Sample records for earth science communities

  1. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  2. Software Reuse Within the Earth Science Community

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very

  3. Earth Sciences data user community feedbacks to PARSE.Insight

    NASA Astrophysics Data System (ADS)

    Giaretta, David; Guidetti, Veronica

    2010-05-01

    The presentation in point reports on the topic of long term availability of environmental data as perceived by the Earth Science data user community. In the context of the European strategy for preserving Earth Observation (EO) data and as partner of the EU FP7 PARSE.Insight project (http://www.parse-insight.eu/), the European Space Agency (ESA) issued a public consultation on-line targeting its EO data user base. The timely and active participation confirmed the high interest in the addressed topic. Primary target of such an action is to provide ESA teams dedicated to environmental data access, archiving and re-processing with the first insight from the Earth Science community on the preservation of space data in the long-term. As a significant example, ESA's Climate Change Initiative requires activities like long-term preservation, recalibration and re-processing of data records. The time-span of EO data archives extends from a few years to decades and their value as scientific time-series increases considerably regarding the topic of global change. Future research in the field of Earth Sciences is of invaluable importance: to carry it on researchers worldwide must be enabled to find and access data of interest quickly. At present several thousands of scientists, principal investigators and operators, access EO missions' metadata, data and derived information daily. Main objectives may be to study the global climate change, to check the status of the instrument and the quality of EO data. There is a huge worldwide scientific community calling for the need to keep EO data accessible without time constrains, easily and quickly. The scientific community's standpoint is given over the stewardship of environmental data and the appropriateness of current EO data access systems as enabling digital preservation and offering HPC capabilities. This insight in the Earth Sciences community provides a comprehensive illustration of the users' responses over topics like use

  4. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  5. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  6. Earth Science community support in the EGI-Inspire Project

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  7. Earth Science Informatics Community Requirements for Improving Sustainable Science Software Practices: User Perspectives and Implications for Organizational Action

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Lenhardt, W. C.; Robinson, E.

    2014-12-01

    Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.

  8. Community Resilience, the Foundation for Earth Science and the ESIP Federation: Bouncing Forward with Collective Impact

    NASA Astrophysics Data System (ADS)

    Robinson, E.

    2015-12-01

    The Federal Government has a long history of cross-community coordination between the Scientific Research community, and the Earth Observations and Data Provider communities. Since 1998, the Federation of Earth Science Information Partners (ESIP), organically organized using a collective impact approach that fostered these interactions primarily around Earth science interoperability problems. Unlike most collaborations, collective impact initiatives named in 2011 by the Stanford Social Innovation Review, involve a backbone infrastructure, a dedicated staff, and a structured process that leads to a common agenda, shared measurement, continuous communication, and mutually reinforcing activities among all participants. Over the last ten years, the Foundation for Earth Science (FES) has a proven track record of providing backbone support to ESIP. This presentation will cover FES's general approach to providing backbone support that enables communities to define shared agenda and then will show these practices in two case studies: (1) ESIP at-large as a mature network of developed partnerships and (2) a new project, the Local Community Resilience cluster. This new cluster aims to bridge the gap from the established ESIP network to engage local communities in order to equip citizens, professionals, and other decision-makers with the scientific underpinning necessary to make informed decisions (bounce forward) for society by leveraging the strong existing ESIP community, the backbone capabilities of FES and extending Federal Earth Science, Technology and Innovation Investments.

  9. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  10. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  11. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  12. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  13. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  14. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  15. Successful Strategies for Earth Science Research in Native Communities

    NASA Astrophysics Data System (ADS)

    Redsteer, M. H.; Anderson, D.; Ben, N.; Bitsuie, R.; Blackhorse, A.; Breit, G.; Clifford, A.; Salabye, J.; Semken, S.; Weaver, K.; Yazzie, N.

    2004-12-01

    A small U.S. Geological Survey pilot project utilizes strategies that are successful at involving the Native community in earth science research. This work has ignited the interest of Native students in interdisciplinary geoscience studies, and gained the recognition of tribal community leaders from the conterminous United States, Alaska, and Canada. This study seeks to examine land use, climatic variability, and their related impacts on land-surface conditions in the ecologically sensitive Tsezhin Bii' region of the Navajo Nation. Work conducted by predominantly Native American researchers, includes studies of bedrock geology, surficial processes, soil and water quality, and plant ecology, as well as the history of human habitation. Community involvement that began during the proposal process, has helped to guide research, and has provided tribal members with information that they can use for land use planning and natural resource management. Work by Navajo tribal members who have become involved in research as it has progressed, includes K-12 science curriculum development, community outreach and education on environmental and geologic hazards, drought mitigation, grazing management, and impacts of climate change and land use on medicinal plants.

  16. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  17. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  18. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  19. Young Earth System Scientists (YESS) Community

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  20. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  1. Optimal Reorganization of NASA Earth Science Data for Enhanced Accessibility and Usability for the Hydrology Community

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce

    2016-01-01

    A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.

  2. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    NASA Astrophysics Data System (ADS)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a

  3. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  4. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  5. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  6. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  7. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  8. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  9. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  10. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  11. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  12. INDIGO-DataCloud solutions for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin

    2017-04-01

    INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big

  13. Virtual Collections: An Earth Science Data Curation Service

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  14. Virtual Collections: An Earth Science Data Curation Service

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  15. European grid services for global earth science

    NASA Astrophysics Data System (ADS)

    Brewer, S.; Sipos, G.

    2012-04-01

    This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task

  16. EVEREST: Creating a Virtual Research Environment for Earth Science

    NASA Astrophysics Data System (ADS)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  17. MS PHD'S: A Synergistic Model for Diversifying the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Braxton, L.; Johnson, A.

    2013-05-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) program focuses on increasing the number of underrepresented minorities (URM) receiving advanced degrees in Earth system sciences (ESS). Subscribing to Aristotle's philosophy that the "whole is greater than the sum of its parts", MS PHD'S uses a synergistic model of tiered mentoring practices, successful minority scientist role models, peer-to-peer community building activities, professional development training techniques, networking opportunities, and state of the art virtual communication tools to facilitate the retention and advancement of underrepresented ESS scientists. Using a three-phase program structure supported by a virtual community, URM students in ESS are afforded opportunities to establish mentoring relationships with successful scientists, build meaningful ties with URM peers and future colleagues, strengthen oral and written communication skills, engage in networking opportunities within premier scientific venues, and maintain continuity of networks formed through program participation. Established in 2003, MS PHD'S is now in its ninth cohort. From the original cohort of 24 participants, the program has grown to support 213 participants. Of these 213 participants, 42 have obtained the doctorate and are employed within the ESS workforce. Another 71 are enrolled in doctoral programs. Looking to the future with the purpose of continually furthering its synergistic philosophy, MS PHD'S has developed a new initiative, Beyond the PhD, designed to support and advance the representation of URM scientists within a global workforce.

  18. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  19. Grid Technology as a Cyber Infrastructure for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.

  20. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  1. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  2. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  3. Earth and Space Sciences: The Need for Diversity in Global Science

    NASA Astrophysics Data System (ADS)

    Hall, F. R.; Johnson, R.; Alexander, C.

    2004-12-01

    The Earth and Space sciences are truly global in nature and encompass the most diverse subject areas in science. Yet, the practitioners of these fields do not reflect the diversity of the populations that are impacted by the outcomes of the research in these fields of study. The global marketplace, migration, the search for economic and renewable resources, Earth Systems research, and understanding our place in the universe compels us to be more inclusive of the populations and cultures that inhabit our planet. In this talk, we discuss the relevancy of these issues on scientific endeavors in the 21st century and the need for the Earth and Space sciences to be the leaders within the broad scientific community of ensuring that science remains an inclusive enterprise.

  4. Residential learning communities as a tool for increasing interest in the Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Burmeister, K. C.; Colafrancesco, K.; Brodie, C.; Jacobson, S.

    2009-12-01

    The Residence for Earth and Environmental Living and Learning (REELL), a residential learning community (RLCs) established at the University of the Pacific in 2008-2009, has proven to be an effective tool for increasing interest in the Earth and environmental sciences. RLCs bring together students that share a theme-based interest and are given an opportunity to live together in a common space within a campus residence hall. The 2008-2009 REELL group comprised representatives from a wide range of degree programs, and included 16 freshmen, a junior peer advisor, and a senior residential advisor. Student participants in the REELL community work closely with their peers, faculty, and staff on academic, social, and outreach programs designed to increase interest and awareness in the Earth & environment. REELL activities include regular meetings, sponsored movies, guest speakers, field trips, campus exchange events, and outreach activities. These activities are arranged around a yearlong research project that is designed and implemented by the student participants. Preliminary results suggest that activity- and project-related interactions during the 2008-2009 REELL program year are an effective way to establish connections between among students, faculty, and administration and have increased interest and participation in Earth and Environmental Science courses and programs. Studies of RLCs implemented in a wide variety of colleges and university settings demonstrate that these programs successfully foster the development of leadership, social, and academic skills in student participants. The REELL community at the University of the Pacific is based upon the successful the Honors RLC. The well-established Honors RLC is a perfect example of how such programs can increase social and academic development. Like the REELL program, the Honors RLC brings together first and second year honors students in a single residence hall. Their participation in the Honors RLC provides

  5. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    NASA Astrophysics Data System (ADS)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  6. Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2010-01-01

    Software assets from existing Earth science missions can be reused for the new decadal survey missions that are being planned by NASA in response to the 2007 Earth Science National Research Council (NRC) Study. The new missions will require the development of software to curate, process, and disseminate the data to science users of interest and to the broader NASA mission community. In this paper, we discuss new tools and a blossoming community that are being developed by the Earth Science Data System (ESDS) Software Reuse Working Group (SRWG) to improve capabilities for reusing NASA software assets.

  7. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  8. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  9. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  10. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  11. Building Community Consensus for Earth Science Literacy Using an Online Workshop (Invited)

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Tuddenham, P.; Taber, J.; Ladue, N.

    2009-12-01

    The Earth Science Literacy Principles, published in the spring of 2009, represented a community consensus about what all Americans should understand about Earth sciences. Central to its creation was a 2-week online workshop that involved participation by 350 Earth scientists and educators. The online workshop, hosted by The College of Exploration, was an excellent medium for incorporating the ideas and concerns of 350 people in near-real time. NSF tasked the Earth Science Literacy Initiative (ESLI) (www.earthscienceliteracy.org) with constructing a set of “Big Ideas” and “Supporting Concepts” that distilled the essential understandings of the GEO-EAR division of NSF. Because of the wide diversity of sub-fields involved (ranging from paleobiology to tectonics), finding a mechanism for incorporating many different views while retaining an organized structure was a challenge. The online workshop turned out to be ideal for this task. Though the 2-week asynchronous workshop was designed to replicate a 2-day in-person workshop, at the drawn-out pace of one hour of requested participation per day, in reality it was much more productive. Many aspects of an in-person workshop were replicated in the the online space. Plenary talks were presented in the main conference room via videos recorded just before or during the 2-week period. The workshop was structured with 150 invited participants and 200 observers. The participants had access to all of the rooms while the observers could see all rooms but could only chat in their own area, the Observation Café. Each breakout room had a moderator who attempted to guide discussion, including suggesting off-topic conversations be moved to the Earth Café. An organizing committee of about a dozen people teleconferenced daily, determining the goals or tasks for the participants for that day. This allowed for a high level of flexibility, with the workshop structure flowing in response to the results up to that point. The first

  12. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  13. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  14. Digital Archive Issues from the Perspective of an Earth Science Data Producer

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    2004-01-01

    Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.

  15. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  16. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  17. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course

  18. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http

  19. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.; Macauley, Molly; Aschbacher, Josef; Milagro-Perez, Maria Pilar; Doorn, Bradley; Friedl, Lawrence

    2012-01-01

    Over the past six decades, satellite remote sensing technology has contributed to the transformation of using earth science not only to advance science, but to improve quality of life. With satellite missions launched almost every year, new types of earth science data are being incorporated into science, models and decision-making systems in a broad array of organizations. A challenge for space agencies has been ensuring that satellite missions serve both the scientific community and the applied community of decision makers without the missions becoming unfocused and overly expensive. By understanding and considering the needs of the environmental data and applied research user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in the European Space Agency and the National Aeronautics and Space Administration and compares and contrasts the successes of and challenges faced by these agencies in balancing science and applications within their missions.

  20. EVEREST: a virtual research environment for the Earth SciencesEVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Glaves, Helen; Albani, Mirko

    2017-04-01

    Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and

  1. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  2. The Internet of Samples in the Earth Sciences (iSamples)

    NASA Astrophysics Data System (ADS)

    Carter, M. R.; Lehnert, K. A.

    2015-12-01

    Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical

  3. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  4. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  5. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  6. The Federation of Earth Science Information Partners ESIP

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2013-01-01

    A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.

  7. Earth and space science community responds to U.S. presidential election

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-11-01

    Following the 6 November reelection of U.S. president Barack Obama, Eos contacted a number of scientists and analysts involved with the Earth and space sciences. Each was asked (1) for their thoughts about what impact the presidential election will have on the Earth and space sciences and (2) what they see as the key challenges and what the Obama administration should have at the top of its agenda related to the geosciences. Here are 13 responses.

  8. EVER-EST: European Virtual Environment for Research in Earth Science Themes

    NASA Astrophysics Data System (ADS)

    Glaves, H.; Albani, M.

    2016-12-01

    EVER-EST is an EC Horizon 2020 project having the goal to develop a Virtual Research Environment (VRE) providing a state-of-the-art solution to allow Earth Scientists to preserve their work and publications for reference and future reuse, and to share with others. The availability of such a solution, based on an innovative concept and state of art technology infrastructure, will considerably enhance the quality of how Earth Scientists work together within their own institution and also across other organizations, regions and countries. The concept of Research Objects (ROs), used in the Earth Sciences for the first time, will form the backbone of the EVER-EST VRE infrastructure. ROs will enhance the ability to preserve, re-use and share entire or individual parts of scientific workflows and all the resources related to a specific scientific investigation. These ROs will also potentially be used as part of the scholarly publication process. EVER-EST is building on technologies developed during almost 15 years of research on Earth Science data management infrastructures. The EVER-EST VRE Service Oriented Architecture is being meticulously designed to accommodate at best the requirements of a wide range of Earth Science communities and use cases: focus is put on common requirements and on minimising the level of complexity in the EVER-EST VRE to ensure future sustainability within the user communities beyond the end of the project. The EVER-EST VRE will be validated through its customisation and deployment by four Virtual Research Communities (VRCs) from different Earth Science disciplines and will support enhanced interaction between data providers and scientists in the Earth Science domain. User community will range from bio-marine researchers (Sea Monitoring use case), to common foreign and security policy institutions and stakeholders (Land Monitoring for Security use case), natural hazards forecasting systems (Natural Hazards use case), and disaster and risk

  9. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  10. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  11. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  12. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    NASA Technical Reports Server (NTRS)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  13. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  14. Earth Science Markup Language: Transitioning From Design to Application

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Graves, Sara; Ramachandran, Rahul

    2002-01-01

    The primary objective of the proposed Earth Science Markup Language (ESML) research is to transition from design to application. The resulting schema and prototype software will foster community acceptance for the "define once, use anywhere" concept central to ESML. Supporting goals include: 1. Refinement of the ESML schema and software libraries in cooperation with the user community. 2. Application of the ESML schema and software libraries to a variety of Earth science data sets and analysis tools. 3. Development of supporting prototype software for enhanced ease of use. 4. Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate. 5. Widespread publication of the ESML approach, schema, and software.

  15. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  16. Artificial intelligence applications concepts for the remote sensing and earth science community

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Roelofs, L. H.

    1984-01-01

    The following potential applications of AI to the study of earth science are described: (1) intelligent data management systems; (2) intelligent processing and understanding of spatial data; and (3) automated systems which perform tasks that currently require large amounts of time by scientists and engineers to complete. An example is provided of how an intelligent information system might operate to support an earth science project.

  17. Embracing Open Source for NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  18. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  19. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  20. EVER-EST: a virtual research environment for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Albani, Mirko; Glaves, Helen

    2016-04-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as

  1. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  2. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  3. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    NASA Astrophysics Data System (ADS)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  4. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  5. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    Program has been improving its data management practices for over twenty years to assure permanence of data utility through reliable preservation of bits, readability, understandability, usability and reproducibility of results. While NASA has focused on the Earth System Science research community as the primary data user community, broad interest in the data due to climate change and how it is affecting people everywhere (e.g. sea level rise) by environmental managers, public policymakers and citizen scientists has led the Program to respond with new tools and ways to improve ease of access and use of the data. NASA's standard Earth observation data will soon be buttressed with the long tail of federally-funded research data created or analyzed by grantees, in response to John Holdren's OSTP Memorandum to federal departments and agencies entitled 'Increasing Access to the Results of Federally-Funded Scientific Research'. We fully expect that NASA's Earth Science Data Systems Program will be able to work with our grantees to comply early, and flexibly improve the openness of this source of scientific data to a best practice for NASA and the grantees

  6. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  7. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  8. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  9. Investigation of Strategies to Promote Effective Teacher Professional Development Experiences in Earth Science

    ERIC Educational Resources Information Center

    Engelmann, Carol A.

    2014-01-01

    This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in…

  10. From Data to Knowledge in Earth Science, Planetary Science, and Astronomy

    NASA Technical Reports Server (NTRS)

    Dobinson, Elaine R.; Jacob, Joseph C.; Yunck, Thomas P.

    2004-01-01

    This paper examines three NASA science data archive systems from the Earth, planetary, and astronomy domains, and discusses the various efforts underway to provide their science communities with not only better access to their holdings, but also with the services they need to interpret the data and understand their physical meaning. The paper identifies problems common to all three domains and suggests ways that common standards, technologies, and even implementations be leveraged to benefit each other.

  11. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  12. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  13. Earth Science Teaching Strategies Used in the International Polar Year

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2009-04-01

    There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.

  14. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education

    NASA Astrophysics Data System (ADS)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.

    2017-12-01

    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  15. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  16. Earth Stewardship Science: International Research Networks based in Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Gaines, S. M.

    2010-12-01

    The role of networking in student and early career years is critical in the development of international interdisciplinary earth system science. These networks - both peer and mentor-based - can build community, foster enthusiasm and further research applications in addition to the traditional goal of identifying and obtaining work. UNESCO has nearly 40 years of experience in building international research teams through the International Geoscience Program (IGCP) and has recently focused their attention on the status of the earth sciences in Africa. UNESCO’s Earth Science Education Initiative in Africa ran a series of regional scoping workshops around the continent in order to develop an integrated status report on the earth sciences in Africa. The results, which are globally relevant, indicate that the field is limited by the level of basic science education of incoming students and restricted laboratory facilities, but also by a lack of connectedness. This isolation relates both to the interaction between researchers within countries and around the world but also the divide between Universities and Industry and the failure of the field to communicate its relevance to the public. In a context where livelihood opportunities are the driver of study and the earth sciences provide a major source of income, practical academic ties to industry are an essential element of the attractiveness of the field to students. Actions and ideas for addressing this situation will be presented to reinforce the role of the earth sciences in improving human and environmental well-being.

