Building A Cloud Based Distributed Active Data Archive Center
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin
2017-01-01
NASA's Earth Science Data System (ESDS) Program facilitates the implementation of NASA's Earth Science strategic plan, which is committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. The Earth Science Data information System (ESDIS) project manages the Earth Observing System Data and Information System (EOSDIS). Data within EOSDIS are held at Distributed Active Archive Centers (DAACs). One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data.
NASA Technical Reports Server (NTRS)
Ticker, Ronald L.; Azzolini, John D.
2000-01-01
The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.
NASA's Earth Science Data Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.
NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow
NASA Technical Reports Server (NTRS)
Ianson, Eric E.
2016-01-01
NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.
NASA Technical Reports Server (NTRS)
Schwaller, Mathew R.; Schweiss, Robert J.
2007-01-01
The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.
NASA's Earth Science Data Systems - Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2010-01-01
In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.
Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.
1991-01-01
The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.
NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data
Atmospheric Science Data Center
2015-05-08
... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...
The Path from Large Earth Science Datasets to Information
NASA Astrophysics Data System (ADS)
Vicente, G. A.
2013-12-01
The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.
The EOSDIS Products Usability for Disaster Response.
NASA Astrophysics Data System (ADS)
Kafle, D. N.; Wanchoo, L.; Won, Y. I.; Michael, K.
2016-12-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) is a key core capability in NASA's Earth Science Data System Program. The EOSDIS science operations are performed within a distributed system of interconnected nodes: the Science Investigator-led Processing Systems (SIPS), and the distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs), which have specific responsibilities for the production, archiving, and distribution of Earth science data products. NASA also established the Land, Atmosphere Near real-time Capability for EOS (LANCE) program through which near real-time (NRT) products are produced and distributed within a latency of no more than 3 hours. These data, including NRT, have been widely used by scientists and researchers for studying Earth system science, climate change, natural variability, and enhanced climate predictions including disaster assessments. The Subcommittee on Disaster Reduction (SDR) has defined 15 major types of disasters such as flood, hurricane, earthquake, volcano, tsunami, etc. The focus of the study is to categorize both NRT and standard data products based on applicability to the SDR-defined disaster types. This will identify which datasets from current NASA satellite missions/instruments are best suited for disaster response. The distribution metrics of the products that have been used for studying various selected disasters that have occurred over last 5 years will be analyzed that include volume, number of files, number of users, user domains, user country, etc. This data usage analysis will provide information to the data centers' staff that can help them develop the functionality and allocate the resources needed for enhanced access and timely availability of the data products that are critical for the time-sensitive analyses.
The Montage architecture for grid-enabled science processing of large, distributed datasets
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S .; Prince, Thomas; Berriman, Bruce G.; Good, John C.; Laity, Anastasia C.; Deelman, Ewa; Singh, Gurmeet; Su, Mei-Hui
2004-01-01
Montage is an Earth Science Technology Office (ESTO) Computational Technologies (CT) Round III Grand Challenge investigation to deploy a portable, compute-intensive, custom astronomical image mosaicking service for the National Virtual Observatory (NVO). Although Montage is developing a compute- and data-intensive service for the astronomy community, we are also helping to address a problem that spans both Earth and Space science, namely how to efficiently access and process multi-terabyte, distributed datasets. In both communities, the datasets are massive, and are stored in distributed archives that are, in most cases, remote from the available Computational resources. Therefore, state of the art computational grid technologies are a key element of the Montage portal architecture. This paper describes the aspects of the Montage design that are applicable to both the Earth and Space science communities.
New Earth Science Data and Access Methods
NASA Technical Reports Server (NTRS)
Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer
2004-01-01
NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.
The Federation of Earth Science Information Partners ESIP
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2013-01-01
A broad-based, distributed community of science, data and information technology practitioners. With over 150 member organizations, the ESIP Federation brings together public, academic, commercial, and nongovernmental organizations to share knowledge, expertise, technology and best practices to improve opportunities for increasing access, discovery, integration and usability of Earth science data.
NASA Technical Reports Server (NTRS)
Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer
2015-01-01
This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.
NASA Astrophysics Data System (ADS)
Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Messina, Antonio; Pappalardo, Marco; Passaro, Gianluca
2013-04-01
The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. Six Lighthouse Applications are being established in EarthServer, each of which poses distinct challenges on Earth Data Analytics: Cryospheric Science, Airborne Science, Atmospheric Science, Geology, Oceanography, and Planetary Science. Altogether, they cover all Earth Science domains; the Planetary Science use case has been added to challenge concepts and standards in non-standard environments. In addition, EarthLook (maintained by Jacobs University) showcases use of OGC standards in 1D through 5D use cases. In this contribution we will report on the first applications integrated in the EarthServer Science Gateway and on the clients for mobile appliances developed to access them. We will also show how federated and social identity services can allow Big Earth Data Providers to expose their data in a distributed environment keeping a strict and fine-grained control on user authentication and authorisation. The degree of fulfilment of the EarthServer implementation with the recommendations made in the recent TERENA Study on AAA Platforms For Scientific Resources in Europe (https://confluence.terena.org/display/aaastudy/AAA+Study+Home+Page) will also be assessed.
An Overview of the EOS Data Dissemination Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth
2008-01-01
The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.
Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1991-01-01
The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Ramapriyan, H. K. " Rama"
2016-01-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.
Depending on Partnerships to Manage NASA's Earth Science Data
NASA Astrophysics Data System (ADS)
Behnke, J.; Lindsay, F. E.; Lowe, D. R.
2015-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential increase in user demand that has occurred over the past 15 years. We will present how the EOSDIS has relies on partnerships to support the challenges of managing NASA's Earth Science data.
Mission operations update for the restructured Earth Observing System (EOS) mission
NASA Technical Reports Server (NTRS)
Kelly, Angelita Castro; Chang, Edward S.
1993-01-01
The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.
NASA Technical Reports Server (NTRS)
Lapenta, C. C.
1992-01-01
The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.
INDIGO-DataCloud solutions for Earth Sciences
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin
2017-04-01
INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big data analysis framework and the Kepler workflow management system. Such services normally involve a large and distributed set of data and computing resources. In this regard, this case study exploits the INDIGO PaaS for a flexible and dynamic allocation of the resources at the infrastructural level. -Providing Distributed Data Storage Solutions. In order to allow scientific communities to perform heavy computation on huge datasets, INDIGO provides global data access solutions allowing researchers to access data in a distributed environment like fashion regardless of its location, and also to publish and share their research results with public or close communities. INDIGO solutions that support the access to distributed data storage (OneData) are being tested on EMSO infrastructure (Ocean Sciences and Geohazards) data. Another aspect of interest for the EMSO community is in efficient data processing by exploiting INDIGO services like PaaS Orchestrator. Further, for HPC exploitation, a new solution named Udocker has been implemented, enabling users to execute docker containers in supercomputers, without requiring administration privileges. This presentation will overview INDIGO solutions that are interesting and useful for Earth science communities and will show how they can be applied to other Case Studies.
Digital Archive Issues from the Perspective of an Earth Science Data Producer
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.
2004-01-01
Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.
Analyzing Earth Science Research Networking through Visualizations
NASA Astrophysics Data System (ADS)
Hasnain, S.; Stephan, R.; Narock, T.
2017-12-01
Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.
NASA Technical Reports Server (NTRS)
Carsey, Frank D.
1996-01-01
The Alaska SAR Facility (ASF) has been receiving, processing, archiving, and distributing data for Earth scientists and operations since it began receiving data in 1991. Four radar satellites are now being handled. Recent developments have served to increase the level of services of ASF to the Earth science community considerably. These developments are discussed.
NASA'S Earth Science Data Stewardship Activities
NASA Technical Reports Server (NTRS)
Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram
2015-01-01
NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.
Coordinated Science Campaign Scheduling for Sensor Webs
NASA Technical Reports Server (NTRS)
Edgington, Will; Morris, Robert; Dungan, Jennifer; Williams, Jenny; Carlson, Jean; Fleming, Damian; Wood, Terri; Yorke-Smith, Neil
2005-01-01
Future Earth observing missions will study different aspects and interacting pieces of the Earth's eco-system. Scientists are designing increasingly complex, interdisciplinary campaigns to exploit the diverse capabilities of multiple Earth sensing assets. In addition, spacecraft platforms are being configured into clusters, trains, or other distributed organizations in order to improve either the quality or the coverage of observations. These simultaneous advances in the design of science campaigns and in the missions that will provide the sensing resources to support them offer new challenges in the coordination of data and operations that are not addressed by current practice. For example, the scheduling of scientific observations for satellites in low Earth orbit is currently conducted independently by each mission operations center. An absence of an information infrastructure to enable the scheduling of coordinated observations involving multiple sensors makes it difficult to execute campaigns involving multiple assets. This paper proposes a software architecture and describes a prototype system called DESOPS (Distributed Earth Science Observation Planning and Scheduling) that will address this deficiency.
Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Ho, E. L.
2015-12-01
Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.
Lessons Learned While Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems
NASA Technical Reports Server (NTRS)
Pilone, Dan; Mclaughlin, Brett; Plofchan, Peter
2017-01-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products. Reviewed and approved by Chris Lynnes.
Combined Industry, Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)
1996-01-01
The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.
Looking Back at 25 Years With NASA's EOSDIS Distributed Active Archive Centers
NASA Astrophysics Data System (ADS)
Behnke, J.; Kittel, D.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. As originally conceived, the EOSDIS comprised of organizations to process and disseminate remote sensing and in situ data and provide services to a wide variety of users. These organizations are known as the Distributed Active Archive Centers (DAACs). Because of their active role in NASA mission science and with the science community, the DAACs represent a distinct departure from the run-of-the-mill data center. The purpose of this paper is to highlight this distinction and to describe the experiences, strategies, and lessons learned from the operation of the DAACs. Today, there are 12 DAACs geographically distributed across the US that serve over 3 million users and distributed over 1.5 billion Earth science data products. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, the DAACs each support different Earth science disciplines allowing for the customized support to user communities. The ESDIS Project provides the infrastructure support for the entire EOSDIS system, which has grown to 23 petabytes. The DAACs have improved performance as they have grown over the years, while costs are tightly controlled. We have several recommendations about curation, level of service, automation and return on investment resulting from our 25 years of practice managing the DAACs. By sharing new ideas and innovation in science data management, EOSDIS has been able to evolve to meet demand. However, there are many challenges in the future.
Collaborative Metadata Curation in Support of NASA Earth Science Data Stewardship
NASA Technical Reports Server (NTRS)
Sisco, Adam W.; Bugbee, Kaylin; le Roux, Jeanne; Staton, Patrick; Freitag, Brian; Dixon, Valerie
2018-01-01
Growing collection of NASA Earth science data is archived and distributed by EOSDIS’s 12 Distributed Active Archive Centers (DAACs). Each collection and granule is described by a metadata record housed in the Common Metadata Repository (CMR). Multiple metadata standards are in use, and core elements of each are mapped to and from a common model – the Unified Metadata Model (UMM). Work done by the Analysis and Review of CMR (ARC) Team.
Educator Perspectives on Earth System Science Literacy: Challenges and Priorities
ERIC Educational Resources Information Center
LaDue, Nicole; Clark, Scott K.
2012-01-01
The challenges and priorities of defining and achieving Earth System Science (ESS) literacy are examined through surveys of geoscience educators attending a professional geological meeting. Two surveys with Likert-style and free-response questions were distributed to geoscientists and K-12 teachers to elicit what instructors think are important…
GES DISC Data Recipes in Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Li, A.; Banavige, B.; Garimella, K.; Rice, J.; Shen, S.; Liu, Z.
2017-12-01
The Earth Science Data and Information System (ESDIS) Project manages twelve Distributed Active Archive Centers (DAACs) which are geographically dispersed across the United States. The DAACs are responsible for ingesting, processing, archiving, and distributing Earth science data produced from various sources (satellites, aircraft, field measurements, etc.). In response to projections of an exponential increase in data production, there has been a recent effort to prototype various DAAC activities in the cloud computing environment. This, in turn, led to the creation of an initiative, called the Cloud Analysis Toolkit to Enable Earth Science (CATEES), to develop a Python software package in order to transition Earth science data processing to the cloud. This project, in particular, supports CATEES and has two primary goals. One, transition data recipes created by the Goddard Earth Science Data and Information Service Center (GES DISC) DAAC into an interactive and educational environment using Jupyter Notebooks. Two, acclimate Earth scientists to cloud computing. To accomplish these goals, we create Jupyter Notebooks to compartmentalize the different steps of data analysis and help users obtain and parse data from the command line. We also develop a Docker container, comprised of Jupyter Notebooks, Python library dependencies, and command line tools, and configure it into an easy to deploy package. The end result is an end-to-end product that simulates the use case of end users working in the cloud computing environment.
Land processes distributed active archive center product lifecycle plan
Daucsavage, John C.; Bennett, Stacie D.
2014-01-01
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.
An Integrated and Collaborative Approach for NASA Earth Science Data
NASA Technical Reports Server (NTRS)
Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.
2012-01-01
Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).
Earth Observing Data System Data and Information System (EOSDIS) Overview
NASA Technical Reports Server (NTRS)
Klene, Stephan
2016-01-01
The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.
NASA SNPP SIPS - Following in the Path of EOS
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Hall, Alfreda; Ho, Evelyn
2016-01-01
NASA's Earth Science Data Information System (ESDIS) Project has been operating NASA's Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. At launch, the SDS focused primarily on the evaluation of Sensor Data Records (SDRs) and Environmental Data Records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program, as to their suitability for Earth system science. During the summer of 2014, NASA transitioned to the production of standard Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean, Atmosphere, Ozone, and Sounder were established to produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products developed by the SNPP Science Teams and to provide the products to NASA's Distributed Active Archive Centers (DAACs) for archive and distribution to the user community. The processing, archiving and distribution of data from NASA's Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments will continue. With the implementation of the JPSS Block 2 architecture and the launch of JPSS-1, the SDS will receive SNPP data in near real-time via the JPSS Stored Mission Data Hub (JSH), as well as JPSS-1 and future JPSS-2 data. The SNPP SIPS will ingest EOS compatible Level 0 data from the EOS Data Operations System (EDOS) element for their data processing, enabling the continuous EOS-SNPP-JPSS Satellite Data Record.
Pennsylvania's Energy Curriculum for the Secondary Grades: Earth Science.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg.
Two dozen energy-related earth science lessons comprise this guide for secondary school teachers. Intended to provide information about energy issues that exist in Pennsylvania and throughout the world, the activities cover topics such as coal mining, radioactivity, and the distribution of oil and gas in Pennsylvania. Lessons include objectives,…
Towards improving searches on the NASA's Distributed Active Archive Centers (DAACs)
NASA Astrophysics Data System (ADS)
McGibbney, L. J.; Whitehall, K. D.; Ramapriyan, H.; Khalsa, S. J. S.; Lynnes, C.; Armstrong, E. M.
2016-12-01
NASA supports numerous observing missions to study the Earth, its interactions, and understand its changes. These missions generate heterogeneous data from a variety of sources including satellites and airborne platforms. NASA's Earth Observing System Data and Information System (EOSDIS) is the capability in NASA's Earth Science Data Systems Program responsible for the end-to-end management of these science data. More specifically, the EOSDIS Distributed Active Archive Centers (DAACs) are the key entities that maintain, distribute these data and provide related data services for the mission data associated with a given property of the Earth System e.g. PO.DAAC for physical oceanographic data, NSIDC DAAC for snow and ice data. As the volume, variety and velocity of Earth science data grow, users are focused on high veracity (i.e., data quality), and as their needs become more diverse, they find it more difficult to readily find the data that best suits their purposes. For instance, simple keyword searches on most DAAC holdings return many datasets of potential interest but which are unranked either based on the content of the query or the historical data usage. The Earth Science Data System Working Group (ESDSWG) on Search Relevance WG started in May 2015 to address these concerns. The mandates of the WG are: to characterize the term "search relevance" as it relates to EOSDIS; to assess the current implementations towards search relevance; and to determine how practices and standards in industry and other domains can be applied to DAACs - in a federated-sense - in order to effectively serve the Earth Science data consumers. This poster will present the WG's insights into user profiles and behaviors accessing the DAACs, identify the core areas essential to improve search relevance across the DAACs (individually and collectively), and highlight ongoing efforts within NASA and similar organizations towards search relevance.
About the Atmospheric Science Data Center (ASDC)
Atmospheric Science Data Center
2017-12-14
... in the Science Directorate located at the NASA Langley Research Center (LaRC), in Hampton, Virginia. The Science Directorate's ... Earth Science enterprise and the U.S. Global Change Research Program , and is one of several Distributed Active Archive Centers ...
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2006-01-01
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2007-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
NASA's EOSDIS Approach to Big Earth Data Challenges
NASA Astrophysics Data System (ADS)
Lowe, D. R.; Behnke, J.; Murphy, K. J.
2014-12-01
Over the past 20 years, NASA has been committed to making our Earth Science data more useable and accessible, not only to the community of NASA science researchers, but also to the world-wide public research community. The data collected by NASA's remote sensing instruments represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. The Earth Observing System Data & Information System (EOSDIS) was established to meet this goal. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Over the past 2 decades the EOSDIS has evolved substantially. Today's EOSDIS is a tightly coupled, yet heterogeneous system designed to meet the requirements of a diverse user community. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential increase in user demand that has occurred over the past 15 years. We will present how the EOSDIS has evolved to support the variety and volume of NASA's Earth Science data.
The Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1993-01-01
This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.
The Next Generation Science Standards: A potential revolution for geoscience education
NASA Astrophysics Data System (ADS)
Wysession, Michael E.
2014-05-01
The first and only set of U.S.-nationally distributed K-12 science education standards have been adopted by many states across America, with the potential to be adopted by many more. Earth and space science plays a prominent role in the new standards, with particular emphasis on critical Earth issues such as climate change, sustainability, and human impacts on Earth systems. In the states that choose to adopt the Next Generation Science Standards (NGSS), American youth will have a rigorous practice-based formal education in these important areas. Much work needs to be done to insure the adoption and adequate implementation of the NGSS by a majority of American states, however, and there are many things that Earth and space scientists can do to help facilitate the process.
Grid Computing for Earth Science
NASA Astrophysics Data System (ADS)
Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto
2009-04-01
The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.
Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities
NASA Astrophysics Data System (ADS)
Liddicoat, J. C.
2011-12-01
Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.
NASA Technical Reports Server (NTRS)
Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.
2011-01-01
NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).
The 1993 Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1993-01-01
The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed.
JPSS-1 Data and the EOSDIS System: It's seamless
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Ho, E.
2017-12-01
The continuity of climate and environmental data is the key to the NASA Earth science program to develop a scientific understanding of Earth's system and its response to changes. NASA has made a long-term investment in processing, archiving and distributing Earth science data through the Earth Observing System (EOS) Data and Information System (EOSDIS). The use of the EOSDIS infrastructure and services provides seamless integration of Suomi National Polar-Orbiting Partnership (SNPP) and future Joint Polar Satellite System (JPSS-1) products as it does for the entire NASA Earth Science data collection. This continuity of measurements from all the missions is supported by the use of common data structures and standards in the generation of products and the subsequent services, tools and access to those products. Similar to EOS missions, 5 Science Investigator-led Processing Systems (SIPS) were established for SNPP: Land, Ocean, Atmosphere, Ozone, and Sounder along with NASA's Clouds and the Earth's Radiant Energy System and Ozone Mapper/Profiler Suite Limb systems now produce the NASA SNPP standard Level 1, Level 2, and Level 3 products developed by the NASA science teams.
Integrating thematic web portal capabilities into the NASA Earthdata Web Infrastructure
NASA Astrophysics Data System (ADS)
Wong, M. M.; McLaughlin, B. D.; Huang, T.; Baynes, K.
2015-12-01
The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. To assist the scientific community and general public in achieving a greater understanding of the interdisciplinary nature of Earth science and of key environmental and climate change topics, the NASA Earthdata web infrastructure is integrating new methods of presenting and providing access to Earth science information, data, research and results. This poster will present the process of integrating thematic web portal capabilities into the NASA Earthdata web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators. Earthdata is a part of the Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools.
The 1994 Space and Earth Science Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1994-01-01
This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.
Improving the Interoperability and Usability of NASA Earth Observation Data
NASA Astrophysics Data System (ADS)
Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.
2014-12-01
NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.
NASA Astrophysics Data System (ADS)
Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.
2011-12-01
Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.
NASA Astrophysics Data System (ADS)
Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.
2013-12-01
Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.
Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS
NASA Astrophysics Data System (ADS)
Behnke, J.; Lindsay, F. E.; Lowe, D. R.; Mitchell, A. E.; Lynnes, C.
2016-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. Over the years, EOSDIS has evolved to support increasingly complex and diverse NASA Earth Science data collections. EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities/connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. . EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users. While the separation into domain-specific science archives helps to manage the wide variety of missions and datasets, the common services and practices serve to knit the overall system together into a coherent whole, with sharing of data, metadata, information and software making EOSDIS more than the simple sum of its parts. This paper will describe those parts and how the whole system works together to deliver Earth science data to millions of users.
Use of Semantic Technology to Create Curated Data Albums
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin
2014-01-01
One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discover tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out nonrelevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.
Use of Semantic Technology to Create Curated Data Albums
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin; Fox, Peter (Editor); Norack, Tom (Editor)
2014-01-01
One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discovery tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out non-relevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.
NASA Astrophysics Data System (ADS)
Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.
2007-12-01
NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.
Networking Technologies Enable Advances in Earth Science
NASA Technical Reports Server (NTRS)
Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard
2004-01-01
This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.
Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon
2014-01-01
One of the largest continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available. Approaches used in Earth science research such as case study analysis and climatology studies involve gathering discovering and gathering diverse data sets and information to support the research goals. Research based on case studies involves a detailed description of specific weather events using data from different sources, to characterize physical processes in play for a specific event. Climatology-based research tends to focus on the representativeness of a given event, by studying the characteristics and distribution of a large number of events. This allows researchers to generalize characteristics such as spatio-temporal distribution, intensity, annual cycle, duration, etc. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the datasets of interest can obtain the specific files they need using these systems. However, in cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. In these cases, a search process needs to be organized around the event rather than observing instruments. In addition, the existing data systems assume users have sufficient knowledge regarding the domain vocabulary to be able to effectively utilize their catalogs. These systems do not support new or interdisciplinary researchers who may be unfamiliar with the domain terminology. This paper presents a specialized search, aggregation and curation tool for Earth science to address these existing challenges. The search tool automatically creates curated "Data Albums", aggregated collections of information related to a specific science topic or event, containing links to relevant data files (granules) from different instruments; tools and services for visualization and analysis; and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non-relevant information and data.
EPOS data and service provision to scientists and other stakeholders
NASA Astrophysics Data System (ADS)
Cocco, Massimo; EPOS Team
2017-04-01
EPOS brings together European nations and combines solid Earth science infrastructures and their associated data and services together with the scientific expertise into one integrated delivery system for solid Earth science. By improving and facilitating the integration, access, use, and re-use of solid Earth science data, data products, services and facilities EPOS is developing a holistic, sustainable, multidisciplinary research platform to provide coordinated access to harmonized and quality controlled data from diverse Earth science disciplines, together with tools for their use in analysis and modelling. EPOS has been designed with the vision of creating a single distributed pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS is presently in its implementation phase, which consists of the EPOS IP project and the legal establishment of EPOS-ERIC. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project. The EPOS implementation phase will last from 2015 to 2019. The key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core Services (ICS) to provide a novel research platform to different stakeholders; designing the access to distributed computational resources (ICS-D); ensuring sustainability and governance of TCS and EPOS-ERIC. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will present and discuss the data and service provision focusing on the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during the next eigheen months. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet Earth and in contributing to prepare society for geo-hazards. Understanding how the Earth works as a system is critically important to modern society. Society needs resources to support home life, industry and business and it needs security in the face of natural hazards. Volcanic eruptions, earthquakes, floods, landslides, tsunamis, weather, and global climate change are all Earth phenomena impacting on society. Solid Earth science by bringing together many diverse disciplines such as geology, seismology, geodesy, volcanology, geomagnetism as well as chemistry and physics as they all apply to the workings of Earth, is the place where to find answers on how to maintain the Earth a safe, prosperous, and habitable planet.
NASA Technical Reports Server (NTRS)
2000-01-01
The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.
NASA Astrophysics Data System (ADS)
Meyer, D. J.; Gallo, K. P.
2009-12-01
The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental case studies are presented, including the MODIS Reprojection Tool (MRT), the scheduling of ASTER for emergency response, the inclusion of Landsat metadata in the EOS Clearinghouse (ECHO), and the distribution of a global digital elevation model (GDEM) developed from ASTER. A software re-use case study describes integrating the MRT and the USGS Global Visualization tool (GloVis) into the MRTWeb service, developed to provide on-the-fly reprojection and reformatting of MODIS land products. Current LP DAAC activities are presented, such as the Open geographic information systems (GIS) Consortium (OGC) services provided in support of NASA’s Making Earth Science Data Records for Use in Research Environments (MEaSUREs). Near-term opportunities are discussed, such as the design and development of services in support of the soon-to-be completed on-line archive of all LP DAAC ASTER and MODIS data products. Finally, several case studies for future tools are services are explored, such as bringing algorithms to data centers, using the North American ASTER Land Emissivity Database as an example, as well as the potential for integrating data discovery and retrieval services for LP DAAC, Landsat and USGS Long-term Archive holdings.
Scaling the Pipe: NASA EOS Terra Data Systems at 10
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ramapriyan, Hampapuram K.
2010-01-01
Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.
Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile
NASA Astrophysics Data System (ADS)
Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco
2014-05-01
The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.
Booklets for children related with Earth Sciences published in Mexico
NASA Astrophysics Data System (ADS)
Alaniz, S. A.; Nieto-Samaniego, A. F.
2009-04-01
The Centro de Geociencias, at the Universidad Nacional Autonoma de Mexico, has published a series of booklets for children, entitled "Simple experiments to understand a complex Earth". It is part of the activities of the Mexican committee of the International Year of the Planet Earth. Each booklet contains experiments related with an Earth Sciences topic and includes the procedure to do one of the "Ten most beautiful experiments in physics" (Crease, P., Physics World May 2002 p17 and September 2002 pp19-20). In Mexico, as in other developing countries, there is very little information about Science in general and Earth Sciences in particular, in the basic education programs. Also, there is poor bibliography in Spanish about science experiments. For this reason, we try to fill the vacuum by distributing free the booklets in Science Museums and rural basic schools in paper, and by Internet in the Centro de Geociencias web site (http://www.geociencias.unam.mx/geociencias/difusion/indice.html). At present, we have been distributed 100,000 copies of 5 issues: 1."Atmospheric pressure and the falling bodies", it deals with the Galileo experiment of falling bodies, he proposed that all the bodies fall down at the same velocity. We discuss the properties of the atmosphere air (temperature, pressure and volume) and concluded that Galileo is right but when the bodies are very light. 2. "The light and the colors" is based in the Newton's decomposition of sunlight with a prism experiment. This booklet contains nine experiments to explain the colors that we find in Earth like the blue of the sky, the orange of the sunset, the rainbow and the mirage. 3. "¿Eureka! oceans and continents float". This booklet presents seven experiments related with density and buoyancy to explain the principles of the Plate tectonics theory. 4. "Climate hanging by a thread", Foucault pendulum demonstrates the rotation of Earth without seeing the stars, in this booklet, we explain, through 9 experiments, how the Earth's rotation influences climate. 5. "The Earth and its waves". This booklet presents seven experiments to explain how the knowledge of the wave behavior help us to understand phenomena like tsunamis, earthquakes, colors and telecommunications, etc. All the booklets are in Spanish, printing was sponsored by the Academia Mexicana de Ciencias, the Universidad Nacional Autonoma de Mexico among other institutions. We will bring to the EGU General Assembly some booklets to see if any institution is interested in publishing and distribute them in another language.
