well-Remembered Event about Classroom Management.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    2000-01-01

    Discusses how 36 student science teachers described and responded to one of their own classroom management problems. Based on student teachers' written accounts of a well-remembered event about classroom management. (SAH)

  19. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  20. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    NASA Astrophysics Data System (ADS)

    Eick, Charles J.

    2012-11-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science and language arts curriculum. This teacher's early life experiences supported her strong interest in science and nature in the outdoors and experiencing it with her children. Children interacted with the outdoor classroom throughout the day as a context for science and literacy learning. All but one child successfully met Annual Yearly Progress (AYP) goals in reading at the end of the school year.