  17. Leveraging Open Standards and Technologies to Enhance Community Access to Earth Science Lidar Data

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Cowart, C.; Baru, C.; Arrowsmith, R.

    2011-12-01

    Lidar (Light Detection and Ranging) data, collected from space, airborne and terrestrial platforms, have emerged as an invaluable tool for a variety of Earth science applications ranging from ice sheet monitoring to modeling of earth surface processes. However, lidar present a unique suite of challenges from the perspective of building cyberinfrastructure systems that enable the scientific community to access these valuable research datasets. Lidar data are typically characterized by millions to billions of individual measurements of x,y,z position plus attributes; these "raw" data are also often accompanied by derived raster products and are frequently terabytes in size. As a relatively new and rapidly evolving data collection technology, relevant open data standards and software projects are immature compared to those for other remote sensing platforms. The NSF-funded OpenTopography Facility project has developed an online lidar data access and processing system that co-locates data with on-demand processing tools to enable users to access both raw point cloud data as well as custom derived products and visualizations. OpenTopography is built on a Service Oriented Architecture (SOA) in which applications and data resources are deployed as standards compliant (XML and SOAP) Web services with the open source Opal Toolkit. To develop the underlying applications for data access, filtering and conversion, and various processing tasks, OpenTopography has heavily leveraged existing open source software efforts for both lidar and raster data. Operating on the de facto LAS binary point cloud format (maintained by ASPRS), open source libLAS and LASlib libraries provide OpenTopography data ingestion, query and translation capabilities. Similarly, raster data manipulation is performed through a suite of services built on the Geospatial Data Abstraction Library (GDAL). OpenTopography has also developed our own algorithm for high-performance gridding of lidar point cloud data

  18. GENESI-DR - A single access point to Earth Science data

    NASA Astrophysics Data System (ADS)

    Cossu, R.; Goncalves, P.; Pacini, F.

    2009-04-01

    The amount of information being generated about our planet is increasing at an exponential rate, but it must be easily accessible in order to apply it to the global needs relating to the state of the Earth. Currently, information about the state of the Earth, relevant services, analysis results, applications and tools are accessible in a very scattered and uncoordinated way, often through individual initiatives from Earth Observation mission operators, scientific institutes dealing with ground measurements, service companies, data catalogues, etc. A dedicated infrastructure providing transparent access to all this will support Earth Science communities by allowing them to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The use of high-speed networks (GÉANT) and the experimentation of new technologies, like BitTorrent, will also contribute to better services for the Earth Science communities. GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories), an ESA-led, European Commission (EC)-funded two-year project, is taking the lead in providing reliable, easy, long-term access to Earth Science data via the Internet. This project will allow scientists from different Earth Science disciplines located across Europe to locate, access, combine and integrate historical and fresh Earth-related data from space, airborne and in-situ sensors archived in large distributed repositories. GENESI-DR builds a federated collection of heterogeneous digital Earth Science repositories to establish a dedicated infrastructure providing transparent access to all this and allowing Earth Science communities to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The federated digital repositories, seen as services and data providers, will share access to their resources (catalogue functions, data access, processing services etc

  19. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  20. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  1. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  2. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the

  3. Future Earth, Global Science and Regional Programs: Building regional integrated science capacities in a global science organization

    NASA Astrophysics Data System (ADS)

    Tewksbury, J.

    2016-12-01

    Future Earth has emerged from the more than 30-year history of Global Change Research Programs, including IGBP, DIVERSITAS and IHDP. These programs supported interdisciplinary science in service of societies around the world. Now, their focus on building a greater understanding of changing Earth systems and their couplings with society has passed to Future Earth - with an important addition: Future Earth was also established to focus global change efforts around key societal challenges. The implications for the structure of Future Earth are large. Many challenges within topics, such as the water, energy, food nexus or the future of cities, are manifested within local, national, and regional contexts. How should we organize globally to most effectively confront these multi-scale challenges? The solution proposed in the framing of Future Earth was the formation of regional as well as national committees, as well as the formation of regional centers and offices. Regional Committees serve to both advocate for Future Earth in their regions and to advocate for regional interests in the global Future Earth platform, while regional Centers and offices are built into the Future Earth secretariat to perform a parallel regional implementation function. Implementation has not been easy, and the process has placed regionally-focused projects in an awkward place. Programs such as the Monsoon Asia Integrated Regional Study (MAIRS), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the South/Southeast Asia Research Initiative (SARI) represent some of the best global change communities in the world, but by design, their focus is regional. The effective integration of these communities into the Future Earth architecture will be critical, and this integration will require the formation of strong regional committees and regional centers.

  4. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  5. Low bit rate coding of Earth science images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.

    1993-01-01

    In this paper, the authors discuss compression based on some new ideas in vector quantization and their incorporation in a sub-band coding framework. Several variations are considered, which collectively address many of the individual compression needs within the earth science community. The approach taken in this work is based on some recent advances in the area of variable rate residual vector quantization (RVQ). This new RVQ method is considered separately and in conjunction with sub-band image decomposition. Very good results are achieved in coding a variety of earth science images. The last section of the paper provides some comparisons that illustrate the improvement in performance attributable to this approach relative the the JPEG coding standard.

  6. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  7. Integrating Earth System Science Data Into Tribal College and University Curricula

    NASA Astrophysics Data System (ADS)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget

  8. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  9. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  10. Brokering Capabilities for EarthCube - supporting Multi-disciplinary Earth Science Research

    NASA Astrophysics Data System (ADS)

    Jodha Khalsa, Siri; Pearlman, Jay; Nativi, Stefano; Browdy, Steve; Parsons, Mark; Duerr, Ruth; Pearlman, Francoise

    2013-04-01

    The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Brokering of data and improvements in discovery and access are a key to data exchange and promotion of collaboration across the geosciences. In this presentation we describe an evolutionary process of infrastructure and interoperability development focused on participation of existing science research infrastructures and augmenting them for improved access. All geosciences communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for levering these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. Brokers connect disparate systems with only minimal burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is a governance issue, but is facilitated by infrastructure capabilities that can impact the uptake of new interdisciplinary collaborations and exchange. Thus brokering must address both the cyberinfrastructure and computer technology requirements and also the social issues to allow improved cross-domain collaborations. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities

  11. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  12. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Keane, C. M.; Robinson, E.

    2015-12-01

    The EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. There is ample justification to continue running a community-led governance framework that facilitates agreement on a system architecture, guides EarthCube activities, and plays an increasing role in making the EarthCube vision of cyberinfrastructure for the geosciences operational. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that have and are continuing to emerge.

  13. Earth Science Data for a Mobile Age

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    Earth science data access needs to be interoperable and automatic. Recently, increasingly savvy data users combined with more complex web and mobile applications have placed increasing demands on how this Earth science data is being delivered to educators and students. The MY NASA DATA (MND) and S'COOL projects are developing a strategy to interact with the education community in the age of mobile devices and platforms. How can we provide data and meaningful scientific experiences to educational users through mobile technologies? This initiative will seek out existing technologies and stakeholders within the Earth Science community to identify datasets that are relevant and appropriate for mobile application development and use by the educational community. Targeting efforts within the educational community will give the project a better understanding of the previous attempts at data/mobile application use in the classroom and its problems. In addition, we will query developers and data providers on what successes and failures they've experienced in trying to provide data for applications designed on mobile platforms. This feedback will be implemented in new websites, applications and lessons that will provide authentic scientific experiences for students and end users. We want to create tools that help sort through the vast amounts of NASA data, and deliver it to users automatically. NASA provides millions of gigabytes of data that is publicly available through a large number of services spread across the World Wide Web. Accessing and navigating this data can be time consuming and problematic with variety of file types and methods for accessing this data. The MND project, through its' Live Access Server system, provides selected datasets that are relevant and targets National Standards of Learning for educators to easily integrate into existing curricula. In the future, we want to provide desired data to users with automatic updates, anticipate future data queries

  14. Charting a Course to Earth System Science Literacy

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  15. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    Alaska, and to provide new and innovative science curricula and teacher training for the benefit of students and teachers in Alaska and beyond. These objectives will be met by the development of learning opportunities and resources that will come together around the Murie Science and Learning Center as a focus for interpretation of EarthScope science and research results in Alaska. Project activities will take place in five areas, which are: 1) development of interactive museum displays for the Murie Science and Learning Center utilizing cutting edge technology for learning, 2) public outreach with a series of publications and Internet resources, 3) development of inquiry-based, experiential curricula for middle school students to enhance science education, 4) development of accredited teacher training workshops for science educators, and 5) the creation of opportunities for EarthScope scientists to interact with students, teachers, and the public through a series of lectures and discussions in national parks and local communities across Alaska.

  16. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  17. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  18. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  19. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  20. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  1. Engaging the Geodetic and Geoscience Communities in EarthScope Education and Outreach

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.

    2013-12-01

    UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).

  2. NASA's Earth Science Data Systems: A "Bit of History" and Observations

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2008-01-01

    NASA has significantly improved its Earth Science Data Systems over the last two decades. Open data policy and inexpensive (or free) availability of data has promoted data usage by broad research and applications communities. Flexibility, accommodation of diversity, evolvability, responsiveness to community feedback are key to success.

  3. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  4. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  5. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Dick, Cindy; Allison, Lee

    2016-04-01

    The US NSF EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. The EarthCube governance implementing processes to facilitate community convergence on a system architecture, which is expected to emerge naturally from a set of data principles, user requirements, science drivers, technology capabilities, and domain needs.

  6. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  7. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  8. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    NASA Astrophysics Data System (ADS)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS

  9. EVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Glaves, H. M.; Marelli, F.; Albani, M.

    2015-12-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Data providers will be also able to monitor user experiences and collect feedback through the VRE, improving their capacity to adapt to the changing requirements of their end-users. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary ES domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRC represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows.

  10. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  11. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  12. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    NASA Astrophysics Data System (ADS)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  13. The EPOS implementation of thematic services for solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2014-05-01

    The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for the solid Earth sciences in Europe. In particular, EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes, ground stability, and tsunamis as well as those processes driving tectonics and Earth surface dynamics. EPOS will allow the Earth Science community to make a significant step forward by developing new concepts and tools for accurate, durable, and sustainable answers to societal questions concerning geo-hazards and those geodynamic phenomena relevant to the environment and human welfare. EPOS coordinates the existing and new solid Earth RIs within Europe and is building the integrating RI elements. This integration requires a significant coordination between, among others, disciplinary (thematic) communities, national RIs policies and initiatives, as well as geo- and IT-scientists. The RIs that EPOS coordinates include: i) Regionally-distributed geophysical observing systems (seismological and geodetic networks); ii) Local observatories (including geomagnetic, near-fault and volcano observatories); iii) Analytical and experimental laboratories; iv) Integrated satellite data and geological information services. We present the results achieved during the EPOS Preparatory Phase (which will end on October 2014) and the progress towards construction in terms of both the design of the integrated core services (ICS) and the development of thematic core services (TCS) for the different communities participating to the integration plan. We will focus on discussing the strategies adopted to foster the necessary implementation of TCS, clarifying their crucial role as domain

  14. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  15. Providing Elementary Teachers in South Texas with Professional Development to Improve Earth Science Instruction

    NASA Astrophysics Data System (ADS)

    Borrego, H.; Ellins, K. K.

    2011-12-01

    Through three years of participation in the TeXas Earth and Space Science (TXESS) Revolution, an NSF-sponsored teacher professional development program, my knowledge of earth science, new pedagogical approaches, and confidence has improved dramatically. I have also received instructional materials and learned how to access high quality online resources and use a variety of web-based tools. In this session, I will share my experiences and report on how I used my own learning to help both teachers and students to become more earth science literate individuals. Earth Science test scores at the elementary level throughout South Texas are consistently low in comparison to other regions in the state. The majority of the teachers lack the content-knowledge, confidence, or experience to teach Earth Sciences. My TXESS Revolution experience helped me to understand the needs of these teachers and to identify teaching resources that would be useful to them. Particularly noteworthy are TERC's EarthLabs: Earth System Science and GLOBE activities. Although these Earthlab investigations are designed for high schools students, I demonstrated how they could be adapted for elementary students. As a result, I have provided professional development in the Earth Sciences to about 300 South Texas elementary teachers. TXESS Revolution has also equipped me to empower the students I teach. My students this past year presented their challenge Legacy Cycle Project to the community. The TXESS Revolution teamed up with the Texas Water Development Board to deliver training on the implementation of a new online challenged-based curriculum called the Water Exploration Legacy Cycles. This training gave me the tools to guide my students learning through authentic scientific research. To carry out their challenge, students researched an area of interest, read literature, consulted with experts in the field, consider different prospective, and presented their final products via PowerPoint, poster

  16. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  17. Earth Science Digital Museum (ESDM): Toward a new paradigm for museums

    NASA Astrophysics Data System (ADS)

    Dong, Shaochun; Xu, Shijin; Wu, Gangshan

    2006-07-01

    New technologies have pushed traditional museums to take their exhibitions beyond the barrier of a museum's walls and enhance their functions: education and entertainment. Earth Science Digital Museum (ESDM) is such an emerging effort in this field. It serves as a platform for Earth Scientists to build a Web community to share knowledge about the Earth and is of to benefit the general public for their life-long learning. After analyzing the purposes and requirements of ESDM, we present here our basic philosophy of ESDM and a four-layer hierarchical architecture for enhancing the structure of ESDM via Internet. It is a Web-based application to enable specimens to be exhibited, shared and preserved in digital form, and to provide the functionalities of interoperability. One of the key components of ESDM is the development of a metadata set for describing Earth Science specimens and their digital representations, which is particularly important for building ESDM. Practical demonstrations show that ESDM is suitable for formal and informal Earth Science education, including classroom education, online education and life-long learning.

  18. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  19. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and

  20. ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress

    NASA Technical Reports Server (NTRS)

    Kempler, Steven

    2015-01-01

    The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.

  1. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  2. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES)

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Mabee, B.; Wulf Tregar, S.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. There is a need to substantiate the benefits of Earth science applications in socially and economically meaningful terms in order to demonstrate return on investment and to prioritize investments across data products, modeling capabilities, and information systems. However, methods and techniques for quantifying the value proposition of Earth observations are currently not fully established. Furthermore, it has been challenging to communicate the value of these investments to audiences beyond the Earth science community. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. The VALUABLES Consortium will focus on three pillars: (a) a research pillar that will apply existing and innovative methods to quantify the socioeconomic benefits of information from Earth observations; (b) a capacity building pillar to catalyze interdisciplinary linkages between Earth scientists and social scientists; and (c) a communications pillar that will convey the value of Earth observations to stakeholders in government, universities, the NGO community, and the interested public. In this presentation, we will describe ongoing and future activities of the VALUABLES Consortium, provide a brief overview of frameworks to quantify the socioeconomic value of Earth observations, and describe how Earth scientists and social scientist can get involved in the Consortium's activities.

  3. Harnessing Systems Engineering Methodology in Using Earth Science Research Data for Real Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.

    2004-01-01

    For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne

  4. Investigating Pathways from the Earth Science Knowledge Base to Candidate Solutions

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Johnson, E.; Mita, D.; Dabbiru, L.; Katragadda, S.; Lewis, D.; O'Hara, C.

    2007-12-01

    A principle objective of the NASA Applied Sciences Program is to support the transition of scientific research results into decisions which benefit society. One of the Solutions Network activities supporting this goal is the generation of Candidate Solutions derived from NASA Earth Science research results that have the potential to enhance future operational systems for societal benefit. In short, the program seeks to fill gaps between Earth Science results and operational needs. The Earth Science Knowledge Base (ESKB) is being developed to provide connectivity and deliver content for the research information needs of the NASA Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, examine the individual components of that research, and assist in developing strategies for furthering research. The ESKB will include information about organizations that conduct NASA-funded Earth Science research, NASA research solicitations, principal investigators, research publications and other project reports, publication authors, inter-agency agreements like memoranda-of-understanding, and NASA assets, models, decision support tools, and data products employed in the course of or developed as a part of the research. The generation of candidate solutions is the first step in developing rigorously tested applications for operational use from the normal yet chaotic process of natural discovery. While the process of 'idea generation' cannot be mechanized, the ESKB serves to provide a resource for testing theories about advancing research streams into the operational realm. Formulation Reports are the documents which outline a Candidate Solution. The reports outline the essential elements, most of which are detailed in the ESKB, which must be analyzed

  5. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  6. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  7. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  8. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  9. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  10. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  11. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions

  12. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  13. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  14. Earth Science Curriculum Enrichment Through Matlab!

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.

  15. Grid Technology as a Cyberinfrastructure for Delivering High-End Services to the Earth and Space Science Community

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid

  16. Hands-on earth science with students at schools for the Deaf

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  17. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  18. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, liaising appropriately with other European e-infrastructure projects, and progress on this will be explained.

  19. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  20. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  1. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    NASA Astrophysics Data System (ADS)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    contributed by colleagues to create personalized, annotated collections of resources best suited to address the needs of the students in their classroom. Teachers can see the resources that their colleagues are using to customize their instruction, and share their ideas about the suitability of resources for different learners or learning styles through the use of tags and annotations thus creating a community of practice in support of differentiated instruction. A field trial involving 124 middle and high school Earth science teachers in a large urban school district was conducted in the 2009-2010 academic year, accompanied by a mixed-method research and evaluation study to investigate the impact of the use of this system on teacher beliefs and practice, and student learning. This presentation will include a demonstration of the system as well as discuss the results of the research thus far.

  2. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  3. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    ERIC Educational Resources Information Center

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  4. Creating State-based Alliances to Support Earth and Space Science Education Reform

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  5. Meaningful Engagement of Organizational and Agency Partnerships to Enhance Diversity within the Earth System Science Community: A Case Study

    NASA Astrophysics Data System (ADS)

    Pyrtle, A. J.; Whitney, V. W.; Powell, J. M.; Bailey, K. L.