NASA's Earth Observing Data and Information System
NASA Technical Reports Server (NTRS)
Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.
2009-01-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index and a broad metrics program.
Earth Science Literacy: Building Community Consensus
NASA Astrophysics Data System (ADS)
Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.
2008-12-01
During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.
A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.
2014-12-01
Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while managing the uncertainties of scientific conclusions derived from such capabilities. This talk will provide an overview of JPL's efforts in developing a comprehensive architectural approach to data science.
NASA Technical Reports Server (NTRS)
Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen
2009-01-01
Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007
Global Change Data Center: Mission, Organization, Major Activities, and 2001 Highlights
NASA Technical Reports Server (NTRS)
Wharton, Stephen W. (Technical Monitor)
2002-01-01
Rapid efficient access to Earth sciences data is fundamental to the Nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase further and missions with constellations of satellites start to appear. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink. The Global Change Data Center's (GCDC) mission is to provide systems, data products, and information management services to maximize the availability and utility of NASA's Earth science data. The specific objectives are (1) support Earth science missions be developing and operating systems to generate, archive, and distribute data products and information; (2) develop innovative information systems for processing, archiving, accessing, visualizing, and communicating Earth science data; and (3) develop value-added products and services to promote broader utilization of NASA Earth Sciences Enterprise (ESE) data and information. The ultimate product of GCDC activities is access to data and information to support research, education, and public policy.
NASA Astrophysics Data System (ADS)
Murata, K. T.
2014-12-01
Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT Science Cloud for Earth and space science. In 2003 56 refereed papers were published. At the end, we introduce a couple of successful results of Earth and space sciences using these three techniques carried out on the NICT Sciences Cloud. [1] http://sc-web.nict.go.jp
The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences
NASA Astrophysics Data System (ADS)
Cocco, Massimo; Epos Consortium, the
2015-04-01
The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the integrating RI elements. This integration requires a significant coordination between, among others, disciplinary (thematic) communities, national RIs policies and initiatives, as well as geo- and IT-scientists. The RIs that EPOS is coordinating include: i) regionally-distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services v) new services for natural and anthropogenic hazards. Here we present the successful story of the EPOS Preparatory Phase and the progress towards the implementation of both integrated core services (ICS) and thematic core services (TCS) for the different communities participating to the integration plan. We aim to discuss the achieved results and the approach followed to design the implementation phase. The goal is to present and discuss the strategies adopted to foster the implementation of TCS, clarifying their crucial role as domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS, and their integration to develop the new ICS. We will present the prototype of the ICS central hub as a key contribution for providing multidisciplinary services for solid Earth sciences as well as the glue to keep ICT aspects integrated and rationalized across EPOS. Finally, we will discuss the well-defined role of the EPOS-ERIC Headquarter to coordinate and harmonize national RIs and EPOS services (through ICS and TCS) looking for an effective commitment by national governments. It will be an important and timely opportunity to discuss the EPOS roadmap toward the operation of the novel multidisciplinary platform for discoveries to foster scientific excellence in solid Earth sciences.
Lessons Learned while Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems
NASA Astrophysics Data System (ADS)
Pilone, D.
2016-12-01
As new, high data rate missions begin collecting data, the NASA's Earth Observing System Data and Information System (EOSDIS) archive is projected to grow roughly 20x to over 300PBs by 2025. To prepare for the dramatic increase in data and enable broad scientific inquiry into larger time series and datasets, NASA has been exploring the impact of applying cloud technologies throughout EOSDIS. In this talk we will provide an overview of NASA's prototyping and lessons learned in applying cloud architectures to: Highly scalable and extensible ingest and archive of EOSDIS data Going "all-in" on cloud based application architectures including "serverless" data processing pipelines and evaluating approaches to vendor-lock in Rethinking data distribution and approaches to analysis in a cloud environment Incorporating and enforcing security controls while minimizing the barrier for research efforts to deploy to NASA compliant, operational environments. NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products.
The Role and Evolution of NASA's Earth Science Data Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.
The art and science of data curation: Lessons learned from constructing a virtual collection
NASA Astrophysics Data System (ADS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick
2018-03-01
A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2008-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences
GENESIS: GPS Environmental and Earth Science Information System
NASA Technical Reports Server (NTRS)
Hajj, George
1999-01-01
This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.
NASA Astrophysics Data System (ADS)
Alcott, G.; Kempler, S.; Lynnes, C.; Leptoukh, G.; Vollmer, B.; Berrick, S.
2008-12-01
NASA Earth Sciences Division (ESD), and its preceding Earth science organizations, has made great investments in the development and maintenance of data management systems, as well as information technologies, for the purpose of maximizing the use and usefulness of NASA generated Earth science data. Earth science information systems, evolving with the maturation and implementation of advancing technologies, reside at NASA data centers, known as Distributed Active Archive Centers (DAACs). With information management system infrastructure in place, and system data and user services already developed and operational, only very small delta costs are required to fully support data archival, processing, and data support services required by the recommended Decadal Study missions. This presentation describes the services and capabilities of the Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) (one of NASAs DAACs) and their potential reuse for these future missions. After 14 years working with instrument teams and the broader science community, GES DISC personnel expertise in atmospheric, water cycle, and atmospheric modeling data and information services, as well as Earth science missions, information system engineering, operations, and user services have developed a series of modular, reusable data management components currently is use in several projects. The knowledge and experience gained at the GES DISC lend themselves to providing science driven information systems in the areas of aerosols, clouds, and atmospheric chemicals to be measured by recommended Decadal Survey missions. Available reusable capabilities include data archive and distribution (Simple, Scalable, Script-based, Science [S4] Product Archive aka S4PA), data processing (S4 Processor for Measurements aka S4PM), data search (Mirador), data browse, visualization, and analysis (Giovanni), and data mining services. In addition, recent enhancements, such as Open Geospatial Consortium (OGC), Inc. interoperability implementations and data fusion prototypes, will be described. As a result of the information management systems developed by NASAs GES DISC, not only are large cost savings realized through system reuse, but maintenance costs are also minimized due to the simplicity of their implementations.
DSCOVR EPIC L2 VESDR V1 Product Announcement
Atmospheric Science Data Center
2018-06-13
... Boston University announce the public release of Vegetation Earth System Data Record (VESDR) derived from the Earth Polychromatic Imaging ... derived products. We also provide two ancillary science data products, namely, 10 km Land Cover Type and Distribution of ...
Development of the AuScope Australian Earth Observing System
NASA Astrophysics Data System (ADS)
Rawling, T.
2017-12-01
Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.
EOS MLS Science Data Processing System: A Description of Architecture and Capabilities
NASA Technical Reports Server (NTRS)
Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.
2006-01-01
This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.
Overview of NASA's Earth Science Data Systems
NASA Technical Reports Server (NTRS)
McDonald, Kenneth
2004-01-01
For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science data systems, NASA has had an active collaboration with a number of interagency and international partners. One of the mechanisms that has been extremely helpful in initiating and promoting this collaboration has been NASA's participation in the Committee on Earth Observation Satellites (CEOS) and its Working Group on Information Systems and Services (WGISS). The CEOS members, working together, have implemented an International Directory Network that enables users to locate collections of earth science data held by the international community and an International Catalog System to search and order specific data products. CEOS WGISS has also promoted the international interest in the Open GIS Consortium s specifications that further advance the access and use of geospatial data and the interoperation of GTS components. These are just a few highlights of the benefits that member agencies gain from CEOS participation.
The European Plate Observing System (EPOS) Services for Solid Earth Science
NASA Astrophysics Data System (ADS)
Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos
2016-04-01
The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. The EPOS Thematic Services will rely in part on strong and sustainable participation by national organisations and international consortia. While this distributed architecture will contribute to ensure pan European involvement in EPOS, it also raises specific challenges: ensuring similar granularity of services, compatibility of technical solutions, homogeneous legal agreements and sustainable financial engagement from the partner institutions and organisations. EPOS is engaging actions to address all of these issues during 2016-2017, after which the services will enter a final validation phase by the EPOS Board of Governmental Representatives.
Alpha, Tau Rho; Diggles, Michael F.
1998-01-01
This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.
Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration
NASA Astrophysics Data System (ADS)
Schumacher, J. A.; Yetman, G. G.
2007-12-01
The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.
NASA Astrophysics Data System (ADS)
Robinson, E.; Meyer, C. B.; Benedict, K. K.
2013-12-01
A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a toolbox of collaborative development resources including Amazon Web Services to quickly spin-up the testbed instance and a GitHub account for maintaining testbed project code enabling reuse. Recently, the Foundation supported development of the ESIP Commons (http://commons.esipfed.org), a Drupal-based knowledge repository for non-traditional publications to preserve community products and outcomes like white papers, posters and proceedings. The ESIP Commons adds additional structured metadata, provides attribution to contributors and allows those unfamiliar with ESIP a straightforward way to find information. The success of ESIP Federation activities is difficult to measure. The ESIP Commons is a step toward quantifying sponsor return on investment and is one dataset used in network map analysis of the ESIP community network, another success metric. Over the last 15 years, ESIP has continually grown and attracted experts in the Earth science data and informatics field becoming a primary locus of research and development on the application and evolution of Earth science data standards and conventions. As funding agencies push toward a more collaborative approach, the lessons learned from ESIP and the collaboration services themselves are a crucial component of supporting science research.
EOSDIS: Archive and Distribution Systems in the Year 2000
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Lake, Alla
2000-01-01
Earth Science Enterprise (ESE) is a long-term NASA research mission to study the processes leading to global climate change. The Earth Observing System (EOS) is a NASA campaign of satellite observatories that are a major component of ESE. The EOS Data and Information System (EOSDIS) is another component of ESE that will provide the Earth science community with easy, affordable, and reliable access to Earth science data. EOSDIS is a distributed system, with major facilities at seven Distributed Active Archive Centers (DAACs) located throughout the United States. The EOSDIS software architecture is being designed to receive, process, and archive several terabytes of science data on a daily basis. Thousands of science users and perhaps several hundred thousands of non-science users are expected to access the system. The first major set of data to be archived in the EOSDIS is from Landsat-7. Another EOS satellite, Terra, was launched on December 18, 1999. With the Terra launch, the EOSDIS will be required to support approximately one terabyte of data into and out of the archives per day. Since EOS is a multi-mission program, including the launch of more satellites and many other missions, the role of the archive systems becomes larger and more critical. In 1995, at the fourth convening of NASA Mass Storage Systems and Technologies Conference, the development plans for the EOSDIS information system and archive were described. Five years later, many changes have occurred in the effort to field an operational system. It is interesting to reflect on some of the changes driving the archive technology and system development for EOSDIS. This paper principally describes the Data Server subsystem including how the other subsystems access the archive, the nature of the data repository, and the mass-storage I/O management. The paper reviews the system architecture (both hardware and software) of the basic components of the archive. It discusses the operations concept, code development, and testing phase of the system. Finally, it describes the future plans for the archive.
Global Change Data Center: Mission, Organization, Major Activities, and 2003 Highlights
NASA Technical Reports Server (NTRS)
2004-01-01
Rapid, efficient access to Earth sciences data from satellites and ground validation stations is fundamental to the nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase from current levels to terabytes per day. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink.The Global Change Data Center's (GCDC) mission is to develop and operate data systems, generate science products, and provide archival and distribution services for Earth science data in support of the U.S. Global Change Program and NASA's Earth Sciences Enterprise. The ultimate product of the GCDC activities is access to data to support research, education, and public policy.
NASA Astrophysics Data System (ADS)
Kuo, K.
2010-12-01
As a practitioner in the field of atmospheric remote sensing, the author, like many other similar science users, depends on and uses heavily NASA Earth Science remote sensing data. Thus the author is asked by the NASA Earth Science Data Information System Project (ESDIS) to assess the capabilities of the Earth Observing System Data and Information System (EOSDIS) in order to provide suggestions and recommendations for the evolution of EOSDIS in the path towards its 2015 Vision Tenets. As NASA's Earth science data system, EOSDIS provides data processing and data archiving and distribution services for EOS missions. The science operations of EOSDIS are the focus of this report, i.e. data archiving and distribution, which are performed within a distributed system of many interconnected nodes, namely the Science Investigator-led Processing Systems, or SIPS, and distributed data centers. Since its inception in the early 1990s, EOSDIS has represented a democratization of data, a break from the past when data dissemination was at the discretion of project scientists. Its “open data” policy is so highly valued and well received by its user communities that it has influenced other agencies, even those of other countries, to adopt the same open policy. In the last ~10 years EOSDIS has matured to serve very well users of any given science community in which the varieties of data being used change infrequently. The unpleasant effects of interoperability barriers are now more often felt by users who try to use new data outside their existing familiar set. This paper first defines interoperability and identifies the purposes for achieving interoperability. The sources of interoperability barriers, classified by the author into software, hardware, and human categories, are examined. For a subset of issues related to software, it presents diagnoses obtained from experience of the author and his survey of the EOSDIS data finding, ordering, retrieving, and extraction services. it also reports on an analysis of his survey regarding tools provided by EOSDIS or its user communities and intended to make routine data manipulations easier. Barriers in the hardware category are those resulting from differences in orbit configurations of the spacecrafts and differences in remote sensing modality (active or passive), spectral and spatial resolutions, scanning strategies, etc. of the instruments. Such differences are best understood by considering the nature of remotely sensed observations. Human factors are further classified into institutional and individual subcategories. The former includes factors such as NASA’s funding practices and the latter relates to individuals’ propensity in adopting new technologies. Finally, a strategy for overcoming these barriers is proposed.
NASA Astrophysics Data System (ADS)
Aleman, A.; Olsen, L. M.; Ritz, S.; Stevens, T.; Morahan, M.; Grebas, S. K.
2011-12-01
NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide.The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs.Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information.In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries.By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways.This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data.
A relevancy algorithm for curating earth science data around phenomenon
NASA Astrophysics Data System (ADS)
Maskey, Manil; Ramachandran, Rahul; Li, Xiang; Weigel, Amanda; Bugbee, Kaylin; Gatlin, Patrick; Miller, J. J.
2017-09-01
Earth science data are being collected for various science needs and applications, processed using different algorithms at multiple resolutions and coverages, and then archived at different archiving centers for distribution and stewardship causing difficulty in data discovery. Curation, which typically occurs in museums, art galleries, and libraries, is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest. Curating data sets around topics or areas of interest addresses some of the data discovery needs in the field of Earth science, especially for unanticipated users of data. This paper describes a methodology to automate search and selection of data around specific phenomena. Different components of the methodology including the assumptions, the process, and the relevancy ranking algorithm are described. The paper makes two unique contributions to improving data search and discovery capabilities. First, the paper describes a novel methodology developed for automatically curating data around a topic using Earth science metadata records. Second, the methodology has been implemented as a stand-alone web service that is utilized to augment search and usability of data in a variety of tools.
Ensuring Credibility of NASA's Earth Science Data (Invited)
NASA Astrophysics Data System (ADS)
Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.
2013-12-01
The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems Program has been improving its data management practices for over twenty years to assure permanence of data utility through reliable preservation of bits, readability, understandability, usability and reproducibility of results. While NASA has focused on the Earth System Science research community as the primary data user community, broad interest in the data due to climate change and how it is affecting people everywhere (e.g. sea level rise) by environmental managers, public policymakers and citizen scientists has led the Program to respond with new tools and ways to improve ease of access and use of the data. NASA's standard Earth observation data will soon be buttressed with the long tail of federally-funded research data created or analyzed by grantees, in response to John Holdren's OSTP Memorandum to federal departments and agencies entitled 'Increasing Access to the Results of Federally-Funded Scientific Research'. We fully expect that NASA's Earth Science Data Systems Program will be able to work with our grantees to comply early, and flexibly improve the openness of this source of scientific data to a best practice for NASA and the grantees
Evolution of NASA's Earth Science Digital Object Identifier Registration System
NASA Technical Reports Server (NTRS)
Wanchoo, Lalit; James, Nathan
2017-01-01
NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.
NASA Technical Reports Server (NTRS)
Baynes, Katie; Ramachandran, Rahul; Pilone, Dan; Quinn, Patrick; Gilman, Jason; Schuler, Ian; Jazayeri, Alireza
2017-01-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.
R and T report: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1993-01-01
The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.
NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products
NASA Astrophysics Data System (ADS)
Davenport, T.; Parker, L.; Rinsland, P. L.
2014-12-01
Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.
NASA Astrophysics Data System (ADS)
Muller, E.
2006-12-01
When the weather is nice, I like to take my students on a walk to the center of the earth. Earthwalk is a hands-on and feet-on activity that gets students outdoors, having fun, moving and learning about the structures of the earth. Earthwalk is a lesson to help students visualize our planets size and scale. This activity has students calculate the ratio of a scaled 100m cross-sectional earth, mark the boundaries between major planetary layers, walk from the center of the earth to the surface and draw proportional manmade and natural surface features (mountains, building, mine shafts, etc). This lesson effectively integrates content and pedagogy while touching on skills and topics such as math, measurement, science, writing skills (they have to take notes), reading, listening and group dynamics. This activity fits well into the earth science curriculum by introducing basic seismology; tectonic, geochemistry and heat transfer concepts. Besides showcasing this lesson, a limited number of Earth Anatomy posters will be distributed.
Thematic Mapper research in the earth sciences
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.; Stuart, Locke
1989-01-01
This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.
NASA Technical Reports Server (NTRS)
Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.
2008-01-01
One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.
GRACE, time-varying gravity, Earth system dynamics and climate change
NASA Astrophysics Data System (ADS)
Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.
2014-11-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences
NASA Astrophysics Data System (ADS)
CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.
2012-10-01
The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace
GRACE, time-varying gravity, Earth system dynamics and climate change.
Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J
2014-11-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data-provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)-can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs
NASA Astrophysics Data System (ADS)
Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.
2005-05-01
Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.
Archiving and access systems for remote sensing: Chapter 6
Faundeen, John L.; Percivall, George; Baros, Shirley; Baumann, Peter; Becker, Peter H.; Behnke, J.; Benedict, Karl; Colaiacomo, Lucio; Di, Liping; Doescher, Chris; Dominguez, J.; Edberg, Roger; Ferguson, Mark; Foreman, Stephen; Giaretta, David; Hutchison, Vivian; Ip, Alex; James, N.L.; Khalsa, Siri Jodha S.; Lazorchak, B.; Lewis, Adam; Li, Fuqin; Lymburner, Leo; Lynnes, C.S.; Martens, Matt; Melrose, Rachel; Morris, Steve; Mueller, Norman; Navale, Vivek; Navulur, Kumar; Newman, D.J.; Oliver, Simon; Purss, Matthew; Ramapriyan, H.K.; Rew, Russ; Rosen, Michael; Savickas, John; Sixsmith, Joshua; Sohre, Tom; Thau, David; Uhlir, Paul; Wang, Lan-Wei; Young, Jeff
2016-01-01
Focuses on major developments inaugurated by the Committee on Earth Observation Satellites, the Group on Earth Observations System of Systems, and the International Council for Science World Data System at the global level; initiatives at national levels to create data centers (e.g. the National Aeronautics and Space Administration (NASA) Distributed Active Archive Centers and other international space agency counterparts), and non-government systems (e.g. Center for International Earth Science Information Network). Other major elements focus on emerging tool sets, requirements for metadata, data storage and refresh methods, the rise of cloud computing, and questions about what and how much data should be saved. The sub-sections of the chapter address topics relevant to the science, engineering and standards used for state-of-the-art operational and experimental systems.
The Suomi National Polar-Orbiting Partnership (SNPP): Continuing NASA Research and Applications
NASA Technical Reports Server (NTRS)
Butler, James; Gleason, James; Jedlovec, Gary; Coronado, Patrick
2015-01-01
The Suomi National Polar-orbiting Partnership (SNPP) satellite was successfully launched into a polar orbit on October 28, 2011 carrying 5 remote sensing instruments designed to provide data to improve weather forecasts and to increase understanding of long-term climate change. SNPP provides operational continuity of satellite-based observations for NOAA's Polar-orbiting Operational Environmental Satellites (POES) and continues the long-term record of climate quality observations established by NASA's Earth Observing System (EOS) satellites. In the 2003 to 2011 pre-launch timeframe, NASA's SNPP Science Team assessed the adequacy of the operational Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) from the SNPP instruments for use in NASA Earth Science research, examined the operational algorithms used to produce those data records, and proposed a path forward for the production of climate quality products from SNPP. In order to perform these tasks, a distributed data system, the NASA Science Data Segment (SDS), ingested RDRs, SDRs, and EDRs from the NOAA Archive and Distribution and Interface Data Processing Segments, ADS and IDPS, respectively. The SDS also obtained operational algorithms for evaluation purposes from the NOAA Government Resource for Algorithm Verification, Independent Testing and Evaluation (GRAVITE). Within the NASA SDS, five Product Evaluation and Test Elements (PEATEs) received, ingested, and stored data and performed NASA's data processing, evaluation, and analysis activities. The distributed nature of this data distribution system was established by physically housing each PEATE within one of five Climate Analysis Research Systems (CARS) located at either at a NASA or a university institution. The CARS were organized around 5 key EDRs directly in support of the following NASA Earth Science focus areas: atmospheric sounding, ocean, land, ozone, and atmospheric composition products. The PEATES provided the system level interface with members of the NASA SNPP Science Team and other science investigators within each CARS. A sixth Earth Radiation Budget CARS was established at NASA Langley Research Center (NASA LaRC) to support instrument performance, data evaluation, and analysis for the SNPP Clouds and the Earth's Radiant Budget Energy System (CERES) instrument. Following the 2011 launch of SNPP, spacecraft commissioning, and instrument activation, the NASA SNPP Science Team evaluated the operational RDRs, SDRs, and EDRs produced by the NOAA ADS and IDPS. A key part in that evaluation was the NASA Science Team's independent processing of operational RDRs and SDRs to EDRs using the latest NASA science algorithms. The NASA science evaluation was completed in the December 2012 to April 2014 timeframe with the release of a series of NASA Science Team Discipline Reports. In summary, these reports indicated that the RDRs produced by the SNPP instruments were of sufficiently high quality to be used to create data products suitable for NASA Earth System science and applications. However, the quality of the SDRs and EDRs were found to vary greatly when considering suitability for NASA science. The need for improvements in operational algorithms, adoption of different algorithmic approaches, greater monitoring of on-orbit instrument calibration, greater attention to data product validation, and data reprocessing were prominent findings in the reports. In response to these findings, NASA, in late 2013, directed the NASA SNPP Science Team to use SNPP instrument data to develop data products of sufficiently high quality to enable the continuation of EOS time series data records and to develop innovative, practical applications of SNPP data. This direction necessitated a transition of the SDS data system from its pre-launch assessment mode to one of full data processing and production. To do this, the PEATES, which served as NASA's data product testing environment during the prelaunch and early on-orbit periods, were transitioned to Science Investigator-led Processing Systems (SIPS). The distributed data architecture was maintained in this new system by locating the SIPS at the same institutions at which the CARS and PEATES were located. The SIPS acquire raw SNPP instrument Level 0 (i.e. RDR) data over the full SNPP mission from the NOAA ADS and IDPS through the NASA SDS Data Distribution and Depository Element (SD3E). The SIPS process those data into NASA Level 1, Level 2, and global, gridded Level 3 standard products using peer-reviewed algorithms provided by members of the NASA Science Team. The SIPS work with the NASA SNPP Science Team in obtaining enhanced, refined, or alternate real-time algorithms to support the capabilities of the Direct Readout Laboratory (DRL). All data products, algorithm source codes, coefficients, and auxiliary data used in product generation are archived in an assigned NASA Distributed Active Archive Center (DAAC).
Evolution of DOI Usage and Registration
NASA Astrophysics Data System (ADS)
James, N.; Wanchoo, L.
2017-12-01
NASA's Earth Science Data and Information System (ESDIS) Project has implemented an automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). Using the ESDIS DOI system, over 3000 DOIs have been assigned, registered, and made publicly accessible while over 1000 assigned DOIs are being held in reserve until ready for public use. The goal is to assign a DOI to each of the 8000+ data collections under ESDIS management. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited. ESDIS DOIs also provide data "Provenance" which is information about the creation and history of the data in question. This would include when the data was collected, which instrument was used to collect the data, and the version of the product at the time the DOI was assigned. Over the past few years, requests for DOIs have increased significantly as DAACs assign DOIs to both legacy data from earlier missions and new data products from in-orbit missions. This study will evaluate the evolution of DOI registration and its usage over those years comparing data products as they are organized by mission, science discipline and data product level. It is hoped that the study results will help NASA determine how to prioritize future products for DOI assignment and inform future studies that would identify trends over time of increased use of data citations resulting in increased discovery and distribution of NASA Earth science data products.
International Year of Planet Earth - Activities and Plans in Mexico
NASA Astrophysics Data System (ADS)
Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.
2007-12-01
IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for enhancing international cooperation and to ensure increased effective use by society of Earth sciences.
NASA Astrophysics Data System (ADS)
Harrison, M.; Cocco, M.
2017-12-01
EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during 2018. Particular attention in this talk will be given to connecting EPOS with similar global initiatives and identifying common best practice and approaches.
NASA Astrophysics Data System (ADS)
Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.
2015-12-01
This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.
Space weather. Ionospheric control of magnetotail reconnection.
Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G
2014-07-11
Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Alameh, N.; Bambacus, M.; Cole, M.
2006-12-01
Nasa's Earth Science as well as interdisciplinary research and applications activities require access to earth observations, analytical models and specialized tools and services, from diverse distributed sources. Interoperability and open standards for geospatial data access and processing greatly facilitate such access among the information and processing compo¬nents related to space¬craft, airborne, and in situ sensors; predictive models; and decision support tools. To support this mission, NASA's Geosciences Interoperability Office (GIO) has been developing the Earth Science Gateway (ESG; online at http://esg.gsfc.nasa.gov) by adapting and deploying a standards-based commercial product. Thanks to extensive use of open standards, ESG can tap into a wide array of online data services, serve a variety of audiences and purposes, and adapt to technology and business changes. Most importantly, the use of open standards allow ESG to function as a platform within a larger context of distributed geoscience processing, such as the Global Earth Observing System of Systems (GEOSS). ESG shares the goals of GEOSS to ensure that observations and products shared by users will be accessible, comparable, and understandable by relying on common standards and adaptation to user needs. By maximizing interoperability, modularity, extensibility and scalability, ESG's architecture fully supports the stated goals of GEOSS. As such, ESG's role extends beyond that of a gateway to NASA science data to become a shared platform that can be leveraged by GEOSS via: A modular and extensible architecture Consensus and community-based standards (e.g. ISO and OGC standards) A variety of clients and visualization techniques, including WorldWind and Google Earth A variety of services (including catalogs) with standard interfaces Data integration and interoperability Mechanisms for user involvement and collaboration Mechanisms for supporting interdisciplinary and domain-specific applications ESG has played a key role in recent GEOSS Service Network (GSN) demos and workshops, acting not only as a service and data catalog and discovery client, but also as a portrayal and visualization client to distributed data.
NASA Technical Reports Server (NTRS)
Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler
2011-01-01
NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/
GENESI-DR - A single access point to Earth Science data
NASA Astrophysics Data System (ADS)
Cossu, R.; Goncalves, P.; Pacini, F.
2009-04-01
The amount of information being generated about our planet is increasing at an exponential rate, but it must be easily accessible in order to apply it to the global needs relating to the state of the Earth. Currently, information about the state of the Earth, relevant services, analysis results, applications and tools are accessible in a very scattered and uncoordinated way, often through individual initiatives from Earth Observation mission operators, scientific institutes dealing with ground measurements, service companies, data catalogues, etc. A dedicated infrastructure providing transparent access to all this will support Earth Science communities by allowing them to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The use of high-speed networks (GÉANT) and the experimentation of new technologies, like BitTorrent, will also contribute to better services for the Earth Science communities. GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories), an ESA-led, European Commission (EC)-funded two-year project, is taking the lead in providing reliable, easy, long-term access to Earth Science data via the Internet. This project will allow scientists from different Earth Science disciplines located across Europe to locate, access, combine and integrate historical and fresh Earth-related data from space, airborne and in-situ sensors archived in large distributed repositories. GENESI-DR builds a federated collection of heterogeneous digital Earth Science repositories to establish a dedicated infrastructure providing transparent access to all this and allowing Earth Science communities to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The federated digital repositories, seen as services and data providers, will share access to their resources (catalogue functions, data access, processing services etc.) and will adhere to a common set of standards / policies / interfaces. The end-users will be provided with a virtual collection of digital Earth Science data, irrespectively of their location in the various single federated repositories. GENESI-DR objectives have lead to the identification of the basic GENESI-DR infrastructure requirements: • Capability, for Earth Science users, to discover data from different European Earth Science Digital Repositories through the same interface in a transparent and homogeneous way; • Easiness and speed of access to large volumes of coherently maintained distributed data in an effective and timely way; • Capability, for DR owners, to easily make available their data to a significantly increased audience with no need to duplicate them in a different storage system. Data discovery is based on a Central Discovery Service, which allows users and applications to easily query information about data collections and products existing in heterogeneous catalogues, at federated DR sites. This service can be accessed by users via web interface, the GENESI-DR Web Portal, or by external applications via open standardized interfaces exposed by the system. The Central Discovery Service identifies the DRs providing products complying with the user search criteria and returns the corresponding access points to the requester. By taking into consideration different and efficient data transfer technologies such as HTTPS, GridFTP and BitTorrent, the infrastructure provides easiness and speed of access. Conversely, for data publishing GENESI-DR provides several mechanisms to assist DR owners in producing a metadata catalogues. In order to reach its objectives, the GENESI-DR e-Infrastructure will be validated against user needs for accessing and sharing Earth Science data. Initially, four specific applications in the land, atmosphere and marine domains have been selected, including: • Near real time orthorectification for agricultural crops monitoring • Urban area mapping in support of emergency response • Data assimilation in GlobModel, addressing major environmental and health issues in Europe, with a particular focus on air quality • SeaDataNet to aid environmental assessments and to forecast the physical state of the oceans in near real time. Other applications will complement this during the second half of the project. GENESI-DR also aims to develop common approaches to preserve the historical archives and the ability to access the derived user information as both software and hardware transformations occur. Ensuring access to Earth Science data for future generations is of utmost importance because it allows for the continuity of knowledge generation improvement. For instance, scientists accessing today's climate change data in 50 years will be able to better understand and detect trends in global warming and apply this knowledge to ongoing natural phenomena. GENESI-DR will work towards harmonising operations and applying approved standards, policies and interfaces at key Earth Science data repositories. To help with this undertaking, GENESI-DR will establish links with the relevant organisations and programmes such as space agencies, institutional environmental programmes, international Earth Science programmes and standardisation bodies.
Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach
NASA Astrophysics Data System (ADS)
Cocco, Massimo; Consortium, Epos
2016-04-01
EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core Services (ICS) to provide a novel research platform to different stakeholders; designing the access to distributed computational resources (ICS-d); ensuring sustainability and governance of TCS and EPOS-ERIC. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during the project lifetime. Particular attention will be given to showing the progress toward the establishment of EPOS-ERIC Headquarter, to coordinate and harmonize national RIs and EPOS services, and the ICS central hub as a key contribution for providing multidisciplinary services for solid Earth science as well as the glue to keep ICT aspects integrated and rationalized across EPOS. It will be an important and timely opportunity to discuss the EPOS roadmap toward the operation of the novel multidisciplinary platform for discoveries to foster scientific excellence in solid Earth science.
Software Reuse Within the Earth Science Community
NASA Technical Reports Server (NTRS)
Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.
2006-01-01
Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very similar, with the second, larger survey confirming the basic results of the first, smaller survey. The results suggest that reuse of ESE software can drive down the cost and time of system development, increase flexibility and responsiveness of these systems to new technologies and requirements, and increase effective and accountable community participation.
Building a cloud based distributed active archive data center
NASA Astrophysics Data System (ADS)
Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin
2017-04-01
NASA's Earth Science Data System (ESDS) Program serves as a central cog in facilitating the implementation of NASA's Earth Science strategic plan. Since 1994, the ESDS Program has committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data. An independent review was conducted in 2015 to holistically review the EOSDIS in order to identify gaps. The review recommendations were to investigate two areas: one, whether commercial cloud providers offer potential for storage, processing, and operational efficiencies, and two, the potential development of new data access and analysis paradigms. In response, ESDS has initiated several prototypes investigating the advantages and risks of leveraging cloud computing. This poster will provide an overview of one such prototyping activity, "Cumulus". Cumulus is being designed and developed as a "native" cloud-based data ingest, archive and management system that can be used for all future NASA Earth science data streams. The long term vision for Cumulus, its requirements, overall architecture, and implementation details, as well as lessons learned from the completion of the first phase of this prototype will be covered. We envision Cumulus will foster design of new analysis/visualization tools to leverage collocated data from all of the distributed DAACs as well as elastic cloud computing resources to open new research opportunities.
ERIC Educational Resources Information Center
Reynolds, Karen
1996-01-01
Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…
Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon
2014-01-01
Approaches used in Earth science research such as case study analysis and climatology studies involve discovering and gathering diverse data sets and information to support the research goals. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. In cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. This paper presents a specialized search, aggregation and curation tool for Earth science to address these challenges. The search rool automatically creates curated 'Data Albums', aggregated collections of information related to a specific event, containing links to relevant data files [granules] from different instruments, tools and services for visualization and analysis, and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non relevant information and data.
International Space Station (ISS)
2000-09-08
This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.
NASA's Earth Observing Data and Information System - Near-Term Challenges
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Mitchell, Andrew; Ramapriyan, Hampapuram
2018-01-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. EOSDIS manages data covering a wide range of Earth science disciplines including cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, and many others. One of the key components of EOSDIS is a set of twelve discipline-based Distributed Active Archive Centers (DAACs) distributed across the United States. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, these DAACs serve over 3 million users globally. The ESDIS Project provides the infrastructure support for EOSDIS, which includes other components such as the Science Investigator-led Processing systems (SIPS), common metadata and metrics management systems, specialized network systems, standards management, and centralized support for use of commercial cloud capabilities. Given the long-term requirements, and the rapid pace of information technology and changing expectations of the user community, EOSDIS has evolved continually over the past three decades. However, many challenges remain. Challenges addressed in this paper include: growing volume and variety, achieving consistency across a diverse set of data producers, managing information about a large number of datasets, migration to a cloud computing environment, optimizing data discovery and access, incorporating user feedback from a diverse community, keeping metadata updated as data collections grow and age, and ensuring that all the content needed for understanding datasets by future users is identified and preserved.
Learning from LANCE: Developing a Web Portal Infrastructure for NASA Earth Science Data (Invited)
NASA Astrophysics Data System (ADS)
Murphy, K. J.
2013-12-01
NASA developed the Land Atmosphere Near real-time Capability for EOS (LANCE) in response to a growing need for timely satellite observations by applications users, operational agencies and researchers. EOS capabilities originally intended for long-term Earth science research were modified to deliver satellite data products with sufficient latencies to meet the needs of the NRT user communities. LANCE products are primarily distributed as HDF data files for analysis, however novel capabilities for distribution of NRT imagery for visualization have been added which have expanded the user base. Additionally systems to convert data to information such as the MODIS hotspot/active fire data are also provided through the Fire Information for Resource Management System (FIRMS). LANCE services include: FTP/HTTP file distribution, Rapid Response (RR), Worldview, Global Imagery Browse Services (GIBS) and FIRMS. This paper discusses how NASA has developed services specifically for LANCE and is taking the lessons learned through these activities to develop an Earthdata Web Infrastructure. This infrastructure is being used as a platform to support development of data portals that address specific science issues for much of EOSDIS data.
Plate Tectonic Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…
A Hybrid Cloud Computing Service for Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.
2016-12-01
Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.
NASA Technical Reports Server (NTRS)
Bagwell, Ross; Peters, Byron; Berrick, Stephen
2017-01-01
NASAs Earth Observing System Data Information System (EOSDIS) manages Earth Observation satellites and the Distributed Active Archive Centers (DAACs), where the data is stored and processed. The challenge is that Earth Observation data is complicated. There is plenty of data available, however, the science teams have had a top-down approach: define what it is you are trying to study -select a set of satellite(s) and sensor(s), and drill down for the data.Our alternative is to take a bottom-up approach using eight environmental fields of interest as defined by the Group on Earth Observations (GEO) called Societal Benefit Areas (SBAs): Disaster Resilience (DR) Public Health Surveillance (PHS) Energy and Mineral Resource Management (EMRM) Water Resources Management (WRM) Infrastructure and Transport Management (ITM) Sustainable Urban Development (SUD) Food Security and Sustainable Agriculture (FSSA) Biodiversity and Ecosystems Sustainability (BES).
The role of Facilities in Engaging and Informing the Public of EarthScope Science
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.
2013-12-01
The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development and dissemination of materials for the scientifically interested public at science and technology centers. The presentation will also share techniques used and future plans for evaluation of the public impact of EarthScope.
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory G.
2005-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the major Distributed Active Archive Centers (DAACs) archiving and distributing remote sensing data from the NASA's Earth Observing System. In addition to providing just data, the GES DISC/DAAC has developed various value-adding processing services. A particularly useful service is data processing a t the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools (to avoid downloading unnecessary all the data). The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from data subsetting data spatially and/or by parameter to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. Shifting processing and data management burden from users to the GES DISC, allows scientists to concentrate on science, while the GES DISC handles the data management and data processing at a lower cost. Several examples of successful partnerships with scientists in the area of data processing and mining are presented.
Earth in Space: A CD-ROM Version for Pre-College Teachers
NASA Astrophysics Data System (ADS)
Pedigo, P.
2003-12-01
Earth in Space, a magazine about the Earth and space sciences for pre-college science teachers, was published by AGU between 1987 and 2001 (9 issues each year). The goal of Earth in Space was to make research at the frontiers of the geosciences accessible to teachers and students and engage them in thinking about scientific careers. Each issue contained two or three recent research articles, rewritten for a high school level audience from the original version published in peer-reviewed AGU journals, which were supplemented with short news items and biographic information about the authors. As part of a 2003 summer internship with AGU, sponsored by the AGU Committee on Education and Human Resources (CEHR) and the American Institute of Physics, this collection of Earth in Space magazines was converted into an easily accessible electronic resource for K-12 teachers and students. Every issue was scanned into a PDF file. The entire collection of articles was cataloged in a database indexed to key topic terms (e.g., volcanoes, global climate change, space weather). A front-page was designed in order to facilitate rapid access to articles concerning specific topics within the Earth and space sciences of particular interest to high school students. A compact CD-ROM version of this resource will be distributed to science teachers at future meetings of the National Science Teachers Association and will be made available through AGU's Outreach and Research Support program.
Outreach on a National Scale: The Critical Role of Facilities
NASA Astrophysics Data System (ADS)
Bartel, B. A.; Charlevoix, D. J.
2015-12-01
Facilities provide infrastructure for science that would not be feasible at a single institution. Facilities are also a resource for development of outreach products and activities that reach a national audience of diverse stakeholders. UNAVCO manages the NSF geodetic facility GAGE (Geodesy Advancing Geosciences and Earthscope). Staff at UNAVCO with expertise in education, outreach, and communication translate the science and supporting infrastructure into materials consumable by a wide array of users including teachers, students, museum attendees, emergency managers, park interpreters, and members of the general public. UNAVCO has the ability to distribute materials to a national and international audience, thereby greatly increasing the impact of the science and increasing the value of the investment by the National Science Foundation. In 2014 and 2015, UNAVCO produced multiple print products focused on the Plate Boundary Observatory (PBO), the geodetic component of EarthScope. Products include a deck of playing cards featuring PBO GPS stations, a poster featuring GPS velocities of the Western United States, and another poster focused on GPS velocities in Alaska. We are distributing these products to a broad audience, including teachers, station permit holders, and community members. The Tectonics of the Western United States poster was distributed this year in the American Geosciences Institute Earth Science Week kit for teachers, reaching 16,000 educators around the country. These posters and the PBO playing cards (PBO-52) were distributed to more than 100 teachers through workshops led by UNAVCO, the EarthScope National Office, the Southern California Earthquake Center (SCEC), and more. Additionally, these cards serve as a way to engage landowners who host these scientific stations on their property. This presentation will address the strategies for creating nationally relevant materials and the tools used for dissemination of materials to a broad audience. We will outline the process of our planning strategy as well as share ways in which we evaluate impact of particular outreach products and the overall outreach program.
The EPOS implementation of thematic services for solid Earth sciences
NASA Astrophysics Data System (ADS)
Cocco, Massimo; Consortium, Epos
2014-05-01
The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for the solid Earth sciences in Europe. In particular, EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes, ground stability, and tsunamis as well as those processes driving tectonics and Earth surface dynamics. EPOS will allow the Earth Science community to make a significant step forward by developing new concepts and tools for accurate, durable, and sustainable answers to societal questions concerning geo-hazards and those geodynamic phenomena relevant to the environment and human welfare. EPOS coordinates the existing and new solid Earth RIs within Europe and is building the integrating RI elements. This integration requires a significant coordination between, among others, disciplinary (thematic) communities, national RIs policies and initiatives, as well as geo- and IT-scientists. The RIs that EPOS coordinates include: i) Regionally-distributed geophysical observing systems (seismological and geodetic networks); ii) Local observatories (including geomagnetic, near-fault and volcano observatories); iii) Analytical and experimental laboratories; iv) Integrated satellite data and geological information services. We present the results achieved during the EPOS Preparatory Phase (which will end on October 2014) and the progress towards construction in terms of both the design of the integrated core services (ICS) and the development of thematic core services (TCS) for the different communities participating to the integration plan. We will focus on discussing the strategies adopted to foster the necessary implementation of TCS, clarifying their crucial role as domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS. We will present the prototype of the ICS central hub as a key contribution for providing multidisciplinary services for solid Earth sciences as well as the glue to keep ICT aspects integrated and rationalized across EPOS. Finally we will present the well-defined role of the EPOS-ERIC Head-Quarter to coordinate and harmonize national RIs and EPOS services (through ICS and TCS) with a clear commitment by national governments. This will be an important opportunity to discuss the EPOS multidisciplinary platform for discoveries to foster scientific excellence in solid Earth research.
Expanding the Role of an Earth Science Data System: The GHRC Innovations Lab
NASA Astrophysics Data System (ADS)
Conover, H.; Ramachandran, R.; Smith, T.; Kulkarni, A.; Maskey, M.; He, M.; Keiser, K.; Graves, S. J.
2013-12-01
The Global Hydrology Resource Center is a NASA Earth Science Distributed Active Archive Center (DAAC), managed in partnership by the Earth Science Department at NASA's Marshall Space Flight Center and the University of Alabama in Huntsville's Information Technology and Systems Center. Established in 1991, the GHRC processes, archives and distributes global lightning data from space, airborne and ground based observations from hurricane science field campaigns and Global Precipitation Mission (GPM) ground validation experiments, and satellite passive microwave products. GHRC's close association with the University provides a path for technology infusion from the research center into the data center. The ITSC has a long history of designing and operating science data and information systems. In addition to the GHRC and related data management projects, the ITSC also conducts multidisciplinary research in many facets of information technology. The coupling of ITSC research with the operational GHRC Data Center has enabled the development of new technologies that directly impact the ability of researchers worldwide to apply Earth science data to their specific domains of interest. The GHRC Innovations Lab will provide a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the ITSC. Research products to be deployed in the Innovations Lab include: * Data Albums - curated collections of information related to a specific science topic or event with links to relevant data files from different sources. * Data Prospecting - combines automated data mining techniques with user interaction to provide for quick exploration of large volumes of data. * Provenance Browser - provides for graphical exploration of data lineage and related contextual information. In the Innovations Lab, these technologies can be targeted to GHRC data sets, and tuned to address GHRC user interests. As technologies are tested and matured in the Innovations Lab, the most promising will be selected for incorporation into the GHRC's online tool suite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, B.A.; Barkstrom, B.R.
1993-04-01
The Earth Observing System (EOS) will collect data from a large number of satellite-borne instruments, beginning later in this decade, to make data accessible to the scientific community, NASA will build an EOS Data and Information System (EOSDIS). As an initial effort to accelerate the development of EOSDIS and to gain experience with such an information system, NASA and other agencies are working on a prototype system called Version O (VO). This effort will provide improved access to pre-EOS earth science data throughout the early EOSDIS period. Based on recommendations from the EOSDIS Science Advisory Panel, EOSDIS will have severalmore » distributed active archive centers (DAACs). Each DAAC will specialize in particular data sets. This paper describes work at the NASA Langley Research Center's (LaRC) DAAC. The Version 0 Langley DAAC began archiving and distributing existing data sets pertaining to the earth's radiation budget, clouds, aerosols, and tropospheric chemistry in late 1992. The primary goals of the LaRC VO effort are the following: (1) Enhance scientific use of existing data; (2) Develop institutional expertise in maintaining and distributing data; (3) Use institutional capability for processing data from previous missions such as the Earth Radiation Budget Experiment and the Stratospheric Aerosol and Gas Experiment to prepare for processing future EOS satellite data; (4) Encourage cooperative interagency and international involvement with data sets and research; and (5) Incorporate technological hardware and software advances quickly.« less
Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives
NASA Astrophysics Data System (ADS)
Ramapriyan, H.; Behnke, J.
2016-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.
Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation
NASA Technical Reports Server (NTRS)
Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver
2015-01-01
Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.
Report from the Passive Microwave Data Set Management Workshop
NASA Technical Reports Server (NTRS)
Armstrong, Ed; Conover, Helen; Goodman, Michael; Krupp, Brian; Liu, Zhong; Moses, John; Ramapriyan, H. K.; Scott, Donna; Smith, Deborah; Weaver, Ronald
2011-01-01
Passive microwave data sets are some of the most important data sets in the Earth Observing System Data and Information System (EOSDIS), providing data as far back as the early 1970s. The widespread use of passive microwave (PM) radiometer data has led to their collection and distribution over the years at several different Earth science data centers. The user community is often confused by this proliferation and the uneven spread of information about the data sets. In response to this situation, a Passive Microwave Data Set Management Workshop was held 17 ]19 May 2011 at the Global Hydrology Resource Center, sponsored by the NASA Earth Science Data and Information System (ESDIS) Project. The workshop attendees reviewed all primary (Level 1 ]3) PM data sets from NASA and non ]NASA sensors held by NASA Distributed Active Archive Centers (DAACs), as well as high ]value data sets from other NASA ]funded organizations. This report provides the key findings and recommendations from the workshop as well as detailed tabluations of the datasets considered.
The Land Processes Distributed Active Archive Center (LP DAAC)
Golon, Danielle K.
2016-10-03
The Land Processes Distributed Active Archive Center (LP DAAC) operates as a partnership with the U.S. Geological Survey and is 1 of 12 DAACs within the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS). The LP DAAC ingests, archives, processes, and distributes NASA Earth science remote sensing data. These data are provided to the public at no charge. Data distributed by the LP DAAC provide information about Earth’s surface from daily to yearly intervals and at 15 to 5,600 meter spatial resolution. Data provided by the LP DAAC can be used to study changes in agriculture, vegetation, ecosystems, elevation, and much more. The LP DAAC provides several ways to access, process, and interact with these data. In addition, the LP DAAC is actively archiving new datasets to provide users with a variety of data to study the Earth.
Earth science information: Planning for the integration and use of global change information
NASA Technical Reports Server (NTRS)
Lousma, Jack R.
1992-01-01
Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.
Windows to the Universe: Earth Science Enterprise Education Program
NASA Technical Reports Server (NTRS)
2004-01-01
Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.
Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linn, Anne M.
2008-12-03
Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geologicalmore » community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.« less
Evolving Metadata in NASA Earth Science Data Systems
NASA Astrophysics Data System (ADS)
Mitchell, A.; Cechini, M. F.; Walter, J.
2011-12-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of NASA's effort to continually evolve its data systems led ECHO to enhancing the method in which it receives inventory metadata from the data centers to allow for multiple metadata formats including ISO 19115. ECHO's metadata model will also be mapped to the NASA-specific convention for ingesting science metadata into the ECHO system. As NASA's new Earth Science missions and data centers are migrating to the ISO 19115 standards, EOSDIS is developing metadata management resources to assist in the reading, writing and parsing ISO 19115 compliant metadata. To foster interoperability with other agencies and international partners, NASA is working to ensure that a common ISO 19115 convention is developed, enhancing data sharing capabilities and other data analysis initiatives. NASA is also investigating the use of ISO 19115 standards to encode data quality, lineage and provenance with stored values. A common metadata standard across NASA's Earth Science data systems promotes interoperability, enhances data utilization and removes levels of uncertainty found in data products.
NASA Astrophysics Data System (ADS)
Downs, R. R.; Lenhardt, W. C.; Robinson, E.
2014-12-01
Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.
USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.
2005-08-01
A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.
Visualizing global change: earth and biodiversity sciences for museum settings using HDTV
NASA Astrophysics Data System (ADS)
Duba, A.; Gardiner, N.; Kinzler, R.; Trakinski, V.
2006-12-01
Science Bulletins, a production group at the American Museum of Natural History (New York, USA), brings biological and Earth system science data and concepts to over 10 million visitors per year at 27 institutions around the U.S.A. Our target audience is diverse, from novice to expert. News stories and visualizations use the capabilities of satellite imagery to focus public attention on four general themes: human influences on species and ecosystems across all observable spatial extents; biotic feedbacks with the Earth's physical system; characterizing species and ecosystems; and recent events such as natural changes to ecosystems, major findings and publications, or recent syntheses. For Earth science, we use recent natural events to explain the broad scientific concepts of tectonic activity and the processes that underlie climate and weather events. Visualizations show the global, dynamic distribution of atmospheric constituents, ocean temperature and temperature anomaly, and sea ice. Long-term changes are set in contrast to seasonal and longer-term cycles so that viewers appreciate the variety of forces that affect Earth's physical system. We illustrate concepts at a level appropriate for a broad audience to learn more about the dynamic nature of Earth's biota and physical processes. Programming also includes feature stories that explain global change phenomena from the perspectives of eminent scientists and managers charged with implementing public policy based on the best available science. Over the past two and one-half years, biological science stories have highlighted applied research addressing lemur conservation in Madagascar, marine protected areas in the Bahamas, effects of urban sprawl on wood turtles in New England, and taxonomic surveys of marine jellies in Monterey Bay. Earth science stories have addressed the volcanic history of present-day Yellowstone National Park, tsunamis, the disappearance of tropical mountain glaciers, the North Atlantic Oscillation, and the oxygenation of the atmosphere. All of these visualizations and HD videos are accessible via the worldwide web with accompanying explanatory material. Periodic surveys of visitors indicate that these media are popular and are effective at communicating important biological and Earth system science concepts to the general public.
Advanced platform technologies for Earth science
NASA Astrophysics Data System (ADS)
Lemmerman, Loren; Raymond, Carol; Shotwell, Robert; Chase, James; Bhasin, Kul; Connerton, Robert
2005-01-01
Historically, Earth science investigations have been independent and highly focused. However, the Earth's environment is a very dynamic and interrelated system and to understand it, significant improvements in spatial and temporal observations will be required. Science needs to document the need for constellations to achieve desired spatial and temporal observations. A key element envisioned for accomplishing these difficult challenges is the idea of a distributed, heterogeneous, and adaptive observing system or sensor web. This paper focuses on one possible approach based on a LEO constellation composed of 100 spacecraft. A cost analysis has been done to indicate the financial pressures of each mission phase and conclusions are drawn suggesting that new technology investments are needed, directed toward lowering production costs; that operations costs will need to be reduced through autonomy; and that, of the on-board subsystems considered, advanced power generation and management may be the most enabling of new technologies.
Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.; Behnke, Jeanne
2016-01-01
Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: (1) Data bits with no corruption, (2) Discoverability and access, (3) Readability, (4) Understandability, (5) Usability' and (6). Reproducibility of results. NASAs Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are published in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing product information pages.
GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.
1994-01-01
Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.
Large-Scale Science Observatories: Building on What We Have Learned from USArray
NASA Astrophysics Data System (ADS)
Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.
2015-12-01
With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community governance structures were put in place to ensure a focus on science needs and goals, to provide an informed review of the project's results, and to carefully balance consistency of observations with technical evolution. We will summarize lessons learned from USArray and how these can be applied to future efforts such as SZO.
NASA Technical Reports Server (NTRS)
2002-01-01
TRMM has acquired more than four years of data since its launch in November 1997. All TRMM standard products are processed by the TRMM Science Data and Information System (TSDIS) and archived and distributed to general users by the GES DAAC. Table 1 shows the total archive and distribution as of February 28, 2002. The Utilization Ratio (UR), defined as the ratio of the number of distributed files to the number of archived files, of the TRMM standard products has been steadily increasing since 1998 and is currently at 6.98.
Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Rilee, M. L.; Oloso, A.
2017-12-01
Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in Earth Science.