    2006-12-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science Initiative (MS PHD'S) was established by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science community. The MS PHD'S launched its pilot program in 2003 with twenty professional organizations, agencies and institutions as partners. Each year partnership alliances have grown. In the second year or programming, thirty-one partnering agencies/institutions supported involvement of MS PHD'S student participants and for 2005-2006, representatives from forty-five agencies and institutions have provided similar support and exposure to the third cohort of student participants. Nineteen scientists served as meeting mentors during the MS PHD'S pilot program in 2003. By the following year, twenty-two additional scientists partnered with MS PHD'S mentees. During 2005-2006, twenty-one new scientists served as program mentors. Thus far, the MS PHD'S program has successfully engaged sixty-two minority and non-minority scientists as mentors to MS PHD'S student participants. AGU, AMS, ASLO, ESA, TOS, NAS OSB and JOI continue to serve as MS PHD'S Society Partners and hosts for MS PHD'S student activities in conjunction with their meetings. Each of the five professional society partners provided assistance in identifying mentors, provided complimentary memberships and meeting registrations for MS PHD'S student participants. AGU, AMS, ASLO, JOI and TOS have sponsored more than 90 conference registration and travel awards for the purpose of student participants engaging in MS PHD'S Professional Development Program Phase 2 activities at their international meetings. How did MS PHD'S establish meaningful engagement of organizational and agency partnerships to enhance diversity within the Earth system science community? This case study reveals replicable processes and constructs to enhance the quality of meaningful collaboration and engagement

  6. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  7. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  8. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  9. Improving Access to NASA Earth Science Data through Collaborative Metadata Curation

    NASA Astrophysics Data System (ADS)

    Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.

    2017-12-01

    The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.

  10. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  11. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  12. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  13. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  14. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  15. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  16. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  17. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  18. The Geohazards Exploitation Platform: an advanced cloud-based environment for the Earth Science community

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Pacini, Fabrizio; Caumont, Hervé; Brito, Fabrice; Blanco, Pablo; Iglesias, Ruben; López, Álex; Briole, Pierre; Musacchio, Massimo; Buongiorno, Fabrizia; Stumpf, Andre; Malet, Jean-Philippe; Brcic, Ramon; Rodriguez Gonzalez, Fernando; Elias, Panagiotis

    2017-04-01

    The idea to create advanced platforms for the Earth Observation community, where the users can find data but also state-of-art algorithms, processing tools, computing facilities, and instruments for dissemination and sharing, has been launched several years ago. The initiatives developed in this context have been supported firstly by the Framework Programmes of European Commission and the European Space Agency (ESA) and, progressively, by the Copernicus programme. In particular, ESA created and supported the Grid Processing on Demand (G-POD) environment, where the users can access to advanced processing tools implemented in a GRID environment, satellite data and computing facilities. All these components are located in the same datacentre to significantly reduce and make negligible the time to move the satellite data from the archive. From the experience of G-POD was born the idea of ESA to have an ecosystem of Thematic Exploitation Platforms (TEP) focused on the integration of Ground Segment capabilities and ICT technologies to maximize the exploitation of EO data from past and future missions. A TEP refers to a computing platform that deals with a set of user scenarios involving scientists, data providers and ICT developers, aggregated around an Earth Science thematic area. Among the others, the Geohazards Exploitation Platform (GEP) aims at providing on-demand and systematic processing services to address the need of the geohazards community for common information layers and to integrate newly developed processors for scientists and other expert users. Within GEP, the community benefits from a cloud-based environment, specifically designed for the advanced exploitation of EO data. A partner can bring its own tools and processing chains, but also has access in the same workspace to large satellite datasets and shared data processing tools. GEP is currently in the pre-operations phase under a consortium led by Terradue Srl and six pilot projects concerning

  19. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  20. Earth Science Research as IPY Priority

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V.; Leonov, Y.; Coakley, B.; Grikurov, G.; Johnson, L.; Kaminsky, V.; Kristoffersen, Y.; Leitchenkov, G.; Pavlenko, V.

    2004-05-01

    The preparations for IPY 2007/2008 are evolving from conceptual to implementation planning. Many earth scientists are concerned that the emerging plans for IPY are too narrowly focused on environmental processes and therefore appear discriminatory with respect to other fundamental sciences. National/international efforts such as USGCRP (U.S. Global Change Research program) and IPCC (Intergovernmental Panel on Climate Change) are also involved in the multitude of climate change issues, and just how the proposed IPY program could augment and complement these ongoing activities without reproducing them requires careful analysis and coordination. In particular, the polar research is unthinkable without study of the geological history of the Arctic and the Southern Oceans as a clue to tectonic evolution of the entire planet and test of the current geodynamic paradigm. In addition to these fundamental objectives, the circum-polar continental margins of the Arctic and Antarctica are likely to become the scenes of geopolitical intrigue provoked by implementation of the provisions of the Law of the Sea that require acquisition of specific earth science knowledge at internationally recognized levels of credibility. Interdisciplinary international programs (e. g. JEODI), based on geophysical data acquisition and analysis that would lead, where appropriate, to scientific drilling, had independently been proposed for studying the coupled tectonic and oceanographic history of the polar regions. Admitting the importance of identifying fundamental constraints for paleooceanography and climatic history of the high latitudes, and acknowledging the progress achieved so far in promoting IPY activities, the international earth science community has suggested developing the proposed approach into a major IPY endeavor - to examine the Polar Ocean Gateway Evolution (POGE). Such study would enable linking the geological history of the Polar Regions during the last 100 Ma and related

  1. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  2. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration.

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.

    2007-12-01

    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  3. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  4. Global Change Master Directory (GCMD) Keywords and Their Applications in Earth Science Data Discovery

    NASA Astrophysics Data System (ADS)

    Aleman, A.

    2017-12-01

    This presentation will provide an overview and discussion of the Global Change Master Directory (GCMD) Keywords and their applications in Earth science data discovery. The GCMD Keywords are a hierarchical set of controlled keywords covering the Earth science disciplines, including: science keywords, service keywords, data centers, projects, location, data resolution, instruments and platforms. Controlled vocabularies (keywords) help users accurately, consistently and comprehensively categorize their data and also allow for the precise search and subsequent retrieval of data. The GCMD Keywords are a community resource and are developed collaboratively with input from various stakeholders, including GCMD staff, keyword users and metadata providers. The GCMD Keyword Landing Page and GCMD Keyword Community Forum provide access to keyword resources and an area for discussion of topics related to the GCMD Keywords. See https://earthdata.nasa.gov/about/gcmd/global-change-master-directory-gcmd-keywords

  5. NetCDF-CF: Supporting Earth System Science with Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Davis, E.; Zender, C. S.; Arctur, D. K.; O'Brien, K.; Jelenak, A.; Santek, D.; Dixon, M. J.; Whiteaker, T. L.; Yang, K.

    2017-12-01

    NetCDF-CF is a community-developed convention for storing and describing earth system science data in the netCDF binary data format. It is an OGC recognized standard with numerous existing FOSS (Free and Open Source Software) and commercial software tools can explore, analyze, and visualize data that is stored and described as netCDF-CF data. To better support a larger segment of the earth system science community, a number of efforts are underway to extend the netCDF-CF convention with the goal of increasing the types of data that can be represented as netCDF-CF data. This presentation will provide an overview and update of work to extend the existing netCDF-CF convention. It will detail the types of earth system science data currently supported by netCDF-CF and the types of data targeted for support by current netCDF-CF convention development efforts. It will also describe some of the tools that support the use of netCDF-CF compliant datasets, the types of data they support, and efforts to extend them to handle the new data types that netCDF-CF will support.

  6. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  7. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  8. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  9. Interoperability Barriers in NASA Earth Science Data Systems from the Perspective of a Science User (Invited)

    NASA Astrophysics Data System (ADS)

    Kuo, K.

    2010-12-01

    As a practitioner in the field of atmospheric remote sensing, the author, like many other similar science users, depends on and uses heavily NASA Earth Science remote sensing data. Thus the author is asked by the NASA Earth Science Data Information System Project (ESDIS) to assess the capabilities of the Earth Observing System Data and Information System (EOSDIS) in order to provide suggestions and recommendations for the evolution of EOSDIS in the path towards its 2015 Vision Tenets. As NASA's Earth science data system, EOSDIS provides data processing and data archiving and distribution services for EOS missions. The science operations of EOSDIS are the focus of this report, i.e. data archiving and distribution, which are performed within a distributed system of many interconnected nodes, namely the Science Investigator-led Processing Systems, or SIPS, and distributed data centers. Since its inception in the early 1990s, EOSDIS has represented a democratization of data, a break from the past when data dissemination was at the discretion of project scientists. Its “open data” policy is so highly valued and well received by its user communities that it has influenced other agencies, even those of other countries, to adopt the same open policy. In the last ~10 years EOSDIS has matured to serve very well users of any given science community in which the varieties of data being used change infrequently. The unpleasant effects of interoperability barriers are now more often felt by users who try to use new data outside their existing familiar set. This paper first defines interoperability and identifies the purposes for achieving interoperability. The sources of interoperability barriers, classified by the author into software, hardware, and human categories, are examined. For a subset of issues related to software, it presents diagnoses obtained from experience of the author and his survey of the EOSDIS data finding, ordering, retrieving, and extraction services

  10. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  11. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    NASA Astrophysics Data System (ADS)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  12. Delivering the EarthScope Transportable Array as a Community Asset

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Simpson, D. W.; Hafner, K.

    2009-12-01

    The Transportable Array element of EarthScope/USArray is a culmination of years of coordination and planning for a large science initiative via the NSF MREFC program. US researchers and the IRIS Consortium conceived of the science objectives for a continental scale array and, together with the geodetic (PBO) and fault drilling (SAFOD) communities and NSF, successfully merged these scientific objectives with a compelling scientific and technical proposal, accompanied with the budget and schedule to accomplish it. The Transportable Array is now an efficient and exacting execution of an immense technical challenge that, by many measures, is yielding exciting science return, both expected and unanticipated. The technical facility is first-rate in its implementation, yet responsive to science objectives and discovery, actively engaging the community in discussion and new direction. The project is carried out by a core of dedicated and professional staff , guided and advised through considerable feedback from science users who have unprecedented access to high-quality data. This, in a sense, lets seismologists focus on research, rather than be administrators, drivers, shippers, battery mules, electronic technicians and radio hams. Now that USArray is operational, it is interesting to reflect on whether the TA, as a professionally executed project, could succeed as well if it were an independent endeavor, managed and operated outside of the resources developed and available through IRIS and its core programs. We detail how the support the USArray facility provides improves data accessibility and enhances interdisciplinary science. We suggest that the resources and community leadership provided by the IRIS Consortium, and the commitment to the principle of free and open data access, have been basic underpinnings for the success of the TA. This involvement of community-based, scientific leadership in the development of large facilities should be considered in planning

  13. Establishing a Social Media Presence and Network for the Pennsylvania Earth Science Teachers Association (PAESTA)

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.; Merkel, C.

    2011-12-01

    In Spring 2011, the Pennsylvania Earth Science Teachers Association (PAESTA) became an official state chapter of the National Earth Science Teachers Association (NESTA). Established with funds from the National Science Foundation, PAESTA is focused on advancing, extending, improving, and coordinating all levels of Earth Science education in Pennsylvania. Our goal is to reach earth science educators across Pennsylvania and beyond who are not physically co-located. An early priority of this new organization was to establish a web presence (http://www.paesta.psu.edu/) and to build an online community to support PAESTA activities and members. PAESTA exists as a distributed group made up of educators across Pennsylvania. Many initial members were participants in summer Earth and space science workshops held at Penn State University, which has allowed for face-to-face connections and network building. PAESTA will hold sessions and a reception at the Pennsylvania Science Teachers Association annual conference. The work of the group also takes place virtually via the PAESTA organizational website, providing professional development opportunities and Earth Science related teaching resources and links. As PAESTA is still in the very early days of its formation, we are utilizing a variety of social media tools to disseminate information and to promote asynchronous discussions around Earth and space science topics and pedagogy. The site features discussion boards for members and non-members to post comments along a specific topic or theme. For example, each month the PAESTA site features an article from one of the National Science Teacher's Association (NSTA)'s journals and encourages teachers to discuss and apply the pedagogical approach or strategy from the article to their classroom situation. We send email blasts so that members learn about organizational news and professional development opportunities. We also leverage in-person training sessions and conference sessions

  14. Importance and Perspectives of the Earth Sciences Popularization in Mexico

    NASA Astrophysics Data System (ADS)

    Flores-Estrella, H.; Yussim, S.

    2007-05-01

    In our days the scientific popularization in Mexico has not a promising future and with the earth sciences is not better; most of the papers in the popularization magazines deal with subjects as earthquakes, volcanoes, plate tectonics, meteorite impacts and the massive extensions associated with them (e.g. Chicxulub). However, these subjects have not been enough to create conscience about the importance of earth sciences in the society and it has even motivated the idea of a community distant scientific with no social obligation, the idea that the earth scientists are responsible for all the problems in the planet (global warming, catastrophes) is wide spread. In these days that we need a change in our consumption, mainly in the energetic one, it's compulsory to change the relation between the subject and its environment; then, as we can not take care of something that we don't know, the scientific popularization has a fundamental role that we must start to pay attention to.

  15. Information Quality as a Foundation for User Trustworthiness of Earth Science Data.

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Moroni, D. F.; Ramapriyan, H.; Peng, G.

    2017-12-01

    Information quality is multidimensional. Four different aspects of information quality can be defined based on the lifecycle stages of Earth Science data products: science, product, stewardship and services. With increasing requirements on ensuring and improving information quality coming from multiple government agencies and throughout industry, there have been considerable efforts toward improving information quality during the last decade, much of which has not been well vetted in a collective sense until recently. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) in 2011, and reactivated in the summer of 2014, has been active with membership from multiple organizations. The IQC's objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are also considered vital toward improving the trustworthiness of Earth science data to a vast and interdisciplinary community of data users. During 2016, several members of the IQC have led the development and assessment of four use cases. This was followed up in 2017 with multiple panel sessions at the 2017 Winter and Summer ESIP Meetings to survey the challenges posed in the various aspects of information quality. What was discovered to be most lacking is the transparency of data lineage (i.e., provenance and maturity), uniform methods for uncertainty characterization, and uniform quality assurance data and metadata. While solutions to these types of issues exist, most data producers have little time to investigate and collaborate to arrive at and conform to a consensus approach. The IQC has positioned itself as a community platform to bring together all relevant stakeholders from data producers, repositories, program managers, and the end users. A combination of both well-vetted and "trailblazing" solutions are presented to address how data trustworthiness can

  16. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  17. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  18. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  19. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    NASA Astrophysics Data System (ADS)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  20. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  1. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  2. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  3. On the Structure of Earth Science Data Collections

    NASA Astrophysics Data System (ADS)

    Barkstrom, B. R.

    2009-12-01

    While there has been substantial work in the IT community regarding metadata and file identifier schemas, there appears to be relatively little work on the organization of the file collections that constitute the preponderance of Earth science data. One symptom of this difficulty appears in nomenclature describing collections: the terms `Data Product,' `Data Set,' and `Version' are overlaid with multiple meanings between communities. A particularly important aspect of this lack of standardization appears when the community attempts to developa schema for data file identifiers. There are four candidate families of identifiers: ● Randomly assigned identifiers, such as GUIDs or UUIDs, ● Segmented numerical identifiers, such as OIDs or the prefixes for DOIs, ● Extensible URL-based identifiers, such as URNs, PURL, ARK, and similar schemas, ● Text-based identifiers based on citations for papers and books, such as those suggested for the International Polar Year (IPY) citations. Unfortunately, these schema families appear to be devoid of content based on the actual structures of Earth science data collections. In this paper, we consider an organization based on an industrial production paradigm that appears to provide the preponderance of Earth science data from satellites and in situ observations. This paradigm produces a hierarchical collection structure, similar to one discussed in Barkstrom [2003: Lecture Notes in Computer Science, 2649, pp. 118-133]. In this organization, three key collection types are ● a Data Product, which is a collection of files that have similar key parameters and included data time interval, ● a Data Set, which is a collection of files within a Data Product that comes from a specified set of Data Sources, ● a Data Set Version, which is a collection of files within a Data Set for which the data producer has attempted to ensure error homogeneity. Within a Data Set Version, files appear as a time series of instances that may be

  4. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    NASA Astrophysics Data System (ADS)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  5. Data Recipes: Toward Creating How-To Knowledge Base for Earth Science Data

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Lynnes, Chris; Acker, James G.; Beaty, Tammy

    2015-01-01

    Both the diversity and volume of Earth science data from satellites and numerical models are growing dramatically, due to an increasing population of measured physical parameters, and also an increasing variety of spatial and temporal resolutions for many data products. To further complicate matters, Earth science data delivered to data archive centers are commonly found in different formats and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and or formats. The data recipe project at Goddard Earth Science Data and Information Services Center (GES DISC) was initiated in late 2012 for enhancing user support. A data recipe is a How-To online explanatory document, with step-by-step instructions and examples of accessing and working with real data (http:disc.sci.gsfc.nasa.govrecipes). The current suite of recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant, even though the data recipe topics are still limited. An Earth Science Data System Working Group (ESDSWG) for data recipes was established in the spring of 2014, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group is working on an inventory and analysis of existing data recipes and tutorials, and will provide guidelines and recommendation for writing and grouping data recipes, and for cross linking recipes to data products. This presentation gives an

  6. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  7. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  8. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-05-01

    The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  9. [Earth and Space Sciences Project Services for NASA HPCC

    NASA Technical Reports Server (NTRS)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  10. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  11. Bridging Informatics and Earth Science: a Look at Gregory Leptoukh's Contributions

    NASA Astrophysics Data System (ADS)

    Lynnes, C.

    2012-12-01

    With the tragic passing this year of Gregory Leptoukh, the Earth and Space Sciences community lost a tireless participant in--and advocate for--science informatics. Throughout his career at NASA, Dr. Leptoukh established a theme of bridging the gulf between the informatics and science communities. Nowhere is this more evident than his leadership in the development of Giovanni (GES DISC Interactive Online Visualization ANd aNalysis Infrastructure). Giovanni is an online tool that serves to hide the often-complex technical details of data format and structure, making science data easier to explore and use by Earth scientists. To date Giovanni has been acknowledged as a contributor in 500-odd scientific articles. In recent years, Leptoukh concentrated his efforts on multi-sensor data inter-comparison, merging and fusion. This work exposed several challenges at the intersection of data and science. One of these was the ease with which a naive user might generate spurious comparisons, a potential hazard that was the genesis of the Multi-sensor Data Synergy Advisor (MDSA). The MDSA uses semantic ontologies and inference rules to organize knowledge about dataset quality and other salient characteristics in order to advise users on potential caveats for comparing or merging two datasets. Recently, Leptoukh also led the development of AeroStat, an online Giovanni instance to investigate aerosols via statistics from station and satellite comparisons and merged maps of data from more than one instrument. Aerostat offers a neural net based bias adjustment to "harmonize" the data by removing systematic offsets between datasets before merging. These examples exhibit Leptoukh's talent for adopting advanced computer technologies in the service of making science data more accessible to researchers. In this, he set an example that is at once both vital and challenging for the ESSI community to emulate.