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers unstrap the newly arrived second (left) and first stage motors for the Glory spacecraft's Taurus XL rocket. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, the first stage motor for the Glory spacecraft's Taurus XL rocket waits to be moved inside. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
NASA Astrophysics Data System (ADS)
Ireton, F.; Closs, J.
2003-12-01
NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide a repository and clearinghouse for upcoming education events, and a speaker's bureau. The committees are planning a series of workshops in the near future to expand participation, and further leverage respective Earth science education and outreach efforts through cooperative work with other NASA centers. Founded in 1977 as a minority, women-owned business, SSAI's staff includes a large and varied pool of scientists, E/PO employees covering a broad range of training and talents. SSAI provides support on a number of NASA related projects at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland ranging from science research to data acquisition, storage, and distribution.
Towards Direct Manipulation and Remixing of Massive Data: The EarthServer Approach
NASA Astrophysics Data System (ADS)
Baumann, P.
2012-04-01
Complex analytics on "big data" is one of the core challenges of current Earth science, generating strong requirements for on-demand processing and fil tering of massive data sets. Issues under discussion include flexibility, performance, scalability, and the heterogeneity of the information types invo lved. In other domains, high-level query languages (such as those offered by database systems) have proven successful in the quest for flexible, scalable data access interfaces to massive amounts of data. However, due to the lack of support for many of the Earth science data structures, database systems are only used for registries and catalogs, but not for the bulk of spatio-temporal data. One core information category in this field is given by coverage data. ISO 19123 defines coverages, simplifying, as a representation of a "space-time varying phenomenon". This model can express a large class of Earth science data structures, including rectified and non-rectified rasters, curvilinear grids, point clouds, TINs, general meshes, trajectories, surfaces, and solids. This abstract definition, which is too high-level to establish interoperability, is concretized by the OGC GML 3.2.1 Application Schema for Coverages Standard into an interoperable representation. The OGC Web Coverage Processing Service (WCPS) Standard defines a declarative query language on multi-dimensional raster-type coverages, such as 1D in-situ sensor timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. Hence, important ingredients for versatile coverage retrieval are given - however, this potential has not been fully unleashed by service architectures up to now. The EU FP7-INFRA project EarthServer, launched in September 2011, aims at enabling standards-based on-demand analytics over the Web for Earth science data based on an integration of W3C XQuery for alphanumeric data and OGC-WCPS for raster data. Ultimately, EarthServer will support all OGC coverage types. The platform used by EarthServer is the rasdaman raster database system. To exploit heterogeneous multi-parallel platforms, automatic request distribution and orchestration is being established. Client toolkits are under development which will allow to quickly compose bespoke interactive clients, ranging from mobile devices over Web clients to high-end immersive virtual reality. The EarthServer platform has been deployed in six large-scale data centres with the aim of setting up Lighthouse Applications addressing all Earth Sciences, including satellite and airborne earth observation as well as use cases from atmosphere, ocean, snow, and ice monitoring, and geology on Earth and Mars. These services, each of which will ultimately host at least 100 TB, will form a peer cloud with distributed query processing for arbitrarily mixing database and in-situ access. With its ability to directly manipulate, analyze and remix massive data, the goal of EarthServer is to lift the data providers' semantic level from data stewardship to service stewardship.
ERIC Educational Resources Information Center
da Silveira, Pedro Rodrigo Castro
2014-01-01
This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…
NASA Astrophysics Data System (ADS)
Kelling, S.
2017-12-01
The goal of Biodiversity research is to identify, explain, and predict why a species' distribution and abundance vary through time, space, and with features of the environment. Measuring these patterns and predicting their responses to change are not exercises in curiosity. Today, they are essential tasks for understanding the profound effects that humans have on earth's natural systems, and for developing science-based environmental policies. To gain insight about species' distribution patterns requires studying natural systems at appropriate scales, yet studies of ecological processes continue to be compromised by inadequate attention to scale issues. How spatial and temporal patterns in nature change with scale often reflects fundamental laws of physics, chemistry, or biology, and we can identify such basic, governing laws only by comparing patterns over a wide range of scales. This presentation will provide several examples that integrate bird observations made by volunteers, with NASA Earth Imagery using Big Data analysis techniques to analyze the temporal patterns of bird occurrence across scales—from hemisphere-wide views of bird distributions to the impact of powerful city lights on bird migration.
2009-01-13
Vandenberg Air Force Base, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, a technician monitors data during fueling of NASA's Orbiting Carbon Observatory, or OCO, with hydrazine thruster control propellant. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The OCO mission will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. The launch of OCO is scheduled for Feb. 23 from Vandenberg. Photo credit: Robert Hargreaves Jr., VAFB
2009-01-13
Vandenberg Air Force Base, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, preparations are under way to fuel NASA's Orbiting Carbon Observatory, or OCO, with hydrazine thruster control propellant. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The OCO mission will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. The launch of OCO is scheduled for Feb. 23 from Vandenberg. Photo credit: Robert Hargreaves Jr., VAFB
2009-01-13
Vandenberg Air Force Base, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, preparations are under way to fuel NASA's Orbiting Carbon Observatory, or OCO, with hydrazine thruster control propellant. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The OCO mission will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. The launch of OCO is scheduled for Feb. 23 from Vandenberg. Photo credit: Robert Hargreaves Jr., VAFB
2009-01-13
Vandenberg Air Force Base, Calif. – In the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, a technician monitors data during fueling of NASA's Orbiting Carbon Observatory, or OCO, with hydrazine thruster control propellant. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The OCO mission will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. The launch of OCO is scheduled for Feb. 23 from Vandenberg. Photo credit: Robert Hargreaves Jr., VAFB
Drowning in Data: Going Beyond Traditional Data Archival to Educate Data Users
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Smith, T.; Smith, D. K.; Bugbee, K.; Sinclair, L.
2017-12-01
Increasing quantities of Earth science data and information prove overwhelming to new and unfamiliar users. Data discovery and use challenges faced by these users are compounded with atmospheric science field campaign data collected by a variety of instruments and stored, visualized, processed and analyzed in different ways. To address data and user needs assessed through annual surveys and user questions, the NASA Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC), in collaboration with a graphic designer, has developed a series of resources to help users learn about GHRC science focus areas, field campaigns, instruments, data, and data processing techniques. In this talk, GHRC data recipes, micro articles, interactive data visualization techniques, and artistic science outreach and education efforts, such as ESRI story maps and research as art, will be overviewed. The objective of this talk is to stress the importance artistic information visualization has in communicating with and educating Earth science data users.
Russian Earth Science Research Program on ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armand, N. A.; Tishchenko, Yu. G.
1999-01-22
Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less
Challenges in integrating multidisciplinary data into a single e-infrastructure
NASA Astrophysics Data System (ADS)
Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew
2015-04-01
The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and as such need to be harmonized and provided within the ICS. In order to develop a metadata catalogue and the ICS system, the content from the entire spectrum of services included in TCS, ICS-Ds as well as CES activities, need to be organized in a systematic manner taking into account global and European IT-standards, while complying with the user needs and data provider requirements.
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.;
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M
2008-08-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation
NASA Technical Reports Server (NTRS)
Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.
2018-01-01
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
Scaling to diversity: The DERECHOS distributed infrastructure for analyzing and sharing data
NASA Astrophysics Data System (ADS)
Rilee, M. L.; Kuo, K. S.; Clune, T.; Oloso, A.; Brown, P. G.
2016-12-01
Integrating Earth Science data from diverse sources such as satellite imagery and simulation output can be expensive and time-consuming, limiting scientific inquiry and the quality of our analyses. Reducing these costs will improve innovation and quality in science. The current Earth Science data infrastructure focuses on downloading data based on requests formed from the search and analysis of associated metadata. And while the data products provided by archives may use the best available data sharing technologies, scientist end-users generally do not have such resources (including staff) available to them. Furthermore, only once an end-user has received the data from multiple diverse sources and has integrated them can the actual analysis and synthesis begin. The cost of getting from idea to where synthesis can start dramatically slows progress. In this presentation we discuss a distributed computational and data storage framework that eliminates much of the aforementioned cost. The SciDB distributed array database is central as it is optimized for scientific computing involving very large arrays, performing better than less specialized frameworks like Spark. Adding spatiotemporal functions to the SciDB creates a powerful platform for analyzing and integrating massive, distributed datasets. SciDB allows Big Earth Data analysis to be performed "in place" without the need for expensive downloads and end-user resources. Spatiotemporal indexing technologies such as the hierarchical triangular mesh enable the compute and storage affinity needed to efficiently perform co-located and conditional analyses minimizing data transfers. These technologies automate the integration of diverse data sources using the framework, a critical step beyond current metadata search and analysis. Instead of downloading data into their idiosyncratic local environments, end-users can generate and share data products integrated from diverse multiple sources using a common shared environment, turning distributed active archive centers (DAACs) from warehouses into distributed active analysis centers.
EarthEd Online: Open Source Online Software to Support Large Courses
NASA Astrophysics Data System (ADS)
Prothero, W. A.
2003-12-01
The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded from the course web server. Students rate the writing assignments as the most effective learning activity in the course. This project is in an evaluation and dissemination phase. An open source model is planned for distribution. For documentation and information about the EarthEd team, see: http://oceanography.geol.ucsb.edu/Collab/software.html
Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann
2008-01-01
One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect. 7.2 provides a discussion of EOSDIS, its elements and their functions. Sect. 7.3 provides details regarding the move towards more distributed systems for supporting both the core and community needs to be served by NASA Earth science data systems. Sect. 7.4 discusses the use of standards and interfaces and their importance in EOSDIS. Sect. 7.5 provides details about the EOSDIS Evolution Study. Sect. 7.6 presents the implementation of the EOSDIS Evolution plan. Sect. 7.7 briefly outlines the progress that the implementation has made towards the 2015 Vision, followed by a summary in Sect. 7.8.
The Value of Metrics for Science Data Center Management
NASA Astrophysics Data System (ADS)
Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.
2005-12-01
The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.
Climate Science's Globally Distributed Infrastructure
NASA Astrophysics Data System (ADS)
Williams, D. N.
2016-12-01
The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.
2009-02-04
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, Orbital Sciences technicians conduct an ultraviolet light cleanliness inspection on the payload load isolators of the Taurus XL launch vehicle for the Orbiting Carbon Observatory, or OCO, before installation on the ballast ring. From left are Dana Frederic, Bill Nelson and Randy Bone. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for Feb. 24 from Space Launch Complex 576-E at Vandenberg. Photo credit: NASA/Richard Nielsen, KSC
NASA's Space Science Programming Possibilities for Planetaria
NASA Technical Reports Server (NTRS)
Adams, M. L.
2003-01-01
The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.
NASA Astrophysics Data System (ADS)
Bulatova, Dr.
2012-04-01
Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.
Forget the hype or reality. Big data presents new opportunities in Earth Science.
NASA Astrophysics Data System (ADS)
Lee, T. J.
2015-12-01
Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.
NASA Astrophysics Data System (ADS)
Huang, T.; Alarcon, C.; Quach, N. T.
2014-12-01
Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.
A Relevancy Algorithm for Curating Earth Science Data Around Phenomenon
NASA Technical Reports Server (NTRS)
Maskey, Manil; Ramachandran, Rahul; Li, Xiang; Weigel, Amanda; Bugbee, Kaylin; Gatlin, Patrick; Miller, J. J.
2017-01-01
Earth science data are being collected for various science needs and applications, processed using different algorithms at multiple resolutions and coverages, and then archived at different archiving centers for distribution and stewardship causing difficulty in data discovery. Curation, which typically occurs in museums, art galleries, and libraries, is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest. Curating data sets around topics or areas of interest addresses some of the data discovery needs in the field of Earth science, especially for unanticipated users of data. This paper describes a methodology to automate search and selection of data around specific phenomena. Different components of the methodology including the assumptions, the process, and the relevancy ranking algorithm are described. The paper makes two unique contributions to improving data search and discovery capabilities. First, the paper describes a novel methodology developed for automatically curating data around a topic using Earthscience metadata records. Second, the methodology has been implemented as a standalone web service that is utilized to augment search and usability of data in a variety of tools.
NASA Technical Reports Server (NTRS)
Kempler, Steve; Alcott, Gary; Lynnes, Chris; Leptoukh, Greg; Vollmer, Bruce; Berrick, Steve
2008-01-01
NASA Earth Sciences Division (ESD) has made great investments in the development and maintenance of data management systems and information technologies, to maximize the use of NASA generated Earth science data. With information management system infrastructure in place, mature and operational, very small delta costs are required to fully support data archival, processing, and data support services required by the recommended Decadal Study missions. This presentation describes the services and capabilities of the Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) and the reusability for these future missions. The GES DISC has developed a series of modular, reusable data management components currently in use. They include data archive and distribution (Simple, Scalable, Script-based, Science [S4] Product Archive aka S4PA), data processing (S4 Processor for Measurements aka S4PM), data search (Mirador), data browse, visualization, and analysis (Giovanni), and data mining services. Information management system components are based on atmospheric scientist inputs. Large development and maintenance cost savings can be realized through their reuse in future missions.
Romanian contribution to research infrastructure database for EPOS
NASA Astrophysics Data System (ADS)
Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian
2014-05-01
European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential stakeholders group also show their interest to participate in the EPOS National Consortium.
Chinese Manned Space Utility Project
NASA Astrophysics Data System (ADS)
Gu, Y.
Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured
Atmospheric Science Data Center
2017-07-31
Citing Data from the NASA Langley Research Center's Atmospheric Science Data Center (ASDC) Distributed Active ... data products and services are provided by the NASA Langley Research Center's (LaRC) ASDC DAAC and are managed by the NASA Earth Science ... for all data sets that are recommended for reference in research. The DOI for each data set can be found on the data set landing page ...
A Simple, Scalable, Script-based Science Processor
NASA Technical Reports Server (NTRS)
Lynnes, Christopher
2004-01-01
The production of Earth Science data from orbiting spacecraft is an activity that takes place 24 hours a day, 7 days a week. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), this results in as many as 16,000 program executions each day, far too many to be run by human operators. In fact, when the Moderate Resolution Imaging Spectroradiometer (MODIS) was launched aboard the Terra spacecraft in 1999, the automated commercial system for running science processing was able to manage no more than 4,000 executions per day. Consequently, the GES DAAC developed a lightweight system based on the popular Per1 scripting language, named the Simple, Scalable, Script-based Science Processor (S4P). S4P automates science processing, allowing operators to focus on the rare problems occurring from anomalies in data or algorithms. S4P has been reused in several systems ranging from routine processing of MODIS data to data mining and is publicly available from NASA.
2009-02-02
VANDENBERG AIR FORCE BASE, Calif. -- The Stage 1, 2 and 3 motors of the Taurus XL rocket are being prepared for transfer to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The Taurus is the launch vehicle for NASA's Orbiting Carbon Observatory, or OCO, which is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory is scheduled to launch Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
2009-02-02
VANDENBERG AIR FORCE BASE, Calif. -- The Stage 1, 2 and 3 motors of the Taurus XL rocket are being prepared for transfer to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The Taurus is the launch vehicle for NASA's Orbiting Carbon Observatory, or OCO, which is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory is scheduled to launch Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
2009-02-02
VANDENBERG AIR FORCE BASE, Calif. -- The Stage 1, 2 and 3 motors of the Taurus XL rocket are being prepared for transfer to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The Taurus is the launch vehicle for NASA's Orbiting Carbon Observatory, or OCO, which is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory is scheduled to launch Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
Going beyond the NASA Earthdata website: Reaching out to new audiences via social media and webinars
NASA Astrophysics Data System (ADS)
Bagwell, R.; Wong, M. M.; Brennan, J.; Murphy, K. J.; Behnke, J.
2014-12-01
This poster will introduce and explore the various social media efforts and monthly webinar series recently established by the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. Some of the capabilities include twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), a data discovery and service access client (Reverb), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative, and a host of other discipline specific data discovery, data access, data subsetting and visualization tools and services. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less
U.S. Geological Survey Global Seismographic Network - Five-Year Plan 2006-2010
Leith, William S.; Gee, Lind S.; Hutt, Charles R.
2009-01-01
The Global Seismographic Network provides data for earthquake alerting, tsunami warning, nuclear treaty verification, and Earth science research. The system consists of nearly 150 permanent digital stations, distributed across the globe, connected by a modern telecommunications network. It serves as a multi-use scientific facility and societal resource for monitoring, research, and education, by providing nearly uniform, worldwide monitoring of the Earth. The network was developed and is operated through a partnership among the National Science Foundation (http://www.nsf.gov), the Incorporated Research Institutions for Seismology (http://www.iris.edu/hq/programs/gsn), and the U.S. Geological Survey (http://earthquake.usgs.gov/gsn).
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
NASA Technical Reports Server (NTRS)
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2016-01-01
A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.
NASA Astrophysics Data System (ADS)
Cook, R.; Michener, W.; Vieglais, D.; Budden, A.; Koskela, R.
2012-04-01
Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. Tools are needed to plan management of the data, discover the relevant data, integrate heterogeneous and diverse data, and convert the data to information and knowledge. Addressing these challenges requires new approaches for the full data life cycle of managing, preserving, sharing, and analyzing data. DataONE (Observation Network for Earth) represents a virtual organization that enables new science and knowledge creation through preservation and access to data about life on Earth and the environment that sustains it. The DataONE approach is to improve data collection and management techniques; facilitate easy, secure, and persistent storage of data; continue to increase access to data and tools that improve data interoperability; disseminate integrated and user-friendly tools for data discovery and novel analyses; work with researchers to build intuitive data exploration and visualization tools; and support communities of practice via education, outreach, and stakeholder engagement.
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- Workers move the second stage motor of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009 into the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers offload the third stage motor of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- A truck arrives at the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California carrying the first, second and third stage motors for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers offload the second (right) and third stage motors of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- In the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, the first, second and third stage motors for the Glory spacecraft's Taurus XL rocket are lined up after arrival. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Huang, T.; Holt, B.
2015-12-01
The earth science enterprise increasingly relies on the integration and synthesis of multivariate datasets from diverse observational platforms. NASA's ocean salinity missions, that include Aquarius/SAC-D and the SPURS (Salinity Processes in the Upper Ocean Regional Study) field campaign, illustrate the value of integrated observations in support of studies on ocean circulation, the water cycle, and climate. However, the inherent heterogeneity of resulting data and the disparate, distributed systems that serve them complicates their effective utilization for both earth science research and applications. Key technical interoperability challenges include adherence to metadata and data format standards that are particularly acute for in-situ data and the lack of a unified metadata model facilitating archival and integration of both satellite and oceanographic field datasets. Here we report on efforts at the PO.DAAC, NASA's physical oceanographic data center, to extend our data management and distribution support capabilities for field campaign datasets such as those from SPURS. We also discuss value-added services, based on the integration of satellite and in-situ datasets, which are under development with a particular focus on DOMS. The distributed oceanographic matchup service (DOMS) implements a portable technical infrastructure and associated web services that will be broadly accessible via the PO.DAAC for the dynamic collocation of satellite and in-situ data, hosted by distributed data providers, in support of mission cal/val, science and operational applications.
Bringing Terra Science to the People: 10 years of education and public outreach
NASA Astrophysics Data System (ADS)
Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.
2009-12-01
The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have seen wide distribution in books like Our Changing Planet and films like An Inconvenient Truth. The Blue Marble, courtesy Reto Stockli and Rob Simmon, NASA's Earth Observatory.
The Lifecycle of NASA's Earth Science Enterprise Data Resources
NASA Technical Reports Server (NTRS)
McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert
2004-01-01
A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.
NASA Astrophysics Data System (ADS)
Zepecki, S., III; Dean, A. F.; Pisut, D.
2017-12-01
NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.
Data Preservation -Progress in NASA's Earth Observing System Data and Information System (EOSDIS)
NASA Astrophysics Data System (ADS)
Ramapriyan, H. K.
2013-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been operational since August 1994, processing, archiving and distributing data from a variety of Earth science missions. The data sources include instruments on-board satellites and aircraft and field campaigns. In addition, EOSDIS manages socio-economic data. The satellite missions whose data are managed by EOSDIS range from the Nimbus series of the 1960s and 1970s to the EOS series launched during 1997 through 2004 to the Suomi National Polar Partnership (SNPP) launched in October 2011. Data from future satellite missions such as the Decadal Survey missions will also be archived and distributed by EOSDIS. NASA is not legislatively mandated to preserve data permanently as are other agencies such as USGS, NOAA and NARA. However, NASA must preserve all the data and associated content beyond the lives of NASA's missions to meet NASA's near-term objective of supporting active scientific research. Also, NASA must ensure that the data and associated content are preserved for transition to permanent archival agencies. The term preservation implies ensuring long-term protection of bits, readability, understandability, usability and reproducibility of results. To ensure preservation of bits, EOSDIS makes sure that data are backed-up adequately. Periodically, the risk of data loss is assessed and corrective action is taken as needed. Data are copied to more modern media on a routine basis to ensure readability. For some of the oldest data within EOSDIS, we have had to go through special data rescue efforts. Data from very old media have been restored and film data have been scanned and digitized. For example, restored data from the Nimbus missions are available for ftp access at the Goddard Earth Sciences Data and Information Services Center (GES DISC). The Earth Science Data and Information System Project, which is responsible for EOSDIS, has been active within the Data Stewardship and Preservation Committee of the Earth Science Information Partners' (ESIP) Federation in developing an emerging 'Provenance and Context Content Standard (PCCS)', a matrix that details various content items that must be preserved to ensure understandability, usability and reproducibility of results. Starting with this matrix, we have developed the NASA Earth Science Data Preservation Content Specification (PCS), which identifies, for NASA missions, what categories of items must be preserved and why. The PCS is to be treated as a guideline for current and heritage missions, and as a requirement for missions still in planning. The PCS is being applied to instruments that are no longer operating to gather content to be preserved and checklists of the collected items are being generated. We are also considering the preservation information architecture to address where the various content items will be preserved and how they are linked to each other. The following key aspects of preservation are being considered by the four working groups in the Data Stewardship Interest Area of NASA's Earth Science Data System Working Groups - Preservation Information Architecture, Implementation of Digital Object Identifiers, Hierarchical Data Format (HDF) conventions to promote interoperability, and Provenance representation for Earth Science (PROV-ES).
Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3
NASA Astrophysics Data System (ADS)
Endsley, K. A.; Billmire, M. G.
2016-01-01
Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.
NASA Astrophysics Data System (ADS)
McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.
2007-12-01
One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web-conferencing software program. The software allows participants to see the facilitator's computer as the analysis techniques of an EET chapter are demonstrated. If needed, the facilitator can also view individual participant's computers, assisting with technical difficulties. In addition, it enables a large number of end users, often widely distributed, to engage in interactive, real-time instruction. In this presentation, we will describe the elements of an EET Workshop pair, highlighting the capabilities and use of Elluminate. We will share lessons learned through several years of conducting this type of professional development. We will also share findings from survey data gathered from teachers who have participated in our workshops.
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Doescher, Chris
2015-01-01
This presentation discusses 25 years of interactions between NASA and the USGS to manage a Land Processes Distributed Active Archive Center (LPDAAC) for the purpose of providing users access to NASA's rich collection of Earth Science data. The presentation addresses challenges, efforts and metrics on the performance.
Campaign-level Science Traceability for Earth Observation System Architecting
2009-05-01
aerosol size and size distribution 2.4.4 canopy density 1.2.1 Atmospheric temperature fields 2.6.2 landcover status 1.3.1 Water vapor profiles 2.7.1...imagery (land) 3.15516 1.5.2 Cloud type 0.20923951 2.6.1 land use 0.060095 1.5.3 Cloud amount/distribution 0.26680361 2.6.2 landcover status
Development of EarthCube Governance: An Agile Approach
NASA Astrophysics Data System (ADS)
Pearthree, G.; Allison, M. L.; Patten, K.
2013-12-01
Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental evaluators from the social sciences embedded in the project provide real-time review and adjustments. While a large number of agencies and organizations have agreed to participate, in order to ensure an open and inclusive process, community selected leaders yet to be identified will play key roles through an Assembly Advisory Council. Once consensus is reached on a governing framework, a community-selected demonstration governance pilot will help facilitate community convergence on system design.
Opportunity Science Using the Juno Magnetometer Investigation Star Trackers
NASA Astrophysics Data System (ADS)
Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.
2013-12-01
The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.
NASA Astrophysics Data System (ADS)
Troy, R. M.
2005-12-01
With ever increasing amounts of Earth-Science funding being diverted to the war in Iraq, the Earth-Science community must now more than ever wring every bit of utility out of every dollar. We're not likely to get funded any projects perceived by others as "pie in the sky", so we have to look at already funded programs within our community and directing new programs in a unifying direction. We have not yet begun the transition to a computationally unifying, general-purpose Earth Science computing paradigm, though it was proposed at the Fall 2002 AGU meeting in San Francisco, and perhaps earlier. Encouragingly, we do see a recognition that more commonality is needed as various projects have as funded goals the addition of the processing and dissemination of new datatypes, or data-sets, if you prefer, to their existing repertoires. Unfortunately, the timelines projected for adding a datatype to an existing system are typically estimated at around two years each. Further, many organizations have the perception that they can only use their dollars to support exclusively their own needs as they don't have the money to support the goals of others, thus overlooking opportunities to satisfy their own needs while at the same time aiding the creation of a global GeoScience cyber-infrastructure. While Computational Unification appears to be an unfunded, impossible dream, at least for now, individual projects can take steps that are compatible with a unified community and can help build one over time. This session explores these opportunities. The author will discuss the issues surrounding this topic, outlining alternative perspectives on the points of difficulty, and proposing straight-forward solutions which every Earth Science data processing system should consider. Sub-topics include distributed meta-data, distributed processing, distributed data objects, interdisciplinary concerns, and scientific defensibility with an overall emphasis on how previously written processes and functions may be integrated into a system efficiently, with minimal effort, and with an eye toward an eventual Computational Unification of the Earth Sciences. A fundamental to such systems is meta-data which describe not only the content of data but also how intricate relationships are represented and used to good advantage. Retrieval techniques will be discussed including trade-offs in using externally managed meta-data versus embedded meta-data, how the two may be integrated, and how "simplifying assumptions" may or may not actually be helpful. The perspectives presented in this talk or poster session are based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, which sought to unify NASA's Mission To Planet Earth's EOS-DIS, and on-going experience developed by Science Tools corporation, of which the author is a principal. NOTE: These ideas are most easily shared in the form of a talk, and we suspect that this session will generate a lot of interest. We would therefore prefer to have this session accepted as a talk as opposed to a poster session.
NASA Astrophysics Data System (ADS)
Hansen, Ulrich; Maas, Christian
2017-04-01
About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015. C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
NASA Astrophysics Data System (ADS)
Maas, C.; Hansen, U.
2016-12-01
During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)
NASA Astrophysics Data System (ADS)
Dong, S.; Li, T.
2010-12-01
China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in China. Some stress monitoring were centered in the Beijing and the southeastern margin of the Qinghai-Tibet Plateau regions. Also, SinoProbe begin to establish a high-performance calculation platform that will consider coupling processes between deformation and thermal evolution in the lithosphere. Meanwhile, data integration and data dissemination is going to stored. Finally, SinoProbe will also devote to develop new technologies, innovative methods, data integration platforms, and modern equipments for deep Earth and mineral-deposit explorations. In summary, SinoProbe is a multi-year and multidisciplinary research program to be carried in China with 9 projects and 49 sub-projects. It will integrate geological, geophysical, geochemical, and modern exploration technology to examine the deep Earth structures and their evolution in China. The results will undoubtedly contribute to the improvement of our current understanding of the Eurasia continent in particular and the Earth in general.
Detection of supernova neutrinos at spallation neutron sources
NASA Astrophysics Data System (ADS)
Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin
2016-07-01
After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)
A GCM simulation of the earth-atmosphere radiation balance for winter and summer
NASA Technical Reports Server (NTRS)
Wu, M. L. C.
1979-01-01
The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.
Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari
2018-06-08
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
Production and Distribution of NASA MODIS Remote Sensing Products
NASA Technical Reports Server (NTRS)
Wolfe, Robert
2007-01-01
The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of processing the lower level (Level 1) products and the higher level discipline specific Land and Atmosphere products in the MODIS Science Investigator Lead Processing System (SIPS), the MODIS Adaptive Processing System (MODAPS), and archive and distribution of the Land products to the user community by two of NASA s EOS Distributed Active Archive Centers (DAACs). Recently, a part of MODAPS, the Level 1 and Atmosphere Archive and Distribution System (LAADS), took over the role of archiving and distributing the Level 1 and Atmosphere products to the user community.
Inseparability of science history and discovery
NASA Astrophysics Data System (ADS)
Herndon, J. M.
2010-04-01
Science is very much a logical progression through time. Progressing along a logical path of discovery is rather like following a path through the wilderness. Occasionally the path splits, presenting a choice; the correct logical interpretation leads to further progress, the wrong choice leads to confusion. By considering deeply the relevant science history, one might begin to recognize past faltering in the logical progression of observations and ideas and, perhaps then, to discover new, more precise understanding. The following specific examples of science faltering are described from a historical perspective: (1) Composition of the Earth's inner core; (2) Giant planet internal energy production; (3) Physical impossibility of Earth-core convection and Earth-mantle convection, and; (4) Thermonuclear ignition of stars. For each example, a revised logical progression is described, leading, respectively, to: (1) Understanding the endo-Earth's composition; (2) The concept of nuclear georeactor origin of geo- and planetary magnetic fields; (3) The invalidation and replacement of plate tectonics; and, (4) Understanding the basis for the observed distribution of luminous stars in galaxies. These revised logical progressions clearly show the inseparability of science history and discovery. A different and more fundamental approach to making scientific discoveries than the frequently discussed variants of the scientific method is this: An individual ponders and through tedious efforts arranges seemingly unrelated observations into a logical sequence in the mind so that causal relationships become evident and new understanding emerges, showing the path for new observations, for new experiments, for new theoretical considerations, and for new discoveries. Science history is rich in "seemingly unrelated observations" just waiting to be logically and causally related to reveal new discoveries.
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
1999-01-01
The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify spatial, temporal, and other parameter criteria in searching for and previewing data.
Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions
NASA Technical Reports Server (NTRS)
Teng, William; Albayrak, Arif
2017-01-01
Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The key step is to process the "precipitation" tweets to be compatible with satellite-retrieved precipitation data. These key components for processing and managing "precipitation" tweets (and additional ones to be developed) are not limited to precipitation, nor are they limited to the Twitter social medium. Indeed, to maximize the value of our work for NASA earth science programs, these components should be generalized and be part of an overall framework for processing citizen science data for science research. In this paper, we outline such a framework.
NASA Astrophysics Data System (ADS)
Seno, S.; Coccioni, R.
2016-12-01
The "Week of Planet Earth" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Week of Planet Earth is growing year after year: the 2016 edition proposes 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.
Cloud-Based Computational Tools for Earth Science Applications
NASA Astrophysics Data System (ADS)
Arendt, A. A.; Fatland, R.; Howe, B.
2015-12-01
Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.
Data Recipes: Toward Creating How-To Knowledge Base for Earth Science Data
NASA Technical Reports Server (NTRS)
Shen, Suhung; Lynnes, Chris; Acker, James G.; Beaty, Tammy
2015-01-01
Both the diversity and volume of Earth science data from satellites and numerical models are growing dramatically, due to an increasing population of measured physical parameters, and also an increasing variety of spatial and temporal resolutions for many data products. To further complicate matters, Earth science data delivered to data archive centers are commonly found in different formats and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and or formats. The data recipe project at Goddard Earth Science Data and Information Services Center (GES DISC) was initiated in late 2012 for enhancing user support. A data recipe is a How-To online explanatory document, with step-by-step instructions and examples of accessing and working with real data (http:disc.sci.gsfc.nasa.govrecipes). The current suite of recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant, even though the data recipe topics are still limited. An Earth Science Data System Working Group (ESDSWG) for data recipes was established in the spring of 2014, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group is working on an inventory and analysis of existing data recipes and tutorials, and will provide guidelines and recommendation for writing and grouping data recipes, and for cross linking recipes to data products. This presentation gives an overview of the data recipe activites at GES DISC and ESDSWG. We are seeking requirements and input from a broader data user community to establish a strong knowledge base for Earth science data research and application implementations.
The Knowledge Capsules: Very Short Films on Earth Science for Mainstream Audiences
NASA Astrophysics Data System (ADS)
Kerlow, Isaac
2015-04-01
The Knowledge Capsules are outreach and communication videos that present practical science research to mainstream audiences and take viewers on a journey into different aspects of Earth science and natural hazards. The innovative shorts are the result of an interdisciplinary development and production process. They include a combination of interviews, visualizations of scientific research, and documentation of fieldwork. They encapsulate research insights about volcanoes, tsunamis, and climate change in Southeast Asia. These short films were actively distributed free-of-charge during 2012-2014 and all of them are available online. The paper provides an overview of the motivations, process and accomplished results. Our approach for producing the Knowledge Capsules includes: an engaging mix of information and a fresh delivery style, a style suitable for a primary audience of non-scientists, a simple but experientially rich production style, Diagrams and animations based on the scientists' visuals, and a running time between five and twenty minutes. The completed Knowledge Capsules include: "Coastal Science" on Coastal Hazards, "The Ratu River Expedition" on Structural Geology, "Forensic Volcano Petrology by Fidel Costa, Volcano Petrology, "A Tale of Two Tsunamis" on Tsunami Stratigraphy, "Unlocking Climate Secrets" on Marine Geochemistry, and "Earth Girl 2: A Casual Strategy Game to Prepare for the Tsunami" on Natural Hazards and Science Outreach.
Scientific Visualization & Modeling for Earth Systems Science Education
NASA Technical Reports Server (NTRS)
Chaudhury, S. Raj; Rodriguez, Waldo J.
2003-01-01
Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).
Astrobiology: A Roadmap for Charting Life in the Universe
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincezi, D. (Technical Monitor)
2002-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.
Tools and Services for Working with Multiple Land Remote Sensing Data Products
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.
2016-12-01
The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.
Evaluating Cloud Computing in the Proposed NASA DESDynI Ground Data System
NASA Technical Reports Server (NTRS)
Tran, John J.; Cinquini, Luca; Mattmann, Chris A.; Zimdars, Paul A.; Cuddy, David T.; Leung, Kon S.; Kwoun, Oh-Ig; Crichton, Dan; Freeborn, Dana
2011-01-01
The proposed NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission would be a first-of-breed endeavor that would fundamentally change the paradigm by which Earth Science data systems at NASA are built. DESDynI is evaluating a distributed architecture where expert science nodes around the country all engage in some form of mission processing and data archiving. This is compared to the traditional NASA Earth Science missions where the science processing is typically centralized. What's more, DESDynI is poised to profoundly increase the amount of data collection and processing well into the 5 terabyte/day and tens of thousands of job range, both of which comprise a tremendous challenge to DESDynI's proposed distributed data system architecture. In this paper, we report on a set of architectural trade studies and benchmarks meant to inform the DESDynI mission and the broader community of the impacts of these unprecedented requirements. In particular, we evaluate the benefits of cloud computing and its integration with our existing NASA ground data system software called Apache Object Oriented Data Technology (OODT). The preliminary conclusions of our study suggest that the use of the cloud and OODT together synergistically form an effective, efficient and extensible combination that could meet the challenges of NASA science missions requiring DESDynI-like data collection and processing volumes at reduced costs.
NASA Astrophysics Data System (ADS)
le Roux, J.; Baker, A.; Caltagirone, S.; Bugbee, K.
2017-12-01
The Common Metadata Repository (CMR) is a high-performance, high-quality repository for Earth science metadata records, and serves as the primary way to search NASA's growing 17.5 petabytes of Earth science data holdings. Released in 2015, CMR has the capability to support several different metadata standards already being utilized by NASA's combined network of Earth science data providers, or Distributed Active Archive Centers (DAACs). The Analysis and Review of CMR (ARC) Team located at Marshall Space Flight Center is working to improve the quality of records already in CMR with the goal of making records optimal for search and discovery. This effort entails a combination of automated and manual review, where each NASA record in CMR is checked for completeness, accuracy, and consistency. This effort is highly collaborative in nature, requiring communication and transparency of findings amongst NASA personnel, DAACs, the CMR team and other metadata curation teams. Through the evolution of this project it has become apparent that there is a need to document and report findings, as well as track metadata improvements in a more efficient manner. The ARC team has collaborated with Element 84 in order to develop a metadata curation tool to meet these needs. In this presentation, we will provide an overview of this metadata curation tool and its current capabilities. Challenges and future plans for the tool will also be discussed.
Joint Interdisciplinary Earth Science Information Center
NASA Technical Reports Server (NTRS)
Kafatos, Menas
2004-01-01
The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.
Building a better search engine for earth science data
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.
2017-12-01
Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search interfaces.
The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science
NASA Astrophysics Data System (ADS)
Wilson, A.
2016-12-01
Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.
BingEO: Enable Distributed Earth Observation Data for Environmental Research
NASA Astrophysics Data System (ADS)
Wu, H.; Yang, C.; Xu, Y.
2010-12-01
Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.
A Knowledge Portal and Collaboration Environment for the Earth Sciences
NASA Astrophysics Data System (ADS)
D'Agnese, F. A.
2008-12-01
Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.
The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.
ERIC Educational Resources Information Center
Janke, Delmar Lester
This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
Rising Above the Storm: DIG TEXAS
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.
2011-12-01
For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with initial assistance of the American Geophysical Union, the alliance comprises earth scientists and educators at higher education institutions across the state, and science teachers, united to improve earth science literacy (geoscience-earth, ocean, atmospheric, planetary, and geography) among Texas science teachers in order to attract individuals from groups underrepresented in STEM fields to pursue earth science as a career. Members of the alliance are affiliated with one of eight regional DIG TEXAS hub institutions. With an NSF planning grant, DIG TEXAS leaders created the DIG TEXAS brand, developed a project website, organized and held the first community meeting in March, 2011 at Exxon Mobil's Training Center in Houston. DIG TEXAS members have also delivered testimony to the State Board for Educator Certification in support of a new earth science teacher certification and collaborated on proposals that seek funding to support recommendations formulated at the community meeting.
NASA Astrophysics Data System (ADS)
Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.
2015-12-01
"Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.
NASA Astrophysics Data System (ADS)
Walker, R. J.; Beebe, R. F.
2017-12-01
One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.
The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation
NASA Astrophysics Data System (ADS)
Wertz, R.; Hutchinson, C.; Hardin, D.
2006-12-01
The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The current working groups are focused toward the issues of Air Quality, Coastal Management, Disaster Management, Ecological Forecasting, Public Health, and Water Management. Initially, the Exchange will be linked to USGS's Geospatial One Stop portal, NASA's Earth Science Gateway, the Global Change Master Directory (GCMD) and the Eos ClearingHOuse (ECHO). The Earth Information Exchange will be an integrated system of distributed components that work together to expedite the process of Earth science and to increase the effective application of its results to benefit the public. Specifically the EIE is designed to provide a comprehensive inventory of Earth observation metadata by GEOSS and other commonly used issue area categories. To provide researchers, educators and policy makers with ready access to metadata over the web, via URLs. To provide researchers with access to data in common scientific data formats such as netCDF and HDF-EOS and common scientific data models such as swath, point and grid. To provide policy makers and others with an e-commerce marketplace where advanced data products (analysis tools, models, simulations, decision support products) can be found and acquired. And, to provide researchers, educators and policy makers with a broad inventory of the human resources associated with the Federation and its partners.
Diversity of Approaches to Structuring University-Based Earth System Science Education
NASA Astrophysics Data System (ADS)
Aron, J.; Ruzek, M.; Johnson, D. R.
2004-12-01
Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?
NASA Technical Reports Server (NTRS)
Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.
2009-01-01
A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.
Sun-Earth Days- "Have a Solar Blast"- Educational Outreach on a National Scale
NASA Astrophysics Data System (ADS)
Mortfield, P.; Lewis, E. M.; Cline, T.; Thieman, J. R.
2001-05-01
Sun-Earth Days was an Educational Outreach on a Massive Scale. This was NASA's first-ever "Sun-Earth Days," April 27-28, 2001, developed to share information and excitement about our star and its electric connection to Earth. For the year 2001, NASA's Sun-Earth Connection missions and The Astronomical League partnered to sponsor this educational and entertaining event in the context of National Astronomy Day and Week. As part of NASA's Sun-Earth Connection Education Forum's Sun-Earth Day events, a webcast was hosted by EPO team at Stanford SOLAR Center in collaboration with Astronomy Day and Project Astro. Prior to the webcast NASA Centers and the Educator Resource Centers conducted training workshops to aid 4000 teachers in their participation in the interactive webcast. The webcast involved 35,000 students from across the country and allowed students an opportunity to present results from a variety of solar activities and interact with fellow students. NASA Scientists were on hand to field questions, and had the opportunity to tell viewers why they chose their exciting careers. Webcasts are a great way to reach and interact with a large audience of educators and students who wish to incorporate the science of the Sun into their curriculum. Sun-Earth Days was on the Web, with a single website of information, featuring excellent classroom activities and ideas, selections of the best background reading on the science, links to our many spacecraft and science missions, and some pointers to raw science data and imagery on the web. Sun-Earth Days kits were assembled and packaged through NASA's CORE, a distribution facility in Ohio and mailed to each of the NASA Centers and 25 Educator Resource Centers who participated in a training workshop for educators. Over 4000 educators attended workshops through the NASA network to learn about the Sun. " An Event Near You", portion of the website, listed the events within the USA that linked scientists with educators and created a wide network for learning about the Sun across the USA. Numerous publications announced the event and Discovery Science Channel supported NASA's Sun-Earth Days with two special programs, SAVAGE SUN and THE SUN. There have been many lessons learned during the development and initiation of Sun-Earth Days, as a national event. The most rewarding and exciting outcome was the demand for materials and the positive response for the event, leading to the determination to continue as an annual event. The results will be featured and plans announced for the second annual event, which features the Sun and the science from Sun-Earth Connection missions, in anticipation of others joining us for 2002 to make use of this medium for their education and outreach efforts
Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"
NASA Astrophysics Data System (ADS)
Ludden, John
2015-04-01
In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"
EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.
2008-12-01
Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be unambiguously linked and integrated. SESAR operates a registry for Earth samples that assigns and administers the International GeoSample Numbers (IGSN) as a global unique identifier for samples. Registration of EarthScope samples with SESAR and use of the IGSN will ensure their unique identification in publications and data systems, thus facilitating interoperability among sample-based data relevant to EarthScope CI and globally. It will also make these samples visible to global audiences via the SESAR Global Sample Catalog.
Understanding Local Structure Globally in Earth Science Remote Sensing Data Sets
NASA Technical Reports Server (NTRS)
Braverman, Amy; Fetzer, Eric
2007-01-01
Empirical probability distributions derived from the data are the signatures of physical processes generating the data. Distributions defined on different space-time windows can be compared and differences or changes can be attributed to physical processes. This presentation discusses on ways to reduce remote sensing data in a way that preserves information, focusing on the rate-distortion theory and using the entropy-constrained vector quantization algorithm.
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
Three months after its launch, Japan's Advanced Earth Observing Satellite (ADEOS) is set to begin day-to-day science operations at the end of November. The global change research satellite, launched August 16 from the Tanegashima Space Center by Japan's National Space Development Agency (NASDA), has settled into a circular polar orbit at 800 km altitude. ADEOS includes instruments from Japan, the United States, and France that will observe ocean chlorophyll production, ocean temperature, atmospheric gases, polarization and direction of solar energy reflected by the Earth, and the distribution of vegetation.
NASA Technical Reports Server (NTRS)
Fox, Nicola J.; Goldberg, Richard; Barnes, Robin J.; Sigwarth, John B.; Beisser, Kerri B.; Moore, Thomas E.; Hoffman, Robert A.; Russell, Christopher T.; Scudder, Jack D.; Spann, James F.
2004-01-01
To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.
Earth Science Informatics Comes of Age
NASA Technical Reports Server (NTRS)
Jodha, Siri; Khalsa, S.; Ramachandran, Rahul
2014-01-01
The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.
NASA Technical Reports Server (NTRS)
Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)
1991-01-01
The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
Analysis For Monitoring the Earth Science Afternoon Constellation
NASA Technical Reports Server (NTRS)
Demarest, Peter; Richon, Karen V.; Wright, Frank
2005-01-01
The Earth Science Afternoon Constellation consists of Aqua, Aura, PARASOL, CALIPSO, Cloudsat, and the Orbiting Carbon Observatory (OCO). The coordination of flight dynamics activities between these missions is critical to the safety and success of the Afternoon Constellation. This coordination is based on two main concepts, the control box and the zone-of-exclusion. This paper describes how these two concepts are implemented in the Constellation Coordination System (CCS). The CCS is a collection of tools that enables the collection and distribution of flight dynamics products among the missions, allows cross-mission analyses to be performed through a web-based interface, performs automated analyses to monitor the overall constellation, and notifies the missions of changes in the status of the other missions.
Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology
ERIC Educational Resources Information Center
Thomas, Julie; Ivey, Toni; Puckette, Jim
2013-01-01
The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…
It's Time to Stand up for Earth Science
ERIC Educational Resources Information Center
Schaffer, Dane L.
2012-01-01
This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…
Photography of Coral Reefs from ISS
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2009-01-01
This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.
NASA GHRC One of NASA's Distributed Active Archive Centers Access Data Dataset List (HyDRO) View a Advanced Microwave Sounding Unit (AMSU) on NASA's Aqua satellite. NASA Earthdata Search Earthdata is NASA's and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment in
Global Night-Time Lights for Observing Human Activity
NASA Technical Reports Server (NTRS)
Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc
2011-01-01
We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.
The ongoing educational anomaly of earth science placement
Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.
2003-01-01
The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.
The "Planet Earth Week": a National Scientific Festival helping Italy Discover Geosciences.
NASA Astrophysics Data System (ADS)
Seno, S.; Coccioni, R.
2017-12-01
The "Planet Earth Week- Italy Discovering Geosciences: a More Informed Society is a More Engaged Society" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country (see map) are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Planet Earth Week is growing year after year: the 2016 edition proposed 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.
ERIC Educational Resources Information Center
Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.
2013-01-01
The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…
75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...
Building A Collaborative And Distributed E&O Program For EarthScope
NASA Astrophysics Data System (ADS)
Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.
2003-12-01
EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.
Earth system science: A program for global change
NASA Technical Reports Server (NTRS)
1989-01-01
The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.
The NASA Earth Science Flight Program: an update
NASA Astrophysics Data System (ADS)
Neeck, Steven P.
2015-10-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.
The NASA Earth Science Program and Small Satellites
NASA Technical Reports Server (NTRS)
Neeck, Steven P.
2015-01-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.
NASA Astrophysics Data System (ADS)
Adams, P. E.
2009-12-01
Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.
2017-12-01
The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. -- Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, are parked under a tent at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. -- Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, are transported from Building 1555 to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. – Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, have arrived and are prepared for erection at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. -- Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, arrive at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. – Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, have arrived and are prepared for lifting onto Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
2009-02-03
VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to erect Stages 1, 2 and 3 of Orbital Sciences’ Taurus XL launch vehicle for NASA’s Orbiting Carbon Observatory, or OCO, at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for 1:51:30 a.m. PST Feb. 24. Photo credit: VAFB
NASA Astrophysics Data System (ADS)
Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.
2008-12-01
One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data analysis and visualization tools is also available within Giovanni. The GES DISC is currently developing a systematic series of training modules for Earth science satellite data, associated with our development of additional datasets and data visualization tools for Giovanni. Training sessions will include an overview of the Earth science datasets archived at Goddard, an overview of terms and techniques associated with satellite remote sensing, dataset-specific issues, an overview of Giovanni functionality, and a series of examples of how data can be readily accessed and visualized.
NASA Astrophysics Data System (ADS)
Masek, J.; Rao, A.; Gao, F.; Davis, P.; Jackson, G.; Huang, C.; Weinstein, B.
2008-12-01
The Land Cover Change Community-based Processing and Analysis System (LC-ComPS) combines grid technology, existing science modules, and dynamic workflows to enable users to complete advanced land data processing on data available from local and distributed archives. Changes in land cover represent a direct link between human activities and the global environment, and in turn affect Earth's climate. Thus characterizing land cover change has become a major goal for Earth observation science. Many science algorithms exist to generate new products (e.g., surface reflectance, change detection) used to study land cover change. The overall objective of the LC-ComPS is to release a set of tools and services to the land science community that can be implemented as a flexible LC-ComPS to produce surface reflectance and land-cover change information with ground resolution on the order of Landsat-class instruments. This package includes software modules for pre-processing Landsat-type satellite imagery (calibration, atmospheric correction, orthorectification, precision registration, BRDF correction) for performing land-cover change analysis and includes pre-built workflow chains to automatically generate surface reflectance and land-cover change products based on user input. In order to meet the project objectives, the team created the infrastructure (i.e., client-server system with graphical and machine interfaces) to expand the use of these existing science algorithm capabilities in a community with distributed, large data archives and processing centers. Because of the distributed nature of the user community, grid technology was chosen to unite the dispersed community resources. At that time, grid computing was not used consistently and operationally within the Earth science research community. Therefore, there was a learning curve to configure and implement the underlying public key infrastructure (PKI) interfaces, required for the user authentication, secure file transfer and remote job execution on the grid network of machines. In addition, science support was needed to vet that the grid technology did not have any adverse affects of the science module outputs. Other open source, unproven technologies, such as a workflow package to manage jobs submitted by the user, were infused into the overall system with successful results. This presentation will discuss the basic capabilities of LC-ComPS, explain how the technology was infused, and provide lessons learned for using and integrating the various technologies while developing and operating the system, and finally outline plans moving forward (maintenance and operations decisions) based on the experience to date.
A crisis in the NASA space and earth sciences programme
NASA Technical Reports Server (NTRS)
Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.
1987-01-01
Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.
ERIC Educational Resources Information Center
Mao, Song-Ling; Chang, Chun-Yen
This paper summarizes two companion studies that were designed to investigate the impacts of an inquiry teaching method on Earth science students' achievement and attitudes towards Earth science in secondary schools. Subjects were 557 students (9th grade) enrolled in 14 Earth science classes. Two Earth science units, including topics of astronomy…
Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.
2006-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* &Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client &server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.
NASA Astrophysics Data System (ADS)
Llerandi Roman, Pablo Antonio
The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching. Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.
ERIC Educational Resources Information Center
Smith, Michael J.
2004-01-01
This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
2006-01-01
The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.
Strategy for earth explorers in global earth sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...
Common Earth Science Misconceptions in Science Teaching
ERIC Educational Resources Information Center
King, Chris
2012-01-01
A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…
Satellite-Relayed Intercontinental Quantum Network.
Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei
2018-01-19
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.
Satellite-Relayed Intercontinental Quantum Network
NASA Astrophysics Data System (ADS)
Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei
2018-01-01
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.
Building a Trustworthy Environmental Science Data Repository: Lessons Learned from the ORNL DAAC
NASA Astrophysics Data System (ADS)
Wei, Y.; Santhana Vannan, S. K.; Boyer, A.; Beaty, T.; Deb, D.; Hook, L.
2017-12-01
The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, https://daac.ornl.gov) for biogeochemical dynamics is one of NASA's Earth Observing System Data and Information System (EOSDIS) data centers. The mission of the ORNL DAAC is to assemble, distribute, and provide data services for a comprehensive archive of terrestrial biogeochemistry and ecological dynamics observations and models to facilitate research, education, and decision-making in support of NASA's Earth Science. Since its establishment in 1994, ORNL DAAC has been continuously building itself into a trustworthy environmental science data repository by not only ensuring the quality and usability of its data holdings, but also optimizing its data publication and management process. This paper describes the lessons learned from ORNL DAAC's effort toward this goal. ORNL DAAC has been proactively implementing international community standards throughout its data management life cycle, including data publication, preservation, discovery, visualization, and distribution. Data files in standard formats, detailed documentation, and metadata following standard models are prepared to improve the usability and longevity of data products. Assignment of a Digital Object Identifier (DOI) ensures the identifiability and accessibility of every data product, including the different versions and revisions of its life cycle. ORNL DAAC's data citation policy assures data producers receive appropriate recognition of use of their products. Web service standards, such as OpenSearch and Open Geospatial Consortium (OGC), promotes the discovery, visualization, distribution, and integration of ORNL DAAC's data holdings. Recently, ORNL DAAC began efforts to optimize and standardize its data archival and data publication workflows, to improve the efficiency and transparency of its data archival and management processes.
Architectures Toward Reusable Science Data Systems
NASA Astrophysics Data System (ADS)
Moses, J. F.
2014-12-01
Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building ground systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research, NOAA's weather satellites and USGS's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience the goal is to recognize architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.
Architectures Toward Reusable Science Data Systems
NASA Technical Reports Server (NTRS)
Moses, John
2015-01-01
Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.
Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science
NASA Astrophysics Data System (ADS)
Thieman, J. R.; Lewis, E.; Cline, T.
2001-12-01
The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people's lives will be shown. Next year, 2002, Sun-Earth Day is planned for March 20, the solar equinox. Many arrangements have already been made and a variety of new approaches will be used to make the events of the day even more widespread and visible. The number of packets of materials will be increased. There will be TV programs and webcasts created specifically for Sun-Earth Day. Native American relationships and interactions with the Sun will be an underlying theme. As always, the involvement of AGU scientists is the highlight of many of the planned programs. Come listen to the variety of ways that you can get involved, many requiring very little in time commitment or preparation, yet providing a major boost to keeping the value of science in the minds of the general public.
Bridging the gap with a duel-credit Earth Science course
NASA Astrophysics Data System (ADS)
Van Norden, W.
2011-12-01
College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.