  12. Bridging Informatics and Earth Science: a Look at Gregory Leptoukh's Contributions

    NASA Technical Reports Server (NTRS)

    2012-01-01

    With the tragic passing this year of Gregory Leptoukh, the Earth and Space Sciences community lost a tireless participant in--and advocate for--science informatics. Throughout his career at NASA, Dr. Leptoukh established a theme of bridging the gulf between the informatics and science communities. Nowhere is this more evident than his leadership in the development of Giovanni (GES DISC Interactive Online Visualization ANd aNalysis Infrastructure). Giovanni is an online tool that serves to hide the often-complex technical details of data format and structure, making science data easier to explore and use by Earth scientists. To date Giovanni has been acknowledged as a contributor in 500-odd scientific articles. In recent years, Leptoukh concentrated his efforts on multi-sensor data inter-comparison, merging and fusion. This work exposed several challenges at the intersection of data and science. One of these was the ease with which a naive user might generate spurious comparisons, a potential hazard that was the genesis of the Multi-sensor Data Synergy Advisor (MDSA). The MDSA uses semantic ontologies and inference rules to organize knowledge about dataset quality and other salient characteristics in order to advise users on potential caveats for comparing or merging two datasets. Recently, Leptoukh also led the development of AeroStat, an online Giovanni instance to investigate aerosols via statistics from station and satellite comparisons and merged maps of data from more than one instrument. Aerostat offers a neural net based bias adjustment to harmonize the data by removing systematic offsets between datasets before merging. These examples exhibit Leptoukh's talent for adopting advanced computer technologies in the service of making science data more accessible to researchers. In this, he set an example that is at once both vital and challenging for the ESSI community to emulate.

  13. Innovations in making EarthScope science and data accessible (Invited)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.

    2013-12-01

    EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for

  14. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  15. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  16. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  17. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  18. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  19. Art-inspired Presentation of Earth Science Research

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Smith, D. K.; Smith, T.; Conover, H.; Robinson, E.

    2016-12-01

    This presentation features two posters inspired by modern and contemporary art that showcase different Earth science data at NASA's Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC). The posters are intended for the science-interested public. They are designed to tell an interesting story and to stimulate interest in the science behind the art. "Water makes the World" is a photo mosaic of cloud water droplet and ice crystal images combined to depict the Earth in space. The individual images were captured using microphysical probes installed on research aircraft flown in the Mid-latitude Continental Convective Clouds Experiment (MC3E). MC3E was one of a series of ground validation field experiments for NASA's Global Precipitation Measurement (GPM) mission which collected ground and airborne precipitation datasets supporting the physical validation of satellite-based precipitation retrieval algorithms. "The Lightning Capital of the World" is laid out on a grid of black lines and primary colors in the style of Piet Mondrian. This neoplastic or "new plastic art" style was founded in the Netherlands and was used in art from 1917 to 1931. The poster colorfully describes the Catatumbo lightning phenomenon from a scientific, social and historical perspective. It is a still representation of a moving art project. To see this poster in action, visit the GHRC YouTube channel at http://tinyurl.com/hd6crx8 or stop by during the poster session. Both posters were created for a special Research as Art session at the 2016 Federation of Earth Science Information Partners (ESIP) summer meeting in Durham, NC. This gallery-style event challenged attendees to use visual media to show how the ESIP community uses data. Both of these visually appealing posters draw the viewer in and then provide information on the science data used, as well as links for more information available. The GHRC DAAC is a joint venture of NASA's Marshall Space Flight Center and the

  20. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  1. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  2. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  3. Reusable Social Networking Capabilities for an Earth Science Collaboratory

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Da Silva, D.; Leptoukh, G. G.; Ramachandran, R.

    2011-12-01

    A vast untapped resource of data, tools, information and knowledge lies within the Earth science community. This is due to the fact that it is difficult to share the full spectrum of these entities, particularly their full context. As a result, most knowledge exchange is through person-to-person contact at meetings, email and journal articles, each of which can support only a limited level of detail. We propose the creation of an Earth Science Collaboratory (ESC): a framework that would enable sharing of data, tools, workflows, results and the contextual knowledge about these information entities. The Drupal platform is well positioned to provide the key social networking capabilities to the ESC. As a proof of concept of a rich collaboration mechanism, we have developed a Drupal-based mechanism for graphically annotating and commenting on results images from analysis workflows in the online Giovanni analysis system for remote sensing data. The annotations can be tagged and shared with others in the community. These capabilities are further supplemented by a Research Notebook capability reused from another online analysis system named Talkoot. The goal is a reusable set of modules that can integrate with variety of other applications either within Drupal web frameworks or at a machine level.

  4. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  5. The ESWN webpage as a tool to increase international collaboration in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Glessmer, Mirjam S.; Adams, Manda; de Boer, Agatha M.; Hastings, Meredith; Kontak, Rose

    2013-04-01

    The Earth Science Women's Network (ESWN; ESWNonline.org) is an international peer-mentoring network of women in the Earth Sciences, many in the early stages of their careers. ESWN's mission is to promote career development, build community, provide opportunities for informal mentoring and support, and facilitate professional collaborations. This has been accomplished via email and a listserv, on Facebook, at in-person networking events, and at professional development workshops. Over the last 10 years, ESWN has grown by word of mouth to include more than 1600 members working on all 7 continents. In an effort to facilitate international connections among women in the Earth Sciences, ESWN has developed a password protected community webpage where members can create an online presence and interact with each other. For example, regional groups help women to connect with co-workers at the same employer, in the same city or the same country, or with women at the place where they are considering taking a new job, will attend a conference or will start working soon. Topical groups center around a vast array of topics ranging from research interests, funding opportunities, work-life balance, teaching, scientific methods, and searching for a job to specific challenges faced by women in the earth sciences. Members can search past discussions and share documents like examples of research statements, useful interview materials, or model recommendation letters. The new webpage also allows for more connectivity among other online platforms used by our members, including LinkedIn, Facebook, and Twitter. Built in Wordpress with a Buddypress members-only section, the new ESWN website is supported by AGU and a National Science Foundation ADVANCE grant. While the ESWN members-only community webpage is focused on providing a service to women geoscientists, the content on the public site is designed to be useful for institutions and individuals interested in helping to increase, retain

  6. ESML for Earth Science Data Sets and Analysis

    NASA Technical Reports Server (NTRS)

    Graves, Sara; Ramachandran, Rahul

    2003-01-01

    The primary objective of this research project was to transition ESML from design to application. The resulting schema and prototype software will foster community acceptance for the Define once, use anywhere concept central to ESML. Supporting goals include: 1) Refinement of the ESML schema and software libraries in cooperation with the user community; 2) Application of the ESML schema and software to a variety of Earth science data sets and analysis tools; 3) Development of supporting prototype software for enhanced ease of use; 4) Cooperation with standards bodies in order to assure ESML is aligned with related metadata standards as appropriate; and 5) Widespread publication of the ESML approach, schema, and software.

  7. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  8. A New Curriculum For a Lab-Based Course in Introductory Earth Science: the Combined Effort of a Regional University and Local Community Colleges in the North Cascades Olympic Science Partnership.

    NASA Astrophysics Data System (ADS)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Grupp, S.; Linneman, S.; Plake, T.; Smith, B.

    2005-12-01

    The North Cascades Olympic Science Partnership (NCOSP) is a partnership between Western Washington University, three local community colleges, the Northwest Indian College, and 29 K-12 school districts in western Washington State. One of the partnership goals is to improve the teaching and learning of science at the post-secondary level with specific emphasis on the training of future teachers. To this end, Western Washington University (WWU) joined with grass-roots efforts by local 2-year colleges to develop a yearlong science sequence that would directly impact pre-service elementary school teachers and other non-science majors. Students from these 2-year colleges who identify themselves as pre-service teachers go on to a teacher preparation program at WWU. The multi-year process of collaborative work among ~20 faculty from these institutions has produced three quarters of new curriculum in the sciences (including one quarter of Earth Science) that uses the pedagogical approach of Physics for Elementary Teachers (PET) (cpucips.sdsu/web/pet). Each of the science quarters utilizes the theme of the transfer of matter and energy. The Earth Science curriculum (transfer of matter and energy in Earth systems) is a quarter-long, lab-based course that emphasizes a metacognitive approach. The curriculum utilizes questioning, small group work, and small and large class discussions. Whiteboarding, or the process of sharing small-group ideas to a larger group, occupies a central theme in the curriculum. Students learn concepts by doing the lab activities, but the group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The curriculum stands alone and does not require lectures by the instructors. The instructor's role is as a facilitator and questioner. The Earth Science curriculum is focused on only a few "Big Ideas" that the faculty developers identified in the planning stages. These

  9. Key Provenance of Earth Science Observational Data Products

    NASA Astrophysics Data System (ADS)

    Conover, H.; Plale, B.; Aktas, M.; Ramachandran, R.; Purohit, P.; Jensen, S.; Graves, S. J.

    2011-12-01

    As the sheer volume of data increases, particularly evidenced in the earth and environmental sciences, local arrangements for sharing data need to be replaced with reliable records about the what, who, how, and where of a data set or collection. This is frequently called the provenance of a data set. While observational data processing systems in the earth sciences have a long history of capturing metadata about the processing pipeline, current processes are limited in both what is captured and how it is disseminated to the science community. Provenance capture plays a role in scientific data preservation and stewardship precisely because it can automatically capture and represent a coherent picture of the what, how and who of a particular scientific collection. It reflects the transformations that a data collection underwent prior to its current form and the sequence of tasks that were executed and data products applied to generate a new product. In the NASA-funded Instant Karma project, we examine provenance capture in earth science applications, specifically the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Science Investigator-led Processing system (SIPS). The project is integrating the Karma provenance collection and representation tool into the AMSR-E SIPS production environment, with an initial focus on Sea Ice. This presentation will describe capture and representation of provenance that is guided by the Open Provenance Model (OPM). Several things have become clear during the course of the project to date. One is that core OPM entities and relationships are not adequate for expressing the kinds of provenance that is of interest in the science domain. OPM supports name-value pair annotations that can be used to augment what is known about the provenance entities and relationships, but in Karma, annotations cannot be added during capture, but only after the fact. This limits the capture system's ability to record something it

  10. Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science

    NASA Astrophysics Data System (ADS)

    Riedel, Morris; Ramachandran, Rahul; Baumann, Peter

    2014-05-01

    The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.

  11. Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science

    NASA Technical Reports Server (NTRS)

    Riedel, Morris; Ramachandran, Rahul; Baumann, Peter

    2014-01-01

    The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.

  12. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  13. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  14. Biological Evolution and the History of the Earth Are Foundations of Science

    NASA Astrophysics Data System (ADS)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  15. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  16. Ivestigating Earth Science in Urban Schoolyards

    ERIC Educational Resources Information Center

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  17. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  18. TravelingGeologist: an online platform for dissemination of earth science to the masses

    NASA Astrophysics Data System (ADS)

    Spencer, C. J.; Hoiland, C. W.; Gunderson, K. L.

    2016-12-01

    To more effectively inspire the next generation of scientists, the earth science community's public outreach efforts must adapt to the changing technological and informational ecosystems in which young people interact online (e.g. blogs, social media, viral marketing, web-based education, etc.). Although there are currently a number of successful individual and institutional efforts to reach potential students through web-based outlets, many of these efforts fail to connect primary researchers directly to a lay audience, relying instead on intermediaries that tend to dilute the recruiting impact of "producer-to-consumer" interactions. Few, if any of these efforts appear to have reached a critical mass of contributing authors and subscribed followers; and there are few available detailed metrics on growth trajectories, impact, or lay reach. We offer data from the TravelingGeologist as a case study in successful direct-to-consumer science outreach and recruitment. The TravelingGeologist is a non-profit, web-based platform on which earth scientists share their experiences in the field with the expressed purpose of attracting and inspiring a new generation of scientists. The TravelingGeologist website is supplemented by various social media platforms that market the content on the main site. Because TravelingGeologist accepts contributions from a variety of earth scientists, it also provides an arena whereon research summaries and vignettes can be shared with the large lay- and expert audience. This gives contributing authors an additional opportunity to demonstrate to government institutions that fund their research projects that they are engaging in efforts to communicate their results to the wider public. Beyond the ability to inspire new students and communicate science to the general public, it is our intent that TravelingGeologist will foster communication and promote collaboration within the earth science community. We have demonstrated that through well

  19. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  20. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  1. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  2. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-12-01

    The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  3. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  4. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  5. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  6. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  7. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  8. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Terrie, Greg; Berglund, Judith

    2006-01-01

    This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.

  13. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  14. The EPOS Architecture: Integrated Services for solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the

  15. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  16. Design of Community Resource Inventories as a Component of Scalable Earth Science Infrastructure: Experience of the Earthcube CINERGI Project

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W., Jr.; Grethe, J. S.; Hsu, L.; Malik, T.; Bermudez, L. E.; Gupta, A.; Lehnert, K. A.; Whitenack, T.; Ozyurt, I. B.; Condit, C.; Calderon, R.; Musil, L.

    2014-12-01

    EarthCube is envisioned as a cyberinfrastructure that fosters new, transformational geoscience by enabling sharing, understanding and scientifically-sound and efficient re-use of formerly unconnected data resources, software, models, repositories, and computational power. Its purpose is to enable science enterprise and workforce development via an extensible and adaptable collaboration and resource integration framework. A key component of this vision is development of comprehensive inventories supporting resource discovery and re-use across geoscience domains. The goal of the EarthCube CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) project is to create a methodology and assemble a large inventory of high-quality information resources with standard metadata descriptions and traceable provenance. The inventory is compiled from metadata catalogs maintained by geoscience data facilities, as well as from user contributions. The latter mechanism relies on community resource viewers: online applications that support update and curation of metadata records. Once harvested into CINERGI, metadata records from domain catalogs and community resource viewers are loaded into a staging database implemented in MongoDB, and validated for compliance with ISO 19139 metadata schema. Several types of metadata defects detected by the validation engine are automatically corrected with help of several information extractors or flagged for manual curation. The metadata harvesting, validation and processing components generate provenance statements using W3C PROV notation, which are stored in a Neo4J database. Thus curated metadata, along with the provenance information, is re-published and accessed programmatically and via a CINERGI online application. This presentation focuses on the role of resource inventories in a scalable and adaptable information infrastructure, and on the CINERGI metadata pipeline and its implementation challenges. Key project

  17. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  18. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  19. Data Curation Education Grounded in Earth Sciences and the Science of Data

    NASA Astrophysics Data System (ADS)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  20. Multiverse: Increasing Diversity in Earth and Space Science Through Multicultural Education

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Raftery, C. L.; Mendez, B.; Paglierani, R.; Ali, N. A.; Zevin, D.; Frappier, R.; Hauck, K.; Shackelford, R. L., III; Yan, D.; Thrall, L.

    2015-12-01

    Multiverse at the University of California, Berkeley Space Sciences Laboratory provides earth and space science educational opportunities and resources for a variety of audiences, especially for those who are underrepresented in the sciences. By way of carefully crafted space and earth science educational opportunities and resources, we seek to connect with people's sense of wonder and facilitate making personal ties to science and the learning process in order to, ultimately, bring the richness of diversity to science and make science discovery accessible for all. Our audiences include teachers, students, education and outreach professionals, and the public. We partner with NASA, the National Science Foundation, scientists, teachers, science center and museum educators, park interpreters, and others with expertise in reaching particular audiences. With these partners, we develop resources and communities of practice, offer educator workshops, and run events for the public. We will will present on our pedagogical techniques, our metrics for success, and our evaluation findings of our education and outreach projects that help us towards reaching our vision: We envision a world filled with science literate societies capable of thriving with today's technology, while maintaining a sustainable balance with the natural world; a world where people develop and sustain the ability to think critically using observation and evidence and participate authentically in scientific endeavors; a world where people see themselves and their culture within the scientific enterprise, and understand science within the context that we are all under one sky and on one Earth. Photo Caption: Multiverse Team Members at our Space Sciences Laboratory from left to right: Leitha Thrall, Daniel Zevin, Bryan Mendez, Nancy Ali, Igor Ruderman, Laura Peticolas, Ruth Paglierani, Renee Frappier, Rikki Shackelford, Claire Raftery, Karin Hauck, and Darlene Yan.

  1. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  2. College and University Earth System Science Education for the 21st Century (ESSE 21)

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    , courses, curricula, minors or degree tracks, and programs or departments that are self-sustaining in the coming decades. Interdisciplinary college and university teams are competitively selected through a peer-reviewed Call for Participation. ESSE 21 offers an infrastructure for an interactive community of educators and researchers including under represented participants that develops interdisciplinary Earth system science content utilizing NASA resources involving global change data, models, visualizations and electronic media and networks. The Program provides for evaluation and assessment guides to help assure the pedagogical effectiveness of materials developed. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system.

  3. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  4. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  5. Coordinating Communities and Building Governance in the Development of Schematic and Semantic Standards: the Key to Solving Global Earth and Space Science Challenges in the 21st Century.

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.

    2007-12-01

    The Information Age in Science is being driven partly by the data deluge as exponentially growing volumes of data are being generated by research. Such large volumes of data cannot be effectively processed by humans and efficient and timely processing by computers requires development of specific machine readable formats. Further, as key challenges in earth and space sciences, such as climate change, hazard prediction and sustainable development resources require a cross disciplinary approach, data from various domains will need to be integrated from globally distributed sources also via machine to machine formats. However, it is becoming increasingly apparent that the existing standards can be very domain specific and most existing data transfer formats require human intervention. Where groups from different communities do try combine data across the domain/discipline boundaries much time is spent reformatting and reorganizing the data and it is conservatively estimated that this can take 80% of a project's time and resources. Four different types of standards are required for machine to machine interaction: systems, syntactic, schematic and semantic. Standards at the systems (WMS, WFS, etc) and at the syntactic level (GML, Observation and Measurement, SensorML) are being developed through international standards bodies such as ISO, OGC, W3C, IEEE etc. In contrast standards at the schematic level (e.g., GeoSciML, LandslidesML, WaterML, QuakeML) and at the semantic level (ie ontologies and vocabularies) are currently developing rapidly, in a very uncoordinated way and with little governance. As the size of the community that can machine read each others data depends on the size of the community that has developed the schematic or semantic standards, it is essential that to achieve global integration of earth and space science data, the required standards need to be developed through international collaboration using accepted standard proceedures. Once developed the

  6. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  7. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  8. GLOBE Earth Science Education and Public Outreach in Developing Countries GLOBE Earth Science Education and Public Outreach in Developing Countries

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Boger, R. A.

    2005-12-01

    GLOBE is an international hands-on earth science education program that involves scientists, teachers and students in more than 16,000 primary and secondary schools. GLOBE is funded by the National Aeronautics Administration (NASA), the National Science Foundation (NSF) and the U.S. Department of State. GLOBE works with schools (teachers and students) through more than 100 U.S. GLOBE partnerships with universities, state and local school systems, and non-government organizations. Internationally, GLOBE is partnered with 109 countries that include many developing nations throughout the world. In addition to the GLOBE's different areas of investigation e.g. Atmosphere/ Weather, Hydrology, Soils, Land Cover Biology and Phenology ( plant and animal), there are special projects such as the GLOBE Urban Phenology Year Project (GUPY) that engages developing and developed countries ( Finland, United States, Japan, Philippines, Thailand, Jordan, Kyrgystan, Senegal, Poland, Estonia, and the Dominican Republic) in studying the effects of urbanization on vegetation phenology, a sensitive indicator of climate change. Vegetation phenology integrates different components of the Earth system i.e. carbon and geochemical cycling, water cycling and energy cycling and is an excellent way to engage students in collaborative projects. This presentation will highlight the GUPY project and provide additional examples of local initiatives and collaborations with indigenous communities that use GLOBE and an inquiry approach to revise science education in developing countries .