GeoBrain Computational Cyber-laboratory for Earth Science Studies
NASA Astrophysics Data System (ADS)
Deng, M.; di, L.
2009-12-01
Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and modeling through the web portal. The GeoBrain cyber-laboratory provides solutions to meet common needs of ES research and education, such as, distributed data access and analysis services, easy access to and use of ES data, and enhanced geoprocessing and geospatial modeling capability. It greatly facilitates ES research, education, and applications. The development of the cyber-laboratory provides insights, lessons-learned, and technology readiness to build more capable computing infrastructure for ES studies, which can meet wide-range needs of current and future generations of scientists, researchers, educators, and students for their formal or informal educational training, research projects, career development, and lifelong learning.
An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales
NASA Astrophysics Data System (ADS)
King, Chris John Henry
2010-03-01
Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...
GEOScan: A GEOScience Facility From Space
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.
2012-12-01
GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for operational weather, climate, and land-imaging.
Advancing User Supports with a Structured How-To Knowledge Base for Earth Science Data
NASA Technical Reports Server (NTRS)
Shen, Suhung; Acker, James G.; Lynnes, Christopher S.; Beaty, Tammy; Lighty, Luther; Kempler, Steven J.
2016-01-01
It is a challenge to access and process fast growing Earth science data from satellites and numerical models, which may be archived in very different data format and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and/or formats. A type of structured online document, data recipe, were created in beginning 2013 by Goddard Earth Science Data and Information Services Center (GES DISC). A data recipe is the How-To document created by using the fixed template, containing step-by-step instructions with screenshots and examples of accessing and working with real data. The recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant to some recipes. In 2014, the NASA Earth Science Data System Working Group (ESDSWG) for data recipes was established, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group started with inventory and analysis of existing EOSDIS-wide online help documents, and provided recommendations and guidelines and for writing and grouping data recipes. This presentation will overview activities of creating How-To documents at GES DISC and ESDSWG. We encourage feedback and contribution from users for improving the data How-To knowledge base.
Advancing User Supports with Structured How-To Knowledge Base for Earth Science Data
NASA Astrophysics Data System (ADS)
Shen, S.; Acker, J. G.; Lynnes, C.; Lighty, L.; Beaty, T.; Kempler, S.
2016-12-01
It is a challenge to access and process fast growing Earth science data from satellites and numerical models, which may be archived in very different data format and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and/or formats. A type of structured online document, "data recipe", were created in beginning 2013 by Goddard Earth Science Data and Information Services Center (GES DISC). A data recipe is the "How-To" document created by using the fixed template, containing step-by-step instructions with screenshots and examples of accessing and working with real data. The recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant to some recipes. In 2014, the NASA Earth Science Data System Working Group (ESDSWG) for data recipes was established, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group started with inventory and analysis of existing EOSDIS-wide online help documents, and provided recommendations and guidelines and for writing and grouping data recipes. This presentation will overview activities of creating How-To documents at GES DISC and ESDSWG. We encourage feedback and contribution from users for improving the data How-To knowledge base.
Fighting for physics and Earth science in Florida's high schools
NASA Astrophysics Data System (ADS)
Cottle, Paul
2009-11-01
During its Spring 2009 session, the Florida Legislature considered a bill that would have suspended its comprehensive standardized test in high school science and substituted an end-of-course test in biology to satisfy the requirements of the No Child Left Behind (NCLB) Act. By doing so, the bill would have further deemphasized high school physics and Earth science in a state where physics courses are sometimes not available in high schools (even in International Baccalaureate programs) and where the state's own statistics say that only 16% of high school graduates have taken a physics course. A group of about one hundred science faculty from thirteen colleges and universities in Florida responded with a letter to Governor Crist and visits to legislators asking that the biology-only provisions be defeated (and they were). The group has now produced a white paper on high school science requirements that has been distributed to government and business leaders and been publicized via op-ed pieces and news items in several media outlets statewide. This poster will describe the situation in Florida and the faculty group's efforts. It will also compare Florida's high school requirements in science with those in the other SESAPS states.
ERIC Educational Resources Information Center
Gray, Kyle
2017-01-01
Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…
A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation
NASA Technical Reports Server (NTRS)
Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier
2015-01-01
Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science goals without having to delve into the details of the engineering design process.
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, arrives at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket, being erected at left, on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, is transported to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, arrives at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
ESSG-based global spatial reference frame for datasets interrelation
NASA Astrophysics Data System (ADS)
Yu, J. Q.; Wu, L. X.; Jia, Y. J.
2013-10-01
To know well about the highly complex earth system, a large volume of, as well as a large variety of, datasets on the planet Earth are being obtained, distributed, and shared worldwide everyday. However, seldom of existing systems concentrates on the distribution and interrelation of different datasets in a common Global Spatial Reference Frame (GSRF), which holds an invisble obstacle to the data sharing and scientific collaboration. Group on Earth Obeservation (GEO) has recently established a new GSRF, named Earth System Spatial Grid (ESSG), for global datasets distribution, sharing and interrelation in its 2012-2015 WORKING PLAN.The ESSG may bridge the gap among different spatial datasets and hence overcome the obstacles. This paper is to present the implementation of the ESSG-based GSRF. A reference spheroid, a grid subdvision scheme, and a suitable encoding system are required to implement it. The radius of ESSG reference spheroid was set to the double of approximated Earth radius to make datasets from different areas of earth system science being covered. The same paramerters of positioning and orienting as Earth Centred Earth Fixed (ECEF) was adopted for the ESSG reference spheroid to make any other GSRFs being freely transformed into the ESSG-based GSRF. Spheroid degenerated octree grid with radius refiment (SDOG-R) and its encoding method were taken as the grid subdvision and encoding scheme for its good performance in many aspects. A triple (C, T, A) model is introduced to represent and link different datasets based on the ESSG-based GSRF. Finally, the methods of coordinate transformation between the ESSGbased GSRF and other GSRFs were presented to make ESSG-based GSRF operable and propagable.
Viirs Land Science Investigator-Led Processing System
NASA Astrophysics Data System (ADS)
Devadiga, S.; Mauoka, E.; Roman, M. O.; Wolfe, R. E.; Kalb, V.; Davidson, C. C.; Ye, G.
2015-12-01
The objective of the NASA's Suomi National Polar Orbiting Partnership (S-NPP) Land Science Investigator-led Processing System (Land SIPS), housed at the NASA Goddard Space Flight Center (GSFC), is to produce high quality land products from the Visible Infrared Imaging Radiometer Suite (VIIRS) to extend the Earth System Data Records (ESDRs) developed from NASA's heritage Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the EOS Terra and Aqua satellites. In this paper we will present the functional description and capabilities of the S-NPP Land SIPS, including system development phases and production schedules, timeline for processing, and delivery of land science products based on coordination with the S-NPP Land science team members. The Land SIPS processing stream is expected to be operational by December 2016, generating land products either using the NASA science team delivered algorithms, or the "best-of" science algorithms currently in operation at NASA's Land Product Evaluation and Algorithm Testing Element (PEATE). In addition to generating the standard land science products through processing of the NASA's VIIRS Level 0 data record, the Land SIPS processing system is also used to produce a suite of near-real time products for NASA's application community. Land SIPS will also deliver the standard products, ancillary data sets, software and supporting documentation (ATBDs) to the assigned Distributed Active Archive Centers (DAACs) for archival and distribution. Quality assessment and validation will be an integral part of the Land SIPS processing system; the former being performed at Land Data Operational Product Evaluation (LDOPE) facility, while the latter under the auspices of the CEOS Working Group on Calibration & Validation (WGCV) Land Product Validation (LPV) Subgroup; adopting the best-practices and tools used to assess the quality of heritage EOS-MODIS products generated at the MODIS Adaptive Processing System (MODAPS).
The "Earth Physics" Workshops Offered by the Earth Science Education Unit
ERIC Educational Resources Information Center
Davies, Stephen
2012-01-01
Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…
NASA Technical Reports Server (NTRS)
Guit, Bill
2017-01-01
This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.
ERIC Educational Resources Information Center
Orgren, James R.
1969-01-01
Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)
NASA Astrophysics Data System (ADS)
Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen
2016-06-01
In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.
ERIC Educational Resources Information Center
Park, Do-Yong; Park, Mira
2013-01-01
The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…
Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1991-01-01
The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
NASA Technical Reports Server (NTRS)
1994-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Earth Science Information Center
,
1991-01-01
An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.
Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science
NASA Astrophysics Data System (ADS)
Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth
2011-12-01
The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the Spaceship Earth Scientist (SES) Module, featuring an Earth Scientist expert discussing the science seen in the presentation. Hands-on activities such as sea ice melting simulations will be held with participants. Results from these first pilot education experiences will be presented at the 2011 AGU.
Using the earth system for integrating the science curriculum
NASA Astrophysics Data System (ADS)
Mayer, Victor J.
Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.
NASA Astrophysics Data System (ADS)
Lawrence, B.; Bennett, V.; Callaghan, S.; Juckes, M. N.; Pepler, S.
2013-12-01
The UK Centre for Environmental Data Archival (CEDA) hosts a number of formal data centres, including the British Atmospheric Data Centre (BADC), and is a partner in a range of national and international data federations, including the InfraStructure for the European Network for Earth system Simulation, the Earth System Grid Federation, and the distributed IPCC Data Distribution Centres. The mission of CEDA is to formally curate data from, and facilitate the doing of, environmental science. The twin aims are symbiotic: data curation helps facilitate science, and facilitating science helps with data curation. Here we cover how CEDA delivers this strategy by established internal processes supplemented by short-term projects, supported by staff with a range of roles. We show how CEDA adds value to data in the curated archive, and how it supports science, and show examples of the aforementioned symbiosis. We begin by discussing curation: CEDA has the formal responsibility for curating the data products of atmospheric science and earth observation research funded by the UK Natural Environment Research Council (NERC). However, curation is not just about the provider community, the consumer communities matter too, and the consumers of these data cross the boundaries of science, including engineers, medics, as well as the gamut of the environmental sciences. There is a small, and growing cohort of non-science users. For both producers and consumers of data, information about data is crucial, and a range of CEDA staff have long worked on tools and techniques for creating, managing, and delivering metadata (as well as data). CEDA "science support" staff work with scientists to help them prepare and document data for curation. As one of a spectrum of activities, CEDA has worked on data Publication as a method of both adding value to some data, and rewarding the effort put into the production of quality datasets. As such, we see this activity as both a curation and a facilitation activity. A range of more focused facilitation activities are carried out, from providing a computing platform suitable for big-data analytics (the Joint Analysis System, JASMIN), to working on distributed data analysis (EXARCH), and the acquisition of third party data to support science and impact (e.g. in the context of the facility for Climate and Environmental Monitoring from Space, CEMS). We conclude by confronting the view of Parsons and Fox (2013) that metaphors such as Data Publication, Big Iron, Science Support etc are limiting, and suggest the CEDA experience is that these sorts of activities can and do co-exist, much as they conclude they should. However, we also believe that within co-existing metaphors, production systems need to be limited in their scope, even if they are on a road to a more joined up infrastructure. We shouldn't confuse what we can do now with what we might want to do in the future.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
Geoinformatics 2007: data to knowledge
Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.
2007-01-01
Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.
Earth and Space Science Informatics: Raising Awareness of the Scientists and the Public
NASA Astrophysics Data System (ADS)
Messerotti, M.; Cobabe-Ammann, E.
2009-04-01
The recent developments in Earth and Space Science Informatics led to the availability of advanced tools for data search, visualization and analysis through e.g. the Virtual Observatories or distributed data handling infrastructures. Such facilities are accessible via web interfaces and allow refined data handling to be carried out. Notwithstanding, to date their use is not exploited by the scientific community for a variety of reasons that we will analyze in this work by considering viable strategies to overcome the issue. Similarly, such facilities are powerful tools for teaching and for popularization provided that e-learning programs involving the teachers and respectively the communicators are made available. In this context we will consider the present activities and projects by stressing the role and the legacy of the Electronic Geophysical Year.
NASA Astrophysics Data System (ADS)
Guertin, L. A.; Merkel, C.
2011-12-01
In Spring 2011, the Pennsylvania Earth Science Teachers Association (PAESTA) became an official state chapter of the National Earth Science Teachers Association (NESTA). Established with funds from the National Science Foundation, PAESTA is focused on advancing, extending, improving, and coordinating all levels of Earth Science education in Pennsylvania. Our goal is to reach earth science educators across Pennsylvania and beyond who are not physically co-located. An early priority of this new organization was to establish a web presence (http://www.paesta.psu.edu/) and to build an online community to support PAESTA activities and members. PAESTA exists as a distributed group made up of educators across Pennsylvania. Many initial members were participants in summer Earth and space science workshops held at Penn State University, which has allowed for face-to-face connections and network building. PAESTA will hold sessions and a reception at the Pennsylvania Science Teachers Association annual conference. The work of the group also takes place virtually via the PAESTA organizational website, providing professional development opportunities and Earth Science related teaching resources and links. As PAESTA is still in the very early days of its formation, we are utilizing a variety of social media tools to disseminate information and to promote asynchronous discussions around Earth and space science topics and pedagogy. The site features discussion boards for members and non-members to post comments along a specific topic or theme. For example, each month the PAESTA site features an article from one of the National Science Teacher's Association (NSTA)'s journals and encourages teachers to discuss and apply the pedagogical approach or strategy from the article to their classroom situation. We send email blasts so that members learn about organizational news and professional development opportunities. We also leverage in-person training sessions and conference sessions as a way to build participation and membership in the online PAESTA community. Part of the approach guiding the developing of the virtual community was to provide a number of ways for teachers to access PAESTA content. We needed to find ways to establish a presence in venues where our users regularly go to find information rather than expecting them to visit our website. This includes experiments with a variety of social networking platforms including Facebook and Twitter. We also make use of sites that allow users to collect and share information such as bookmarks (Diigo), citations (Mendeley), and reading lists (Goodreads). Such sites allow us to reach new audiences with an affinity for the content that we are producing who may not otherwise find us. The tension in this approach is in maintaining information and a consistent presence across a variety of platforms. It is too early to tell which social media tools and strategies will be the most effective in creating a sense of community and interactivity among PAESTA members. Monitoring usage statistics and patterns across platforms should assist us in identifying which social media tool(s) will be most effective to continue with the mission of PAESTA.
Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan
ERIC Educational Resources Information Center
Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying
2009-01-01
The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…
Earth Science: It's All about the Processes
ERIC Educational Resources Information Center
King, Chris
2013-01-01
Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…
Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris
2009-01-01
Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.
Resources and References for Earth Science Teachers
ERIC Educational Resources Information Center
Wall, Charles A.; Wall, Janet E.
1976-01-01
Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)
Progress and Setbacks in K-12 Earth and Space Science Education During the Past Decade
NASA Astrophysics Data System (ADS)
Geary, E.; Hoffman, M.; Stevermer, A.; Barstow, D.
2005-12-01
Since publication of the National Science Education Standards in 1996, key Earth and space science concepts have been incorporated into the science education standards in virtually every state. However, the degree to which Earth and space science standards have been implemented in actual classroom curriculum and state science assessments varies greatly from state to state. In a similar vein, the No Child Left Behind legislation calls for a highly qualified teacher in every classroom: in Idaho over 96 percent of high school teachers are certified to teach Earth science, while in Illinois, less than 42 percent of teachers are certified. Furthermore, in some states, like New York, approximately 20 percent of high school students will take introductory Earth science each year, while in other states, like Texas, less than 1 percent of high school students will take introductory Earth science each year. Why do we have this high degree of variability with respect to the teaching and learning of Earth science across the United States? The answer is complex, as there are many institutional, attitudinal, budgetary, and policy factors affecting the teaching of Earth and space sciences. This presentation will summarize data on the current status of Earth and space science education in the United States, discuss where progress has been made and where setbacks have occurred during the past decade, and provide some suggestions and ideas for improving access to high quality Earth and space science education courses, curricula, assessments, and teachers at the state and local level.
The global topography mission gains momentum
Farr, Tom; Evans, Diane; Zebker, Howard; Harding, David; Bufton, Jack; Dixon, Timothy; Vetrella, S.; Gesch, Dean B.
1995-01-01
An accurate description of the surface elevation of the Earth is of fundamental importance to many branches of Earth science. Continental topographic data are required for studies of hydrology, ecology, glaciology, geomorphology, and atmospheric circulation. For example, in hydrologic and terrestrial ecosystem studies, topography exerts significant control on intercepted solar radiation, water runoff and subsurface water inventory, microclimate, vegetation type and distribution, and soil development. The topography of the polar ice caps and mountain glaciers directly reflects ice-flow dynamics and is closely linked to global climate and sea level change.
Global Warming - Are We on Thin Ice?
NASA Technical Reports Server (NTRS)
Tucker, Compton J.
2007-01-01
The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.
Understanding our Changing Planet: NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)
1999-01-01
NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2001-01-01
The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.
2009-02-18
VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, spacecraft waits atop Orbital Sciences' Taurus XL rocket to launch Feb. 24. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Glenn Weigle, Orbital Sciences
The extreme ultraviolet explorer mission
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.
1988-01-01
The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.
NASA Astrophysics Data System (ADS)
Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.
An interactive environment for the analysis of large Earth observation and model data sets
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.
1993-01-01
We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.
An interactive environment for the analysis of large Earth observation and model data sets
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.
1992-01-01
We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.
GEOSTAR-II: A Prototype Water Vapor Imager/Sounder for the Path Mission
NASA Technical Reports Server (NTRS)
Gaier, Todd; Lambrigtsen, Bjorn; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan; Harding, Dennis; Owen, Heather; Soria, Mary; ODwyer, Ian; Ruf, Christopher;
2011-01-01
We describe the development and progress of the GeoSTAR-II risk reduction activity for the NASA Earth Science Decadal Survey PATH Mission. The activity directly addresses areas of technical risk including the system design, low noise receiver production, sub-array development, signal distribution and digital signal processing.
Wildland fire emissions, carbon, and climate: Science overview and knowledge needs
William T. Sommers; Rachel A. Loehman; Colin C. Hardy
2014-01-01
Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of ongoing climate change and the principal emissions...
Use of MCIDAS as an earth science information systems tool
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.
1988-01-01
The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.
The InVEST Volcanic Concept Survey: Exploring Student Understanding about Volcanoes
ERIC Educational Resources Information Center
Parham, Thomas L., Jr.; Cervato, Cinzia; Gallus, William A., Jr.; Larsen, Michael; Hobbs, Jon; Stelling, Pete; Greenbowe, Thomas; Gupta, Tanya; Knox, John A.; Gill, Thomas E.
2010-01-01
Results from the Volcanic Concept Survey (VCS) indicated that many undergraduates do not fully understand volcanic systems and plate tectonics. During the 2006 academic year, a ten-item conceptual survey was distributed to undergraduate students enrolled in Earth science courses at five U.S. colleges and universities. A trained team of graders…
Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum
ERIC Educational Resources Information Center
Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff
2016-01-01
This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…
Michael J. Furniss; Catherine F. Clifton; Kathryn L. Ronnenberg
2007-01-01
This conference was attended by nearly 450 Forest Service earth scientists representing hydrology, soil science, geology, and air. In addition to active members of the earth science professions, many retired scientists also attended and participated. These 60 peer-reviewed papers represent a wide spectrum of earth science investigation, experience, research, and...
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.
Reducing the Volume of NASA Earth-Science Data
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre
2010-01-01
A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.
NASA Astrophysics Data System (ADS)
Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.
2000-03-01
The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata
Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne
1993-01-01
The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.
NASA Technical Reports Server (NTRS)
King, M. D. (Editor); Greenstone, R. (Editor)
2000-01-01
The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.
Using HIPPO Data for Formal and Informal Science Education
NASA Astrophysics Data System (ADS)
Rockwell, A.; Hatheway, B.; Zondlo, M. A.
2012-12-01
The HIAPER Pole-to-Pole Observations (HIPPO) field project recently concluded its mission to map greenhouse gases and black carbon from the Arctic to the Antarctic using the NSF/NCAR Gulfstream V. HIPPO resulted in visually-rich and easy-to-understand altitude/latitude curtain plots of several trace gases and black carbon, from five seasons during 2009-2011. The data and curtain plots are available for both formal and informal science education to support the instruction of atmospheric science and Earth systems. Middle and high school activities have been developed using these data and curtain plots, and an undergraduate course based on HIPPO data - Global Air Pollution - is offered at Princeton University. The visually stimulating curtain plots are unique in that a wide range of people can comprehend them because they provide an easy-to-understand picture of the global distribution of chemical species for non-scientists or beginning users, while also displaying valuable detailed information for the advanced viewer. The plots are a powerful graphical tool that can be used to communicate climate science because they illustrate the concepts of how trace gas distributions are linked to the large-scale dynamics of the Earth; show seasonal changes in distribution and concentrations; and use the same display format for each tracer. In order to connect people to the data, a multi-faceted and engaging public information program and supporting educational materials for HIPPO were developed. These provided a unique look into global field research and included social media platforms such as Facebook and Twitter; a range of videos from simple motion graphics to detailed narratives; both printed and online written materials; and mass-media publications.
Building Knowledge Graphs for NASA's Earth Science Enterprise
NASA Astrophysics Data System (ADS)
Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.
2016-12-01
Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of concept, we focus on a well-defined domain - Hurricane Science linking research articles and their findings, data, people and tools/services. Modern information retrieval, natural language processing machine learning and deep learning techniques are applied to build the knowledge network.
EOSDIS: The Ultimate Earth Science Data Source for Research and Education
NASA Astrophysics Data System (ADS)
Agbu, P. A.; Chang, C.; Corprew, F. E.
2002-12-01
Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rates of global changes. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. To assemble long-term information needed to construct accurate computer models that will enable forecasting of the causes and effects of climate change, the use of space-based Earth observing platforms is the only feasible way. Consequently, NASA's Earth Observing System (EOS) has begun an international study of planet Earth that is comprised of three main components: 1) a series of satellites specially designed to study the complexities of global change; 2) an advanced computer network for processing, storing, and distributing data (EOS Data and Information System); and 3) teams of scientists all over the world who will study the data. Recent launches of Landsat 7 in April 15, 1999 to continue the flow of global change information to users worldwide, and Terra the EOS flagship in December 18, 1999 to monitor climate and environmental change on Earth over the next 15 years, has tremendously expanded the sources of valuable Earth science data for research and education. These data and others from focused campaigns, e.g., FIFE and BOREAS designed to study surface-atmospheric interactions will be presented.
Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)
NASA Astrophysics Data System (ADS)
Bishop, M. P.; Houser, C.; Lemmons, K.
2015-12-01
Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.
2000-11-01
STS098-S-001 (November 2000) --- This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew will deliver the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the space shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the shuttle and station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
2014-05-01
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, Orbital Sciences workers and technicians move their work platforms away from NASA's Orbiting Carbon Observatory-2, or OCO-2, in preparation for its lift from the transportation trailer. Testing and launch preparations now will get underway for its launch from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket, scheduled for July 1, 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by NASA's Jet Propulsion Laboratory JPL in Pasadena, California, for NASA's Science Mission Directorate in Washington. Orbital Sciences built the spacecraft and provides mission operations under JPL’s leadership. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Doug Gruben, 30th Space Wing
NASA Technical Reports Server (NTRS)
Kempler, Steve; Leptoukh, Greg; Lynnes, Chris
2010-01-01
The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.
ERIC Educational Resources Information Center
Hoffman, Martos; Barstow, Daniel
2007-01-01
The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…
NASA Astrophysics Data System (ADS)
Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.
2017-12-01
A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.
76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
Status and Evolution of the Journal of Astronomy & Earth Science Education's First Year
NASA Astrophysics Data System (ADS)
Slater, Timothy F.
2016-01-01
The Journal of Astronomy & Earth Science Education (JAESE.org) is a recently created, peer-reviewed journal designed to serve the discipline-based astronomy, planetary, and geo-sciences education research community. JAESE's first issue was published on December 31, 2014 and has published two volumes and three issues since that time, encompassing 15 peer-reviewed articles. By far, the median article topic has been focused on planetarium education research, while there has only been one article on solid Earth geosciences education research. Although there is not yet an even distribution of topics across the field, there is a relatively even distribution among author demographics. Authors include a range of both junior and senior members of the field. There have been slightly female authors than male authors. Submissions are distributed to two or three reviewers with authors' names redacted from the manuscript. The average time to complete the first round of peer-review reviewers is 6.2-weeks. There have been too few manuscripts to reliably publish a "percentage acceptance rate." Finally, the majority of recently completed astronomy education research doctoral dissertations have been published in JAESE. Taken together, JAESE's guiding Editorial Advisory Board judges this to be a successful first year. In a purposeful effort to make JAESE authors' scholarly works as widely accessible as possible, JAESE adopted an open-access business model. JAESE articles are available to read free-of-charge over the Internet, delivered as PDFs. To date, the most common way articles are downloaded by readers is through Google Scholar. Instead of charging readers and libraries recurring subscription fees, JAESE charges authors a nominal submission fee and a small open-access fee, averaging about $500 USD. These charges are similar to the traditional page charges typically charged to authors or their institutions by scientific journals, making JAESE an attractive publishing venue for many scholars to make their work as widely read as possible.
Center for Space and Earth Science
Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505
Planning NGSS-Based Instruction: Where Do You Start?
ERIC Educational Resources Information Center
Colson, Mary; Colson, Russ
2016-01-01
Mary Colson is an eighth-grade Earth science teacher at Horizon Middle School, and Russ Colson is a professor of geology and Earth science education in the Department of Anthropology and Earth Science at Minnesota State University Moorhead, both in Moorhead, Minnesota. Since her first year in teaching eighth grade Earth science, in 1986,…
NASA Astrophysics Data System (ADS)
Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.
2012-12-01
Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.
Flight Dynamics Analysis for Leonardo-BRDF
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)
2000-01-01
Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.
MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.
NASA Astrophysics Data System (ADS)
Friedl, L. A.; Cox, L.
2008-12-01
The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.
NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations
NASA Astrophysics Data System (ADS)
Frisbie, T. E.; Hall, C. M.
2006-12-01
Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.
The AmericaView Project - Putting the Earth into Your Hands
,
2005-01-01
The U.S. Geological Survey (USGS) is a leader in collecting, archiving, and distributing geospatial data and information about the Earth. Providing quick, reliable access to remotely sensed images and geospatial data is the driving principle behind the AmericaView Project. A national not-for-profit organization, AmericaView, Inc. was established and is supported by the USGS to coordinate the activities of a national network of university-led consortia with the primary objective of the advancement of the science of remote sensing. Individual consortia members include academic institutions, as well as state, local, and tribal government agencies. AmericaView's focus is to expand the understanding and use of remote sensing through education and outreach efforts and to provide affordable, integrated remote sensing information access and delivery to the American public. USGS's Landsat and NASA's Earth Observing System (EOS) satellite data are downlinked from satellites or transferred from other facilities to the USGS Center for Earth Resources Observation and Science (EROS) ground receiving station in Sioux Falls, South Dakota. The data can then be transferred over high-speed networks to consortium members, where it is archived and made available for public use.
Incorporating Earth Science into Other High School Science Classes
NASA Astrophysics Data System (ADS)
Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.
2016-12-01
As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.
Improving the Accessibility and Use of NASA Earth Science Data
NASA Technical Reports Server (NTRS)
Tisdale, Matthew; Tisdale, Brian
2015-01-01
Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.
The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science
NASA Astrophysics Data System (ADS)
Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos
2016-04-01
The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. Currently a comprehensive requirements and use cases elicitation process is started through interactions with the ten different Thematic Core Service work packages. The results of this will be used to harmonize the DDSS elements and prepare for interoperability across the various disciplines. For this purpose a dedicated workshop is planned where the representatives of all the TCS communities will jointly discuss and agree upon the harmonization process. The technical integration of the DDSS elements to a metadata structure adopting CERIF (Common European Research Information Format) standards will start after the harmonization process is completed. Various levels of maturity in the handling and availability of TCS specific DDSS elements among the different TCS groups, is one of the most challenging aspects of this integration. For this reason a roadmap for integration is being prepared where most mature DDSS elements will be implemented during the next 2 years after a community driven testing and validation process. Integration of the remaining DDSS elements will be a continuously evolving process in the coming years.
NASA Astrophysics Data System (ADS)
Deng, M.; di, L.
2005-12-01
The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research environment, backed by NASA EOS data and computing resources that are unavailable to students and professors before, available to them at their desktops free of charge. In order to efficiently integrate this new environment into Earth science education and research, a NASA EOS Higher Education Alliance (NEHEA) is formed. The core members of NEHEA consist of the GeoBrain development team led by LAITS at George Mason University and a group of Earth science educators selected from an open RFP process. NEHEA is an open and free alliance. NEHEA welcomes Earth science educators around the world to join as associate members. NEHEA promotes international research and education collaborations in Earth science. NEHEA core members will provide technical support to NEHEA associate members for incorporating the data-rich learning environment into their teaching and research activities. The responsibilities of NEHEA education members include using the system in their research and teaching, providing feedback and requirements to the development team, exchanging information on the utilization of the system capabilities, participating in the system development, and developing new curriculums and research around the environment provided by GeoBrain.
NASA Earth Science Update with Information Science Technology
NASA Technical Reports Server (NTRS)
Halem, Milton
2000-01-01
This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... Analysis Group (ASAG) as a task group under the auspices of the Earth Science Subcommittee of the NASA... and prioritizing the Earth Science Division's Applied Sciences Program activities and has served as a... recommendations to the Director, Earth Science Division, Science Mission Directorate, NASA Headquarters, on...
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. --The Encapsulated Cargo Element (ECE) containing NASA's Orbiting Carbon Observatory, or OCO, is lowered to a horizontal position after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. -- The Encapsulated Cargo Element (ECE) containing NASA's Orbiting Carbon Observatory, or OCO, is lowered to a horizontal position after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
The NASA Distributed Active Archive Center Experience in Providing Trustworthy Digital Repositories
NASA Astrophysics Data System (ADS)
de Sherbinin, A. M.; Downs, R. R.; Chen, R. S.
2017-12-01
Since the early 1990s, NASA Earth Observation System Data and Information System (EOSDIS) has supported between 10 to 12 discipline-specific Distributed Active Archive Centers (DAACs) that have provided long-term preservation of Earth Science data records, particularly from satellite and airborne remote sensing. The focus of this presentation is on two of the DAACs - the Socioeconomic Data and Applications Center (SEDAC) and Oak Ridge National Laboratory (ORNL) DAAC - that provide archiving and dissemination of third party data sets. The presentation describes the community of interest for these two DAACs, their data management practices, and the benefits of certification to the DAACs and their user communities. It also describes the organizational, technical, financial, and legal challenges to providing trustworthy long-term data stewardship.
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. -- The Encapsulated Cargo Element containing NASA's Orbiting Carbon Observatory, or OCO, is lifted from its transporter on Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction
NASA Astrophysics Data System (ADS)
Pottinger, James E.
With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2015-01-27
The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less
Teaching and Learning about the Earth. ERIC Digest.
ERIC Educational Resources Information Center
Lee, Hyonyong
This ERIC Digest investigates the earth and space science guidelines of the National Science Education Standards. These guidelines are frequently referred to as the earth system and include components such as plate tectonics, the water cycle, and the carbon cycle. This Digest describes the development of earth systems science and earth systems…
Advances in the NASA Earth Science Division Applied Science Program
NASA Astrophysics Data System (ADS)
Friedl, L.; Bonniksen, C. K.; Escobar, V. M.
2016-12-01
The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.
Earth Science Multimedia Theater
NASA Technical Reports Server (NTRS)
Hasler, A. F.
1998-01-01
The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, Hyperimage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing Hyperimage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed Image SpreadSheet (DISS).
The Global Geodetic Observing System: Recent Activities and Accomplishments
NASA Astrophysics Data System (ADS)
Gross, R. S.
2017-12-01
The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions of GGOS are based. The IAG Commissions and Inter-Commission Committees provide expertise and support for the scientific development within GGOS. In summary, GGOS is IAG's central interface to the scientific community and to society in general. Recent activities and accomplishments of the Global Geodetic Observing System will be presented.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.
2013-01-01
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.
NASA Astrophysics Data System (ADS)
Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.
2017-02-01
The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.
Geology for youth in Lithuania: International Year of Planet Earth-related and other activities
NASA Astrophysics Data System (ADS)
Skridlaite, Grazina; Guobyte, Rimante; Skrinskas, Skirmantas; Nemaniene, Jurgita
2010-05-01
A great number of Lithuanian secondary and high schools devoted a range of activities to Earth sciences on September 22 (autumn equinox), 2008 proclaimed by the Lithuanian National Committee for IYPE and Ministry of Education and Science of Lithuania as "Earth's day". Beforehand, the 11 IYPE brochures were translated, supplemented with relevant Lithuanian data and placed on the website www.zemesmetai.lt. The activities comprised lessons, competitions, performances, field trips, seminars, excursions to museums and nature sites, meetings with geologists and naturalists etc. In many schools the 10 scientific themes were expanded, transformed and included into different school programmes such as geography, chemistry, physics, biology, Lithuanian language etc. The other schools preferred to organise discussions, performances and concerts where children expressed their concern about future of the Earth and suggested ways to save it. Several schools invited geologists, ecologists or other representatives of Earth sciences or local authorities to provide with information on environmental and geological issues in Lithuania and their own surroundings. Several museums and nature sites were visited. The "Earth's day" was advertised and broadcasted on TV and radio, reflected in the press. The reports from schools were placed on the Lithuanian IYPE website. The Board acknowledged the best participants with special letter of thanks. It turned out that despite the provided information on different subjects of geology only few of them were chosen. School teachers encountered some problems relating the Earth's interior with its surface, recognising modern geological processes etc. They found some brochures to be too complicated for non-specialists. Biodiversity was much easier to explain and present as geodiversity. Nevertheless, everybody admitted the great importance of geosciences in society and insufficient knowledge, and greatly acknowledged the initiative of the IYPE. The "Earth's day" initiative triggered a lot of activities and joint projects at Lithuanian schools and public institutions devoted to Earth sciences. Many geologists and other scientists were invited to schools, public and governmental institutions to provide with all sorts of geological information. A lot of different competitions, camps and seminars followed the "Earth's day". As a special success the Young Geologist movement hosted by the NGO Lithuanian Youth Tourism Center has to be admitted. Summer camps, seminars, competitions on geology have been organized at the Center for more than 25 years. The successful co-operation with the Ministry of Education and Science of Lithuania and also with several private and governmental institutions and commercial enterprises resulted in a publishing of a special calendar for 2009. Each month in the calendar is devoted to the institution or enterprise either related to geosciences, using nature resources in a sustainable way or producing environmentally friendly goods or energy. The calendar was distributed to Lithuanian schools, public and governmental institutions. Inspired by the success of the "Earth's day", the LitNC and Ministry of Education and Science organised a competition "Earth in our hands" for all types of schools in 2009. Over 50 PowerPoint presentations, movies, drawings, photos and posters were received at the Center of Young Naturalists in Vilnius. The winners were awarded with a special "geotour" on September 25.
Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
Dan Goldin Presentation: Pathway to the Future
NASA Technical Reports Server (NTRS)
1999-01-01
In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.
NASA Astrophysics Data System (ADS)
Atakan, Kuvvet; Tellefsen, Karen
2017-04-01
The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Science: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS-Norway is therefore in line with the European vision of EPOS, i.e. monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures for solid Earth science. The EPOS-Norway project started in January 2016 with a national consortium consisting of six institutions. These are: University of Bergen (Coordinator), NORSAR, National Mapping Authority, Geological Survey of Norway, Christian Michelsen Research and University of Oslo. EPOS-N will during the next five years focus on the implementation of three main components. These are: (i) Developing a Norwegian e-Infrastructure to integrate the Norwegian Solid Earth data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories, (ii) Improving the monitoring capacity in the Arctic, including Northern Norway and the Arctic islands, and (iii) Establishing a national Solid Earth Science Forum providing a constant feedback mechanism for improved integration of multidisciplinary data, as well as training of young scientists for future utilization of all available solid Earth observational data through a single e-infrastructure. Currently, a list of data, data products, software and services (DDSS) is being prepared. These elements will be integrated in the EPOS-N data/web-portal, which will allow users to browse, select and download relevant data for solid Earth science research. In addition to the standard data and data products such as seismological, geodetic, geomagnetic and geological data, there are a number of non-standard data and data products that will be integrated. In parallel, advanced visualization technologies are being implemented, which will provide a platform for a possible future ICS-D (distributed components of the Integrated Core Services) for EPOS. In order to enhance the monitoring capacity in the Arctic, planning and site selection process for the new instrument installations are well underway, as well as the procurement of the required equipment. In total, 17 new seismological and geodetic stations will be co-located in selected sites in Northern Norway, Jan Mayen and Svalbard. In addition, a seismic array with 9 nodes will be installed on Bear Island. A planned aeromagnetic survey along the Knipovich Ridge is being conducted this year, which will give new insights to the tectonic development of the mid-ocean ridge systems in the North Atlantic.
MAESTRO: Mathematics and Earth Science Teachers' Resource Organization
NASA Astrophysics Data System (ADS)
Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.
2013-12-01
The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies, developed in collaboration between teachers and JMU faculty members, provide a tangible, relevant setting in which students can apply and understand mathematical applications and scientific processes related to evolving Earth systems. Initial results from student questionnaires and teacher focus groups suggest that the anticipated impacts of MAESTRO on students are being realized, including increased valuing of mathematics and Earth science in society and transfer between mathematics and science courses. As a high percentage of students in the MAESTRO schools are of low socio-economic status, they also face the prospect of becoming first-generation college students, hopefully considering STEM academic pathways. MAESTRO will drive the development of challenging and engaging instruction designed to draw a larger pool of students into STEM career pathways.
International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.
2009-12-01
The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes OneGeology, translation into Spanish of IYPE thematic leaflets and participation in meetings and outreach activities. A major long-lasting legacy of IYPE is the formation of links/partnerships within Latin America and in the international context. Consolidating and expanding cooperation/partnership in research, education and outreach will then be our major challenges. In addition to future plans in different countries and regions, we consider that IYPE should develop long-term initiatives for enhancing international cooperation and ensuring increased effective use by society of the Earth and space sciences.
An Intelligent Archive Testbed Incorporating Data Mining
NASA Technical Reports Server (NTRS)
Ramapriyan, H.; Isaac, D.; Yang, W.; Bonnlander, B.; Danks, D.
2009-01-01
Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of interoperability, and being able to convert data to information and usable knowledge in an efficient, convenient manner, aided significantly by automation (Ramapriyan et al. 2004; NASA 2005). We can look upon the distributed provider environment with capabilities to convert data to information and to knowledge as an Intelligent Archive in the Context of a Knowledge Building system (IA-KBS). Some of the key capabilities of an IA-KBS are: Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting (Ramapriyan et al. 2004).
The Global Enery and Water Cycle Experiment Science Strategy
NASA Technical Reports Server (NTRS)
Chahine, M. T.
1997-01-01
The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.
Hilda Diaz-Soltero; Amy Y. Rossman
2011-01-01
Systematics is the science that identifies and groups organisms by understanding their origins, relationships, and distributions. It is fundamental to understanding life on earth, our crops, wildlife, and diseases, and it provides the scientific foundation to recognize and manage invasive species. Protecting America's economy, environment, health, and security...
USDA-ARS?s Scientific Manuscript database
Many science questions in large-scale terrestrial ecology are concerned with changes in the Earth’s carbon cycle and ecosystems and the consequences for the Earth's carbon budget, ecosystem sustainability, and biodiversity [1]. To address these questions, we must know the distribution of aboveground...
Student Geoscientists Explore the Earth during Earth Science Week 2005
ERIC Educational Resources Information Center
Benbow, Ann E.; Camphire, Geoff
2005-01-01
Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…
Earth Science Education Plan: Inspire the Next Generation of Earth Explorers
NASA Technical Reports Server (NTRS)
2004-01-01
The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.
ERIC Educational Resources Information Center
Dawson, Vaille; Moore, Leah
2011-01-01
In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…
Ground Water Studies. Earth Science Module for Grades 7-9.
ERIC Educational Resources Information Center
Baldwin, Roland L.; And Others
Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…
NASA Astrophysics Data System (ADS)
Saito, Akinori; Tsugawa, Takuya
Three-dimensional presentation of the earth and space science data is a best tool to show the scientific data of the earth and space. It can display the correct shape on the Earth while any two-dimensional maps distort shapes. Furthermore it helps audience to understand the scale size and phenomena of the earth and planets in an intuitive way. There are several projects of the 3-D presentation of the Earth, such as Science on a Sphere (SOS) by NOAA, and Geo-cosmos by Miraikan, Japan. We are developing a simple, portable and affordable 3-D presentation system, called Dagik Earth. It uses a spherical or hemispherical screen to project data and images using normal PC and PC projector. The minimum size is 8cm and the largest size is 8m in diameter. The Dagik Earth project has developed the software of the 3-D projection in collaboration with scientists, and provides the software to the science museums and school teachers. Because the same system can be used in museums and schools, several science museums play a roll of hub for the school teachers' training on the earth and planetary science class with Dagik Earth. International collaboration with Taiwan, Thailand, and other countries is in progress. In the presentation, we introduce the system of Dagik Earth and the activities using it in the collaboration among schools, science centers, universities and research institutes.
Moving Towards a Science-Driven Workbench for Earth Science Solutions
NASA Astrophysics Data System (ADS)
Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.
2017-12-01
The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.
NASA Astrophysics Data System (ADS)
Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.
2007-12-01
The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.
NASA Astrophysics Data System (ADS)
Downs, R. R.; Peng, G.; Wei, Y.; Ramapriyan, H.; Moroni, D. F.
2015-12-01
Earth science data products and services are being used by representatives of various science and social science disciplines, by planning and decision-making professionals, by educators and learners ranging from primary through graduate and informal education, and by the general public. The diversity of users and uses of Earth science data is gratifying and offers new challenges for enabling the usability of these data by audiences with various purposes and levels of expertise. Users and other stakeholders need capabilities to efficiently find, explore, select, and determine the applicability and suitability of data products and services to meet their objectives and information needs. Similarly, they need to be able to understand the limitations of Earth science data, which can be complex, especially when considering combined or simultaneous use of multiple data products and services. Quality control efforts of stakeholders, throughout the data lifecycle, can contribute to the usability of Earth science data to meet the needs of diverse users. Such stakeholders include study design teams, data producers, data managers and curators, archives, systems professionals, data distributors, end-users, intermediaries, sponsoring organizations, hosting institutions, and others. Opportunities for engaging stakeholders to review, describe, and improve the quality of Earth science data products and services throughout the data lifecycle are identified and discussed. Insight is shared from the development of guidelines for implementing the Group on Earth Observations (GEO) Data Management Principles, the recommendations from the Earth Science Data System Working Group (ESDSWG) on Data Quality, and the efforts of the Information Quality Cluster of the Federation of Earth Science Information Partners (ESIP). Examples and outcomes from quality control efforts of data facilities, such as scientific data centers, that contribute to the usability of Earth science data also are offered.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss recent developments in data preservation and provenance.
What to do when the Universities reject High School Earth Science
NASA Astrophysics Data System (ADS)
Van Norden, W.
2011-12-01
It is hard to imagine a state of the union more affected by Earth processes than the state of California. However, the University of California actively discourages High School students from taking Earth Science courses. For admission into the University of California students are required to take at least 2 years of courses that offer a fundamental knowledge in at least two of these three foundational subjects: biology, chemistry, and physics. Earth Science courses simply don't qualify as laboratory science courses. The UC Admissions will sometimes make an exception for an Earth Science course only if it is shown to contain a large component of biology, chemistry and physics topics. Since students don't get credit for admission for taking Earth Science, High Schools are quick to drop Earth Science courses for their college-bound students. A group of teachers and University professors have been working to reverse this policy by creating a rigorous capstone Earth Science course that clearly merits laboratory status. Getting this course accepted by the University of California is well on its way, but getting the course into the High Schools will take a lot of work and probably some extra funding.
NASA Astrophysics Data System (ADS)
Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.
2008-12-01
The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.
Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability
NASA Astrophysics Data System (ADS)
Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.
2016-12-01
The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.
Contents of the NASA ocean data system archive, version 11-90
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1990-01-01
The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Implementation of small group discussion as a teaching method in earth and space science subject
NASA Astrophysics Data System (ADS)
Aryani, N. P.; Supriyadi
2018-03-01
In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.
Virginia Earth Science Collaborative: Developing Highly Qualified Teachers
NASA Astrophysics Data System (ADS)
Cothron, J.
2007-12-01
A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.
New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)
NASA Astrophysics Data System (ADS)
Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.
2013-12-01
Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.
Integrating EarthScope Research and Education on a National Scale
NASA Astrophysics Data System (ADS)
Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.
2002-12-01
EarthScope's education and outreach mission is to ensure the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating products that utilize the data, models, technology and discoveries of EarthScope and that support existing education and outreach programs. EarthScope EON will carry out educational activities ranging from research experiences for students in grades K-16 to professional development for technical professionals and educators in both formal (e.g. K-20 classrooms) and informal (e.g. museums and parks) venues. It will also provide a wide range of outreach activities from organizing town halls or other local meetings in advance of an instrument deployment, to developing radio, print and video materials that inform the public about the EarthScope experiment and discoveries. The EarthScope Education and Outreach Network (EON) will be facilitated and coordinated through a national center; however, the bulk of the effort will be distributed among local EON alliances of various sizes designed to respond quickly and to meet the specific needs in a region. This allows EarthScope EON to provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The network will be built through national and local partnerships with existing science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries.
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
NASA Technical Reports Server (NTRS)
Nelson, Raymond M.; Willis, Kimberly J.; Daley, William J.; Brumbaugh, Fred R.; Bremer, Jeffrey M.
1992-01-01
All earth-looking photographs acquired by Space Shuttle astronauts are identified, located, and catalogued after each mission. The photographs have been entered into a computerized database at the NASA Johnson Space Center. The database in its two modes - computer and catalog - is organized and presented to provide a scope and level of detail designed to be useful in Earth science activities, resource management, environmental studies, and public affairs. The computerized database can be accessed free through standard communication networks 24 hours a day, and the catalogs are distributed throughout the world. Photograph viewing centers are available in the United States, and photographic copies can be obtained through government-supported centers.
Geoscience Applications of Synchrotron X-ray Computed Microtomography
NASA Astrophysics Data System (ADS)
Rivers, M. L.
2009-05-01
Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.
An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales
ERIC Educational Resources Information Center
King, Chris John Henry
2010-01-01
Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…
Amplitude and angle of arrival measurements on a 28.56 GHz Earth-space path
NASA Technical Reports Server (NTRS)
Devasirvatham, D. M. J.; Hodge, D. B.
1981-01-01
The amplitude and angle of arrival measurements on an Earth-space path using the 28.56 GHz COMSTAR D3 satellite beacon are described. These measurements were made by the Ohio State University ElectroScience Laboratory during the period September 1978 to September 1979. Monthly, quarterly, and annual distributions of attenuation, angle of arrival, and variance of both these parameters are reported. During this period, fades exceeding 29 dB for .00% of the time and angle of arrival fluctuations exceeding .12 degrees for .01% of the time were observed.
,
2008-01-01
Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.
Earth Matters: Promoting Science Exploration through Blogs and Social Media
NASA Astrophysics Data System (ADS)
Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.
2012-12-01
NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.
Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues.
Oreiro, Raquel; Solbes, Jordi
2017-01-01
Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education. Key Words: Astrobiology-Students' views-Science education. Astrobiology 17, 91-99.
NASA Astrophysics Data System (ADS)
Burrell, S.
2012-12-01
Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open-ended questionnaires about impact on students identify higher order thinking, critical evaluation of quantitative and qualitative information, cooperative learning, and engagement in STEM content through inquiry as core competencies of this educational method. This presentation will describe the program model and results from internal evaluation.
NASA Astrophysics Data System (ADS)
Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.
2012-12-01
Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote sensing and geographic information science (GIS) capabilities, and opportunities for networking with the NASA and Earth Science community. By engaging young professionals and end user organizations, DEVELOP strives to uniquely build capacity through the extension of NASA Earth Science outcomes to the public through projects that innovatively use NASA Earth observations to address environmental concerns and impact policy and decision making.
European grid services for global earth science
NASA Astrophysics Data System (ADS)
Brewer, S.; Sipos, G.
2012-04-01
This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task Force is already providing a cloud infrastructure through a few committed NGIs. This is being made available to research communities participating in the Task Force and the long-term aim is to integrate these national clouds into a pan-European infrastructure for scientific communities. • The MPI group provides support for application developers to port and scale up parallel applications to the global European Grid Infrastructure. • A lively portal developer and provider community that is able to setup and operate custom, application and/or community specific portals for members of the Earth Science community to interact with EGI. • A project to assess the possibilities for federated identity management in EGI and the readiness of EGI member states for federated authentication and authorisation mechanisms. • Operating resources and user support services to process data with new types of services and infrastructures, such as desktop grids, map-reduce frameworks, GPU clusters.
Zhou, C.; Liu, L.; Lane, J.W.
2001-01-01
A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cervato, C.; Jach, J. Y.; Ridky, R.
2003-12-01
Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms of student demographics and socioeconomic variables (e.g., year in school, gender).
Total and Spectral Solar Irradiance Sensor (TSIS) Project Status
NASA Technical Reports Server (NTRS)
Carlisle, Candace
2018-01-01
TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).
A Contrast in Use of Metrics in Earth Science Data Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram; Behnke, Jeanne; Hines-Watts, Tonjua
2007-01-01
In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's "Core Capabilities" that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute "Community Capabilities". These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASON), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured through "metrics", which can be a combination of quantitative as well as qualitative assessments. The specific metrics of interest depend on the user of the metrics as well as the type of data system. The users of metrics can be data system managers, program managers, funding agency or the public. Data system managers need metrics for assessing and improving the performance of the system and for future planning. Program managers need metrics to assess progress and the value of the data systems sponsored by them. Also, there is a difference in the metrics needed for core capabilities that tend to be more complex, larger and longer-term compared to community capabilities and the community capabilities that tend to be simpler, smaller and shorter-term. Even among community capabilities there are differences; hence the same set of metrics does not apply to all. Some provide data products to users, some provide services that enable better utilization of data or interoperability among other systems, and some are a part of a larger project where provision of data or services is only a minor activity. There is also a contrast between metrics used for internal and external purposes. Examples of internal purposes are: ensuring that the system meets its requirements, and planning for evolution and growth. Examples of external purposes are: providing to sponsors indicators of success of the systems, demonstrating the contributions of the system to overall program success, etc. This paper will consider EOSDIS, REASON and ACCESS programs to show the various types of metrics needed and how they need to be tailored to the types of data systems while maintaining the overall management goals of measuring progress and contributions made by the data systems.
A Contrast in Use of Metrics in Earth Science Data Systems
NASA Astrophysics Data System (ADS)
Ramapriyan, H. K.; Behnke, J.; Hines-Watts, T. M.
2007-12-01
In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's Core Capabilities that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute Community Capabilities. These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASoN), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured through metrics, which can be a combination of quantitative as well as qualitative assessments. The specific metrics of interest depend on the user of the metrics as well as the type of data system. The users of metrics can be data system managers, program managers, funding agency or the public. Data system managers need metrics for assessing and improving the performance of the system and for future planning. Program managers need metrics to assess progress and the value of the data systems sponsored by them. Also, there is a difference in the metrics needed for core capabilities that tend to be more complex, larger and longer-term compared to community capabilities and the community capabilities that tend to be simpler, smaller and shorter-term. Even among community capabilities there are differences; hence the same set of metrics does not apply to all. Some provide data products to users, some provide services that enable better utilization of data or interoperability among other systems, and some are a part of a larger project where provision of data or services is only a minor activity. There is also a contrast between metrics used for internal and external purposes. Examples of internal purposes are: ensuring that the system meets its requirements, and planning for evolution and growth. Examples of external purposes are: providing to sponsors indicators of success of the systems, demonstrating the contributions of the system to overall program success, etc. This paper will consider EOSDIS, REASoN and ACCESS programs to show the various types of metrics needed and how they need to be tailored to the types of data systems while maintaining the overall management goals of measuring progress and contributions made by the data systems.
Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration
NASA Astrophysics Data System (ADS)
Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.
2016-12-01
The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.
Research & Technology Report Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)
1995-01-01
The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.
Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura
NASA Technical Reports Server (NTRS)
Fisher, Dominic
2017-01-01
This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.
NASA Astrophysics Data System (ADS)
Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.
2012-12-01
The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are important for understanding the large-scale structure of the earth's crust under major geographic features, such as mountain ranges, oceanic ridges and subduction zones. Short wave length residual anomalies are due to shallow anomalous masses that may be of interest for commercial exploitation. The last part is the magnetotellurics (MT), which is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. The long-period MT technique is used to exploration deep crustal. MT has been used to investigate the distribution of silicate melts in the Earth's mantle and crust and to better understand the plate-tectonic processes.
Experience our Planet - EPO Opportunities in a Museum Environment
NASA Astrophysics Data System (ADS)
Schneider, S.