  9. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  10. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  11. It's Time to Stand up for Earth Science

    ERIC Educational Resources Information Center

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  12. Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, Anne M.

    2008-12-03

    Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geologicalmore » community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.« less

  13. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  14. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Behnke, Jeanne; Hines-Watts, Tonjua

    2007-01-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's "Core Capabilities" that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute "Community Capabilities". These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASON), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is

  15. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Behnke, J.; Hines-Watts, T. M.

    2007-12-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's Core Capabilities that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute Community Capabilities. These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASoN), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured

  16. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  17. Grids for Dummies: Featuring Earth Science Data Mining Application

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2002-01-01

    This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.

  18. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  19. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    NASA Astrophysics Data System (ADS)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  20. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  1. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  2. ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons

    NASA Astrophysics Data System (ADS)

    Burgess, A. B.; Robinson, E.

    2017-12-01

    The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.

  3. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  4. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  5. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  6. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  7. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  8. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  9. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  10. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  11. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  12. Global Cooperation in the Science of Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Davila, Joseph

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the International Space Weather Initiative (ISWI), the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Living with a Star (ILWS) program. These programs have brought scientists together to tackle the scientific issues related to short and long term variability of the Sun and the consequences in the heliosphere. The ISWI program is a continuation of the successful International Heliophysical Year (IHY) 2007 program in focusing on science, observatory deployment, and outreach. The IHY/ISWI observatory deployment has not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. The ISWI schools and UN workshops are the primary venues for interaction and information exchange among scientists from developing and developed countries that lead to collaborative efforts in space weather. This paper presents a summary of ISWI activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  13. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    ERIC Educational Resources Information Center

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  14. Science and Community Engagement: Connecting Science Students with the Community

    ERIC Educational Resources Information Center

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  15. Fostering Diversity in the Earth and Space Sciences: The Role of AGU

    NASA Astrophysics Data System (ADS)

    Snow, J. T.; Johnson, R. M.; Hall, F. R.

    2002-12-01

    In May 2002, AGU's Committee on Education and Human Resources (CEHR) approved a new Diversity Plan, developed in collaboration with the CEHR Subcommittee on Diversity. Efforts to develop a diversity plan for AGU were motivated by the recognition that the present Earth and space science community poorly represents the true diversity of our society. Failure to recruit a diverse scientific workforce in an era of rapidly shifting demographics could have severe impact on the health of our profession. The traditional base of Earth and space scientists in the US (white males) has been shrinking during the past two decades, but women, racial and ethnic minorities, and persons with disabilities are not compensating for this loss. The potential ramifications of this situation - for investigators seeking to fill classes and recruit graduate students, for institutions looking to replace faculty and researchers, and for the larger community seeking continued public support of research funding - could be crippling. AGU's new Diversity Plan proposes a long-term strategy for addressing the lack of diversity in the Earth and space sciences with the ultimate vision of reflecting diversity in all of AGU's activities and programs. Four key goals have been identified: 1) Educate and involve the AGU membership in diversity issues; 2) Enhance and foster the participation of Earth and space scientists, educators and students from underrepresented groups in AGU activities; 3) Increase the visibility of the Earth and space sciences and foster awareness of career opportunities in these fields for underrepresented populations; and 4) Promote changes in the academic culture that both remove barriers and disincentives for increasing diversity in the student and faculty populations and reward member faculty wishing to pursue these goals. A detailed implementation plan that utilizes all of AGU's resources is currently under development in CEHR. Supportive participation by AGU members and

  16. (abstract) The Evolving Spaceborne Radar Data Support to Earth Science and Operations at the Alaska SAR Facility

    NASA Technical Reports Server (NTRS)

    Carsey, Frank D.

    1996-01-01

    The Alaska SAR Facility (ASF) has been receiving, processing, archiving, and distributing data for Earth scientists and operations since it began receiving data in 1991. Four radar satellites are now being handled. Recent developments have served to increase the level of services of ASF to the Earth science community considerably. These developments are discussed.

  17. Sensor Web and Intelligent Sensors for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2002-01-01

    There is a significant interest in the Earth Science remote sensing community in substantially increasing the number of observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal and surface coverage of measurements. However, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that should be carefully studied and balanced over many boundaries. For example, the question of technology maturity versus users' desire for obtaining additional measurements is noncongruent. This is further complicated by the limitations of the laws of physics and the economic conditions. With the advent of advanced technology, it is anticipated that developments in spacecraft technology will enable advanced capabilities to become more affordable. However, specialized detector subsystems, and precision flying techniques may still require substantial innovation, development time and cost. Additionally, the space deployment scheme should also be given careful attention because of the high associated expense. Nonetheless, it is important to carefully examine the science priorities and steer the development efforts that can commensurate with the tangible requirements. This presentation will focus on a possible set of architectural concepts beneficial for future Earth science studies and research its and potential benefits.

  18. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  19. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web

  20. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  1. The Sea Monitoring Virtual Research Community (VRC) in the EVER-EST Project (a virtual research environment for the Earth Sciences).

    NASA Astrophysics Data System (ADS)

    Foglini, Federica; Boero, Ferdinando; Guarino, Raffaele

    2016-04-01

    The EU's H2020 EVER-EST Project is dedicated to the realization of a Virtual Research Environment (VRE) for Earth Science researchers during 2015-2018. In this framework the Sea monitoring represents one of the four use case VRCs chosen to validate the EVER-EST e-infrastructure, which is aimed at representing a wide and multidisciplinary Earth Science domain. The objective of the Sea Monitoring Virtual Research Community (VRC) is to provide useful and applicable contributions to the identification and definition of variables indicated by the European Commission in the Marine Directive under the framework for Good Environment Status (GES). The European Marine Strategy Framework Directive (MSFD, http://ec.europa.eu/environment/marine/index_en.htm) has defined the descriptors for Good Environmental Status in marine waters. The first descriptor is biodiversity; the second one is the presence of non-indigenous species while the remaining nine (even when they consider physical, chemical or geological variables) require proper functioning of the ecosystem, linked to a good state of biodiversity. The Sea Monitoring VRC is direct to provide practical methods, procedures and protocols to support coherent and widely accepted interpretation of the Descriptors 1(Biodiversity), 2 (non- indigenous species), 4 (food webs) and 6 (seafloor integrity) identified in GES. In that context, the criteria and methodological standards already identified by the European Commission, and at same time considering the activities and projects in progress in the marine framework, will be taken into account. This research of practical methods to estimate and measure GES parameters requires a close cooperation among different disciplines including: biologists, geologists, geophysics, oceanographers, Earth observation experts and others. It will also require a number of different types of scientific data and observations (e.g. biology related, chemico-physical, etc.) from different inputs and sensors

  2. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  3. Enabling Access to High-Resolution Lidar Topography for Earth Science Research

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Baru, Chaitan

    2010-05-01

    High-resolution topography data acquired with lidar (light detection and ranging a.k.a. laser scanning) technology are revolutionizing the way we study the geomorphic processes acting along the Earth's surface. These data, acquired from either an airborne platform or from a tripod-mounted scanner, are emerging as a fundamental tool for research on a variety of topics ranging from earthquake hazards to ice sheet dynamics. Lidar topography data allow earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible yet essential for their appropriate representation. These datasets also have significant implications for earth science education and outreach because they provide an accurate digital representation of landforms and geologic hazards. However, along with the potential of lidar topography comes an increase in the volume and complexity of data that must be efficiently managed, archived, distributed, processed and integrated in order for them to be of use to the community. A single lidar data acquisition may generate terabytes of data in the form of point clouds, digital elevation models (DEMs), and derivative imagery. This massive volume of data is often difficult to manage and poses significant distribution challenges when trying to allow access to the data for a large scientific user community. Furthermore, the datasets can be technically challenging to work with and may require specific software and computing resources that are not readily available to many users. The U.S. National Science Foundation (NSF)-funded OpenTopography Facility (http://www.opentopography.org) is an online data access and processing system designed to address the challenges posed by lidar data, and to democratize access to these data for the scientific user community. OpenTopography provides free, online access to lidar data in a number of forms, including raw lidar point cloud data, standard DEMs, and easily accessible Google

  4. The ESWN network as a platform to increase international collaboration between women in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Braker, Gesche; Wang, Yiming; Glessmer, Mirjam; Kirchgaessner, Amelie

    2014-05-01

    The Earth Science Women's Network (ESWN; ESWNonline.org) is an international peer-mentoring network of women in the Earth Sciences, many in the early stages of their careers. ESWN's mission is to promote career development, build community, provide opportunities for informal mentoring and support, and facilitate professional collaborations. This has been accomplished via email and a listserv, on Facebook, at in-person networking events, and at professional development workshops. In an effort to facilitate international connections among women in the Earth Sciences, ESWN has developed a password protected community webpage supported by AGU and a National Science Foundation ADVANCE grant where members can create an online presence and interact with each other. For example, groups help women to connect with co-workers or center around a vast array of topics ranging from research interests, funding opportunities, work-life balance, teaching, scientific methods, and searching for a job to specific challenges faced by women in the earth sciences. Members can search past discussions and share documents like examples of research statements, useful interview materials, or model recommendation letters. Over the last 10 years, ESWN has grown by word of mouth to include more than 1600 members working on all 7 continents. ESWN also offers professional development workshops at major geologic conferences around the world and at ESWN-hosted workshops mostly exclusively throughout the United States. In 2014, ESWN offers a two day international workshop on communication and networking skills and career development. Women working in all disciplines of Earth Sciences from later PhD level up to junior professors in Europe are invited to the workshop that will be held in Kiel, Germany. The workshop offers participants an individual personality assessment and aims at providing participants with improved communication and networking skills. The second focus will be to teach them how to

  5. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  6. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  7. The Coalition for Publishing Data in the Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Lehnert, Kerstin; Hanson, Brooks; Cutcher-Gershenfeld, Joel

    2015-04-01

    outcome of the conference is the formation of a working group: Coalition for Publishing Data in the Earth and Space Sciences by publishers and data facilities and consortia that will establish a permanent international coordinating conference on Earth science data publication. Marking the launch of the partnership is a joint statement of commitment (to be be released in January 2015), signed by the major Earth and space science publishers and many data facilities, to ensure that Earth science data will, to the greatest extent possible, be stored in community approved repositories that can provide additional data services. The development of a functional directory of Earth and space science repositories is underway that can be used by journals as part of their information to authors, and by authors to identify rapidly which repositories are the best homes for specific data types and how to structure such deposition.

  8. Forget the hype or reality. Big data presents new opportunities in Earth Science.

    NASA Astrophysics Data System (ADS)

    Lee, T. J.

    2015-12-01

    Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.

  9. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  10. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    NASA Astrophysics Data System (ADS)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  11. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  12. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  13. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  14. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  15. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  16. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  17. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  18. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  19. Increasing Diversity in the Earth Sciences - Impact of the IDES Program in Oregon

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Guerrero, E. F.; Duncan, R. A.; de Silva, L. L.; Eriksson, S. C.

    2014-12-01

    The NSF-OEDG funded Increasing Diversity in the Earth Sciences (IDES) program hosted at Oregon State University targets undergraduate students from diverse backgrounds and diverse ethnicity to engage in research. Partnering with local community colleges, non-traditional students are the hallmark of this program. The IDES program has several components to support the students in the transition from community college to the four-year universities of Oregon State University and Portland State University. Over the four years, the program has adapted while adhering to its primary goals: (1) to increase the number of students from underrepresented groups who prepare for and pursue careers in Earth Science research and education, and (2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Now in its final year under an extension, 53 participants have participated in the program. An ongoing external evaluation of the program reveals that the various stakeholders consider IDES very successful. Participant surveys and interviews document several impacts: expanded opportunities, making professional contacts, building self-confidence, enhanced ability to be employable, and personal acknowledgement. Research mentors and administrators from partner institutions see positive impacts on the students and on their organizations. Challenges include better communication between the IDES program, mentors, and students. IDES is poised to move forward with its current experiences and successes as a foundation for further funding. IDES-like activities can be funded from private sources and it is a good fit for funding from Research Experiences for Undergraduates at NSF. The new emphasis on education and research at community colleges is an exciting opportunity and Oregon State University has already used aspects of the IDES program in current grant proposals to obtain funds for more undergraduate research.

  20. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  1. Can ASCII data files be standardized for Earth Science?

    NASA Astrophysics Data System (ADS)

    Evans, K. D.; Chen, G.; Wilson, A.; Law, E.; Olding, S. W.; Krotkov, N. A.; Conover, H.

    2015-12-01

    NASA's Earth Science Data Systems Working Groups (ESDSWG) was created over 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from user experiences. Each group works independently focusing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, such as MEaSUREs, NASA information technology experts, affiliated contractor, staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. Each year, the ESDSWG has a face-to-face meeting to discuss recommendations and future efforts. Last year's (2014) ASCII for Science Data Working Group (ASCII WG) completed its goals and made recommendations on a minimum set of information that is needed to make ASCII files at least human readable and usable for the foreseeable future. The 2014 ASCII WG created a table of ASCII files and their components as a means for understanding what kind of ASCII formats exist and what components they have in common. Using this table and adding information from other ASCII file formats, we will discuss the advantages and disadvantages of a standardized format. For instance, Space Geodesy scientists have been using the same RINEX/SINEX ASCII format for decades. Astronomers mostly archive their data in the FITS format. Yet Earth scientists seem to have a slew of ASCII formats, such as ICARTT, netCDF (an ASCII dump) and the IceBridge ASCII format. The 2015 Working Group is focusing on promoting extendibility and machine readability of ASCII data. Questions have been posed, including, Can we have a standardized ASCII file format? Can it be machine-readable and simultaneously human-readable? We will present a summary of the current used ASCII formats in terms of advantages and shortcomings, as well as potential improvements.

  2. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  3. EarthCubed: Community Convergence and Communication

    NASA Astrophysics Data System (ADS)

    Ryan, J. C.; Black, R.; Davis, R.; Dick, C.; Lee, T.; Allison, M. L.

    2015-12-01

    What drives engagement across a diverse community with the common goal of creating a robust cyberinfrastructure for the geosciences? Which applications, social media venues and outreach mechanisms solicit the most valuable feedback? Of the dizzying toolkit available for community-building, which tools should receive time, attention and dedication? Finally, how does it all relate to better geoscience research? Research projects in the geosciences are rapidly becoming more interdisciplinary, requiring use of broader data-sets and a multitude of data-types in an effort to explain questions important to both the scientific community and the general public. Effective use of the data and tools available requires excellent community communication and engagement across disciplines, as well as a manner to easily obtain and access those data and tools. For over two years, the EarthCube project has sought to create the most active and engaged community possible, bringing together experts from all across the NSF GEO directorate and its many-faceted disciplines. Initial efforts focused on collecting insight and opinions at in-person "end-user workshops," and informal organization of interest groups and teams. Today, efforts feature an organizational structure with dedicated internal communication and outreach groups. The EarthCube Office has been largely responsible for coordination of these groups and the social media and Internet presence of the project to date, through the creation and curation of the EarthCube.org website, social media channels, live-streaming of meetings, and newsletters. Measures of the effectiveness of these efforts will be presented, to serve as potential reference and guidance for other projects seeking to grow their own communities. In addition, we will discuss how the Office's role in outreach and engagement has changed over the past year with the creation of the Engagement and Liaison Teams, and what it signifies for the Office's role in Earth

  4. Development and Application of Ontologies in Support of Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Fox, S. P.; Manduca, C. A.; Iverson, E.

    2007-12-01

    Through its work in supporting improved science education the Science Education Resource Center (SERC) has developed and applied a set of Earth and Space Science vocabularies. These controlled vocabularies play a central role in supporting user exploration of our educational materials. The set of over 50 vocabularies run the gamut from small vocabularies with a narrowly targeted use, to broader vocabularies that span multiple disciplines and are applied across multiple projects and collections. Typical specialized vocabularies cover disciplinary themes such as tectonic setting (with terms such as mid-ocean ridge, passive margin, and craton) as well as interdisciplinary work such as geology and human health (with terms such as radionuclides and airborne transport processes). To support project-specific customization of vocabularies while retaining the benefits of cross-project reuse our systems allow for dynamic mapping of terms among multiple vocabularies based on semantic equivalencies. The end result is a weaving of related vocabularies into an ontological network that is exposed as specific vocabularies that employ the natural language of the collections and communities that use them. Our process for vocabulary development is community driven and reflects our experiences in aligning terminology with disciplinary-specific expectations. These experiences include rectifying language differences across disciplines in building a Geoscience Quantitative Skills vocabulary through work with both the Mathematics and Geoscience communities, as well as the iterative development of a vocabulary spanning Earth and Space science through the aggregation of smaller vocabularies, each developed by scientists for use within their own discipline. The vocabularies are exposed as key navigational features in over 100 faceted search interfaces within the web sites of a dozen Earth and Space Science Education projects. Within these faceted search interfaces the terms in the

  5. Bridging the Digital Divide between Discrete and Continuous Space-Time Array Data to Enhance Accessibility to and Usability of NASA Earth Sciences Data for the Hydrological Community

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Maidment, D. R.; Vollmer, B.; Peters-Lidard, C. D.; Rui, H.; Strub, R.; Whiteaker, T.; Mocko, D. M.; Kirschbaum, D. B.

    2012-12-01

    A longstanding and significant "Digital Divide" in data representation exists between hydrology and climatology and meteorology. Typically, in hydrology, earth surface features are expressed as discrete spatial objects such as watersheds, river reaches, and point observation sites; and time varying data are contained in time series associated with these spatial objects. Long time histories of data may be associated with a single point or feature in space. In meteorology and climatology, remotely sensed observations and weather and climate model information are expressed as continuous spatial fields, with data sequenced in time from one data file to the next. Hydrology tends to be narrow in space and deep in time, while meteorology and climatology are broad in space and narrow in time. This Divide has been an obstacle, specifically, between the hydrological community, as represented by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) and relevant data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). CUAHSI has developed the Hydrologic Information System (HIS), which is built on international geospatial standards, with one of its aims to bridge the Divide. The opportunity costs of the Divide are high. It has largely prevented the routine access and use of NASA Earth sciences data by the hydrological and, more generally, geospatial community. This presentation describes a recently-begun NASA ACCESS project that addresses the Digital Divide problem. Progress to date is summarized; technical details are provided in a related presentation (Rui et al., Data Reorganization for Optimal Time Series Data Access, Analysis, and Visualization, IN016). Building on prior prototype efforts with EPA BASINS (Better Assessment Science Integrating point and Nonpoint Sources) and CUAHSI HIS, this project focuses on the following approaches to the problems of data discovery, access, and use: (1) Link HIS and

  6. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  7. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  8. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  9. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  10. Toward a Climate OSSE for NASA Earth Sciences

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.