2013-12-01
Earth science interpretation is more than giving your audience facts and figures. It is about relate Earth sciences to something within the personality or experience of your audience. It is about revelation based on information rather than just give away information per se. And: The chief aim of interpretation is not instruction but provocation. A great environment for Earth and Space science communication is a museum. Whether it is an art gallery, a technology exhibition or a national park's visitor center doesn't matter. Everywhere, Earth science interpretation is possible and sometimes even more successful in unsuspected locations than in natural history museums. Earth and Space sciences just started to use the potential which lies within museum environments. A historic view on Earth sciences and natural hazard research can be given in art galleries. The technology used in research can be showcased and - sometimes - even tested in science centers and technology museums. National Parks provide the best opportunity to actually experience the dynamic planet Earth live. Furthermore, museums do offer a great venue for educational programs. Just recently, the German Research and Development Program GEOTECHNOLOGIEN, together with the Germany's Geounion and the Institute for Advanced Sustainable Studies initiated a network of research institutions and museums called GeoED. Within this network, scientists and educationists as well as teachers will find an environment to create and enhance educational programs in Earth and Space science. Therefore, museums do not only provide the venue, but also the frame for sustainable Earth and Space science interpretation. This talk aims towards giving an insight view on how to conduct interpretive programs in museums, how to utilize the treasures and possibilities provided by museums and national parks and to encourage scientists to go to these places for face-to-face Earth science interpretation.
Science Data Preservation: Implementation and Why It Is Important
NASA Technical Reports Server (NTRS)
Kempler, Steven J.; Moses, John F.; Gerasimov, Irina V.; Johnson, James E.; Vollmer, Bruce E.; Theobald, Michael L.; Ostrenga, Dana M.; Ahmad, Suraiya; Ramapriyan, Hampapuram K.; Khayat, Mohammad G.
2013-01-01
Remote Sensing data generation by NASA to study Earth s geophysical processes was initiated in 1960 with the launch of the first Television Infrared Observation Satellite Program (TIROS), to develop a meteorological satellite information system. What would be deemed as a primitive data set by today s standards, early Earth science missions were the foundation upon which today s remote sensing instruments have built their scientific success, and tomorrow s instruments will yield science not yet imagined. NASA Scientific Data Stewardship requirements have been documented to ensure the long term preservation and usability of remote sensing science data. In recent years, the Federation of Earth Science Information Partners and NASA s Earth Science Data System Working Groups have organized committees that specifically examine standards, processes, and ontologies that can best be employed for the preservation of remote sensing data, supporting documentation, and data provenance information. This presentation describes the activities, issues, and implementations, guided by the NASA Earth Science Data Preservation Content Specification (423-SPEC-001), for preserving instrument characteristics, and data processing and science information generated for 20 Earth science instruments, spanning 40 years of geophysical measurements, at the NASA s Goddard Earth Sciences Data and Information Services Center (GES DISC). In addition, unanticipated preservation/implementation questions and issues in the implementation process are presented.
Making Connections: Where STEM Learning and Earth Science Data Services Meet
NASA Technical Reports Server (NTRS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda
2016-01-01
STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.
Use of Schema on Read in Earth Science Data Archives
NASA Astrophysics Data System (ADS)
Petrenko, M.; Hegde, M.; Smit, C.; Pilone, P.; Pham, L.
2017-12-01
Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the "schema-on-read" principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the "schema-on-read" approach allows customization of indexing—spatial or temporal—to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with support for "schema-on-read" used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
2005-01-01
The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.
Networking Cyberinfrastructure Resources to Support Global, Cross-disciplinary Science
NASA Astrophysics Data System (ADS)
Lehnert, K.; Ramamurthy, M. K.
2016-12-01
Geosciences are globally connected by nature and the grand challenge problems like climate change, ocean circulations, seasonal predictions, impact of volcanic eruptions, etc. all transcend both disciplinary and geographic boundaries, requiring cross-disciplinary and international partnerships. Cross-disciplinary and international collaborations are also needed to unleash the power of cyber- (or e-) infrastructure (CI) by networking globally distributed, multi-disciplinary data, software, and computing resources to accelerate new scientific insights and discoveries. While the promises of a global and cross-disciplinary CI are exhilarating and real, a range of technical, organizational, and social challenges needs to be overcome in order to achieve alignment and linking of operational data systems, software tools, and computing facilities. New modes of collaboration require agreement on and governance of technical standards and best practices, and funding for necessary modifications. This presentation will contribute the perspective of domain-specific data facilities to the discussion of cross-disciplinary and international collaboration in CI development and deployment, in particular those of IEDA (Interdisciplinary Earth Data Alliance) serving the solid Earth sciences and Unidata serving atmospheric sciences. Both facilities are closely involved with the US NSF EarthCube program that aims to network and augment existing Geoscience CI capabilities "to make disciplinary boundaries permeable, nurture and facilitate knowledge sharing, …, and enhance collaborative pursuit of cross-disciplinary research" (EarthCube Strategic Vision), while also collaborating internationally to network domain-specific and cross-disciplinary CI resources. These collaborations are driven by the substantial benefits to the science community, but create challenges, when operational and funding constraints need to be balanced with adjustments to new joint data curation practices and interoperability standards.
Use of Schema on Read in Earth Science Data Archives
NASA Technical Reports Server (NTRS)
Hegde, Mahabaleshwara; Smit, Christine; Pilone, Paul; Petrenko, Maksym; Pham, Long
2017-01-01
Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the schema-on-read principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the schema-on-read approach allows customization of indexing spatially or temporally to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with This presentation will discuss formats used for data storage, frameworks with support for schema-on-read used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.
ERIC Educational Resources Information Center
Contino, Julie; Anderson, O. Roger
2013-01-01
In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…
Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort
NASA Astrophysics Data System (ADS)
de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.
2011-12-01
The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during which 20 participants have been involved and significant feedback has been received.
Be a Citizen Scientist!: Celebrate Earth Science Week 2006
ERIC Educational Resources Information Center
Benbow, Ann E.; Camphire, Geoff
2006-01-01
During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…
Presenting the 'Big Ideas' of Science: Earth Science Examples.
ERIC Educational Resources Information Center
King, Chris
2001-01-01
Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)
The Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.
2009-01-01
Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.
Judicious use of custom development in an open source component architecture
NASA Astrophysics Data System (ADS)
Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.
2014-12-01
Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.
NASA Astrophysics Data System (ADS)
Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.
2004-12-01
To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
2009-02-18
VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Science's Jose Castillo and Mark Neuse (right) move in to remove the fairing payload access door on NASA's Orbiting Carbon Observatory, or OCO, spacecraft. Orbital Science's Glenn Weigle and Brett Gladish are nearby (shadows on the fairing) to take the GN2 flow reading. The encapsulated OCO tops Orbital Sciences' Taurus XL rocket, which is scheduled to launch Feb. 24. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Glenn Weigle, Orbital Sciences
2009-02-18
VANDENBERG AIR FORCE BASE, Calif. -- With the fairing door off, Orbital Science's Jose Castillo and Mark Neuse remove the fairing payload access door on NASA's Orbiting Carbon Observatory, or OCO, spacecraft on Launch Complex 576-E at Vandenberg Air Force Base in California. Orbital Science's Glenn Weigle and Brett Gladish stand by to take the GN2 flow reading The encapsulated OCO tops Orbital Sciences' Taurus XL rocket, which is scheduled to launch Feb. 24. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Glenn Weigle, Orbital Sciences
Storytelling in Earth sciences: The eight basic plots
NASA Astrophysics Data System (ADS)
Phillips, Jonathan
2012-11-01
Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.
Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform
NASA Astrophysics Data System (ADS)
Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.
2012-12-01
This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.
Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.
2009-02-10
VANDENBERG AIR FORCE BASE, Calif. --The Encapsulated Cargo Element containing NASA's Orbiting Carbon Observatory, or OCO, lowered to a horizontal position on a transporter, is moved under a protective tent after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB
NASA's EOSDIS Cumulus: Ingesting, Archiving, Managing, and Distributing from Commercial Cloud
NASA Astrophysics Data System (ADS)
Baynes, K.; Ramachandran, R.; Pilone, D.; Quinn, P.; Schuler, I.; Gilman, J.; Jazayeri, A.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.
NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution
NASA Astrophysics Data System (ADS)
Ramapriyan, H. K.
2012-12-01
NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a number of software tools tailored to their respective user communities. Web services play an important part in improved access to data products including some basic analysis and visualization capabilities. A coherent view into all capabilities available from EOSDIS is evolving through the "Coherent Web" effort. Data are being made available in near real-time for scientific research as well as time-critical applications. On-going community inputs for infusion for maintaining vitality of EOSDIS come from technology developments by NASA-sponsored community data system programs - Advancing Collaborative Connections for Earth System Science (ACCESS), Making Earth System Data Records for Use in Research Environments (MEaSUREs) and Applied Information System Technology (AIST), as well as participation in Earth Science Data System Working Groups, the Earth Science Information Partners Federation and other interagency/international activities. An important source of community needs is the annual American Customer Satisfaction Index survey of EOSDIS users. Some of the key areas in which improvements are required and incremental progress is being made are: ease of discovery and access; cross-organizational interoperability; data inter-use; ease of collaboration; ease of citation of datasets; preservation of provenance and context and making them conveniently available to users.
Visualization of High-Resolution LiDAR Topography in Google Earth
NASA Astrophysics Data System (ADS)
Crosby, C. J.; Nandigam, V.; Arrowsmith, R.; Blair, J. L.
2009-12-01
The growing availability of high-resolution LiDAR (Light Detection And Ranging) topographic data has proven to be revolutionary for Earth science research. These data allow scientists to study the processes acting on the Earth’s surfaces at resolutions not previously possible yet essential for their appropriate representation. In addition to their utility for research, the data have also been recognized as powerful tools for communicating earth science concepts for education and outreach purposes. Unfortunately, the massive volume of data produced by LiDAR mapping technology can be a barrier to their use. To facilitate access to these powerful data for research and educational purposes, we have been exploring the use of Keyhole Markup Language (KML) and Google Earth to deliver LiDAR-derived visualizations. The OpenTopography Portal (http://www.opentopography.org/) is a National Science Foundation-funded facility designed to provide access to Earth science-oriented LiDAR data. OpenTopography hosts a growing collection of LiDAR data for a variety of geologic domains, including many of the active faults in the western United States. We have found that the wide spectrum of LiDAR users have variable scientific applications, computing resources, and technical experience and thus require a data distribution system that provides various levels of access to the data. For users seeking a synoptic view of the data, and for education and outreach purposes, delivering full-resolution images derived from LiDAR topography into the Google Earth virtual globe is powerful. The virtual globe environment provides a freely available and easily navigated viewer and enables quick integration of the LiDAR visualizations with imagery, geographic layers, and other relevant data available in KML format. Through region-dependant network linked KML, OpenTopography currently delivers over 20 GB of LiDAR-derived imagery to users via simple, easily downloaded KMZ files hosted at the Portal. This method provides seamlessly access to hillshaded imagery for both bare earth and first return terrain models with various angles of illumination. Seamless access to LiDAR-derived imagery in Google Earth has proven to be the most popular product available in the OpenTopography Portal. The hillshade KMZ files have been downloaded over 3000 times by users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons. OpenTopography also provides dynamically generated KMZ visualizations of LiDAR data products produced when users choose to use the OpenTopography point cloud access and processing system. These Google Earth compatible products allow users to quickly visualize the custom terrain products they have generated without the burden of loading the data into a GIS environment. For users who have installed the Google Earth browser plug-in, these visualizations can be launched directly from the OpenTopography results page and viewed directly in the browser.
NASA Astrophysics Data System (ADS)
Hodges, K. V.
2007-12-01
Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".
NASA Astrophysics Data System (ADS)
Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.
2002-05-01
Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.
Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston
NASA Astrophysics Data System (ADS)
Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.
2009-12-01
Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new instructional strategies. The teacher co-instructors hold leadership roles for their peers and gain university teaching experience. The participants have a course that is content rich and tailored for their needs in the classroom. Earth scientists develop a “broader impact” for their science by increasing climate and earth science literacy for teachers who, in turn, reach 100s to 1000s of students every year, possibly stimulating interest for students becoming future earth scientists, but at the very least, increasing the public appreciation for earth science.
ERIC Educational Resources Information Center
Rutherford, Sandra; Coffman, Margaret
2004-01-01
For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…
Cross-Cutting Interoperability in an Earth Science Collaboratory
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen
2011-01-01
An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge
Primary school children and teachers discover the nature and science of planet Earth and Mars
NASA Astrophysics Data System (ADS)
Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten
2016-04-01
For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a scientist, evoked questions that were developed by Aristotelian discourse towards researchable empirical questions. Here teachers and scientists closely collaborated to develop effective queries. The final questions were then investigated by couples of pupils following the empirical cycle up to the point of a poster presentation.
NASA Astrophysics Data System (ADS)
Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.; Bohon, W.; Pacheco, H. A.; Schwab, P.; Baumback, D.; Pettis, L.; Colunga, J.; Robinson, S.; Dick, C.
2012-12-01
The EarthScope Program (www.earthscope.org) funded by the National Science Foundation fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. EarthScope scientific data and findings are transforming the study of Earth structure and processes throughout the planet. These data enhance the understanding and mitigation of hazards and inform environmental and economic applications of geoscience. The EarthScope Program also offers significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO continues to actively support and promote E&O with programmatic activities such as a regularly updated presence on the web and social media, newsletters, biannual national conferences, workshops for E&O providers and informal educators (interpreters), collaborative interaction with other Earth science organizations, continuing education for researchers, promotion of place-based education, and support for regional K-12 teacher professional-development programs led by EarthScope stakeholders. EarthScope E&O, coordinated by ESNO, leads the compilation and dissemination of the data, findings, and legacy of the epic EarthScope Program. In this presentation we offer updated reports and outcomes from ESNO E&O activities, including web and social-media upgrades, the Earth Science E&O Provider Summit for partnering organizations, the Central Appalachian Interpretive Workshop for informal Earth science educators, the U.S. Science and Engineering Fair, and collaborative efforts with partner organizations. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Effective Integration of the World-Wide Web in Earth Science Education.
ERIC Educational Resources Information Center
Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn
The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…
NASA's Earth Science Enterprise: 1998 Education Catalog
NASA Technical Reports Server (NTRS)
1998-01-01
The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.
Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model
ERIC Educational Resources Information Center
Gagnon, Valoree; Bradway, Heather
2012-01-01
For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…
ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities
NASA Astrophysics Data System (ADS)
Locke, S. M.; Cohen, L.; Lightbody, N.
2001-05-01
ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.
The Satellite Data Thematic Core Service within the EPOS Research Infrastructure
NASA Astrophysics Data System (ADS)
Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Buonanno, Sabatino; Zeni, Giovanni; Wright, Tim; Hooper, Andy; Diament, Michel; Ostanciaux, Emilie; Mandea, Mioara; Walter, Thomas; Maccaferri, Francesco; Fernandez, Josè; Stramondo, Salvatore; Bignami, Christian; Bally, Philippe; Pinto, Salvatore; Marin, Alessandro; Cuomo, Antonio
2017-04-01
EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model, 3D displacement maps, seismic hazard maps). Moreover, the services will release both on-demand and systematic products. The latter will be generated and made available to the users on a continuous basis, by processing each Sentinel-1 data once acquired, over a defined number of areas of interest; while the former will allow users to select data, areas, and time period to carry out their own analyses via an on-line platform. The satellite components will be integrated within the EPOS infrastructure through a common and harmonized interface that will allow users to search, process and share remote sensing images and results. This gateway to the satellite services will be represented by the ESA- Geohazards Exploitation Platform (GEP), a new cloud-based platform for the satellite Earth Observations designed to support the scientific community in the understanding of high impact natural disasters. Satellite Data TCS will use GEP as the common interface toward the main EPOS portal to provide EPOS users not only with data products but also with relevant processing and visualisation software, thus allowing users to gather and process on a cloud-computing infrastructure large datasets without any need to download them locally.
The Transforming Earth System Science Education (TESSE) program
NASA Astrophysics Data System (ADS)
Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.
2007-12-01
A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.
Board on Earth Sciences and Resources and its activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less
ERIC Educational Resources Information Center
Chandra, Satish, Ed.; Mostertman, L. J., Ed.
Hydrology is the science dealing with the earth's waters, their occurrence, circulation, and distribution, their chemical and physical properties, and their reaction with the environment. As such, hydrology is an indispensible requirement for planning in the field of water resources. Objectives for, spectrum of, and topics for education in…
Kockelman, William J.
1976-01-01
An inventory of the use of USGS products in selected planning studies, plans, ordinances, and other planning activities was made for eight counties in the San Francisco Bay region--a region of almost five million people. This inventory was designed to determine and document the use of the 87 earth-science information products prepared as a part of the San Francisco Bay Region Environment and Resources Planning Study (SFBRS). The inventory showed that: (1) all eight counties had planning staffs who were very familiar with SFBRS products and had made frequent use of such products; (2) all eight counties had prepared planning documents which cite SFBRS products; (3) the types of planning applications most often indicated were: geologic hazards studies, seismic safety and public safety plan elements, general reference, and the preparation and review of environmental impact reports and statements; (4) over 90 percent of the 87 SFBRS products were used at least once, and nine of the products were used over 30 times each for various county planning activities; and (5) at least 85 other USGS products were also used for various county planning activities. After the inventory, selected county officials, employees, and consultants were interviewed and asked--among other things--to indicate any problems in the use of the SFBRS products, to suggest improvements, and to identify any needed or desired earth-science information. The responses showed that: (1) the scales commonly used for working maps were 1:62,500 or larger and for plan implementation were 1:24,000 or larger; (2) only one county had a geologist on its planning staff, although six others had the benefit of geotechnical services from private consulting firms, county engineering staffs, or the State Division of Mines and Geology; (3) seven of the eight counties expressed some problems in using the products, primarily because of their small scale or lack of detail; (4) all eight counties expected to continue to use the products and expressed a need or desire for additional earth-science, engineering, or other information; (5) all eight counties suggested specific improvements to future products, primarily larger scale or more detail and fewer technical or more interpretive products; and (6) all eight counties received educational, advisory, and review services from USGS personnel. Seventeen selected examples of the application of SFBRS products to various county planning activities are discussed and illustrated. These examples include four planning studies, seven plans, and two ordinances. From the inventory and responses to the interviews, it is concluded that the counties in the Bay region are very familiar with, have made frequent use of, and will continue to use SFBRS products for a wide range of county planning activities. Suggestions to ensure more effective use of earth-science information in the future include: (1) monitoring emerging critical issues and analyzing new state and federal laws and regulations so as to better anticipate and respond to county earth-science information needs; (2) creating a users advisory committee to help identify critical issues and user needs; (3) providing engineering interpretations and land- and water-use capability ratings to make earth-science information more readily usable; (4) giving priority to areas impacted by development so as to husband staff resources; (5) providing earth-science information at the larger scale and greater detail commonly used and needed by counties; (6) releasing earth-science information earlier and according to a formal distribution pattern; and (7) providing educational, advisory, and review services in connection with any earth-science information designed for planners and decisionmakers.
NASA Astrophysics Data System (ADS)
Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.
2017-12-01
The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We will provide an overview of the response activities and data products provided by the NASA Earth Science Disasters program, partnerships with federal end-users and the International Charter, and preliminary feedback from end-user partners during response efforts following Hurricanes Harvey, Irma, and Maria..
A Method of Utilizing Small Astronomical Telescopes in Earth Science Instruction
NASA Astrophysics Data System (ADS)
Kim, Kyung-Im; Lee, Young Bom
1985-12-01
Four observational astronomical items have been pilottested with a 150mm refracting telescope in order to lay out the detailed procedures for the suggested(inquiry) activities listed in the high school earth science curriculum and to contrive some adequate instructions for students stressed on how to make proper treatments with the collected materials. The tested items were of sunspots' motion, the size of lunar craters, the Galilean satellites' revolution, and the galactic distribution of stars. Following series of activities are suggested with respect to the way of collecting observational data and of giving proper instruction to students in class: 1) Photography and other materials be made by teacher and/or extracurricular group of students; 2) Replicas(xeroxed, photographs, or slides) be made from the collected materials, so that they are available to all the students in class; 3) Quantative analyses be taken as sutdents' activities
NASA Astrophysics Data System (ADS)
Olgin, J. G.; Güereque, M.; Pennington, D. D.; Everett, A.; Dixon, J. G.; Reyes, A.; Houser, P. I. Q.; Baker, J. A.; Stocks, E.; Ellins, K.
2015-12-01
The Geological Sciences department at the University of Texas at El Paso (UTEP) hosted the EarthTech outreach program - a one-week intensive summer camp for low-income, at-risk high school students. The EarthTech program engaged students in STEM activities from geological and environmental sciences. Developed and led by university student-mentors with guidance from a supervising faculty member, the course engaged Upward Bound students with lectures, interactive projects, and excursions to local ecological preserves and geological sites around El Paso, Texas. Topics covered plant and animal distribution and diversity, water and soil dynamics, evolution and paleontology, geohazards, and planetary science. Field trips were combined with hands-on activities, including activities from DIG Texas teaching modules. The NSF-funded DIG Texas Instructional Blueprints project is organizing vetted, high quality online educational resources and learning activities into teaching modules. The modules follow a storyline and demonstrate congruency with the Next Generation Science Standards. Selected DIG Texas resources were included in the daily curriculum to complement the field trip and other hands-on activities. EarthTech students created ESRI Online GIS story maps in which they showed the locations of the field trips, incorporated photographs they had taken, and provided written reflections about their camp experiences. The DIG Texas project evaluation collected survey and interview data from the university student mentors throughout the week to ascertain the efficacy of the program. This poster presentation will include an overview of the program, including examples of work and evaluation results.
Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services
NASA Astrophysics Data System (ADS)
Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.
2017-12-01
Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.
Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long
2017-01-01
Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.
U.S. Geological Survey Library classification system
Sasscer, R. Scott
2000-01-01
The U.S. Geological Survey Library classification system has been designed for earth science libraries. It is a tool for assigning call numbers to earth science and allied pure science materials in order to collect these materials into related subject groups on the library shelves and arrange them alphabetically by author and title. The classification can be used as a retrieval system to access materials through the subject and geographic numbers.The classification scheme has been developed over the years since 1904 to meet the ever-changing needs of increased specialization and the development of new areas of research in the earth sciences. The system contains seven schedules: Subject scheduleGeological survey schedule Earth science periodical scheduleGovernment document periodical scheduleGeneral science periodical schedule Earth science map schedule Geographic schedule Introduction provides detailed instructions on the construction of call numbers for works falling into the framework of the classification schedules.The tables following the introduction can be quickly accessed through the use of the newly expanded subject index.The purpose of this publication is to provide the earth science community with a classification and retrieval system for earth science materials, to offer sufficient explanation of its structure and use, and to enable library staff and clientele to classify or access research materials in a library collection.
The earth as a planet - Paradigms and paradoxes
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1984-01-01
The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.
NASA Technical Reports Server (NTRS)
Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William
2008-01-01
Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.
The Earth System Grid Federation (ESGF) Project
NASA Astrophysics Data System (ADS)
Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark
2015-04-01
The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.
NASA Astrophysics Data System (ADS)
Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.
2009-05-01
To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers and student teachers through workshops, at teacher conferences, and participating Faculties of Education.
Using Unmanned Air Systems to Monitor Methane in the Atmosphere
NASA Technical Reports Server (NTRS)
Clow, Jacqueline; Smith, Jeremy Christopher
2016-01-01
Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.
NASA Astrophysics Data System (ADS)
Myers, R.; Botti, J.
2002-12-01
The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.
NASA Astrophysics Data System (ADS)
Myers, R. J.; Botti, J. A.
2001-12-01
The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.
[Activities of Goddard Earth Sciences and Technology Center, Maryland University
NASA Technical Reports Server (NTRS)
2003-01-01
The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.
NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal
2011-01-01
In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)
Simple, Accurate, Low-cost RO Science with the Iridium-NEXT Satellite Constellation
NASA Astrophysics Data System (ADS)
Meehan, T.; Mannucci, A. J.
2011-12-01
Over the last decade, a disparate collection of GNSS-RO instruments have been measuring the refractivity of the Earth's ionosphere and atmosphere. These measurements have proven to be robust and precise data sets for operational weather, climate and geospace sciences. Future GNSS-RO weather and science will most benefit from a large number of profiles (10000+/day), with lower latency and greater accuracy in the lowest 5 km altitude. For weather, latencies below 90 minutes are required, 30 minutes desired. Space weather latency requirements are more stringent, with 15 minutes being a long sought goal. Climate studies benefit from averaging measurements uniformly distributed over the Earth, acquired over decades, with local time sampling errors minimized by dense coverage or well designed orbits. There's much more of course, because space GNSS science is still nascent but with gathering momentum among the international community. Although individual GNSS-RO instruments are relatively cheap as space hardware goes, growing the measurement density can be costly when a dozen or more are required for a single program. In this presentation, we propose a novel technique for greatly reducing the cost of a constellation of GNSS-RO instruments and discuss the science trade-offs of this approach versus the more traditional GNSS-RO designs.
NASA Scientific Data Purchase Project: From Collection to User
NASA Technical Reports Server (NTRS)
Nicholson, Lamar; Policelli, Fritz; Fletcher, Rose
2002-01-01
NASA's Scientific Data Purchase (SDP) project is currently a $70 million operation managed by the Earth Science Applications Directorate at Stennis Space Center. The SDP project was developed in 1997 to purchase scientific data from commercial sources for distribution to NASA Earth science researchers. Our current data holdings include 8TB of remote sensing imagery consisting of 18 products from 4 companies. Our anticipated data volume is 60 TB by 2004, and we will be receiving new data products from several additional companies. Our current system capacity is 24 TB, expandable to 89 TB. Operations include tasking of new data collections, archive ordering, shipment verification, data validation, distribution, metrics, finances, customer feedback, and technical support. The program has been included in the Stennis Space Center Commercial Remote Sensing ISO 9001 registration since its inception. Our operational system includes automatic quality control checks on data received (with MatLab analysis); internally developed, custom Web-based interfaces that tie into commercial-off-the-shelf software; and an integrated relational database that links and tracks all data through operations. We've distributed nearly 1500 datasets, and almost 18,000 data files have been downloaded from our public web site; on a 10-point scale, our customer satisfaction index is 8.32 at a 23% response level. More information about the SDP is available on our Web site.
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.
2007-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* & Globus Alliance toolkits), and enables scientists to do multi- instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. SciFlo also publishes its own SOAP services for space/time query and subsetting of Earth Science datasets, and automated access to large datasets via lists of (FTP, HTTP, or DAP) URLs which point to on-line HDF or netCDF files. Typical distributed workflows obtain datasets by calling standard WMS/WCS servers or discovering and fetching data granules from ftp sites; invoke remote analysis operators available as SOAP services (interface described by a WSDL document); and merge results into binary containers (netCDF or HDF files) for further analysis using local executable operators. Naming conventions (HDFEOS and CF-1.0 for netCDF) are exploited to automatically understand and read on-line datasets. More interoperable conventions, and broader adoption of existing converntions, are vital if we are to "scale up" automated choreography of Web Services beyond toy applications. Recently, the ESIP Federation sponsored a collaborative activity in which several ESIP members developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, the benefits of doing collaborative science analysis at the "touch of a button" once services are connected, and further collaborations that are being pursued.
NASA Astrophysics Data System (ADS)
Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.
2011-12-01
We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.
Reaching Beyond the Geoscience Stigma: Strategies for Success
NASA Astrophysics Data System (ADS)
Messina, P.; Metzger, E. P.
2004-12-01
The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.