    2016-12-01

    In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth

  11. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  12. Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences

    NASA Astrophysics Data System (ADS)

    CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.

    2012-10-01

    The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace

  13. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  14. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  15. Worldwide Telescope as an earth and planetary science educational platform

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Rush, K.; van Ingen, C.; Wong, C.; Fay, J.; Xu, Y.; Fay, D.

    2009-12-01

    Worldwide Telescope (WWT) -available at no cost from Microsoft Research as both Windows desktop and web browser applications - enables personal computers to function as virtual telescopes for viewing the earth, the solar system and the cosmos across many wavelengths. Bringing together imagery from ground and space-based telescopes as well as photography from Mars rovers and Apollo astronauts, WWT is designed to work as both a research tool and a platform for educational exploration. Central to the latter purpose is the Tour authoring facility which enables a student or educator to create narrative stories with dynamic perspective, voice-over narrative, background sound and superimposed content. We describe here the application of recent developments in WWT, particularly the 2009 updates, towards planetary science education with particular emphasis on WWT earth models. Two core themes informing this development are the notions of enabling social networking through WWT Communities and including the earth as part of the bigger picture, in effect swinging the telescope around from the deep sky to look back at our observatory. moon, earth (WWT solar system view)

  16. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  17. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  18. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  19. Earth Science Education in Sudan

    NASA Astrophysics Data System (ADS)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  20. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be

  1. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  2. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  3. Networking Skills as a Career Development Practice: Lessons from the Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Kontak, R.; Holloway, T.; Marin-Spiotta, E.; Steiner, A. L.; Wiedinmyer, C.; Adams, A. S.; de Boer, A. M.; Staudt, A. C.; Fiore, A. M.

    2010-12-01

    Professional networking is often cited as an important component of scientific career development, yet there are few resources for early career scientists to develop and build networks. Personal networks can provide opportunities to learn about organizational culture and procedures, expectations, advancement opportunities, and best practices. They provide access to mentors and job placement opportunities, new scientific collaborations, speaker and conference invitations, increased scientific visibility, reduced isolation, and a stronger feeling of community. There is evidence in the literature that a sense of community positively affects the engagement and retention of underrepresented groups, including women, in science. Thus women scientists may particularly benefit from becoming part of a network. The Earth Science Women’s Network (ESWN) began in 2002 as an informal peer-to-peer mentoring initiative among a few recent Ph.D.s. The network has grown exponentially to include over 1000 women scientists across the globe. Surveys of our membership about ESWN report positive impacts on the careers of women in Earth sciences, particularly those in early career stages. Through ESWN, women share both professional and personal advice, establish research collaborations, communicate strategies on work/life balance, connect with women at various stages of their careers, and provide perspectives from cultures across the globe. We present lessons learned through the formal and informal activities promoted by ESWN in support of the career development of women Earth scientists.

  4. Earth Science Keyword Stewardship: Access and Management through NASA's Global Change Master Directory (GCMD) Keyword Management System (KMS)

    NASA Astrophysics Data System (ADS)

    Stevens, T.; Olsen, L. M.; Ritz, S.; Morahan, M.; Aleman, A.; Cepero, L.; Gokey, C.; Holland, M.; Cordova, R.; Areu, S.; Cherry, T.; Tran-Ho, H.

    2012-12-01

    Discovering Earth science data can be complex if the catalog holding the data lacks structure. Controlled keyword vocabularies within metadata catalogues can improve data discovery. NASA's Global Change Master Directory's (GCMD) Keyword Management System (KMS) is a recently released a RESTful web service for managing and providing access to controlled keywords (science keywords, service keywords, platforms, instruments, providers, locations, projects, data resolution, etc.). The KMS introduces a completely new paradigm for the use and management of the keywords and allows access to these keywords as SKOS Concepts (RDF), OWL, standard XML, and CSV. A universally unique identifier (UUID) is automatically assigned to each keyword, which uniquely identifies each concept and its associated information. A component of the KMS is the keyword manager, an internal tool that allows GCMD science coordinators to manage concepts. This includes adding, modifying, and deleting broader, narrower, or related concepts and associated definitions. The controlled keyword vocabulary represents over 20 years of effort and collaboration with the Earth science community. The maintenance, stability, and ongoing vigilance in maintaining mutually exclusive and parallel keyword lists is important for a "normalized" search and discovery, and provides a unique advantage for the science community. Modifications and additions are made based on community suggestions and internal review. To help maintain keyword integrity, science keyword rules and procedures for modification of keywords were developed. This poster will highlight the use of the KMS as a beneficial service for the stewardship and access of the GCMD keywords. Users will learn how to access the KMS and utilize the keywords. Best practices for managing an extensive keyword hierarchy will also be discussed. Participants will learn the process for making keyword suggestions, which subsequently help in building a controlled keyword

  5. Creating a FIESTA (Framework for Integrated Earth Science and Technology Applications) with MagIC

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.

    2017-12-01

    The Magnetics Information Consortium (https://earthref.org/MagIC) has recently developed a containerized web application to considerably reduce the friction in contributing, exploring and combining valuable and complex datasets for the paleo-, geo- and rock magnetic scientific community. The data produced in this scientific domain are inherently hierarchical and the communities evolving approaches to this scientific workflow, from sampling to taking measurements to multiple levels of interpretations, require a large and flexible data model to adequately annotate the results and ensure reproducibility. Historically, contributing such detail in a consistent format has been prohibitively time consuming and often resulted in only publishing the highly derived interpretations. The new open-source (https://github.com/earthref/MagIC) application provides a flexible upload tool integrated with the data model to easily create a validated contribution and a powerful search interface for discovering datasets and combining them to enable transformative science. MagIC is hosted at EarthRef.org along with several interdisciplinary geoscience databases. A FIESTA (Framework for Integrated Earth Science and Technology Applications) is being created by generalizing MagIC's web application for reuse in other domains. The application relies on a single configuration document that describes the routing, data model, component settings and external services integrations. The container hosts an isomorphic Meteor JavaScript application, MongoDB database and ElasticSearch search engine. Multiple containers can be configured as microservices to serve portions of the application or rely on externally hosted MongoDB, ElasticSearch, or third-party services to efficiently scale computational demands. FIESTA is particularly well suited for many Earth Science disciplines with its flexible data model, mapping, account management, upload tool to private workspaces, reference metadata, image

  6. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  7. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  8. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  9. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  10. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  11. Making NASA Earth Observing System Satellite Data Accessible to the K-12 and Citizen Scientist Communities

    NASA Technical Reports Server (NTRS)

    Moore, Susan W.; Phelps, Carrie S.; Chambers, Lin H.

    2004-01-01

    The Atmospheric Sciences Data Center (ASDC) at NASA s Langley Research Center houses over 700 data sets related to Earth s radiation budget, clouds, aerosols and tropospheric chemistry. These data sets are produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. The Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education by reducing these large data holdings to microsets that will be easily explored and understood by the K-12 and the amateur scientist communities

  12. The Benefits of Peer-to-Peer Mentoring: Lessons from The Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Steiner, A.; Fiore, A.; Hastings, M.; McKinley, G.; Staudt, A.; Wiedinmyer, C.

    2007-12-01

    The Earth Science Women's Network (ESWN) is a grassroots organization that began with the meeting of six women graduate students and recent Ph.D.s at the Spring 2002 AGU meeting in Washington, DC. Since then, the group has grown to over 400 members, completely by word of mouth. We provide an informal, peer-to-peer network developed to promote and support careers of women in the Earth sciences. Through the network, women have found jobs, established research collaborations, shared strategies on work/life balance, and built a community stretching around the world. We maintain an email list for members to develop an expanded peer network outside of their own institution, and we have recently launched a co-ed jobs list to benefit the wider geoscience community. We will present a summary of strategies that have been discussed by group members on how to transition to a new faculty position, build a research group, develop new research collaborations, and balance career and family.

  13. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  14. RITES: Online (Reaching In-Service Teachers With Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2002-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believe that the power of technology could not be effectively utilized unless it is grounded in new models of teaching and learning based on a student centered and project based curriculum, that increases opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believe the aforementioned ideas and points to be equally true for the inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses are delivered by distance learning via the university WebCt distance education system. Teachers are encouraged to use technology in their classrooms and to record their students' involvement in science activities with digital cameras. Teachers involved in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight the teachers in the roles of designer, researcher, and collaborator. As a result of our courses our teachers attain the following positive outcomes: 1) Teachers experience the inquiry approach to learning about the spheres of our earth. 2) Teachers become confident in using technology. 3) Teachers learn to work cooperatively in-groups and understand what their own students must feel. 4) Teachers find ways to obtain dynamic professional development and not leave their classrooms or homes

  15. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  16. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  17. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Roggenthen, W.; Wang, J.

    2004-12-01

    next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.

  18. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  19. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  20. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  1. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  2. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  3. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  4. IEDA Integrated Services: Improving the User Experience for Interdisciplinary Earth Science Research

    NASA Astrophysics Data System (ADS)

    Carter-Orlando, M.; Ferrini, V. L.; Lehnert, K.; Carbotte, S. M.; Richard, S. M.; Morton, J. J.; Shane, N.; Ash, J.; Song, L.

    2017-12-01

    The Interdisciplinary Earth Data Alliance (IEDA) is an NSF-funded data facility that provides data tools and services to support the Ocean, Earth, and Polar Sciences. IEDA systems, developed and maintained primarily by the IEDA partners EarthChem and the Marine Geoscience Data System (MGDS), serve as primary community data collections for global geochemistry and marine geoscience research and support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types. Individual IEDA systems originated independently and differ from one another in purpose and scope. Some IEDA systems are data repositories (EarthChem Library, Marine Geo-Digital Library), while others are actively maintained data syntheses (GMRT, PetDB, EarthChem Portal, Geochron). Still others are data visualization and analysis tools (GeoMapApp). Although the diversity of IEDA's data types, tools, and services is a major strength and of high value to investigators, it can be a source of confusion. And while much of the data managed in IEDA systems is appropriate for interdisciplinary research, investigators may be unfamiliar with the user interfaces and services of each system, especially if it is not in their primary discipline. This presentation will highlight new ways in which IEDA helps researchers to more efficiently navigate data submission and data access. It will also discuss how IEDA promotes discovery and access within and across its systems, to serve interdisciplinary science while also remaining aware of and responsive to the more specific needs of its disciplinary user communities. The IEDA Data Submission Hub (DaSH), which is currently under development, aspires to streamline the submission process for both the science data contributor and for the repository data curator. Instead of users deciding a priori, which system they should contribute their data to, the DaSH helps route them to the appropriate repository based primarily on data

  5. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  6. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  7. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    USGS Publications Warehouse

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public

  8. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  9. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  10. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    NASA Astrophysics Data System (ADS)

    Fadhli, Fathi Ali

    2000-10-01

    The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach

  11. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    ERIC Educational Resources Information Center

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  12. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  13. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  14. Resources Available for Earth Science Education. Final Report.

    ERIC Educational Resources Information Center

    Clausen, Eric

    A study of schools was conducted to determine needs of earth science programs, and what, if any, services could effectively be provided by an earth science resource center. Contacts were made with approximately one-half the schools in the Minot State College service region. Discussions were held with administrators and teachers, and facilities at…

  15. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  16. What to do when the Universities reject High School Earth Science

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    It is hard to imagine a state of the union more affected by Earth processes than the state of California. However, the University of California actively discourages High School students from taking Earth Science courses. For admission into the University of California students are required to take at least 2 years of courses that offer a fundamental knowledge in at least two of these three foundational subjects: biology, chemistry, and physics. Earth Science courses simply don't qualify as laboratory science courses. The UC Admissions will sometimes make an exception for an Earth Science course only if it is shown to contain a large component of biology, chemistry and physics topics. Since students don't get credit for admission for taking Earth Science, High Schools are quick to drop Earth Science courses for their college-bound students. A group of teachers and University professors have been working to reverse this policy by creating a rigorous capstone Earth Science course that clearly merits laboratory status. Getting this course accepted by the University of California is well on its way, but getting the course into the High Schools will take a lot of work and probably some extra funding.

  17. The EarthScope Transportable Array Migrates Eastward: Engaging the Science Community and Students

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Busby, R. W.; Hafner, K.; Taber, J.; Woodward, R.

    2009-12-01

    EarthScope onSite newsletter and other publications can be used for outreach to colleagues, schools, and the general public to communicate the excitement and scientific discoveries of EarthScope. Other outreach activities include teacher workshops, classroom seismographs and a DVD of earthquake-related educational materials, and EarthScope-specific and regional-specific pages for the Active Earth interactive display. We will present TA deployment maps and schedules, comprehensive information about the station adoption and siting reconnaissance programs, and examples of outreach materials to facilitate and support the science community’s involvement in EarthScope as it moves into the continental interior.

  18. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  19. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  20. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  1. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  2. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  3. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  4. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  5. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  6. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  7. Technology thrusts for future Earth science applications

    NASA Astrophysics Data System (ADS)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  8. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  9. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  10. An experience of science theatre: Earth Science for children

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  11. The Earth Science Women's Network: The Principles That Guide Our Mentoring

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Steiner, A. L.; Wiedinmyer, C.

    2015-12-01

    The Earth Science Women's Network (ESWN) began informally in 2002 as a way for six early career female atmospheric chemists to stay in contact and support each other. Twelve years later (2014), the ESWN formally became a non-profit organization with over 2000 members. The ESWN includes scientists from all disciplines of the geosciences with members located in over 50 countries. The ESWN is dedicated to career development, peer mentoring and community building for women in the geosciences. The mentoring philosophy of ESWN has evolved to include five main principles: 1.) Support community-driven mentoring, 2.) Encourage diverse mentoring approaches for diverse individuals, 3.) Facilitate mentoring across career phases, 4.) Promote combined personal and professional mentoring, 5.) Champion effective mentoring in a safe space. Surveys of ESWN members report gains in areas that are often considered barriers to career advancement, including recognition that they are not alone, new understanding of obstacles faced by women in science, and access to professional resources.

  12. Earth System Science Education Centered on Natural Climate Variability

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; Ladochy, S.; Patzert, W. C.; Willis, J. K.

    2009-12-01

    Several new courses and many educational activities related to climate change are available to teachers and students of all grade levels. However, not all new discoveries in climate research have reached the science education community. In particular, effective learning tools explaining natural climate change are scarce. For example, the Pacific Decadal Oscillation (PDO) is a main cause of natural climate variability spanning decades. While most educators are familiar with the shorter-temporal events impacting climate, El Niño and La Niña, very little has trickled into the climate change curriculum on the PDO. We have developed two online educational modules, using an Earth system science approach, on the PDO and its role in climate change and variability. The first concentrates on the discovery of the PDO through records of salmon catch in the Pacific Northwest and Alaska. We present the connection between salmon abundance in the North Pacific to changing sea surface temperature patterns associated with the PDO. The connection between sea surface temperatures and salmon abundance led to the discovery of the PDO. Our activity also lets students explore the role of salmon in the economy and culture of the Pacific Northwest and Alaska and the environmental requirements for salmon survival. The second module is based on the climate of southern California and how changes in the Pacific Ocean , such as the PDO and ENSO (El Niño-Southern Oscillation), influence regional climate variability. PDO and ENSO signals are evident in the long-term temperature and precipitation record of southern California. Students are guided in the module to discover the relationships between Pacific Ocean conditions and southern California climate variability. The module also provides information establishing the relationship between climate change and variability and the state's water, energy, agriculture, wildfires and forestry, air quality and health issues. Both modules will be

  13. ArXives of Earth science

    NASA Astrophysics Data System (ADS)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  14. A decade of Earth science

    NASA Astrophysics Data System (ADS)

    2018-01-01

    Great Earth science has been published over the ten years since the launch of Nature Geoscience. The field has also become more interdisciplinary and accountable, as well as more central to society and sustainability.

  15. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  16. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  17. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  18. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  19. Enabling Long-Term Earth Science Research: Changing Data Practices (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, K. S.

    2013-12-01

    Data stewardship plans are shaped by our shared experiences. As a result, community engagement and collaborative activities are central to the stewardship of data. Since modes and mechanisms of engagement have changed, we benefit from asking anew: ';Who are the communities?' and ';What are the lessons learned?'. Data stewardship with its long-term care perspective, is enriched by reflection on community experience. This presentation draws on data management issues and strategies originating from within long-term research communities as well as on recent studies informed by library and information science. Ethnographic case studies that capture project activities and histories are presented as resources for comparative analysis. Agency requirements and funding opportunities are stimulating collaborative endeavors focused on data re-use and archiving. Research groups including earth scientists, information professionals, and data systems designers are recognizing the possibilities for new ways of thinking about data in the digital arena. Together, these groups are re-conceptualizing and reconfiguring for data management and data curation. A differentiation between managing data for local use and production of data for re-use remotely in locations and fields remote from the data origin is just one example of the concepts emerging to facilitate development of data management. While earth scientists as data generators have the responsibility to plan new workflows and documentation practices, data and information specialists have responsibility to promote best practices as well as to facilitate the development of community resources such as controlled vocabularies and data dictionaries. With data-centric activities and changing data practices, the potential for creating dynamic community information environments in conjunction with development of data facilities exists but remains elusive.

  20. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  1. Let's Talk About Water: Film as a Resource to Engage Audiences Around Earth Science Issues

    NASA Astrophysics Data System (ADS)

    Clark, E.; Hooper, R. P.; Lilienfeld, L.

    2017-12-01

    Connecting a diverse audience to science can be challenging. Scientists generally publish their findings in ways that are not easily accessible to audiences outside of the science community and translating findings for wider consumption requires a mindful balance of generalization and accuracy. In response to these communication challenges, the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) developed the Let's Talk About Water (LTAW) program as a formula for hosting successful events for Earth Science education. The program uses film as a bridge to open a discussion between scientists and the audience. In this setting, films are powerful educational tools because they use storytelling to engage audiences emotionally, which creates relatable, teachable moments. Originally designed to bring awareness to water issues, the formula can easily be applied to increase literacy on climate change and other critical Earth Science issues facing society. This presentation will discuss the LTAW event formula and the resources that CUAHSI has available to support event organizers in the development of their own LTAW events.

  2. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  3. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  4. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  5. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  6. If an antelope is a document, then a rock is data: preserving earth science samples for the future

    NASA Astrophysics Data System (ADS)

    Ramdeen, S.

    2015-12-01

    As discussed in seminal works by Briet (1951) and Buckland (1998), physical objects can be considered documents when given specific context. In the case of an antelope, in the wild it's an animal, in a zoo it's a document. It is the primary source of information, specifically when it is made an object of study. When discussing earth science data, we may think about numbers in a spreadsheet or verbal descriptions of a rock. But what about physical materials such as cores, cuttings, fossils, and other tangible objects? The most recent version of the American Geophysical Union's data position statement states data preservation and management policies should apply to both "digital data and physical objects"[1]. If an antelope is a document, than isn't a rock a form of data? Like books in a library or items in a museum, these objects require surrogates (digital or analog) that allow researchers to access and retrieve them. Once these scientific objects are acquired, researchers can process the information they contain. Unlike books, and some museum materials, most earth science objects cannot yet be completely replaced by digital surrogates. A fossil may be scanned, but the original is needed for chemical testing and ultimately for 'not yet developed' processes of scientific analysis. These objects along with their metadata or other documentation become scientific data when they are used in research. Without documentation of key information (i.e. the location where it was collected) these objects may lose their scientific value. This creates a complex situation where we must preserve the object, its metadata, and the connection between them. These factors are important as we consider the future of earth science data, our definitions of what constitutes scientific data, as well as our data preservation and management practices. This talk will discuss current initiatives within the earth science communities (EarthCube's EC3 and iSamples; USGS's data preservation program

  7. COPDESS (Coalition for Publishing Data in the Earth & Space Sciences): An Update on Progress and Next Steps

    NASA Astrophysics Data System (ADS)

    Lehnert, Kerstin; Hanson, Brooks; Sallans, Andrew; Elger, Kirsten

    2016-04-01

    The Coalition for Publishing Data in the Earth and Space Sciences (http://www.copdess.org/) formed in October 2014 to provide an organizational framework for Earth and space science publishers and data facilities to jointly implement and promote common policies and procedures for the publication and citation of data across Earth Science journals. Since inception, it has worked to develop and promote adoption of data citation standards (e.g. FORCE11 Joint Declaration of Data Citation Principles), integrate community tools and services for greater discovery and adoption (e.g. COPDESS Directory of Repositories, https://copdessdirectory.osf.io/), and connect with related community efforts for greater transparency in research community (e.g. the Transparency and Openness Promotion Guidelines, http://cos.io/top). Following a second COPDESS workshop in Fall 2015, COPDESS is undertaking several concrete steps to increase participation and integration of efforts more deeply into the publishing and data facility workflows and to expand international participation. This talk will focus on details of specific initiatives, collection of feedback, and a call for new members. Specifically, we will present progress on the development of guidelines that aim to standardize publishers' recommended best practices by establishing "Best practices for best practices" that will allow a journal or data facility to tailor these practices to the sub-disciplines that they serve. COPDESS will further work to advance implementation of these best practices through increased outreach to and education of editors and authors. COPDESS plans to offer a Town Hall meeting at the EGU General Assembly as a forum for further information and discussion.

  8. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  9. Unidata: Community, Science, and Technology; in that order.

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Ramamurthy, M. K.; Davis, E.

    2015-12-01

    Unidata's mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation. The Unidata community has grown from around 250 individual participants in the early years to tens of thousands of users in over 150 countries. Today, Unidata's products and services are used on every continent and by every sector of the geoscience enterprise: universities, government agencies, private sector, and other non-governmental organizations. Certain traits and ethos are shared by and common to most successful organizations. They include a healthy organizational culture grounded by some core values and guiding principles. In that environment, there is an implicit awareness of the connection between mission of an organization, its values, and its day-to-day activities, and behaviours of a passionate staff. Distinguishing characteristics include: vigorous engagement of the community served by those organizations backed by strong and active governance, unwavering commitment to seek input and feedback from users, and trust of those users, earned over many years through consistent, dependable, and high-quality service. Meanwhile, changing data volumes and standards, new computing power, and expanding scientific questions sound continue to shape the geoscience community. These issues were the drivers for founding Unidata, a cornerstone data facility, in 1984. Advances in geoscience occur at the junction of community, science, and technology and this submission will feature lessons from Unidata's thirty year history operating at this nexus. Specifically, this presentation will feature guiding principles for the program, governance mechanisms, and approaches for balancing science and technology in a community-driven program.

  10. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  11. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  12. Scientific Research for Integrated Solutions to Community Challenges: The Thriving Earth Exchange (TEX) Approach

    NASA Astrophysics Data System (ADS)

    Udu-gama, N.; Pandya, R.

    2015-12-01

    There is tremendous unmet and sometimes unrealized need for Earth and space science (ESS) expertise as part of civic decisions and local planning for climate change, natural hazards and natural resources. The Thriving Earth Exchange (TEX) helps AGU contribute that expertise to humanity in respectful, integrated ways. TEX brings ESS scientists together with local communities tackling issues of climate change, natural hazards and natural resources to co-design solutions that equitably integrate both scientific and community knowledge. To achieve this ambitious goal, TEX is partnering with organizations that are respected by and knowledgeable about communities both in the United States and internationally. Such partnerships include Rockefeller's 100 Resilient Cities Initiative, ICLEI USA, MIT's Climate Colab, among others. TEX works with these partners to approach communities who are ready to or already addressing ESS related issues. With partners, we help the communities define their goals, develop specific projects, and connect with relevant and helpful ESS scientists. We will also show how we help scientists and community leaders work productively together, and the tools we bring to support their innovation. It will highlight international examples, such as in the Pamir Mountains of Afghanistan-Tajikistan, Sri Lanka, and Ethiopia, and provide concrete examples of how these initiatives are helping TEX further expand the frontiers of collaborative research.

  13. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  14. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler

    2011-01-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/

  15. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    NASA Astrophysics Data System (ADS)

    Aleman, A.; Olsen, L. M.; Ritz, S.; Stevens, T.; Morahan, M.; Grebas, S. K.

    2011-12-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide.The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs.Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information.In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries.By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways.This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data.

  16. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  17. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  18. The ClearEarth Project: Preliminary Findings from Experiments in Applying the CLEARTK NLP Pipeline and Annotation Tools Developed for Biomedicine to the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Duerr, R.; Thessen, A.; Jenkins, C. J.; Palmer, M.; Myers, S.; Ramdeen, S.

    2016-12-01

    The ability to quickly find, easily use and effortlessly integrate data from a variety of sources is a grand challenge in Earth sciences, one around which entire research programs have been built. A myriad of approaches to tackling components of this challenge have been demonstrated, often with some success. Yet finding, assessing, accessing, using and integrating data remains a major challenge for many researchers. A technology that has shown promise in nearly every aspect of the challenge is semantics. Semantics has been shown to improve data discovery, facilitate assessment of a data set, and through adoption of the W3C's Linked Data Platform to have improved data integration and use at least for data amenable to that paradigm. Yet the creation of semantic resources has been slow. Why? Amongst a plethora of other reasons, it is because semantic expertise is rare in the Earth and Space sciences; the creation of semantic resources for even a single discipline is labor intensive and requires agreement within the discipline; best practices, methods and tools for supporting the creation and maintenance of the resources generated are in flux; and the human and financial capital needed are rarely available in the Earth sciences. However, other fields, such as biomedicine, have made considerable progress in these areas. The NSF-funded ClearEarth project is adapting the methods and tools from these communities for the Earth sciences in the expectation that doing so will enhance progress and the rate at which the needed semantic resources are created. We discuss progress and results to date, lessons learned from this adaptation process, and describe our upcoming efforts to extend this knowledge to the next generation of Earth and data scientists.

  19. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  20. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  1. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the

  2. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  3. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  4. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    ERIC Educational Resources Information Center

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  5. GMRI.org | Science. Education. Community.

    Science.gov Websites

    Coastal Communities Science Education Fisheries Convening Events Calendar Event Series Sustainable Seafood Literacy Supporting Sustainable Seafood Strengthening Coastal Communities Our Work Science Education | Cultivating Science Literacy | Supporting Sustainable Seafood | Strengthening Coastal Communities GMRI's

  6. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  7. Use of Earth Observing Satellite Data for the Development of "Learning Exercises" for College-Level Science Courses

    NASA Technical Reports Server (NTRS)

    Joyce, Armond T.

    1998-01-01

    This paper is based on experiences being gained through a project entitled "The Mississippi Community College Pilot Project". The project was labeled "pilot" because it is thought that lessons learned during the implementation of this project may aid similar endeavors in other states. The objective of the project is to provide curriculum enrichment and associated faculty enhancement through the use of earth observations data in biological and physical sciences courses. The premise underlying the objective is that information from earth observations from satellite and aircraft platforms provides an effective means of illustrating and explaining science topics/phenomena in a new and/or different perspective. It is also thought that the use of data acquired from space may also serve to captivate the students interest and/or inquisitiveness about the particular science issue.

  8. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  9. The EarthServer project: Exploiting Identity Federations, Science Gateways and Social and Mobile Clients for Big Earth Data Analysis

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Messina, Antonio; Pappalardo, Marco; Passaro, Gianluca

    2013-04-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. Six Lighthouse Applications are being established in EarthServer, each of which poses distinct challenges on Earth Data Analytics: Cryospheric Science, Airborne Science, Atmospheric Science, Geology, Oceanography, and Planetary Science. Altogether, they cover all Earth Science domains; the Planetary Science use case has been added to challenge concepts and standards in non-standard environments. In addition, EarthLook (maintained by Jacobs University) showcases use of OGC standards in 1D through 5D use cases. In this contribution we will report on the first applications integrated in the EarthServer Science Gateway and on the clients for mobile appliances developed to access them. We will also show how federated and social identity services can allow Big Earth Data Providers to expose their data in a distributed environment keeping a strict and fine-grained control on user authentication and authorisation. The degree of fulfilment of the EarthServer implementation with the recommendations made in the recent TERENA Study on

  10. Supporting Data Stewardship Throughout the Data Life Cycle in the Solid Earth Sciences

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Lehnert, K. A.; Carbotte, S. M.; Hsu, L.

    2013-12-01

    Stewardship of scientific data is fundamental to enabling new data-driven research, and ensures preservation, accessibility, and quality of the data, yet researchers, especially in disciplines that typically generate and use small, but complex, heterogeneous, and unstructured datasets are challenged to fulfill increasing demands of properly managing their data. The IEDA Data Facility (www.iedadata.org) provides tools and services that support data stewardship throughout the full life cycle of observational data in the solid earth sciences, with a focus on the data management needs of individual researchers. IEDA builds upon and brings together over a decade of development and experiences of its component data systems, the Marine Geoscience Data System (MGDS, www.marine-geo.org) and EarthChem (www.earthchem.org). IEDA services include domain-focused data curation and synthesis, tools for data discovery, access, visualization and analysis, as well as investigator support services that include tools for data contribution, data publication services, and data compliance support. IEDA data synthesis efforts (e.g. PetDB and Global Multi-Resolution Topography (GMRT) Synthesis) focus on data integration and analysis while emphasizing provenance and attribution. IEDA's domain-focused data catalogs (e.g. MGDS and EarthChem Library) provide access to metadata-rich long-tail data complemented by extensive metadata including attribution information and links to related publications. IEDA's visualization and analysis tools (e.g. GeoMapApp) broaden access to earth science data for domain specialist and non-specialists alike, facilitating both interdisciplinary research and education and outreach efforts. As a disciplinary data repository, a key role IEDA plays is to coordinate with its user community and to bridge the requirements and standards for data curation with both the evolving needs of its science community and emerging technologies. Development of IEDA tools and services

  11. Enhancing the earth-science content and inquiry basis of physical geography education in Singapore schools

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Chong, E.

    2011-12-01

    Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.

  12. EarthCube's Assessment Framework: Ensuring Return on Investment

    NASA Astrophysics Data System (ADS)

    Lehnert, K.

    2016-12-01

    EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.

  13. Increasing Participation in the Earth Sciences A 35 year Journey

    NASA Astrophysics Data System (ADS)

    Blueford, J. R.

    2006-12-01

    In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.

  14. The 6th International Earth Science Olympiad: A Student Perspective

    ERIC Educational Resources Information Center

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  15. Accessing Earth science data from the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kenneth R.; Calvo, Sherri

    1993-01-01

    An overview of the Earth Observing System Data and Information System (EOSDIS) is presented, concentrating on the users' interactions with the system and highlighting those features that are driven by the unique requirements of the Global Change Research Program and the supported science community. However, a basic premise of the EOSDIS is that the system must evolve to meet changes in user needs and to incorporate advances in data system technology. Therefore, the development process which is being used to accommodate these changes and some of the potential areas of change are also addressed.

  16. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  17. Earth benefits from NASA research and technology. Life sciences applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.

  18. Earth and Space Science. A Guide for Secondary Teachers.

    ERIC Educational Resources Information Center

    Bolles, William H.; And Others

    Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment,…

  19. Introduction. Progress in Earth science and climate studies.

    PubMed

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  20. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    NASA Astrophysics Data System (ADS)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  1. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  2. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  3. Earth Science Data Education through Cooking Up Recipes

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Maskey, M.; Smith, T.; Conover, H.

    2016-12-01

    One of the major challenges in Earth science research and applications is understanding and applying the proper methods, tools, and software for using scientific data. These techniques are often difficult and time consuming to identify, requiring novel users to conduct extensive research, take classes, and reach out for assistance, thus hindering scientific discovery and real-world applications. To address these challenges, the Global Hydrology Resource Center (GHRC) DAAC has developed a series of data recipes that novel users such as students, decision makers, and general Earth scientists can leverage to learn how to use Earth science datasets. Once the data recipe content had been finalized, GHRC computer and Earth scientists collaborated with a web and graphic designer to ensure the content is both attractively presented to data users, and clearly communicated to promote the education and use of Earth science data. The completed data recipes include, but are not limited to, tutorials, iPython Notebooks, resources, and tools necessary for addressing key difficulties in data use across a broad user base. These recipes enable non-traditional users to learn how to use data, but also curates and communicates common methods and approaches that may be difficult and time consuming for these users to identify.

  4. A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.

  5. Using An Online Photo-Sharing Tool (Flickr) to Connect Students During Earth Science Week

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2009-12-01

    At the university level, some faculty desire to have their students connect with middle school and high school students for activities and discussions relating to Earth science. Unfortunately, it is not always feasible to coordinate face-to-face meetings of the students, especially when trying to forge connections with schools located at a distance. Therefore, I have turned to an online tool to forge the connections for an Earth science outreach activity - specifically, the use of the photo-sharing tool Flickr, http://www.flickr.com. Flickr is an online photo management and sharing application that allows for the creation of a community with authorized members to contribute images viewable by the general public. For this project, the participating student community included undergraduates from Penn State University, as well as middle school and high school students from Delaware, Michigan, Kentucky, and North Carolina. I decided a theme should be selected for the students to frame the project. I selected the 2009 Earth Science Week (ESW) photography context theme, How Climate Shapes My World, as I felt it was important to have the students connect with a nationwide celebration and exploration of this topic. Students were encouraged to consider what the theme meant to them and how to represent that through a photograph. Each student was required to provide a title and description for the photograph contributed to the Flickr group (http://www.flickr.com/groups/earthscienceweek2009). As this Flickr project was only a collaboration and sharing of photos and not a contest, the students were encouraged to not only submit their photo in Flickr but to the actual ESW contest. The deadline to post the photographs online in Flickr was set for the end of Earth Science Week. The key to the ESW Flickr project was not just the taking and viewing of photos. The Flickr website is designed with the idea of social networking around an image. Flickr facilitated a dialogue that had

  6. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and

  7. Earth Science in the News.

    ERIC Educational Resources Information Center

    Jackson, Julia A.; Paty, Alma Hale

    2000-01-01

    Offers two activities to help students explore the geosciences during Earth Science Week. Uses a fossil collection simulation that has students digging through strata of newspaper. Presents an interdisciplinary research project that has students investigate the fossils, minerals, and rocks of their home state. (ASK)

  8. Use of Schema on Read in Earth Science Data Archives

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Smit, Christine; Pilone, Paul; Petrenko, Maksym; Pham, Long

    2017-01-01

    Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the schema-on-read principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the schema-on-read approach allows customization of indexing spatially or temporally to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with This presentation will discuss formats used for data storage, frameworks with support for schema-on-read used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.

  9. Use of Schema on Read in Earth Science Data Archives

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Hegde, M.; Smit, C.; Pilone, P.; Pham, L.

    2017-12-01

    Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the "schema-on-read" principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the "schema-on-read" approach allows customization of indexing—spatial or temporal—to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with support for "schema-on-read" used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.

  10. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  11. Testing the Efficacy of Student Explorations of Earth Science Museum Exhibits

    NASA Astrophysics Data System (ADS)

    Kirkby, K.; Phipps, M.; Tzenis, C.; Morin, P. J.; Hamilton, P.

    2009-12-01

    recommend this to anyone” and 10 being “I would recommend this experience to anyone” the median response was 9 with 41% choosing 10. More importantly, pre-instruction and post-instruction testing showed significant gains among students who completed the module, compared to traditional instruction, demonstrating that the explorations were not only popular, but effective. An unexpected bonus was that these explorations appear to resonate well with students traditionally underrepresented in science careers. Women and minority students volunteered to complete the self-guided exploration in disproportionate numbers. In addition, students who struggled with the traditional course instruction posted significant improvements in test performance as a result of their participation in the exhibit exploration. Providing a more varied range of experiences in earth science courses may prove to be a way to not only make science more accessible, but to create a more diverse scientific community.

  12. Three-dimensional presentation of the earth and space science data in collaboration among schools, science museums and scientists

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Tsugawa, Takuya

    Three-dimensional presentation of the earth and space science data is a best tool to show the scientific data of the earth and space. It can display the correct shape on the Earth while any two-dimensional maps distort shapes. Furthermore it helps audience to understand the scale size and phenomena of the earth and planets in an intuitive way. There are several projects of the 3-D presentation of the Earth, such as Science on a Sphere (SOS) by NOAA, and Geo-cosmos by Miraikan, Japan. We are developing a simple, portable and affordable 3-D presentation system, called Dagik Earth. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projector. The minimum size is 8cm and the largest size is 8m in diameter. The Dagik Earth project has developed the software of the 3-D projection in collaboration with scientists, and provides the software to the science museums and school teachers. Because the same system can be used in museums and schools, several science museums play a roll of hub for the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among schools, science centers, universities and research institutes.

  13. Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  14. The impact of socio-political environment on the perception of science - a comparative study of German and Israeli approaches to science education

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Rabinowitz, D.

    2017-12-01

    At the interface of environmental anthropology, social science, education research, and Earth Sciences, this presentation will look at Earth science education in school and out-of-school settings in Germany and Israel. We will focus on divergent cultural concepts of nature and science within the four-columned societal system in Israel: the secular Israeli community, which is oriented on western standards and concepts, the orthodox community with a stronger focus on merging scientific and religious approaches to understanding the Earth system, the Arabian community in Israel, which is strongly influenced by the Arabian science tradition as well as by confined monetary resources, and the ultra-orthodox community where science education seems to be totally abandoned in favor of Thora-studies. These environments, alongside a more homogeneous Germany educational system, resample an experimental setting with differences in a manageable number of parameters. We will analyze educational material used by the different communities in terms of the presented functions and services of the Earth sciences as well as in respect to the image of Earth sciences constructed by educational material of the observed communities. The aim of this project is to look for evidence that allows to attribute significant differences in education concepts to formal socio-political settings in the observed communities. The term Socio-political environment as used in this project proposal describes the context that is predetermined by cultural, political, and religious traditions. It described the pre-conditions in which communication takes place. Within this presentation, we will discuss the concept of socio-political environments. One of our hypothesis is, that the intensity of differences in Earth science community will be associated with differences in the socio-political environment. Influences of cultural, political, and religious boundary conditions will provide an insight into alterations

  15. Syllabus for Weizmann Course: Earth System Science 101

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  16. Effective Integration of the World-Wide Web in Earth Science Education.

    ERIC Educational Resources Information Center

    Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn

    The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…

  17. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  18. Community centrality and social science research.

    PubMed

    Allman, Dan

    2015-12-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have.

  19. Community centrality and social science research

    PubMed Central

    Allman, Dan

    2015-01-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have. PMID:26440071

  20. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  1. Components for Maintaining and Publishing Earth Science Vocabularies

    NASA Astrophysics Data System (ADS)

    Cox, S. J. D.; Yu, J.

    2014-12-01

    Shared vocabularies are an important aid to geoscience data interoperability. Many organizations maintain useful vocabularies, with Geologic Surveys having a particularly long history of vocabulary and lexicon development. However, the mode of publication is heterogeneous, ranging from PDFs and HTML web pages, spreadsheets and CSV, through various user-interfaces and APIs. Update and maintenance ranges from tightly-governed and externally opaque, through various community processes, all the way to crowd-sourcing ('folksonomies'). A general expectation, however, is for greater harmonization and vocabulary re-use. In order to be successful this requires (a) standardized content formalization and APIs (b) transparent content maintenance and versioning. We have been trialling a combination of software dealing with registration, search and linking. SKOS is designed for formalizing multi-lingual, hierarchical vocabularies, and has been widely adopted in earth and environmental sciences. SKOS is an RDF vocabulary, for which SPARQL is the standard low-level API. However, for interoperability between SKOS vocabulary sources, a SKOS-based API (i.e. based on the SKOS predicates prefLabel, broader, narrower, etc) is required. We have developed SISSvoc for this purpose, and used it to deploy a number of vocabularies on behalf of the IUGS, ICS, NERC, OGC, the Australian Government, and CSIRO projects. SISSvoc Search provides simple search UI on top of one or more SISSvoc sources. Content maintenance is composed of many elements, including content-formalization, definition-update, and mappings to related vocabularies. Typically there is a degree of expert judgement required. In order to provide confidence in users, two requirements are paramount: (i) once published, a URI that denotes a vocabulary item must remain dereferenceable; (ii) the history and status of the content denoted by a URI must be available. These requirements match the standard 'registration' paradigm which is

  2. PLANETarium - Visualizing Earth Sciences in the Planetarium

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more

  3. The Internet of Samples in the Earth Sciences: Providing Access to Uncurated Collections

    NASA Astrophysics Data System (ADS)

    Carter, M. R.; Lehnert, K. A.

    2014-12-01

    Vast amounts of physical samples have been collected in the Earth Sciences for studies that address a wide range of scientific questions. Only a fraction of these samples are well curated and preserved long-term in sample repositories and museums. Many samples and collections are stored in the offices and labs of investigators, or in basements and sheds of institutions and investigators' homes. These 'uncurated' collections often contain samples that have been well studied, or are unique and irreplaceable. They may also include samples that could reveal new insights if re-analyzed using new techniques, or specimens that could have unanticipated relevance to research being conducted in fields other than the one for which they were collected. Currently, these samples cannot be accessed or discovered online by the broader science community. Investigators and departments often lack the resources to properly catalog and curate the samples and respond to requests for splits. Long-term preservation of and access to these samples is usually not provided for. iSamplES, a recently-funded EarthCube Research Coordination Network (RCN), seeks to integrate scientific samples, including 'uncurated' samples, into digital data and information infrastructure in the Earth Sciences and to facilitate their curation, discovery, access, sharing, and analysis. The RCN seeks to develop and implement best practices that increase digital access to samples with the goal of establishing a comprehensive infrastructure not only for the digital, but also physical curation of samples. The RCN will engage a broad group of individuals from domain scientists to curators to publishers to computer scientists to define, articulate, and address the needs and challenges of digital sample management and recommend community-endorsed best practices and standards for registering, describing, identifying, and citing physical specimens, drawing upon other initiatives and existing or emerging software tools for

  4. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  5. Developing and Deploying a Partnership Network Knowledge Base for Analysis of the Partners and Components within NASA's Earth Science Community.

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Lewis, D.; O'Hara, C.; Katragadda, S.

    2006-12-01

    The Partnership Network Knowledge Base (PNKB) is being developed to provide connectivity and deliver content for the research information needs of NASA's Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, and identify potential collaborative opportunities to further research streams. The PNKB is being developed in parallel with the Research Projects Knowledge Base (RPKB) and will be deployed in a manner that is fully compatible and interoperable with the NASA enterprise architecture (EA). Information needs have been assessed through a survey of potential users, evaluations of existing NASA resource users, and collaboration between Stennis Space Center and The Mississippi Research Consortium (MRC). The PNKB will assemble information on funded research institutions and categorize the research emphasis of each as it relates to NASA's six major science focus areas and 12 national applications. The PNKB will include information about organizations that conduct NASA Earth Science research such as, principal investigators' affiliation, contact information, relationship-type with NASA and other NASA partners, funding arrangements, and formal agreements like memoranda-of-understanding. To further the utility of the PNKB, relational links have been integrated into the RPKB - which will contain data about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The combined PNKB and RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry.

  6. CINERGI: Community Inventory of EarthCube Resources for Geoscience Interoperability

    NASA Astrophysics Data System (ADS)

    Zaslavsky, Ilya; Bermudez, Luis; Grethe, Jeffrey; Gupta, Amarnath; Hsu, Leslie; Lehnert, Kerstin; Malik, Tanu; Richard, Stephen; Valentine, David; Whitenack, Thomas

    2014-05-01

    catalogs, vocabularies, information models, data service specifications, identifier systems, and assess their conformance with international standards (such as those adopted by ISO and OGC, and used by INSPIRE) or de facto community standards using, in part, automatic validation techniques. The main level in CINERGI leverages a metadata aggregation platform (currently Geoportal Server) to organize harvested resources from multiple collections and contributed by community members during EarthCube end-user domain workshops or suggested online. The latter mechanism uses the SciCrunch toolkit originally developed within the Neuroscience Information Framework (NIF) project and now being extended to other communities. The inventory is designed to support requests such as "Find resources with theme X in geographic area S", "Find datasets with subject Y using query concept expansion", "Find geographic regions having data of type Z", "Find datasets that contain property P". With the added LOD support, additional types of requests, such as "Find example implementations of specification X", "Find researchers who have worked in Domain X, dataset Y, location L", "Find resources annotated by person X", will be supported. Project's website (http://workspace.earthcube.org/cinergi) provides access to the initial resource inventory, a gallery of EarthCube researchers, collections of geoscience models, metadata entry forms, and other software modules and inventories being integrated into the CINERGI system. Support from the US National Science Foundation under award NSF ICER-1343816 is gratefully acknowledged.

  7. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  8. Approach to Managing MeaSURES Data at the GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.

    2009-01-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.

  9. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    NASA Astrophysics Data System (ADS)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  10. Earth Science Syllabus, 1970 Edition.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This syllabus outlines a year earth science program designed to be activity oriented, investigatory in approach, and interdisciplinary in content. Each topic section contains a topic abstract and topic outline, major understandings, and information to teachers. The topic abstract lists behavioral objectives and general information about the topic…

  11. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  12. Solid earth science in the 1990s. Volume 2: Panel reports

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.

  13. Native America: American Indian Geoscientists & Earth System Science Leaders

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2011-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands across the Americas. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all Tribal societies. These changes have accelerated the momentum to ensure the future of American Indian Geoscientists and Earth Systems Science Leaders. The presentation will bring to prominence the unique recruitment and mentoring necessary to achieve success that emerged through working with Tribal people. The presentation will highlight: 1) past and present philosophies on recruitment and mentoring of Native/Tribal students in geoscience and earth systems science; 2) current Native leadership and research development; 3) unique collaborations "bridging" Native people across geographic areas (International) in developing educational/research experiences which integrate the distinctive geoscience and earth systems science knowledge of Tribal peoples throughout the Americas. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native geoscientists and earth systems science leaders.

  14. Laboratory Earth Under the Lens: Diachronic Evaluation of an Integrated Graduate-Level On-Line Earth System Science Course Series for K-12 Educators

    NASA Astrophysics Data System (ADS)

    Low, R.; Gosselin, D. C.; Haney, C.; Larson-Miller, C.; Bonnstetter, R.; Mandryk, C.

    2012-12-01

    Educational research strives to identify the pedagogies that promote student learning. However, the body of research identifying the characteristics of effective teacher preparation is "least strong for science," and is largely based on studies of the effectiveness of individual courses or workshops (NRC 2010). The National Research Council's "Preparing Teachers: Building Evidence for Strong Policy," (2010) provides a mandate for teacher education providers to conduct research on program-scale effectiveness. The high priority research agenda identified by the NRC is expected to elicit understanding of the aspects of teacher preparation that critically impact classroom student learning outcomes. The Laboratory Lens project is designed to identify effective practices in a teacher education program, with specific reference to the content domain of Earth science. Now in its fifth year, the Masters of Applied Science (MAS) program at UNL offers a variety of science courses, ranging from entomology to food science. The six-course Lab Earth series serves as the backbone of the Specialization for Science Educators within the MAS program, and provides comprehensive content coverage of all Earth science topics identified in the AAAS Benchmarks. "How People Learn," (NRC 2009) emphasizes that expert knowledge includes not only factual knowledge, but also the well-developed conceptual framework critical to the ability to, "remember, reason, and solve problems." A focus of our research is to document the process by which the transition from novice to expert takes place in Lab Earth's on-line teacher participants. A feature of our research design is the standardization of evaluation instruments across the six courses. We have used data derived from implementation of the Community of Inquiry Survey (COI) in pilot offerings to ensure that the course sequence is effective in developing a community of learners, while developing their content knowledge. A pre- and post- course

  15. CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps

    NASA Astrophysics Data System (ADS)

    Pallamraju, D.; Kozyra, J.; Basu, S.

    Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future

  16. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  17. Earth Sciences Division Research Summaries 2002-2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  18. Facilitating career advancement for women in the Geosciences through the Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Kontak, R.; Holloway, T.; Kogan, M.; Laursen, S. L.; Marin-Spiotta, E.; Steiner, A. L.; Wiedinmyer, C.

    2011-12-01

    The Earth Science Women's Network (ESWN) is a network of women geoscientists, many of who are in the early stages of their careers. The mission of ESWN is to promote career development, build community, provide informal mentoring and support, and facilitate professional collaborations, all towards making women successful in their scientific careers. ESWN currently connects over 1000 women across the globe, and includes graduate students, postdoctoral associates, faculty from a diversity of colleges and universities, program managers, and government, non-government and industry researchers. ESWN facilitates communication between its members via an email listserv and in-person networking events, and also provides resources to the broader community through the public Earth Science Jobs Listserv that hosts over 1800 subscribers. With funding from a NSF ADVANCE PAID grant, our primary goals include growing our membership to serve a wider section of the geosciences community, designing and administering career development workshops, promoting professional networking at major scientific conferences, and developing web resources to build connections, collaborations, and peer mentoring for and among women in the Earth Sciences. Recognizing that women in particular face a number of direct and indirect biases while navigating their careers, we aim to provide a range of opportunities for professional development that emphasize different skills at different stages of career. For example, ESWN-hosted mini-workshops at national scientific conferences have targeted skill building for early career researchers (e.g., postdocs, tenure-track faculty), with a recent focus on raising extramural research funding and best practices for publishing in the geosciences literature. More concentrated, multi-day professional development workshops are offered annually with varying themes such as Defining Your Research Identity and Building Leadership Skills for Success in Scientific Organizations

  19. Science Community Interface

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1991-01-01

    The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.

  20. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  1. Persistent Identifiers in Earth science data management environments

    NASA Astrophysics Data System (ADS)

    Weigel, Tobias; Stockhause, Martina; Lautenschlager, Michael

    2014-05-01

    Globally resolvable Persistent Identifiers (PIDs) that carry additional context information (which can be any form of metadata) are increasingly used by data management infrastructures for fundamental tasks. The notion of a Persistent Identifier is originally an abstract concept that aims to provide identifiers that are quality-controlled and maintained beyond the life time of the original issuer, for example through the use of redirection mechanisms. Popular implementations of the PID concept are for example the Handle System and the DOI System based on it. These systems also move beyond the simple identification concept by providing facilities that can hold additional context information. Not only in the Earth sciences, data managers are increasingly attracted to PIDs because of the opportunities these facilities provide; however, long-term viable principles and mechanisms for efficient organization of PIDs and context information are not yet available or well established. In this respect, promising techniques are to type the information that is associated with PIDs and to construct actionable collections of PIDs. There are two main drivers for extended PID usage: Earth science data management middleware use cases and applications geared towards scientific end-users. Motivating scenarios from data management include hierarchical data and metadata management, consistent data tracking and improvements in the accountability of processes. If PIDs are consistently assigned to data objects, context information can be carried over to subsequent data life cycle stages much easier. This can also ease data migration from one major curation domain to another, e.g. from early dissemination within research communities to formal publication and long-term archival stages, and it can help to document processes across technical and organizational boundaries. For scientific end users, application scenarios include for example more personalized data citation and improvements in the

  2. Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.

    2011-12-01

    Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.

  3. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  4. Particle packing from an earth science viewpoint

    NASA Astrophysics Data System (ADS)

    Rogers, C. D. F.; Dijkstra, T. A.; Smalley, I. J.

    1994-04-01

    Particle packings are relevant to many aspects of the Earth sciences, and there is a long history of the study of packings from an Earth science viewpoint. Packings have also been studied in connection with other subjects and disciplines. Allen (1982) produced a major review which provides a solid base for Earth science related studies. This review complements Allen's work and in particular focuses on advances in the study of random packings over the last ten years. Transitions from packing to packing may be as important as the packings themselves, and possibly easier to model. This paper places emphasis on certain neglected works, in particular Morrow and Graves (1969) and the packing transition envelope, Kahn (1956) and the measurement of packing parameters, Griffiths (1962) on packings in one-dimension, and Getis and Boots (1978) on packings in two dimensions. Certain packing problems are relevant to current areas of study including structure collapse in loess (hydroconsolidation), flowslides in very sensitive soils, wind erosion, jewel quality in opals and the structure and functions of sand dunes. The region where interparticle forces become active (particles < 200 μm) is considered and the implications for packing are examined.

  5. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    ERIC Educational Resources Information Center

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  6. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Looy, Kris; Bouma, Johan; Herbst, Michael

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  7. Pedotransfer Functions in Earth System Science: Challenges and Perspectives: PTFs in Earth system science perspective

    DOE PAGES

    Van Looy, Kris; Bouma, Johan; Herbst, Michael; ...

    2017-12-28

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. Here in this article, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscalingmore » techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.« less

  8. Development of EarthCube Governance: An Agile Approach

    NASA Astrophysics Data System (ADS)

    Pearthree, G.; Allison, M. L.; Patten, K.

    2013-12-01

    Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental

  9. Early Earth Science Activities in the Sanford Underground Science and Engineering Laboratory at Homestake

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.

    2007-12-01

    ), the deepest level. These five examples of ongoing research activities should provide a basis for many other earth science and engineering investigations at this multilevel facility, which already has extensive underground workings. These examples address different aspects of three main themes identified as important by deep underground research communities: restless earth for geo-science, ground truth for geo-engineering, and dark life for geo-microbiology.

  10. Science Enabled by the Ares V: A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Stahl, H. Philip

    2007-01-01

    The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.

  11. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  12. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    NASA Astrophysics Data System (ADS)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  13. Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan

    NASA Astrophysics Data System (ADS)

    Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki

    2010-05-01

    commemorates the first publication of the geological map of Japan on 10th of May in 1878. A total of fifty-nine geology-related organizations including natural museums and academic societies have joined the eighty nine events for Geology Day all over Japan in 2009. After the great success of 1st Iinternational Earth Science Olympiad(IESO) in Korea (2007), 2nd Philippines (2008) and 3rd Taiwan (2009), 6th IESO was decided to be held in Japan (2012). We also expect great success of 4th IESO in Indonesia and 5th IESO in Italy. Earth science communities in Japan including Societies, Universities, and Research Institutes take present-day environmental crisis seriously and throw strong messages to young people for saving the earth. Under such circumstances, IESO provides wonderful chances to think of the earth, to make friendships among worldwide participants and to understand each other. We, earth science communities in Japan, promise strongly to support 6th IESO in Tsukuba, Japan (2012) and then to organize this event efficiently. Through the triennial activity of IYPE we all learned the importance of international cooperation and public outreach.

  14. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  15. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade

  16. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  17. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  18. Earth Sciences Division Research Summaries 2006-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial

  19. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of

  20. A vision for, and progress towards EarthCube

    NASA Astrophysics Data System (ADS)

    Jacobs, C.

    2012-04-01

    The National Science Foundation (NSF), a US government agency, seeks to transform the conduct of research in geosciences by supporting innovative approaches to community-created cyberinfrastructure that integrates knowledge management across the Geosciences. Within the NSF organization, the Geosciences Directorate (GEO) and the Office of Cyberinfrastructure (OCI) are partnering to address the multifaceted challenges of modern, data-intensive science and education. NSF encourages the community to envision and create an environment where low adoption thresholds and new capabilities act together to greatly increase the productivity and capability of researchers and educators working at the frontiers of Earth system science. This initiative is EarthCube. NSF believes the geosciences community is well positioned to plan and prototype transformative approaches that use innovative technologies to integrate and make interoperable vast resources of heterogeneous data and knowledge within a knowledge management framework. This believe is founded on tsunami of technology development and application that has and continues to engulf science and investments geosciences has made in cyberinfrastructure (CI) to take advantage the technological developments. However, no master framework for geosciences was employed in the development of technology-enable capabilities required by various geosciences communities. It is time to develop an open, adaptable and sustainable framework (an "EarthCube") to enable transformative research and education of Earth system. This will involve, but limited to fostering common data models and data-focused methodologies; developing next generation search and data tools; and advancing application software to integrate data from various sources to expand the frontiers of knowledge. Also, NSF looks to the community to develop a robust and balanced paradigm to manage a collaborative effort and build community support. Such a paradigm must engage a diverse